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FIGURE 1.3 (a) Schematic diagram of the full-bridge, single-phase, two-level VSC (or an
H-bridge convefter). (b) Symbolic representation ofthe H-bridge converter.

be augmented with an additional half-bridge converter, to represent the fourth leg
identical to the other three legs, whose AC terminal is connected to the fourth wire,
Various PWM and space-vector modulation techniques for switching the three-phase
two-level VSC are described in Ref. [20].

The principles of operation of the half-bridge VSC and the three-phase VSC are
discussed in Chapters 2 and5, respectively.

1,.7,1 Multimodule VSC Svstems

In high-voltage, high-power VSCs, the switch cell of Figure y!65, which is
composed of a fully controllable, unidirectional switch and a diode, may not be able
to handle the voltage/current requirements. To overcome this limitation, the switch
cells are connected in series and/or in parallel and form a composite switch structure
which is called a valve.Figure 1.5 shows two valve configurations composed of
parallel- and series-connected identical switch cells, In most applications, the existing
power semiconductor switches meet current handling requirements. However, in

FIGURE 1.4 (a) Schematic diagram of the three-wire, three-phase, two-level VSC. (b) The
svmbolic representation of the three-ohase VSC.
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84 SPACE PHASORS AND TWO-DIMENSIONAI FRAMES

index a is replaced by b, index b is repiaced by c, and index c is replaced by a in the
phase equations. Let the input/output relationship of each subsystem be described by
a transfer function, G(s), as

Ya(r) : G(s)Ud(s),

Yr(s): G(s)Ub(s),

%(s) : G(s)U"(s), (4.16)

where G(s) -- (k*s* -l k*-rs^-t +...+ kdlG" *ln1sn-r *...+ lo) is a ratio-
nal transfer function; it can be verified based on (4.16) that the system of Figure 4.13
is symmetrical. The time-domain equations of the three-phase system are

d' yo , dn-t yo , , d'uo d^-l
41n 

-rrn-t 
d4=f - "-lovo:k^;*t,-,#l"'lkouo.

(4.1.7)

dnyt , dn-t ya , d'ua ., d'-tub
-4rn -tn I d*_t -"'+tjlb:Kn df 

'f xn | *rm.t 
t"'LR\ub.

(4.18)

d'y, , dn-t y" , d'u, ., d^-l
4,n 

-r rn-t 
drn-t 

-r " -f loyc : k,*i; + k^-tl-dr:: _ '..- k6u".

(4.19)

Multiplying both sides of (4. i7), (4.1S), and (4.19), respectively, by leio, !d? , a16
c ;!z
Serl.oneobtalns
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SPACE-PHASOR REPRESENTATION OF THREE-PHASE SYSTEMS

dn /2 ,q" \ dn-r
*\lt3!'1+tn-t-

.dm/2,a,.\d-t: k, 
ttr,, \j"'- I ) - k*-t d,,-r' 1,L,.

(1,,Tr"\ --...*/6 (2,,i,i ,"\
\r ,/ \J /

(1,"t/)- *ko (i,,?X)\J 6.' \r ilZ
(L ))\

Adding the corresponding sides of (4.20), (4.21), and (4.22), and using (4.2), one
concludes that

dn -- , dn-l 
- 

d^ 
- 

d*-l 
-4,n ! -tn-t d(t-i 

y + ' +/0,:o,dr-Il -f km-t 
71r_t 

u -" lkgu.

(4.23)

Equation (4.23) represents the system of Figure 4.13 in the space-phasor domain.
It is noted that fte system input-output relatlonship in the space-phasor domain has
the same form as that for each subsystem in the abc-frame. Equation (4.23) pro-
vides a compact representation of the original three-phase system. It can be observed
that (4.23) possesses the same form as each of (4.1,7), (4.18), and (4.19). There-
fors, the space-phasor equations of a symmetrical, decoupled, linear, three-phase
system can be conveniently derived by replacing the time-domain variables with the
corresponding space-phasor variables in any set of equations corresponding to the
thres phases.

The foregoing procedure to transform the differential equations of a three-phase
system to space-phasor domain can also be readily applied to state-space equations,
as illustrated in Example 4.4.

EXAMPLE 4.4 Space-Phasor State-Space Equations ofa Three-Phase
Circuit

Figure 4.14 illustrates a simplified circuit diagram of a current-conholled three-
phase VSC system of which each phase is interfaced with the conesponding
phase of an AC system. The AC system is represented by a voltage source uro6"
in series with three decoupled inductors, one per phase. The inductance of each
inductor is 1". In the circuit ofFigure 4.14, uo6" signifi,es the voltage ofthe point
of common coupling (PCC), and is666 and iq6. represent the AC system current
and the VSC cument, respectively. Since, in practice, ldrc contains harmonic
components, the capacitors C are used to providebypass paths for the harmonics
and prevent them from penetrating into the AC system. It is assumed that the
fundamental component of ir6c can be controlled by a PWM scheme. This, in
tum, enables the control ofreal and reactive power that the VSC system delivers
to the AC system.

Based on the aforementioned description of the circuit of Figtxe 4.14, io6"
is the control variable whereas uabc and is.bc are the state variabies. Since there
is no control o\er l)rabc, it is regarded as the disturbance input. Depending on
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EXAMPLE 4.7 Space-Phasor Equations of Three Mutually Coupled
Inductors

Consider an asymmetrical thee-phase system govemed by the following matdx
equatlonl

I ul I Ls Mab MrcI t i"]

l:"):lr;:,'^'")*ll

("' l:;])

l:;l=iyu''*-.y")":,t*"r,i::_:"il*1"",]**,

["] ltL, - Mt o I ,i [i"l
L,'l -f o (Lr-u')a'lir)

(4.60)

which represents three mutually coupled inductols w.ith unequal mutual in-
cluctances. To dedve the dB-ftame equations, based on (4.47), the arc_frame
voltage and cu@nt vectors are expressed in crB-frame. Hence,

"*l',;1, G6r)

where C is given by (4.45). Premultipiying borh sides of (4.61) by (2/3)C and
using ttle identity (4.53) at the left-hand side of the resultant. we deduce

(4.62)

Substituting in (4.62) for C arid Cr, based on (4.45), one deduces

dte
Equation (4.63) indicates that u" and rB y'( tuncrions of both io and ir, through
different transfer functions. However, if the mutual inductances are identical and
equal to M, the three inductors constitute a symmetrical (coupled) three-phase
system, and (4.63) is simplified ro

I Ls M.b M@1

c'l'"1: l,v* r, vo"l !
L'/.1 lu., r,,to" u ldt

I Ls Mlb Mrc\
: 

lMab 
L" Mbcl

LMtu Mbc Ls )

(4.64)
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EXAMPLE 4.8 dq-Erame Model of the Three-Phase System of
Example 4.4

Consider the circuit of Figure 4.I4 for which the space-phasor equations are

given by (4.30) and (4.3I). Substituting for ? : u2neie(t),-l - ionsiu(t), 
^16i : iraqeju(t) in (4.30), we obtain

cfi (ran"i"rl) : (tan"i'at) - (t,onei"{tt) ,

whete f*n : fa * ifn.Equation (4.85) can be rewritten as

GY ) e.ic(t) + (iatra) e.i'(t) - (i6n) s.i"Qt - (i,q1 ".i,tt, (4.86)
\' ur 't 

'..t'--'

where ICA)'IJJ'

de
-- = a\t).

clt

(4.85)

(4,87)

(4.88)

(4.89)

Eliminating sie(t) Trtrnboth sides of (4.86) and decomposing the resultant into
the real and imaginary pa"rts, we conclude that

Cry:Cot(t)uolid-isd,
at

c+:-co(t)ua+iq-isq'
at

Following a similar procedure for (4.31), we obtain

LrtY : Lra(t)irn * ud - usd,
at

L,+ : -Lsa(t)isd * uq - vrn.
at

Equations (4.87)-(4.91) constitute a dq-frame model

@ -+ --+

-!: 
U.

dtl "

(4.e0)

(4.e1)

for the circuit of
Figure 4,14.

EXAMPLE 4.9 dq-Frame Model of a Second-Order Three-Phase
System

Assume that the dynamics of a balanced three-phase system are described by
the following space-phasor equation:

(4.92)





vDC/2

vDC/2

equivalently s4-1 : 1). Fi

THREE-LEVEL HALF-BRIDGE NPC

Vn = -Voc/2
Half-bridge conv erlet #2

FIGURE 6.1 diagram of the threeJevel half-bridge NPC.

configuration shown in
conducts if I is positive,
Jt-t:1 and s4*1 :Q,

6.2(a). Thus, when s1-1 = 1 and s4-r = O, Qrr
if I is negative D1-1 conducts. Consequently, for

hand, for sr*r : 0 and
- Voc/2, regardless of the polarity of i. On the other
r : 1, if i is positive, D2 conducts, whereas if I is nega-

tive, Q4-1 and D3 Hence, for s1-1 =0andsa-r:l,Vt= 0, irrespective
of the polarity of i. This ysis indicates that when s1-2 = O and s4-2 : 1, de-
pending on switching of p1-1 and Qqa, the instantaneous AC-side terminal
voltage is either Vpg/2 or zero. However, one can control the (positive) average of
V1 by controlling the duty ofst-t and s+-r based on a pulse-width modulation
GWM) switching strategy

6.2.2 Generating AC-Side Voltages

To generate a negative at the converter AC-side terminal t, let rt-l : 0 (or
6.2(b) shows the corresponding circuit configuration.
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THREE-LEVEL, THREE-PHASE, NEUTRAL-POINT CLAMPED VSC

This inequality indicates that the amplitude of the midpoint current can be as high as

76Vo of the amplitude of the converter AC-side current, corresponding to the scenario
where the three-level NPC primarily exchanges reactive power with the AC-side
system, for example, when utilized as a static compensator (STAICOM). However,

r | 1 even if th" golyellgl ,pg3!es,gq (nearly) unity power factor, the amplitude of the
-t r lo midpoint current is not less thanl9.5l7olof that of the converter AC-side current.

Therefore, the DC-side voltage sources must accommodate a relatively large third-
harmonic midpoint current, and this can be regarded as a disadvantage of the three-
level NPC, as compared to its two-level VSC counterpart. The following example
further highlights these conclusions.

EXAMPLE 6.1 Midpoint Current of Three.Level NPC

Consider the three-level NPC of Figure 6.6 that is interfaced with a three-phase
voltage source via three series Rl branches. Figure 6.8(a)-(c), respectively,
illustrate the waveforms of the converter AC-side cuffent and fundamental
harmonic of the AC-side voltage, the switched waveform of the midpoint
curuento and the filtered waveform of the midpoint current.

Until r :1,5 s, the converter fundamental voltage and AC-side current are in
phase (unity power factor) (Fig. 6,8(a)) and 710 kW flows out of the converter
AC-side terminals. At /:1.5 s, the convefter fundamental voltage is phase
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FIGURE 6.8 Midpoint curent of the three-level NPC under unity and

conditions: Examole 6.1.
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I'IGURE 6.13 Switching functions and AC-side terminal voltage of the three-level half-
bridge NPC when the sinusoidal modulating signal is supplemented by a DC offset.

where

T

wlcLt)

foT) : moQ)ioQ) lsgn(m) - sgn(-m)f ,

fa?) : muQ)iu?) lsgn(m) - sgn(-m)) ,

f,(t) : m,(r)i,(t) lsgn(m,) - sgn(-n,)] ,

(6.s0)

(6.s1)

(6.s2)

(6,s3)

the coresponding variable.
from (6,35) and (6.46), we

To calcr\ate fo(t) + fuQ) + fr(t), we note that based on (6.46)-(6.48), ma(t),
m6(t), and(mu(t)Fe identical in form but phase shifted with respect to each other by

-2n13. Thd?6fore, since io6"(t) is a balanced three-phase waveform, foQ), fu!),
and fr(t) are also identical in form but phase shifted by -2n13. Consequently,

f.(t) + fa(t) + "f.(t) is three times fo(t) with respect to DC and tr'iple-n harmonic
components, and zero otherwise, Thus,

i2p6(t) : -3foo(t),

where the subscript 0 denotes the DC component of
Substituting for io(t) and mo(t) in (6.50), respectively,





REAL./REACTIVE-POWER CONTROLLER

and

i"(t): icos(0 - Q),

iilt):T"or(e-O-tf\\ t/'
/ 4"\i"(t):lcos(0-Q--Z 

),

where 0 : @ot I do; d and -Q arc, respectively, the phase shifts of Vsa66 and iq6s
with respect to Vra6r. Under steady-state conditions, @ is the power-factor angle of
the VSC system, in the conventional phasor analysis sense. Based on (4.2), the space
phasors correspondingto Vsa6s and io6, are'

(7.18)

(7.re)

(7.20)

(7,2r)

(7,22)

(7.23)

(7.24)

(7.2s)

(7.26)

(7.27)

---'
V s(t): l/rstn,

i (t): ir-raslv.

Substituting for ?, ano ? in (4.38) andffi? one obtains the real and reactive
power delivered to the AC system as

3*
P, = ,iVrcosQ,

g,:fr,sinQ.

Equations (1.2I) and (7 ,22) are rearranged as

/?^\
rcos@- ,,1 l;r,)
?sin4: o,/ (;?,)

B ased on (4.46), the cv-axis components of V, o6r, V 7q66, and i abc are

Vra : Vt cos 0,

a: ^, .) a)Vn : Vtcos(0 * 6) : Vtcosdcos 0 - VTsindsin0,

io :i cos(0 - d) : ?cos Q cos 0 * ?sin @ sin g.

Substituting for?cos @ and?sin Q in (7.27), from (1.23) and (7 .24), substituting for
Vro,Vto,andioin(7.12),from(7.25),(7.26),and(1.27),andassuming (R I ro) x g,



REAL./REACTIVE-POWER CONTROLLER

'?d- 
to sbd-frame tffin$furmer with third-hffmonia addition

FIGURE 7.11 Block diagram of the aB- to abc-ftame signal transformer used for third- - ?
harmonic injected PWM. 

,l.lC
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As Figure 7.12 illustrates, foraVSC employing thethird-harmonic injectedflffM,
each component of mnur-o6" is limited to * 1 . This is equivalent to lmolrrl <Q)for a

VSC that employs the conventional PWM strategy. Thus, based on the third-harmonic
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FIGURE 7.12 Schematic diagram of the real-/reactive-power controller adopting the third-
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Equation (7.85) can be solved for P1 as

pt : p, +|fn + ronrt +

4.6
As shown in Example y{, tn" rcrm lne {+f 

.} is the insranraneous power

absorbed by the three-phase inductor bank L (see (4,41)) anO }(R + ronfr is the
power dissipated by the resistance of the three-phase inductor.

Practically, (R * ro) is a small resistance and its associated power is negligible
compared to Ps and Pr. However, the power absorbed by the three-phase inductor can
be significant during transients. The reason is that, since in a high-power VSC the
switching frequency is limited by power loss considerations, L must be adequately
large to suppress the switching harmonics. Furthermore, since the uB-frame current
controllers are fast, 7 

"unundergo 
rapid phase and amplitude changes, during the

real-/reactive-power command tracking process, Substituting for 7 : io * jis in
(4.4L), we obtain

3L iP
4dt (7.87)

Based on (4.40), we deduce

+*{*r.}

+*{*r.}:+*(t.+ft):

9 ^r.= - V:l-.
AJa

+*{{i.} :(+) #.@)#

( zr \ dP. , ,tr\
(m/ '';* \n,

do"o" -"
-" Sa

(7.86)

(7.88)

Applying the complex-conjugate operator to (7,88) and multiplying the resultant by
(7.88), we deduce

(+o? (7.8e)

Substituting for? from (7.89) in (1.87),and assuming that ?, is constant, we obtain

(7.90)

Thus, (7.86) can be rewritten as

p, -r je, :}i ,7 -

PtNPsJ- (7.91)
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operating points, The three operating points correspond to r : 0.43 fiis, r : 0,
and r : -0.43 ms, respectively.

Figure7 .24 illustrates that the magnitude plot is similar for all three operating
points and lL(j700)l: l. Moreover, the closed-loop system is stable forthe
positive rated real power, with a phase margin of about 18o, However, the loop

toaoi'un'tu@andthe!egptiVeratedpoweroperatingpoints,I 6U na -t9i",Based on parameters
ofthis specific example, the closed-loop system is stable, although poorly, for
the positive rated power; however, it becomes unstable as the power becomes
increasin gly negativ e l7 21.

To design the compensator, let us consider the worst-case scenario that corre-
sponds to the negative rated real-power operating point, for which l[.(j700) x
-I97". Thus, if a phase margin of, for example, 45" is required, 62o must be
added to ll.(j700). This can be achieved by means of a lead filter, as explained
in Example 3.6. Let 11(s) be the lead fllter

where p1 is the filter pole and c > 1 is a real constant. The maximum phase of
the lead filter is

r1(s) : pt JJ4l9 
,J-fPt

dn : sin-r r=),
\q+ I/

which comesponds to the frequency

Pl
- -i-wm-

4q,

H(s):rffi

In our example, 3m : 62 and a^ : {Dc :700 radls. Hence, based on
(7.I02) and (7.103), we obtain a:16.1. and p1:2808 radls, and (7.101)
becomes

(7.101)

(7,102)

(7.103)

(7.10s)

(7.r04)

Solving for ft based on lH(j700)l : o7, one flnds fr : I,965,666 s-2. Substi-
tuting for II(s) from ('7 .104) in (7.98), one concludes

K,(s): s+ssffffi to-11.

Dashed lines in Figure 7.24 illustrate the Bode plots of the compensated
loop gain. Figure 7.24 shows that for all the three operating points, the
magnitude of l.(ja) remains similar to that of the uncompensated loop, and
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FIGURE 7.28 Root loci of the closed-loop DC-bus voltage controller; Example 7.5.

EXAMPLE 7.5 Instability in the Rectifying Mode of Operation

Consider the controlled DC-voltage power port of Figure T.22withparameters
L : 200pH, R = 2.38m0,ron = 0.88m9, V4 = 1.0Y, Vpg : 1250V and

fs : 1620 Hz. The line-to-line rms voltage of the AC system is 480 V and its
frequency is 377 rad/s, The c- and B-axis compensators of the real-lreactive-
power controller are

Ka(s): Kp(s): 2sr6('^+19::) f '*:9=u ) f s+2 ) rnr. (?.108)
\'2+:zzz/ \'+s$3) \s+0,05 ) '""''

Each compensatorprovides a closed-loop bandwidth ofabout au :3820rad/s
(see Example 3.6 for details) for the comesponding l9op. The transfer function
of the feed-forward filter is Gy(s):ll$ x 10-os* 1), In this example,
the PWM switching frequency is smaller than that of the VSC system of
Example 7.4. Therefore, to achieve low harmonic distortion for the AC-side
current, inductances of the interface reactors are larger than those of the VSC
system of Example 7.4. However, since the switching frequency is reduced,
the VSC system of this example can operate at a relatively higher power level.

We design the DC-bus voltage controller based on the simplified model of
(7.107). Thus, the (simplified) plant is an integrator and has the phase -90o
regardless of the operating point. Assuming that a phase margin of 45o is re-
quired at a gain crossover frequency of ro c : 700 rad/s, following the procedure
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FIGURE 8.9 Response ofthe PLL ofExample 8.1 to a sudden AC system frequency change.

the PCC are

'lf

where Vrd and Vrn are the AC system dq-ftame voltage components and cannot be

controlled by the VSC system. As described in Section 8.3.4, if the PLL is in a steady

state, %4 : 0 and (8.39) and (8.40) can be rewritten as

3-
P,rt\: "- 

lV,,ltr)idU) - V"rlrrlorrrl .

B"rr, : ] l-v,]rr tinrt t L V,rtniTrrl) .

I'

3P,(t): 
tV'a(t)ia(t),

Qs(t): -1vsd6)iq(t).

(8.3e)

(8.40)

(8.41)

(8.42)

TL
Therefore, based on (8.41) ard, (8.42), P"(l) and Qr(fl can be controlled by 17 and ln,

respectively. Let us introduce

A//V
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8.4.2 Selection of DC-Bus Voltage Level

As discussed in Sections 7.3.4, 7.3.5, and 7.3.6, the DC-bus voltage of the real-
/reactive-power controller of Figure 8.3 must satisfy the following criteria:

VDC ≥ 2V̂t, PWM, (8.58)

VDC ≥ 1.74V̂t, PWM with third-harmonic injection. (8.59)

Thus, one must properly evaluate V̂t under the worst-case operating condition. Since
the VSC system controls Ps and Qs, V̂t should also be expressed in terms of Ps

and Qs. Based on (8.45) and (8.46), and under the assumptions that Vsq = 0 and
(R+ ron) ≈ 0, we deduce

Vtd = L
did

dt
− Lω0iq + Vsd, (8.60)

Vtq = L
diq

dt
+ Lω0id. (8.61)

Substituting for id and iq from (8.41) and (8.42) in (8.60) and (8.61), and assuming
that Vsd is constant, we obtain

Vtd =
(
2L

3Vsd

)
dPs

dt
+
(
2Lω0
3Vsd

)
Qs + Vsd, (8.62)

Vtq = −
(
2L

3Vsd

)
dQs

dt
+
(
2Lω0
3Vsd

)
Ps. (8.63)

Based on (4.77), the amplitude of the AC-side terminal voltage is

V̂t =
√
V 2td + V 2tq. (8.64)

Furthermore, the amplitude of the modulating signal is

V̂t = m̂
VDC

2
. (8.65)

As discussed in Section 7.3.6, if the conventional PWM is employed, m̂ can assume
a value up to unity, whereas with the PWM with third-harmonic injection, m̂ can be
as large as 1.15.
To calculate the maximum of V̂t , consider the following worst-case scenario. Ini-

tially, the system is under a steady-state condition, that is, Ps = Psref = Ps0 and
Qs = Qsref = Qs0. At t = t0, Psref andQsref are subjected to step changes from Ps0
to Ps0 +�Ps, and Qs0 to Qs0 +�Qs, respectively. As discussed in Section 8.4.1,
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Text Box
As (8.41) and (8.42) indicate, Ps and Qs are directly related to Id and Iq,respectively (assuming that Vsd is constant). Thus, based on (8.55),  
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FIGURE 8.14 Sieady-state and dynamic responses of the modulating signals to step change
in P,,,7; Example 8.3.

PWM is employed, Vp6'mustbe larger than 1.208 kV (equation (8.58)) to avoid
overmodulation. However, if the third-harmonic injected pWM is employed,
yDC can be lowered to about 1.050 kV (equation (8.59)). For the VSC system
of Example 8.2, Voc: 1.250 kV was selected since the conventional PWM
was emploved.

!4 illustrates the waveforms of ,2d, mq, and fri for the VSC system
of Example rygure 8.14 illustates thal at to : 0.2 s, fr jumps to 0.965,
corresponding to y' : 0.604 kV Figure 8.14 also indicates that in this specific
example, the instant when the disturbance takes place coincides with the in-
stant when mb1) rea'ches its negative peak; this corresponds to the worst-case
scenario. However, since the DC-bus voltage is adequately large, neither fi nor
lz6(16)l exceed unity, and the VSC does not experience overmoduiation.

8.4.3 AC-Side Equivalent Circuit

Traditionally, balanced three-phase linear circuits have been analyzed based on their
corresponding phasor diagrams and single-phase equivalent circuits. In the conven-
tional phasor analysis, which is restricted to steady-state conditions, the voltages
and currents are represented by phasors, and the passive elements are represented
by impedances. This section first presents a space-phasor diagram, analogous to
the conventional phasor diagram, for the AC side of the real-/reactive-power con-
troller of Figure 8.3. Then, the relationships between the magnitude/phase-angle of
an AC-side variable and the d-lq-axis components of the variable are identified, It is
also demonstrated that, under steady-state conditions, the space-phasor differential
equations of the real-lreactive-power controller become equivalent to the algebraic
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FIGURE 9.4 Series RL load of Example 9.1.

Substituting for
−→
f = (fd + jfq)ejρ(t) in (9.17) and letting dρ/dt = ω(t), we

obtain

di1d

dt
= −R1

L1
i1d + ωi1q + 1

L1
Vsd = f1(i1d, i1q, Vsd, Vsq),

di1q

dt
= −ωi1d − R1

L1
i1q + 1

L1
Vsq = f2(i1d, i1q, Vsd, Vsq). (9.18)

In addition,

iLd = i1d = g1(i1d, i1q, Vsd, Vsq),

iLq = i1q = g2(i1d, i1q, Vsd, Vsq). (9.19)

Thus, in general, the dynamic system representing the load of Figure 9.4 has two
state variables, three inputs, and two outputs. It is interesting to note that even
if ω(t) is a variable, (9.18) and (9.19) represent a nonlinear dynamic system.

EXAMPLE 9.2 Dynamic Model of a Composite Load

Consider the load system of Figure 9.5, which is composed of parallel connec-
tion of the load of Figure 9.4 and a series RLC branch. The RLC branch of the
load is described by

L2
di2a

dt
= −R2i2a + Vsa − Va − Vn2,

L2
di2b

dt
= −R2i2b + Vsb − Vb − Vn2,

L2
di2c

dt
= −R2i2c + Vsc − Vc − Vn2, (9.20)
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