
Frequently Asked Questions

Questions

1. General
• The simulator sucks. There isn't even a graphical interface! Why?
• It's hard to believe the whole thing is implemented in only 300 lines of code (even if

the user interface is primitive). How is it possible?
• Simulation should be fast. Doesn't the use of an essentially interpretive language like

Java compromise the speed?
• What are the performance metrics?
• How was that measured and under what conditions?
• What are the differences between Java "server" and "client" modes and what are these

modes?
2. Future

• Will there be future versions of digsim?
• What the "bugs" and "glaring limitations"?

Answers

1. General

1.1. The simulator sucks. There isn't even a graphical interface! Why?

The simulator engine is designed as a learning tool in object-oriented analysis, design and
implementation. The engine is implemented in less than 300 lines of Java source code (not
counting comment and blank lines).

1.2. It's hard to believe the whole thing is implemented in only 300 lines of code (even if
the user interface is primitive). How is it possible?

It is the simulation engine package (ca.ryerson.kclowes.digsim) that is
implemented in a few hundred lines of code. There is not even a single line of code in that
package that implements any kind of user interface.

The primitive command line user interface is implemented in a separate subpackage
(digsim.ui). It has no code to perform simulation; rather, it uses the mechanisms

Page 1
Copyright © 2004 Ken Clowes. All rights reserved.

available in the digsim package to implement the user-interface.

1.3. Simulation should be fast. Doesn't the use of an essentially interpretive language
like Java compromise the speed?

Perhaps...but I think not. By the way, the premise that Java is an interpretive language is
wrong. It is compiled (albeit to a virtual machine language rather than native machine
language). Yes, the virtual machine language is in priciple interpreted; however, modern
interpreters that exploit the just-in-time compilation technique do translate the virtual code to
native code on the fly and achieve respectable performance.

An advantage of using Java is the platform-independence of the code.

1.4. What are the performance metrics?

A simple metric for an event-driven simulator is the number of events processed per second.
On my laptop, the engine can process about three million events per second.

1.5. How was that measured and under what conditions?

I used the simplest possible circuit that would generate an infinite number of events: an
inverter with its output connected to its input. The circuit was described and simulated with
the command-line user interface with:

Nand a a
step 100000000 //simulate 100 Million events

This took about 30 seconds—hence the claim of 3,000,000 events per second.

The metric depends on various factors including:

Computer hardware:
A laptop based on a 1.6GHz Centrino processor with 512 MB of RAM.
Operating system:
Microsoft Widows XP.
Virtual Machine:
Java 1.4.2 VM from Sun.

The exact details:

Java VM client mode:
Invocation:
java -jar digsim.jar
Time:

Frequently Asked Questions

Page 2
Copyright © 2004 Ken Clowes. All rights reserved.

23.5 seconds
Events/sec:
4,250,000/second

Java VM server mode:
Invocation:
java -server -jar digsim.jar
Time:
14.9 seconds
Events/sec:
6,890,000/second

1.6. What are the differences between Java "server" and "client" modes and what are
these modes?

There are many options that can be specified when the Java VM is invoked. The "client
mode" (which is the default) has a relatively quick start-up overhead at the cost of
performing fewer runtime optimizations. The "server mode" (which must be explicitly set)
has a slower start-up because it performs more aggresive optimizations.

When the simulation involves only a small number of events, the client-mode version will be
faster since the total time will be swamped by the start-up time with very little time spent on
the actual simulation. However, the opposite situation occurs when there are many events to
process in the actual simulation; in this case, the "server mode" is better.

2. Future

2.1. Will there be future versions of digsim?

I don't know.

The current version is good enough for its primary purpose: a demonstration teaching tool in
Object Oriented techniques. Sure, there are bugs and glaring limitations; if the intent of the
digsim project were to produce a real Digital Simulation Application, there is a lot of work to
do.

2.2. What the "bugs" and "glaring limitations"?

There are few (to my knowledge) bugs in the simulation engine itself.

The glaring limitations include:

Simulation engine:
No node values other than 0 and 1; something like a tri-state device (with a

Frequently Asked Questions

Page 3
Copyright © 2004 Ken Clowes. All rights reserved.

high-impedance output in addition to 0 and 1) is difficult to simulate. (Fixing this
would also require the engine to know about outputs that drove a common node.)
User interface:
Besides the obvious lack of a Graphical User Interface

Frequently Asked Questions

Page 4
Copyright © 2004 Ken Clowes. All rights reserved.

	1 Questions
	2 Answers
	2.1 1. General
	2.1.1 1.1.
 The simulator sucks. There isn't even a graphical interface!
 Why?

	2.1.2 1.2.
 It's hard to believe the whole thing is implemented in only
 300 lines of code (even if the user interface is primitive).
 How is it possible?

	2.1.3 1.3.
 Simulation should be fast. Doesn't the use of an essentially
 interpretive language like Java compromise the speed?

	2.1.4 1.4.
 What are the performance metrics?

	2.1.5 1.5.
 How was that measured and under what conditions?

	2.1.6 1.6.
 What are the differences between Java "server" and "client"
 modes and what are these modes?

	2.2 2. Future
	2.2.1 2.1.
 Will there be future versions of digsim?

	2.2.2 2.2.
 What the "bugs" and "glaring limitations"?

