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Abstract—Cooperative localization is an important technique in
wireless networks. However, there are always errors in network
node localization, which will spatially propagate among network
nodes when performing network localization. In this paper, we
study the spatial error propagation (EP) characteristics of net-
work localization in terms of Fisher information. First, the spatial
propagation function is proposed to reveal the spatial coopera-
tion principle of network localization. Second, the convergence
property of spatial localization information propagation (SLIP) is
analyzed to shed light on the performance limits of network local-
ization through spatial information propagation. It is shown that
1) the network localization error propagates in the way of Ohm’s
law in electric circuit theory, where the measurement accuracy,
node location accuracy, and geometric-resolution information be-
have like the resistances connected in parallel or series; 2) the
network location error gradually diminishes with spatial localiza-
tion cooperation procedures, due to the cooperative localization
information propagation; and 3) the essence of spatial localization
cooperation among network nodes is the spatial propagation of
localization information.

Index Terms—Error propagation (EP), Fisher information, net-
work localization, spatial cooperation.

I. INTRODUCTION

COOPERATIVE localization plays an important role in
wireless networks [1]. It provides effective localization

solutions for the location-aware services such as warehousing
management, location-aware security, delay-tolerant network
routing [2], [3], and shopping mall navigation. It revolutionizes
the way people search, locate, and navigate the points of interest
inside buildings [4]. The localization security is prerequisite
for the localization-aware services. The location privacy might
not be as secure as the service provider claimed [5], and the
privacy-preserving Wi-Fi localization scheme can be employed
to overcome privacy issues [6].
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Given network measurements, the network nodes can be
calibrated with each other, with an expectation to improve
their location accuracies. The node calibrated in the previous
round can be used to calibrate its neighboring nodes’ locations.
Hence, we can finally observe a spatial cooperation between
a node and other remote nodes, which are outside its sensing
coverage. However, due to the limited localization accuracy,
there always exist errors in network node locations. Location
errors can also be spatially propagated among network nodes in
the calibration stage. Hence, the localization error propagation
(EP) will become a critical issue in the network localization.
Consequently, we seek answers to the following questions in
this paper.

• How do localization errors propagate spatially within the
localization network?

• What are the performance limits of network localization,
given the fixed size of measurements among network
nodes?

Since Fisher information upper bounds on the localization
accuracy [7], it can be used as an information metric to measure
the localization accuracy intensity. Hence, in this paper, we
investigate the localization EP and spatial localization coopera-
tion in terms of information propagation.

In principle, if a signal is correlated with the relative geom-
etry between the target and reference objects, it can be used
as the measurement data to determine the target location, such
as the visual signal (e.g., landmark picture or video) [8], [9];
acoustic signal [10]; wireless radio signal [11] [e.g., time-of-
arrival (TOA); received signal strength (RSS); and angle-of-
arrival (AOA)], channel state information [12], and optical
signal [13]. The wireless localization/tracking performance lim-
its with different measurement modalities in different environ-
ments have been studied in previous research efforts. In [14]
and [15], the fundamental limits of cooperative/noncooperative
localization in wideband wireless networks are investigated to
examine the impact of multipath and non-line-of-sight trans-
mission. In [16], the spatial localization cooperation between
a node and its neighboring nodes was investigated. In [17],
the Cramer–Rao lower bound is presented to benchmark the
simultaneous localization and tracking error in wireless sensor
networks. The localization performance analysis was presented
in [18] to quantify the effects of reference location uncertain-
ties. In [19], information coupling is studied for cooperative
localization by means of Fisher information analysis. The nav-
igation information evolution is addressed in [20] to highlight
the spatial and temporal cooperation in navigation networks.

0018-9545 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1648 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 2, FEBRUARY 2017

The fundamental limit of mobile localization, particularly the
temporal propagation of tracking errors, is revealed in [21],
where different types of wireless networks measurements and
performance requirements in various scenarios are considered.

However, these state-of-the-art solutions assume localization
cooperation between a node and its nearby nodes. A few
previous analyses considered the localization information prop-
agation between a node and the remote nodes. In particular, it is
the general localization/tracking issue addressed in [14]–[21],
where the one-step spatial cooperation among nearby nodes
is assumed. Nevertheless, the whole localization information
propagation, where each node may cooperate with those re-
mote nodes outside its direct sensing range (extensive spatial
cooperation), is neglected.

In this paper, the cooperative localization EP within the
whole network is studied, which not only unveils the spatial
cooperation mechanism of network localization but also pro-
vides insights into performance limits of network localization
through extensive spatial cooperation. In addition, the analysis
on spatial information propagation in this paper is applied
to the TOA-, AOA-, and RSS-based localization. The main
contributions of this paper are twofold.

• The localization cooperation principle, in the spatial field,
is revealed in terms of localization information propaga-
tion. It is shown that the network localization EP complies
with the Ohm’s law in electric circuit theory, where
the measurement accuracy, node location accuracy, and
geometric-resolution factor behave like the resistances
connected in parallel or series.

• The convergence properties and asymptotic performance
are analyzed to provide the insights into the performance
limits of spatial localization cooperation. Although refer-
ence node locations are inaccurate, the localization error
of each node can still be reduced statistically, due to
the cooperative localization information propagation. It
is disclosed that the essence of localization cooperation
among network nodes is the spatial propagation of the
associated localization information.

The remainder of this paper is organized as follows. Section II
presents the system model and problem formulation. The spa-
tial localization information propagation (SLIP) is investigated
in Section III. In Section IV, the convergence property of SLIP
is analyzed. The asymptotic performance analysis is presented
in Section V. Simulations results are presented in Section VI.
Finally, Section VII concludes this paper.

II. SYSTEM MODEL

Prior to presenting the SLIP analysis in Section III, here, we
clarify the system model first.

A. Network Model

A static wireless network is considered in this paper, as
shown in Fig. 1, where M network nodes are randomly and
uniformly distributed inside the deployment area. Due to the
unavoidable acquisition errors in their initial locations, all node
locations are inaccurate. The true (but unknown) location of

Fig. 1. Network node deployment.

the ith network node is denoted by a D-dimensional column
vector si, whereas the coarse location (inaccurate location with
a precision Ui) is denoted by µi.

1 Generally, the true location
si is modeled as a Gaussian variable with the center µi and the
precision Ui, namely

si ∼ N (si|µi,Ui) ∀ i = 1 : M (1)

where we assume node location precision Ui is independent
to others since the measurements and location estimations of
different nodes are independent from each other [22], [23]. The
location uncertainty is defined as the inverse of the location
precision matrix Ui.

This model can subsume the case where a certain node
location is completely unknown when its precision Ui → 0.
On the other hand, there is no anchor node assumed inside the
whole area, and all nodes are to be located with the cooperation
of other nodes. However, when Ui is sufficiently large, node si

is equivalent to the anchor node with precisely known location.
Considering the localization of node si (the objective node),

we assume si is within the sensing range rs of Mi nearby nodes
(reference nodes), and we define the index set of these reference
nodes as

Ψi
.
=

{
j : ∥sj − si∥2 < rs ∀ j ̸= i

}
(2)

where ∥ • ∥2 denotes the ℓ2-norm on the vector. Hence, we have
that |Ψi| = Mi, where | • | stands for the set size. We assume
these reference nodes report their coarse locations and precision
{µj ,Uj : ∀ j ∈ Ψi} to the objective node si to cooperatively
localize it.

B. Measurement Model

The measurement model of cooperative wireless localization
(incorporating the location information of nodes si and sj) is
generalized as

zi,j = h(si, sj) + ϵi,j ∀ j ∈ Ψi and ∀ i = 1 : M (3)

1The coarse location µi and its precision matrix Ui can be derived from the
previous cooperative positioning rounds, which are recorded by the node itself
and will be reported to its neighbor node (the objective node to be localized) in
the next positioning round.
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where the scalar zi,j denotes the measurement from sj to si,
and ϵi,j represents the measurement noise, which is generally
assumed Gaussian with zero-mean and precision ω, namely,
ϵi,j ∼ N (ϵi,j |0,ω).2 In particular, h(si, sj) is defined as the
measurement function that depends on the distance ∥si − sj∥2
(for the range-based methods) [21], the angle ∠(si, sj) (for the
direction-based methods) [16], or the connectivity C(si, sj) [27]
of two nodes.

In this paper, the SLIP analysis is valid for the TOA [15],
RSS [17], [28], and AOA-based localization [29], [30], where
the associated measurement function h(si, sj) can be specified,
respectively, as3 [21]

hTOA(si, sj) = ∥si − sj∥2 (4)

hRSS(si, sj) = φ− 10γ log10 ∥si − sj∥2 (5)

hAOA(si, sj) = ϕj +
180
π

actan
(

[si − sj ]2
[si − sj ]1

)
(6)

wherein φ = PT − L0 + 10γ log10 d0 and PT is the transmit
power, L0 denotes the path loss associated with the reference
distance d0, and γ denotes the path-loss exponent [31]. In
addition, [x]k stands for the kth (k = 1, 2) element of a 2-D
vector x, and ϕj stands for the direction of the antenna main
lobe. Unless otherwise stated, we use h(si, sj) to denote the
general range-based measurement functions.

C. Statistical Model

Let ci =vec[sj ]∀ j∈Ψi
denote the vector of reference node set,

where vec[•j ]∀ j∈Ψi
yields a column vector stacked by all com-

ponents {•j : ∀ j ∈ Ψi}. Consider the positioning of node si

(the objective node), and we define an (Mi + 1)D-dimensional

complete variable as αi :=

[
si

ci

]
. All measurements of si from

ci is stacked as zi = vec[zi,j ]∀ j∈Ψi
.

By assuming the measurements conditioned on si are mutu-
ally independent, the likelihood distribution is cast as

p(zi|si, sj) =
∏

j∈Ψi

|ω| 1
2

√
2π

exp

(
−1

2
ω (zi,j − h(si, sj))

2
)

where |ω| stands for the absolute value of precision ω.
Hence, the a posteriori distribution can be written as

p(αi|zi) ∝ p(zi|αi)p(αi)

=
∏

j∈Ψi

|ω| 1
2

√
2π

exp

(
−1

2
ω (zi,j − h(si, sj))

2
)

· N (si|µi,Ui)N (sj |µj ,Uj) (7)

where ∝ implies the left term is proportional to the right.

2For the TOA-based localization, we have considered the case that the non-
light-of-sight signal can be identified and removed by the identification methods
[24], [25] and its positive ranging error can also be mitigated [26]. The network
timer is also assumed synchronized.

3For the AOA-based localization [see (6)], we assume the scenario is in a
2-D Euclidean space, i.e., D = 2.

D. Problem Formulation

By localization cooperation, the network nodes could im-
prove their location accuracy. However, the a priori location
errors and localization errors can be propagated among network
nodes. In view of this, we aim to address the following issues.

• How does the localization information spatially propagate
among inaccurate network nodes?

• Given the coarse locations and the precision parameters
{µi,Ui|∀ i = 1 : M} of network nodes and measure-
ments {zi,j |∀ j ∈ Ψi, ∀ i = 1 : M}, what are the perfor-
mance limits of node location calibration?

III. SPATIAL LOCALIZATION COOPERATION

Here, we study the spatial localization cooperation in a
perspective of localization information propagation.

A. Localization Information

In the parameter estimation theory, for an unbiased Bayesian
estimation (BE) of a nondeterministic variable αi, the co-
variance matrix of estimation error is lower bounded by a
Cramer–Rao lower bound (CRLB) [28] (which is denoted by
BBE(αi) in this paper), as follows:

cov(α̂i) ≽ BBE(αi) (8)

where the CRLB BBE(αi) is calculated as the inverse of a
Fisher information matrix (FIM). We define the localization
accuracy (or precision) as the inverse of the error covariance
matrix. The Fisher information is defined as [7]

IBE(αi) = −Eαi,zi

{
∇αi,α⊤

i
ln p(αi|zi)

}
(9)

where the operator Eαi,zi{•} denotes the expectation with
respect to the distribution p(αi, zi), and ∇αi,α⊤

i
denotes the

second-order derivative.
Based on the given formulation we can see that the FIM

can be considered as the upper bound of localization accuracy.
Hence, it can be used as a localization performance metric that
measures the supremum of localization accuracy. In this paper,
we investigate the spatial cooperation of wireless localization
and the spatial propagation of localization information in terms
of Fisher information analysis.

We now calculate the full Bayesian localization information
matrix of node si (regarded as the objective node). Suppose
that the Mi reference nodes of node si are successively la-
beled by s1, . . . , sMi . Assume variables si and sj (∀ i ̸= j)
are priori independent. According to (9), its full information
matrix IBE(αi) can be structured as (10), shown at the bottom
of the next page, where we utilize the fact that IBE(si, sj) =
IMLE(si, sj) + δi,jIP (si), whereas IMLE(si, sj) and IP (si)
denote the maximum likelihood estimation (MLE)-based infor-
mation (from the measurement only) and the a priori informa-
tion, respectively. Here, δi,j = 1 if i = j, and zero otherwise.
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The generic information intensities IMLE(si, sj) and IP (si)
in (10) are specified as

IMLE(si, si) =
∑

j∈Ψi

ωAi,j (11)

IP (si) = Ui (12)

IMLE(si, sj) = −ωAi,j ∀ j ∈ Ψi (13)

IMLE(sj , sj) = ωAi,j ∀ j ∈ Ψi (14)

IP (sj) = Uj ∀ j ∈ Ψi (15)

IMLE(sj , sk) = 0 ∀ j ̸= k, and j, k ∈ Ψi (16)

where Ai,j denotes the geometric resolution metric,4 which is
given, based on three measurement methodologies, by

Ai,j = Esi,sj

{
∇sih(si, sj)∇s⊤i

h(si, sj)
}

(17)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( 10γ
ln 10

)2
Esi,sj

{
(si−sj)(si−sj)⊤

∥si−sj∥42

}
, RSS

Esi,sj

{
(si−sj)(si−sj)⊤

∥si−sj∥22

}
, TOA

(
180
π

)2
Esi,sj

{
vi,jv⊤

i,j

∥si−sj∥42

}
, AOA

vi,j =

[
[sj]2 − [si]2
[si]1 − [sj ]1

]
(supposing D = 2) (18)

where Ai,j = Aj,i and both are symmetric and have full rank.
The Bayesian information matrix of its localization is fully for-
mulated by a (|Ψi| + 1)D-dimensional positive semi-definite
matrix IBE(αi), which is calculated as (10)–(16).

We now focus on the actual localization accuracy of node
si, given the inaccurate locations {sj : ∀ j ∈ Ψi} of all of its
reference nodes. Based on the following information matrix
partition [also shown in (10)]:

IBE(si) =

[
IBE(si, si) Φ⊤

BE(si)
ΦBE(si) RBE(si)

]
(19)

where IBE(si, si) = IMLE(si, si) + IP (si), the equivalent
information IEQ(si) associated with si can be derived by using

4Geometric resolution implies the capability that a localization algorithm
recognizes the location difference, given certain measurement change.

Fig. 2. Spatial propagation of localization information.

Schur’s complement as

IEQ(si) = IBE(si, si) −Φ⊤
BE(si) (RBE(si))

−1 ΦBE(si)

=
∑

j∈Ψi

(
(ωAi,j)

−1 + U−1
j

)−1

︸ ︷︷ ︸
Hi,j

+Ui (20)

where Hi,j is defined as the equivalent measurement informa-
tion with reference node location errors.

The detailed derivation can be found in Appendix A. The
equivalent information IEQ(si) retains all necessary informa-
tion of localization from its full Bayesian information IBE(αi)
in (10), in a term of [(IBE(αi))−1][1:D,1:D]=(IEQ(si))−1 [15].

We can see that, the final localization precision relies on the
following information factors, i.e., the measurement precision
ω, the reference node location precision Uj , the geometric-
resolution information Ai,j , and the a priori location precision
Ui. The crude measurement information (disregarding refer-
ence node location errors) is defined as ωAi,j . In principle, the
localization performance depends on the measurement size, the
density of independent reference sources, a priori information,
the geometric resolution of measurement methodology, and the
measurement noise intensity.

As shown in Fig. 2, all of these localization information
factors ({ωAi,j,Uj : ∀ j ∈ Ψi} and Ui) propagate like the
resistances connected in serial or parallel, which complies with
the Ohm’s law in electric circuit theory. For the localization of
node si, the (crude) measurement information ωAi,j and loca-
tion precision Uj of one reference node sj can be deemed as
resistances connected in parallel, forming the equivalent mea-
surement information Hi,j (i.e., R1 = (R−1

1,1 + R−1
1,2)

−1 where
R1 stands for the equivalent resistance of two parallel-
connected resistances R1,1 and R1,2); these equivalent mea-
surement information {Hi,j : ∀ j ∈ Ψi} from all reference
nodes and itself a priori location precision Ui propagate like
the resistances connected in series (resistance summation),
forming the final localization information IEQ(si) of si.

IBE(αi) =

⎡

⎢⎢⎢⎣

IMLE(si, si) + IP (si) IMLE(si, s1) · · · IMLE(si, sMi)
IMLE(s1, si) IMLE(s1, s1) + IP (s1) · · · IMLE(s1, sMi)

...
...

. . .
...

IMLE(sMi , si) IMLE(sMi , s1) · · · IMLE(sMi , sMi) + IP (sMi)

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
ΦBE(si)

︸ ︷︷ ︸
RBE(si)

(10)
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B. Spatial Propagation

The localization information in (20) characterizes the ini-
tial localization accuracy of the objective node (in the first
round of localization), where it has been assumed that the
location accuracy of each reference node is the priori precision
Uj , ∀ j ∈ Ψi. However, when all network nodes have been
mutually localization more than once (here we have assumed
a fixed measurement set), the location precision of its reference
node is no longer the initial value Uj , but the localization
accuracy IEQ(sj) of the last round. Suppose that, at the nth
round of localization, the location accuracy of its reference
node sj is denoted by I(n)

EQ(sj) (∀ j ∈ Ψi), then the localization
information of the objective node (at the current localization
round) is rewritten as

I(n)
EQ(si) =

∑

j∈Ψi

(
(ωAi,j)

−1 +
(
I(n)

EQ(sj)
)−1

)−1

+ Ui

where the localization information of its reference node sj can
also be similarly expressed by

I(n)
EQ(sj) =

∑

k∈Ψj\i

(
(ωAj,k)−1 +

(
I(n)

EQ(sk)
)−1

)−1

︸ ︷︷ ︸
H(n)

j,k

+

(
(ωAj,i)

−1 +
(
I(n−1)

EQ (si)
)−1

)−1

+ Uj (21)

where “\” denotes set minus, and H(n)
j,k denotes the equivalent

measurement information from node sk to node sj , in the nth
localization round. By substituting (21) into (20), the localiza-
tion information of si can be further written as (22),5 shown
at the bottom of the page, where the measurement information
H(n)

j,k is cast as

H(n)
j,k =

(
(ωAj,k)−1 +

(
I(n)

EQ(sk)
)−1

)−1

∀ k ∈ Ψj \ i.

(23)

Equation (22) describes a spatial propagation of the local-
ization information among all network nodes. Prior to the
discussion of its underlying mechanism, we first introduce
some necessary definitions as follows.

5We suppose that there is no measurement of sk from si, namely, i ̸∈ Ψk
where k ∈ Ψj and j ∈ Ψi. In other words, k ̸∈ Ψi

⋂
Ψj .

Fig. 3. Network nodes classification according to its connection order ℘i to
the objective node si.

Definition 1—(The rth-Order Connection Set gr|i): If
℘i(sl) = r, we say that the node sl belongs to the rth-order
connection set of node si, which is defined as

gr|i = {sl : ℘i(sl) = r ∀ l ̸= i} (24)

where ℘i(sl) denotes the minimum hops that sl connects (in the
sense of localization observation) to the node si.
℘i(sl) is also referred to as the connection order in the fol-

lowing. In addition, if there is no observation connections from
sl to si, we denote ℘i(sl) = ∞. In view of this, the reference
nodes in Ψi of the objective node si is equivalent to its first-
order connection set g1|i. An example of a connection tree with
respect to the objective node si, according to the connection
orders of network nodes, is shown in Fig. 3. All nodes can be
classified accordingly as g1|i, g2|i, . . .. Considering the case of
whole network, a connection graph can be finally figured out,
and the reference cluster size |Ψi| of a generic node si can also
be read as its connection multiplicity.

Theorem 1: A node sl can contribute to the localization of an-
other node si through spatial cooperation, only if its connection
order ℘i(sl) < ∞ holds, namely, there exists a connection link
from sl to si.

Proof: The reasonableness of Theorem 1 lies in the local-
ization information propagation (22). If ℘i(sl) < ∞, then there
must be a connection link to make the equivalent measurement
information H(n)

j,k of the second-order connection nodes to be

not lower than zero, namely H(n)
j,k ≽ 0 ∀ j ∈ Ψi. Hence, its

localization accuracy information I(n)
EQ(sl) can finally propa-

gate to the objective node si, thus to improve the localization
accuracy I(n)

EQ(si) of node si. "
The remote node sk can also contribute to the localization

of node si through the spatial propagation of localization

I(n)
EQ(si) =

∑

j∈Ψi

⎛

⎜⎜⎜⎜⎝
(ωAi,j)

−1 +

⎛

⎜⎜⎜⎜⎝

∑

k∈Ψj\i

H(n)
j,k +

(
(ωAj,i)

−1 +
(
I(n−1)

EQ (si)
)−1

)−1

︸ ︷︷ ︸
H(n−1)

j,i

+Uj

⎞

⎟⎟⎟⎟⎠

−1⎞

⎟⎟⎟⎟⎠

−1

+ Ui (22)
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Fig. 4. Spatial propagation of localization information from nodes with various
connection orders to the objective node si.

information I(n)
BE(sk) → I(n)

BE(sj) → I(n)
BE(si),6 although it is

out of the sensing area of the objective node si (namely, k ̸∈
Ψi). A simple case of connection network is shown in Fig. 4,
where the spatial localization information propagates according
to (22). By passing the equivalent measurement information
H(n)

j,k through those nodes with each connection order, the
objective node si incorporates the localization information
I(n)

EQ(sj) and I(n)
EQ(sk) ∀ j, k ̸= i, and the last localization

information I(n−1)
EQ (si) of its own. As shown in (22), the term

Hj,k (∀ j ∈ Ψi and ∀ k ∈ Ψj \ i) opens a gate that allows the
localization information from the remote nodes gr|i (∀ r ≥ 2)
to come into IEQ(si). Hence, the localization contribution of
a remote node sl to si depends on its equivalent measurement
information Hl,m ∀m ∈ Ψl, and its connection order ℘i(sl) to
si. In addition, the localization accuracy of si depends on its
connection multiplicity |Ψi|.

IV. CONVERGENCE ANALYSIS

Here, we will analyze SLIP convergence, which will shed
light on the network localization performance limits.

A. SLIP Convergence

Theorem 2: Given the information {µi,Ui : ∀ i = 1 : M}
of all node locations and measurements {zi,j : ∀ i, j}, each
node location accuracy IEQ(si) can converge to an upper state
I⋆

EQ(si) through spatial localization cooperation. All node
location accuracy {I⋆

EQ(si) : ∀ i} will reach a balance state
until there are additional measurements.

Proof: The associated proof is given in Appendix B. "
The balance state of localization information propagation

represents the final accuracy of node localization. Theorem 2
tells us that, although all node locations are not accurate (which
means the reference node locations are also inaccurate in the
context of cooperative network calibration), given network
measurements, each node location accuracy can be improved
statistically, through spatial localization cooperation. Namely,
there always exists valuable localization information to be
exploited even for an inaccurate reference node.

In the following, we aim at analyzing its balancing process
through spatial cooperation and finding out its balance state.
We can see from (22) that, due to the presence of Hj,k,
∀ j ∈ Ψi and ∀ k ∈ Ψj \ i, the localization information of its
remote nodes gr|i, (∀ r ∈ N+) can determine the balance state

6Here, the symbol “→” denotes the direction of localization information
propagation, rather than the asymptotic process under mathematical limits.

IEQ(si). The SLIP balance state of any node is jointly de-
termined by Hj,k of other connecting nodes. Let I⋆

EQ(si)
denote the SLIP balance state of node si ∀ i = 1 : M , then the
balance states of all nodes are the solutions to the joint balance
equations in the following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I⋆
EQ(si) =

∑
j∈Ψi

H⋆
i,j + Ui

I⋆
EQ(sj) =

∑
k∈Ψj

H⋆
j,k + Uj

... (for all of the rest nodes)

(25)

where H⋆
i,j denotes the equivalent measurement information

with respect to the balanced localization information I⋆
EQ(sj)

of sj ∀ j ∈ Ψi, which is expressed as

H⋆
i,j =

(
(ωAi,j)

−1 +
(
I⋆

EQ(sj)
)−1

)−1
(26)

and so is H⋆
j,k. The corresponding localization information gain

from spatial propagation is defined as

G(si)
.
= I⋆

EQ(si) − I(n)
EQ(si)

∣∣∣
n=1

= I⋆
EQ(si) −

∑

j∈Ψi

Hi,j − Ui (27)

where Hi,j without considering spatial information propaga-
tion is given by (20). The information gain comes from the
spatial cooperation between si with its various order of con-
nection node sets gr|i ∀ r ∈ N+.

The given analysis unveils the potential localization informa-
tion inherent in network nodes connected mutually, which can
improve the localization accuracy further. It is disclosed that,
the essence of spatial localization cooperation is just the spatial
propagation of localization information.

Note that the number of balance equations in (25) equals to
the number of nodes inside the localization network, and their
balance equations are coupled with each other. The SLIP bal-
ance states of all nodes depend not only on the node connection
graph but on their own equivalent measurement information
and their own a priori location information as well. Given a
network with M nodes, the number of node connection graphs
is on the order of (M − 1)M/M !. Hence, the closed-form solu-
tion to (25) is intractable due to the large amount of node con-
nection situations. However, a numeric solution based on the
iteration of SLIP functions in (22) (∀ i = 1 : M) is feasible.
By assuming some regular properties, the SLIP analysis sig-
nificantly reduces the complexity and exploits the spatial coop-
eration among the nodes.

B. Generic Solution

Since the amount of node connection situations is nearly
exponentially growing with the number of nodes, we study a
generic network case to derive the SLIP balance state, where
some regular properties are assumed as follows.

• Assume Esi{Ui} = U ∀ i = 1 : M .
• Assume Esi,sj{ωAi,j} = Λ ∀ j ∈ Ψi ∀ i = 1 : M .
• Assume |Ψi| = Φ ∀ i = 1 : M .
• Assume Esi{I⋆

BE(si)} = J⋆ ∀ i = 1 : M .
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These four items indicate identical properties for all nodes,
which means that, from the perspective of long-term statistical
averaging, Ui, Ai,j and connection multiplicity |Ψi| of net-
work node are identical to each other. That is, there is no special
configuration for any node. On this basis, the associated balance
equation is reformed as

J⋆ = Φ
(
Λ−1 + J−1

⋆

)−1
+ U (28)

which can be further expressed as

J⋆Λ
−1J⋆ − UGJ⋆ − U = 0 (29)

where the constructed matrix G is given by

G = (Φ− 1)U−1 + Λ−1. (30)

The derivation can be found in Appendix C.
Then its balance state is obtained as

J⋆ =
1
2
Λ

1
2

(
Λ− 1

2 (4U + UGΛGU)Λ− 1
2

) 1
2
Λ

1
2 +

1
2
UGΛ.

(31)

The derivation of (31) is detailed in Appendix D.
Under such generic assumptions, given the averaged a priori

precision U and the averaged equivalent measurement infor-
mation Λ, the generic balance state J⋆ mainly depends on the
average connection multiplicity Φ of each node. Moreover, in
such a generic network, the localization information gain from
spatial propagation is specified as

G =
1
2
Λ

1
2

(
Λ− 1

2 (4U + UGΛGU)Λ− 1
2

) 1
2
Λ

1
2

− ΦU(Λ + U)−1Λ +
1
2
(ΦΛ−Λ− U). (32)

V. ASYMPTOTIC ANALYSIS

Here, we aim at analyzing the asymptotic properties of
spatial propagation of localization information to investigate its
performance limits.

Theorem 3: The final localization accuracy of each node is
upper and lower bounded as

Ui ≼ I⋆
EQ(si) ≼ Θ (33)

where the upper bound is defined as

Θ =
∑

j∈Ψi

ωAi,j + Ui. (34)

Proof: When the localization accuracy of all reference
nodes of a generic node si is sufficiently large or arbitrarily
small, based on the propagation function in (21), the localiza-
tion accuracy of si becomes, respectively

lim
IEQ(sj)→∞

∀ j∈Ψi

IEQ(si) =
∑

j∈Ψi

ωAi,j + Ui
.
= Θ (35)

lim
IEQ(sj )→0

∀ j∈Ψi

IEQ(si) = Ui (36)

where IEQ(sj) → ∞ implies IEQ(sj) − N ≽ 0 ∀N with
D-dimensions.

Due to the nondecreasing property of IEQ(si) with respect
to its reference node location accuracy IEQ(sj), the localiza-
tion accuracy of si is bounded as

Ui ≼ IEQ(si) ≼ Θ. (37)

Since the balance state I⋆
BE(si) is a specific value inside the

range area of localization information IEQ(si), thus I⋆
EQ(si)

is also bounded by Ui and Θ, as shown in (33). "
Theorem 3 implies that the spatial localization cooperation

gain G(si) defined in (27) and (30) is not more than Θ− Ui =∑
j∈Ψi

ωAi,j .
We now focus on analyzing the asymptotic performance of

generic network localization introduced in Section V-B.
Theorem 4: The balance state J⋆ of network localization ac-

curacy is asymptotically linear with the average multiplicity Φ
of network node connection, and the growth rate of final lo-
calization information J⋆ with respect to node number is the
averaged measurement information Λ.

Proof: Based on (30), two involved items in (31) can be
further expanded as follows:

UGΛGU = (Φ− 1)2Λ + 2(Φ− 1)U + UΛ−1U (38)

UGΛ = (Φ− 1)Λ + U. (39)

Consequently, the balance state is rewritten as

J⋆=
Φ− 1

2
Λ

1
2

(
Λ− 1

2

(
Λ+

2(Φ + 1)U

(Φ− 1)2
+

UΛ−1U

(Φ− 1)2

)
Λ− 1

2

)1
2

×Λ
1
2 +

(Φ− 1)Λ

2
+

U

2
. (40)

In addition, Φ−1J⋆ reflects the equivalent information con-
tributed from each connection node. When the averaged con-
nection multiplicity of each node becomes very large, we have

lim
Φ→∞

Φ−1J⋆ = Λ. (41)

Thus, Theorem 4 is proved. "
Theorem 4 implies that, in a dense network case where

all nodes are strongly connected to each other, the equivalent
localization information contributed from one connected node
is almost the averaged measurement information Λ. Hence, the
final localization accuracy of a generic node is in a level of
ΦΛ, in cooperation with Φ connected nodes. In other words,
whenever a new reference node is added for each node, there
will be localization performance gain of Λ.

Theorem 5: When the measurement precision ω is suffi-
ciently large, we have

lim
ω→∞

IEQ(si) =

⎛

⎝
∑

j∈Ψi

Uj + Ui

⎞

⎠
−1

. (42)

Theorem 5 indicates that when a sufficiently large size of
measurements are sampled such that the measurement error is
arbitrarily small, the localization accuracy will depend on the
a priori precision factors only, which is independent to the
geometric resolution and measurement modalities.
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TABLE I
SIMULATION SETTINGS

VI. NUMERICAL RESULTS

We now present extensive simulation results to validate the
spatial propagation analysis in this paper.

A. Simulation Setting

In order to configure the a priori location precision of
network node in the simulations, we assume that it complies
with a Wishart distribution, namely, Ui ∼ W(Ui|V,℘) ∀ i =
1 : M , where V denotes the scaling matrix, and ℘ stands for
the associated degree of freedom. The reason of employing
Wishart distribution lies in the fact that it is commonly used to
model the precision parameter of a Gaussian distribution and
it is also the conjugate a priori of the Gaussian distribution
precision [32]. Consequently, we can see that, the averaged
a priori precision of the network node locations is ℘V, which
can reflect the level of location uncertainties of network nodes.
We use the matrix trace as the metric to assess the localization
accuracy or error since we consider the fact that it is the
trace of equivalent CRLB that acts upon the mean squared
localization errors, namely, tr(BEQ(si)) ≤ cov(ŝi), where we
define BEQ(si) = (IEQ(si))−1. All results are averaged over
a total of 1000 simulation runs.

Here, we consider the RSS-based network localization in an
area of 100[m] × 100[m]. We also assume that γ = 3, PT = 50,
L0 = 1, d0 = 1, and rs = 20 [m] throughout the simulations.
To clearly demonstrate the spatial propagation behavior of
localization information (or errors) in different environments,
we first simulate Scenarios A, B, and C here. The simulation
settings are summarized in Table I. Furthermore, Scenario D is
simulated to examine the details of spatial propagation.

B. Simulation Results

The convergence behavior of spatial propagation of the local-
ization information in different environments (i.e., scenarios A,
B, and C) are shown in Fig. 5, and its localization EP conver-
gence is correspondingly shown in Fig. 6, wherein those three
subfigures correspond to Scenarios A, B and C, respectively.

As shown in Figs. 5 and 6, the localization of all network nodes
benefits from the spatial propagation of corresponding localiza-
tion information (see more details in Fig. 7). Through spatial
cooperation, all node location precision approaches up to the
associated balance state. In addition, in terms of mean squared
localization errors, the network localization with less a priori
location information and larger measurement information ben-
efits more from the spatial cooperation, as shown in Fig. 6.

We examine the localization performance bounds (see
Theorem3) and the localization performance gain over scenarioD
in Table I. As shown in Fig. 7, the localization information
IEQ(si) (as well as its balance state I⋆

EQ(si)) is upper and
lower bounded by Θ and Ui, respectively. However, due to the

Fig. 5. Spatial propagation convergence of the localization information. The
discontinuous curves stand for the localization information I(n)

EQ(si), whereas
the horizontal lines correspond to the associated balance states I⋆

EQ(si). In
particular, at the first round of localization (namely n = 1), IEQ(si) corre-
sponds to the localization information without spatial information propagation,
wherein the location information that each reference node sj (∀ j ∈ Ψi)
propagates to the objective node si is its original a priori Uj only. However,
from the iterations of n ≥ 2, the cooperative localization begins to benefit
from the spatial propagation of localization information among network nodes.
Gradually, the network localization information converges to a higher level and
maintains balance, as unveiled in Theorem 2.

Fig. 6. Spatial propagation convergence of the localization errors.

limited final localization accuracy I⋆
EQ(sj) of reference node

sj (∀ j ∈ Ψi), there still exists a gap between I⋆
EQ(si) with its

upper bound Θ.
Moreover, as shown in Fig. 7, the localization information at

the first round of propagation (i.e., n=1) denotes the perfor-
mance of traditional cooperative localization schemes, where
there is localization cooperation only between a node and its
nearby nodes. While when n≥2, the localization information of
a node can be further leveled up dueto the spatialcooperation with
its remote nodes. Hence, benefiting from spatial propagation,
the network localization reap more localization cooperation
gain G(si) from its various order of connection node set gr|i
∀ r ∈ N+.
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Fig. 7. Information gain inside spatial localization propagation.

Fig. 8. Balanced localization information J⋆ and its growth rate Ω under
different connection multiplicities Φ and different environments. The growth
rate is defined as Ω

.
= J⋆(Φ) − J⋆(Φ− 1), where the balance state J⋆(Φ)

is regarded as a function of the averaged connection multiplicity Φ. The growth
rate Ω reflects the localization information contributed by one node.

Fig. 8(a) and (b) present the balanced localization informa-
tion J⋆ (in a generic case considered in Section IV-B) and
its growth rate Ω in different environments, where we set
V = 1/100I and ℘ = 10, whereas the measurement precision
ω varies in [1/7,1]. In particular, the averaged connection mul-
tiplicity Φ of each node is set to rang from 1 to 49 to unveil
its localization information. We can see from Fig. 8(a) that
J⋆(Φ) is asymptotically linear with the connection multiplicity
Φ, as unveiled in Theorem 4. This conclusion can also be
observed from Fig. 8(b), where the corresponding growth rate
Ω converges to a lower value Λ.

VII. CONCLUDING REMARKS

In this paper, the fundamental limits and spatial cooperation
of wireless network localization have been studied. It is shown
that the localization accuracy depends on the measurement size,
the density of independent reference sources, a priori informa-
tion of node location, the geometric resolution of measurement

methodology, and the measurement noise intensity. In addition,
a remote node can contribute to the localization of another node
through spatial propagation of the localization information if
there is a measurement-connection link between them. It is
revealed that the essence of spatial localization cooperation
is the spatial propagation of localization information factors.
Given a fixed size of network measurements, the node location
accuracy will converge statistically to a higher level through
spatial localization cooperation, although the initial locations
of the reference nodes are inaccurate. In addition, we have the
following conclusions.

• The network localization EP principle complies with
Ohm’s law in electric circuit theory, where the measure-
ment accuracy, node location accuracy, and measurement-
resolution information behave similarly to the resistances
connected in parallel or series.

• In a dense network, for the localization of a generic node,
the localization information contribution from one of its
reference nodes is almost the averaged measurement in-
formation Λ. Hence, the localization accuracy of a node,
in cooperation with its Φ reference nodes, is ΦΛ.

• If the measurement size is sufficiently large, the localiza-
tion accuracy will depend on the a priori precision factors
only, which is independent of the geometric resolution
and measurement methodologies.

Furthermore, a generic balance state of spatial propagation of
network localization information is derived in this paper, as well
as its upper and lower bounds, which corresponds to the ulti-
mate performance limits of cooperative localization with a fixed
size of measurements. The spatial information propagation
analysis in this paper can be applied to the TOA, AOA, and
RSS-based localization.

The spatial information propagation associated with simulta-
neous localization and tracking will be interesting problems to
be investigated in the future.

APPENDIX A
DERIVATION OF (20)

Given two squared and invertible matrices A and X, the
inverse matrix lemma is described as follows:

(A + X)−1 = A−1 − (A⊤X−1A + A)
−1

. (43)

Based on the given lemma, we have that

(ωAi,j + Uj)
−1 =(ωAi,j)

−1−
(
ω2A⊤

i,jU
−1
j Ai,j +ωAi,j

)−1
.

(44)

Note that Ai,j and Uj are symmetric and have full rank.
Hence, Φ⊤

BE(si)(RBE(si))−1ΦBE(si) can be specified as
∑

j∈Ψi

ω2A⊤
i,j(ωAi,j + Uj)

−1Ai,j

=
∑

j∈Ψi

ωA⊤
i,j −

∑

j∈Ψi

ωA⊤
i,j

(
ωA⊤

i,jU
−1
j Ai,j + Ai,j

)−1
Ai,j

=
∑

j∈Ψi

ωA⊤
i,j −

∑

j∈Ψi

(
(ωAi,j)

−1 + U−1
j

)−1
. (45)
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Fig. 9. Rough graph of the SLIP function I(n)
EQ(si) = f(I(n−1)

EQ (si)).

Hence, the equivalent localization information IEQ(si) can
be finally expressed as (20).

APPENDIX B
PROOF OF THEOREM 2

As indicated in (22), the current localization information
I(n)

EQ(si) can be read as a function of its last state I(n−1)
EQ (si),

namely, I(n)
EQ(si) = f(I(n−1)

EQ (si)). Based on (22), when

I(n−1)
EQ (si) → ∞ and I(n−1)

EQ (si) → 0, the localization infor-
mation of the next step follows (46) and (47), respectively,
shown at the bottom of the page. Here, I(n−1)

EQ (si) → ∞ means

I(n−1)
EQ (si) − M ≽ 0, ∀M ≽ 0. Moreover, we have 0 ≼

I(n)
0 (si) ≼ I(n)

∞ (si) ≺ ∞. Meanwhile, the SLIP function
I(n)

EQ(si)=f(I(n−1)
EQ (si)) is monotonously increasing. In brief,

the properties of SLIP are summarized as follows.

• I(n)
EQ(si) = f(I(n−1)

EQ (si)) is monotonously increasing.

• 0 ≼ I(n)
0 (si) ≼ I(n)

∞ (si) ≺ ∞.

Consequently, there must be one and only one intersection
(denoted by I⋆

EQ(si)) Between I(n)
EQ(si) = f(I(n−1)

EQ (si)) and

I(n)
EQ(si) = I(n−1)

EQ (si), as roughly shown in Fig. 9.
At the beginning of SLIP (suppose n = 0), since there is no

a posteriori information about si; thus, I(0)
EQ(si) = 0. Next,

with the progress of SLIP (n = 1, 2, . . .), the localization infor-
mation I(n)

EQ(si) gradually increases and approaches the inter-
section I⋆

EQ(si) from the left side. Suppose there is a situation

that the present localization information I(n)
EQ(si) grows up

such that it exceeds I⋆
EQ(si). Then, at the next propagation

step, I(n+1)
EQ (si) will become lower than I(n)

EQ(si) since we

have I(n)
EQ(si) ≺ I(n−1)

EQ (si) when I(n)
EQ(si) ≻ I⋆

EQ(si), ac-
cording to SLIP properties, as also shown in Fig. 9.

In a word, the localization information will gradually level
up to I⋆

EQ(si) and then keep balance until there is more
measurement input. Hence, Theorem 2 is proved.

APPENDIX C
DERIVATION OF (29)

Since the equation (Λ−1+J−1
⋆ )

−1
=J⋆(Λ+J⋆)−1Λ holds,

(28) can be equivalently expressed as follows:

J⋆ = ΦJ⋆(Λ + J⋆)
−1Λ + U (48)

J⋆Λ
−1(Λ + J⋆) = ΦJ⋆ + UΛ−1(Λ + J⋆) (49)

J⋆Λ
−1J⋆ + J⋆ = ΦJ⋆ + U + UΛ−1J⋆. (50)

Hence, the balance equation can be further cast as

J⋆Λ
−1J⋆−U

⎛

⎝(Φ−1)U−1 + Λ−1

︸ ︷︷ ︸
G

⎞

⎠J⋆ − U = 0. (51)

Consequently, (29) is obtained.

APPENDIX D
DERIVATION OF (31)

At first, we give two conclusions below, which are useful for
deriving the balance state J⋆

UGJ⋆ = J⋆GU (52)

Λ− 1
2 UGΛ

1
2 = Λ

1
2 GUΛ− 1

2 . (53)

Based on the fact G = (Φ− 1)U−1 + Λ−1, (53) can be
directly proved. The balance state J⋆ meets with (52), which
will be proved in Appendix E.

Consequently, based on (29), we have (54)–(58), shown at the
top of the next page, where (55) and (57) have used the results
shown in (52) and (53), respectively. Moreover, the balance
equation can be further derived as

Λ− 1
2 J⋆Λ

− 1
2 =

1
2

(
4Λ− 1

2 UΛ− 1
2 + Λ− 1

2 UGΛGUΛ− 1
2

) 1
2

+
1
2
Λ− 1

2 UGΛ
1
2 . (59)

By premultiplying and postmultiplying Λ1/2 at both sides of
(59), the balance state in (31) is thus obtained.

lim
I(n−1)

EQ (si)→∞
I(n)

EQ(si) =
∑

j∈Ψi

⎛

⎝(ωAi,j)
−1 +

⎛

⎝
∑

k∈Ψj\i

H(n)
j,k + ωAj,i + Uj

⎞

⎠
−1⎞

⎠

−1

+ Ui
.
= I(n)

∞ (si) (46)

lim
I(n−1)

EQ (si)→0
I(n)

EQ(si) =
∑

j∈Ψi

⎛

⎝(ωAi,j)
−1 +

⎛

⎝
∑

k∈Ψj\i

H(n)
j,k + Uj

⎞

⎠
−1⎞

⎠

−1

+ Ui
.
= I(n)

0 (si) (47)
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J⋆Λ
−1J⋆ − UGJ⋆ = U (54)

(
J⋆Λ

− 1
2 − 1

2
UGΛ

1
2

)(
Λ− 1

2 J⋆ −
1
2
Λ

1
2 GU

)
= U +

1
4
UGΛGU

∣∣∣∣
employing Eq.(52)

(55)

(
Λ− 1

2 J⋆Λ
− 1

2 − 1
2
Λ− 1

2 UGΛ
1
2

)(
Λ− 1

2 J⋆Λ
− 1

2 − 1
2
Λ

1
2 GUΛ− 1

2

)
= Λ− 1

2 UΛ− 1
2 +

1
4
Λ− 1

2 UGΛGUΛ− 1
2 (56)

(
Λ− 1

2 J⋆Λ
− 1

2 − 1
2
Λ− 1

2 UGΛ
1
2

)2

= Λ− 1
2 UΛ− 1

2 +
1
4
Λ− 1

2 UGΛGUΛ− 1
2

∣∣∣∣
using (53)

(57)

Λ− 1
2 J⋆Λ

− 1
2 − 1

2
Λ− 1

2 UGΛ
1
2 =

(
Λ− 1

2 UΛ− 1
2 +

1
4
Λ− 1

2 UGΛGUΛ− 1
2

) 1
2

(58)

APPENDIX E
DERIVATION OF (52)

Since (Λ−1 + J−1
⋆ )

−1
= Λ(Λ + J⋆)−1J⋆ also holds, (28)

can be rewritten as

J⋆ = ΦΛ(Λ + J⋆)
−1J⋆ + U. (60)

By doing similar manipulations with (49) and (50), (28) can
also be expressed as

J⋆Λ
−1J⋆ − J⋆GU − U = 0. (61)

Combining with (51), we can see that the balance state meets
with (52), namely, UGJ⋆ = J⋆GU.
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