Noteson C


About this document
This document has been generated from XSL (Extensible Stylesheet Language) source with RenderX XEP Formatter, version 3.7 Client Academic.

For more information about XSL, visit the official World Wide Web Consortium XSL homepage: http://www.w3.org/Style/XSL

For more information about RenderX and XEP, visit the RenderX site: http://www.renderx.com





Table of Contents

(== o TSRS TP PRPR Vil
1. LAESE (18SE?) VEISION ...ttt nn e Vil
1. Tutorial INtrOUCTION TO € ...t b e nes 1
1.1. Software and COMPULEr LANGUAGES .......coueeeeeereerientesiesiessesieeeeseesse s s sse e sseseessessesseseesnes 1
1.2. EVOIULION OF € ..ttt bbb nrean e b s 1
1.3. Warning: C may De “0dangerOUS” ..........ooeeieiieieriesiesiesiesese et 2
1.4. OVEIVIEW Of BASIC C ...ttt sn e b nne s 2
1.5, EXAIMPIES ..ottt e bbbt n e r e e 3
1.6. SOME AELAIIS ...ttt 7
1.6.1. Using printf() FOrmMaELiNg .........cooeeieeieerieriereresese st 7
1.6.2. CharaCter ESCape SEOUENCES ......cc.eiueriirieriieieeeee sttt see b e e s s s s sre s sse s 8

1.7. USING FUNCLIONS ...ttt s et nb bt n e nenne e enenne s 8
1.7.1. Centimetres to INCNES (VErSION 2) ....ocueiuiriireeieiesiesiesie st 9

1.8. Simple data CONVErSIoN (FITEIS) ......coiiiiiiiieeeeeee e 9
1.8.1. Copying iNPUE T0 QULPUL ......ceueeueiieriisiesieeiesieeee et s 10
1.8.2. Trandating |OWer CaSe 10 UPPES CASE .....ccuerueruiruieeeeeniesieste st sie s sse e e s sseseesnas 11

I T O £ USRS O RPN 12
1.10. 1/O redireCtion aNd PIPING .....coeoereririeeeereeseesre et re e sse e s e ssesresresnesneas 12
L.00. 1. PIPING cueieiierieetesieeseeieee e se bt e s e b se e b e b e bt ebe e e e e e e e nne e e ne b e eneeneeneas 13

A T Lol O Y o = QUSSP PP 15
2.1 FUNBMENEEl DEEA TYPES ....veviieeriieieeeeie ettt sttt ss et b et sse s e e e sresnenne s 15
2.2, DECIAIBIIONS ...ttt bbbt e e e e e b bt nenreene e 17
2.2.1. Enumerated (ENUM) TYPES ....oouiiieieiesie ettt 17

2.3, CONSLANES ...ttt b et h et e e b e e R et e e r e n e ne s 18
2.3 L EXBMPIES ...ttt bbb h b e e nenre s 18

2.4. Operators and EXPrESSIONS .......cccueiuerierirreriessesieeieeeesee st sse st sse e e ss s s sneseesnesseeneenes 19
2.4.1. ArItNMELIC OPEIBIONS ....ooueeeeeeriesie sttt b e b b en e 19
2.4.1.1. Differences between pre- and poSt- OPEraorsS ........coceeeeieereerenereneseneenes 19

2.4.2. LOQICAl OPEIGLONS .....eeviierieeieeieeeeseesse sttt e e s s st e st sse e e s e s ensennesne e 20
2.4.3. The aSSIgNMENT OPEIELOT .......couerieriiitieieeeeee ettt sr e b sne s e 21
2.4.4. THE SIZEOT OPEIEION ....cceieieieteiteeieee ettt 21
2441 EXAMPIE ..o e 21

2.5. Simple & DIOCK SLAEMENTS ......c.oiiieie s 22
2.6. FIOW CONIOI ...ttt n e b sresnenne s 22
2.6. 1. I SEAIEIMENT ... r e nne s 22
2.6.2. f...01SE SEAEMENT ....oeeiieeeee e 23
2.6.3. WRNIHETOOP ...ttt n e 23
2.6.4. EXPressions in CONAItIONAIS ........c.coueiuirieiirinieieieeee et 23
2.6.5. DO ... WhIlETOO0P ...t 24
2.6.6. FOF TOOP ...ttt bbbt nenne 25
2.6.6.1. EXAMPIES ...ttt n s 25

2.6.6.2. Break and Continue StateMENtS ..........ccceierirerereneeeeee e 26

Pageiii



2.6.6.3. SWITCH SEALEMENE ..ottt e e e e e e e e e e e e e e e e e e e e nneees 27

A B = T O 0T = o =S 28
A T T 1 0o =S 29

2.8. Expanded ASSIgNMENT SLAEEMENES .........eceeiiieieieerie ettt 29

2.9. CoNAitioNal (?) OPEFELOT .......ccvveeeieesieeieeeesieeee s e steeree e steeee e e sreeseesreeteeseesreeneeneesseenes 30
2.10. The COMMA (,) OPEIELON ......cueeiveeieeeeeieesieeee st eseeeeesteesresseesseesesseesseesesreesseesesneenseeneesees 30

3. Project management and MEAKE ..........cceieeiieieeieere et esie et ste et ae e e s e eaesseesreeeesnaesneenneas 33
3.1. Using separate SOUrCe COAE FIlES .....cuiiiiiieiice ettt 33

3.2. Scope Of Variabl€ NAIMES .........cceeiieiiee et re e e esreeen 33
G T N [ PP UPOPR 34

GG T 1Y = = ST 35
3.3. 1. A SIMPIE EXAMPIE ...ttt 35

3.3.2. Compilation EXAMPIE .......eceeiieiice e nn 36

3.3.3. AdItIONal FEMEIKS ....oviiirieeiieiee ettt nre s 37

3.3.4. USING QENENTC TUIES ..ottt sttt s e e neeneeens 38

3.3.5. Parting reMarks .........ocveiiiieiece ettt 39

4. BasSiC ArrayS and POINLES .......cooiiie ettt ettt e et e et esreenne e e e nneenes 41
I N = V£ TSP 41

A o 1011 £ TSR RSPPRRR 41
R L= A O o 1= - (0] 42

4.2.2. POINTEr ATTNMELIC ... b 42

4.2.2.1. Strings are CharaCter POINLEIS .........coiveiveieereeieseeseseeseesie e sreeseeeeesreennens 43

4.3, ArrayS aNd POINTEIS .......eoiiie ettt sttt e e ne e ae e e s reeeennee e 44

U 0 1o L RSP 45
O 0 o -SSR 46

4.4.2. Differences between ANSI and K&R C ..o 46

4.5, EXaMPIES OF POINTENS .....veiieeieieie ettt te e e e teeeesne e se e e e snaesreenneannens a7
4.5.1. Comamnd [iN€ @rQUIMENLS .........ccceiieiieeieeiesteeieseesreesae e sreesre e e sseesae e e sseeeesnee e 47

4.5.2. Variable Number of ArgQUMENLS ........ccveiuieieeiierie et 49

4.5.2.1. stdarg() right way to handle variable number of arguments...................... 51

5. POINTErS T0 TUNCLIONS ...ttt bbbttt b et enes 53
5.1. COMPIEX AECIAIALIONS .......cecveeieiiecieesie ettt e s e e e sreeteeneenne s 55

L £ o S 57
6.1. COMPIIErS: AN OVEIVIEW ..ottt sttt ettt st e e beeae e e steese s e e s neeneeeneenns 57
6.1.1. LEXICA GNAIYSIS ...cveieieciieiecie ettt sttt et n e nneene e 58

B.1.2. PAlSING ..eeeueeiieieiesie sttt ettt b e b ettt b e 59

6.1.2.1. Parsing C deClarationsS ..........cceieeiieiieesieiie e ese e st 66

7. DELA SITUCKUIES .......eeeieeeteeeiie ettt s e s e e b e s e e e s e e sae e e me e s s e e ne e saneenneesnneenneenaneens 75
7.1, SrUCtUrES AN UNIONS ....cuviiiiisiesiceieeiee ettt st bbbt e e naenne s 75

7.2, SETUCLUIE EXAMPIES ...ttt ettt e e te e sna e beeneesneenneenneas 75

7.3. USING LYPEUES ...t et e e e e re e e e areene s 76

7.4, POINLErS IO SITUCTUIES ...ttt bbbttt b e b nne b ene s 77

7.5. Single Linked List EXAMPIE ........ooeeiiieceee ettt 78

7.6. Initializing Linked liStSin deClaralions .........cccveeeieeiieiee et 78

A AL 1 0T o] PR RSSPPRPR 79

Pageiv



7.8. Example: Doubly LinNKEA LISt .....ccccooiiieiieiieeeceseee sttt 80

7.8.1. Header file doubleLinkedLiSt.n ......ccooiiiiriieeee s 81

7.8.2. MAIN TOULINE ....cueeiiite ittt sttt bbbttt e bt nnenne e 81

AR S RS T . 118 S USSR 83

T84 INOLES ...ttt e e e ne e s ae e e n e e s sn e e ne e smn e e neeenneeneennneens 84

I g TC T o 1= 00005 o S 85
8.1. USING the PrePrOCESSOL .......ccuviiieiieeiieeieeiesteeieseesteesaessee e tesseesseesesseesseentesseesseensesneensens 85
B.LL HANCIUAR ..o bbbttt b e 85

8L 2. HUBIING ..ttt benre s 86

8.1.3. #fdef and AATNAES ........eiieieee 87

B.LA. FUNAEL ... et 88

8.1.5. ANS] C PIrEPIOCESSOL ....eeiveeeiieiesieresieeessesessesssssesssssesssseesssseessseessseessssesssssessnses 89

9. The Standard [IBrary .......c.ooeeeeeee e e et e e e e re e e e ennenne s 91
LS 00 S 1 0SSR 91

S 22 o 1Y/ 0T X o 91
9.2.1. Implementation Of CLYPE.N .....eeueieeece e e 92

LSRG T (0 [T 1 o [T SRPTRR 93
ST R | = 1 LSS 9

9.3.1.1. OpeNiNG ATIE .oceeeeeeceece et 94

LS I I V1Y 1 (T e (o 1= N 1 = S 95

9.3.1.3. REAAING ATIl€ ..o e 95

LS I O @ o 1= o = 1= O 95

S LSS o I o SO 95

1S ST AV 1= 1 00 ST 96

LS S o o X o S 97

S A o = 01 | 110 = ] £ PR 97

10. Data-driven Programiming .........ccccoeeceieereeseeeeeseseesseesseeeesseesseesessseessessssssesssessesssssssessssssesnses 99
10.1. Example—Finite State MaChine .........ccccocveiiiii e 99
10.1.1. TRE BAD WY ..ottt sttt st sttt nne b 100

10.1.2. A BETTER WQY ..ottt sttt 102

10.1.3. Doing It All AUOMALICAITY ...cveeeeeieeiieee e 104

10.1.3. 1. EXAMPIE oottt e 106

1O.1.3.2. NOLES ..ottt sttt s b ettt b et e b b nns 107

10.2. Example—FSM and fuNCtioN POINLENS .......c.ccveieeiecieieeee e 108
10.3. MENU DIIVEN COUE ....c.eiiiieriiriieieeie ettt sttt a et bbb 109

2 1] o]0 | "] /S 111

Pagev



Page vi



Preface

The original version of these “Notes on C” were written in the mid 1980's as a set of dlides for a
seminar | gave on C programming.

Over theyears, | referred studentsto the“Noteson C” for various courses. | also updated the original
notes 3 or 4 times. With each update, the original slides became more like notes (and, sometimes,
even had a book-like quality).

However, sincel only updated sectionsin ahaphazard way, the result was not as uniform and consi stent
as | would have liked.

1. Latest (last?) version

In January, 2005, | started to revise the whole thing in two ways:

» Change the markup language | used to author the notes from LaTex to XML (using the Docbook
DTD).

» Make minor content changes to make the notes more uniform and to eliminate some references
that are no longer necessary.

The results?

WEell, the conversion from LaTeX to XML was far more time-consuming and tedious than | had anti-
cipated. Nonetheless, the (almost) total separation of logical content and form (rendition) has consid-
erable advantages.

The content did not change very much. | eliminated many (but not al) comparisons between K&R
C and ANSI/ISO C. (The original slides were written when ANSI C was a mature proposal but not
yet official.) | also removed many comparisons between C and Pascal (which had been a popular
language in the 1980s)

Thereremain, of course, many warts, flaws and out-and-out errorsin these Notes. Nonetheless, | want
to move on: let the warts and flaws remain. | will, however, fix out-and-out errors that are brought to
my attention. (Note: by out-and-out error, | mean something that is in clear contradiction with the
ANSI/ISO C Standard. | do not mean content that is “unclear”, “ambiguous’, “ugly”, “incomplete”,
etc.)

Page vii



Page viii



Chapter 1. Tutorial Introductionto C
1.1. Software and Computer Languages

Table 1.1. Programming L anguages

LANGUAGE |APPLICATION

Assembler Low level programming of small applications on 8-bit controllers.

C Simple systems programming language allowing access to underlying machine
features.

C++ Object oriented extension to C.

Java An object-oriented language with C-like syntax. A very portable language.

1.2. Evolution of C

1. B language (based on BCPL) written by Dennis Ritchie at Bell Labs in early '70s as first pass
inwriting UNIX in ahigh level language.

2. B wasatypelesslanguage (it accessed machine data like bytes and words without reference to
theinterpretation of the contents; i.e. 32-bit integers or 32-bit floating point numberswere simply
referred to as words).

3. B wassoon transformed into aweakly typed language: C.

4. Cwasdefined inthefirst edition (1978) of the Kernighan and Ritchie book The C Programming
Language KandR78. We will refer to thisastraditional C. (Itisalso called K&R C.)

5. Thesyntax of traditional C was defined more precisely by ANSI (American National Standards
Institute).

6. Unless otherwise stated, we use ANSI C here.

7. ANSI defines two standardsin C:

Freestanding C
Describes the pure language itself.

Standard Library
Defines a set of functions and definitions that must be supplied by acompiler in order to
be fully ANSI-compliant.

8. The C++ language incorporates object oriented programming practices.

Page 1



1.4. Overview of Basic C

1.3. Warning: C may be “dangerous’

1.

The designers of C wanted to use the language for systems programming. Consequently, they
required:

» C besufficiently powerful to access many aspects of the underlying hardware and do things
that would normally require assembly language.

» C produce very efficient code.
For example, C can treat data objects as just “bit patterns’ in the same way that an assembly
language programmer can. Similarly, aC programmer can manipulate an addresslike an “ ordinary

number” and then access the memory location(s) referenced by this “number” in any way he or
she seesfit. While these features are desirable, they come at a cost. Most importantly:

* Thereisno run time checking in C. Specificaly:
* Overflow of integer valuesis not detected at run time.

» Thereisno run-time checking of array indicesto seeif they are within the declared bounds
of the array. Access beyond the limits of an array will not cause a run-time error in an
unprotected OS such as MS-DOS. It may or may not result in a segmentation violation
in aprotected OS such as Windows/NT or UNIX.

* Memory references can point anywhere—even where they should not point!

» C programmer's can use type casting to modify the data type of an object at run time. There
is scant checking that such type casting makes any sense.

1.4. Overview of Basic C

A C program consists of:

Zero or more declarations of global variables (defined outside of any functions).

One or more functions consisting of a name, a (possibly empty) list of arguments enclosed in
parenthesis, and a function body consisting of a compound statement.

A compound statement is enclosed in curly braces and consists of:
» Zero or more declarations of local variables that exist only within the compound statement.

e Zero or more statements. A statement is either:

Page 2



1.5. Examples
* Another compound statement; or,

* A simple statement (e.g. assignment) terminated with a semi-colon.

*  Preprocessor directives (which beginwith a# and aretransformed into “raw C” by the preprocessor
before the C compiler actually looks at the source code.

* Finally, aC program can have any number of comments delimited by / * and */ .

|:| » There are only functions in C. There are no subroutine or program blocks. (However, the function
called mai n(...) will, under most OS's, define the entry point to the program. The nai n() function
returns an integer value that the OS usually interprets as a return code.

» Cisnot ablock-structured language like Pascal or Ada. (i.e. Functions cannot be declared inside a
function.)

1.5. Examples

We now informally elaborate on these points with some sample programs.

Page 3



1.5. Examples
Example1.1. hello.c

Thefirst program simply outputs the message Hel | 0 wor | d! .

/*
First C Program hello.c
Di spl ays message: Hello, world!
*|
int main()
{
printf("Hello, worldl\n");
return 0; /* or, better, exit(0); */
}

(The source codefile hello.c [./src/hello.c] isavailable.)

Themain function block consists of 2 simple statements: Thefirst statement usesthe standard library
printf(...) function. Itsargument isastring of characters which is output.

The return statement terminates the main function returning the value of 0 (ZERO) to the caler, in
this case the operating system. In any function, ther et urn ret ur nVal ue statement will returnto the
caller; however, theexit (i nt returnCode) statement will always terminate the entire program and
return itsr et ur nCode to the OS.

For themai n() function, thereisno difference betweenreturn(0) andexit(0).

Page 4


./src/hello.c

1.5. Examples
Example 1.2. A Simple loop
The following simple program prints out a table converting inches to centimetres.

(The source code file lengthConversion.c [./src/lengthConversion.c] is available.)

/**

* Sunmary: Prints a table of Centinetres vs. Inches
*|

#include <stdlib.h> [

#define CM PER INCH 2.54 [

#define SMALL_LENGTH CM 1.0

#define Bl G LENGTH CM 4.0

#define DI FF_LENGTH 0.5

int main()
{
double cm inch; O
cm = SMALL_LENGTH CM
printf("Centimetres Inches\n");
printf(" \n");
while(cm <= BIG LENGTH CM {O
inch = cm/ CMPER | NCH
printf(" 9. 1f %.2f\n", cm inch); O
cm= cm+ Dl FF_LENGTH;
}
exit(0);
}

0 The#include <stdlib. h>statementisapre-processor directiveto insert the named file
into the source code. The particular fileincluded (st dl i b. h) contains definitions of con-
stants and other statements required when certain standard functions are used. In this case,
itisrequired so that theexi t () function isunderstood.

0 The#defi ne statements are interpreted by the preprocessor so that subsequent use of the
defined name is replaced by the defined value.

Thus, following #defi ne Bl G LENGTH CM 5. 0, every occurrence of Bl G LENGTH CMis
replaced by the constant 5. 0.

This practice of using symbolic constantsis strongly recommended for several reasons:

» The program is more readable.

Page 5


./src/lengthConversion.c

1.5. Examples

* “Magic numbers’ areisolated in the #def i ne statements. Often, the overall behavior
of aprogram is very dependent on the specific values of these magic numbers. When
they are isolated in #def i ne statements at the beginning of a program, the program's
behavior can be modified simply by changing the defined values. With good symbolic
names and comments, it is often possible to make this kind of change to a program
without understanding or even looking at the actual code.

* When the same magic number appears more than once in a program, it is less likely
that the wrong value will be typed in due to atypographical error. Furthermore, it be-
comes much easier and less error-prone to change the magic number by editing the
#def i ne instead of slogging through the source codeto find the instances of the number.

O  All variables must be declared in C before they are used. The declaration “doubl e cm
i nch” declaresthe variablesi nch and cmto be doubles (i.e. floating point numbers).

0 Thebody of thewhi | e loop is executed unless the condition tested for in thewhi | e( con-
dition) statement isfalse. Thetest is made before the body is executed and again before
executing the body another time. (Hence, if the condition is false at the outset, the loop
body is not executed at all.)

In this case, the loop body is executed if cmis less than or equal to the magic number
Bl G_LENGTH_CM

The cmvariable is incremented at the end of the loop and the loop executed again if the
whi | e condition is till true.

In this case, the loop body is executed 7 times for the values of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5,

and 4.0.
[0 Thestatement
printf(" 9. 1f % .2f\n", cm inch);

in the while loop contains formatting commands introduced by a % in the first argument.

Previousprintf () statements have simply echoed the formatting string to the output. The
% character indicates that another argument has been passed to pri nt f ; the character(s)
following the "%' indicate how the argument is to be printed out.

In this case, the “%. 1f ” formatting command indicates that the argument is a floating
point number, that it is to be printed in at least 4 columns and that one digit after the
decimal point should be printed.

Page 6



1.6.1. Using printf() formatting

The output of this programis.

Centinetres [ nches

1.0 0.39
1.5 0.59
2.0 0.79
2.5 0.98
3.0 1.18
3.5 1.38
4.0 1.57

1.6. Some details

1.6.1. Usingprintf() formatting

The following table shows the most common formatting commands used in printf() formatting
strings.

Table 1.2. Printf for matting

Format Meaning

%l integer as a signed decimal number

o integer as an unsigned hexadecimal number
% integer as an unsigned octal number

%u integer as an unsigned decimal number
% a character

Y% astring

% afloating point number

% afloating point number

%W alitera "%' character

% afloating point number

%) afloating point number

Between the % and the data type specifier, anumber can be used to specify the minimum space alloc-
ated for the result. Thus “%td” would print the integer 23 with 2 leading spaces. (The width qualifier
is a minimum width: thus “9%2d” used to print the integer 123 would not chop off the leading 1; the
width would be increased to 3 to accommodate all the digits.)

Page 7



1.7. Using functions
1.6.2. Character Escape Sequences

The table below gives common escape sequences to specify special charactersin strings.

Table 1.3. Special charactersin strings

Notation Character

\b Backspace

\ f Form feed

\n Newline

\r Carriage return

\t Tab

\\ Backslash

\" Double quote

\' Single quote

\ ddd Octal representation
\ XXX Hex representation

1.7. Using functions
Functions can be used and defined in C to return a value dependent on the arguments given.
For example, we could define afunction to convert centimetres to inches as follows:

(The source code file cm2inch.c [./src/cm2inch.c] is available.)

/*

* doubl e cnRi nch(double cm

*

* SUMVARY:

t3 Description: Converts cmto inches

*|
#define CM PER I NCH 2. 54

doubl e cnRi nch(double cm O
{

}

return cm* CM PER | NCH;

Page 8


./src/cm2inch.c

1.8. Simple data conversion (Filters)

0  Thelinedoubl e cn®i nch(doubl e ¢m declaresthefunction asreturning adouble-precision
floating point value and taking a double parameter, called cm, as an argument.

|:| Thisexampleisabit “over thetop”. Typically, such asimple calculation would be directly embedded in
the source code (or defined as a macro).

1.7.1. Centimetresto Inches (version 2)

We can now re-write the mai n() of the origina program as shown below.

(The source code file lengthConversionV 2.c [./src/lengthConversionV2.c] is available.)

/**

* Summary: Prints a table of Centinetres vs. Inches
|

#include <stdlib.h>

#incl ude <stdio. h>

doubl e cnRinch(double ); O

#define BI G LENGTH CM 4.0

#define DI FF_LENGTH 0.5

int main()
{
doubl e cm
cm = SMALL_LENGTH CM
printf("Centinetres Inches\n");
printf(" \n");
while(cm <= BI G_LENGTH CM {
printf(" 9% 1f %.2f\n", cm cnRinch(cm);
cm= cm+ D FF_LENGTH;
}
exit(0);
}

[0  Thedoubl e cnRi nch(doubl e ); statement isafunction prototypeinforming the compiler
the data type returned and the type(s) of the passed parameter(s).

1.8. Simple data conversion (Filters)

One of the most common idiomsin C programsisto read input one character at atime, perform some
processing on it, and output it one character at atime.

Page 9


./src/lengthConversionV2.c

1.8.1. Copying input to output
1.8.1. Copying input to output

In the simplest filter program, we simply copy the input to the output. (The source code file copyin.c
[./src/copyin.c] isavailable.)

/*
*  Copyin copies its input to the output one character

t3 at a tine.
&

#i ncl ude <stdio. h>
mai n()
{

int ch; O

ch = getchar(); /* get next input character */
[* Toop until "End O File" is reached */
while (ch !'= EOF) {
put char(ch); [* Qutput the character */
ch = getchar(); /* Read next character */

}
exit(0);

00 <+ Notethat ch (thereturn value of get char () ) isdeclared asani nt, not achar.

* Why?

 Thegetchar() returnsan integer not a character. In thisway, a specia integer value
that does not correspond to any actual character can be used to signal end-of-file.

The specia value isdefined in st di 0. h as the symbolic constant EOF. (Note that EOF
isamost aways defined as being -1. However, you should not rely on this.)

The whi | e condition “(ch !'= EOF)” means that the body should be executed if the
end-of-file has not been reached.

The function put char (ch) outputs the character given as an argument.

It isgood practice to make the last statement in aprogram theexi t (val ue) statement:
avalue of zero should be used for a program that terminated normally; any other value
indicates abnormal termination.

Page 10


./src/copyin.c

1.8.2. Trandating lower case to upper case
1.8.2. Trandlating lower caseto upper case
A dlightly more complex example involves converting the input characters from lower to upper case.

(The source code file toupper.c [./src/toupper.c] is available.)

#i ncl ude <stdio. h>
mai n()
{
int ch;
ch = getchar();
while ( ch !'= EOF) {
if (ch>="a & ch<="2z") [*if |ower case */ [
ch=ch+"'A - "a; [* convert it to upper */ [
put char(ch);
ch = getchar();

}
}

0 Thisif statementistrueif ch liesin the range of characters between 'a and 'Z'.

0  Conceptualy, the character is converted to upper case by subtracting the code for an 'a
(yielding an integer between 0 and 25) and then adding the code for an'A’. Note that the
expression' A' - 'a' isaconstant (with the value 32 for ASCII character encoding) which
will be evaluated at compile time, not at run time. Note also that writing the code this way
makes it independent of the particular character encoding used (eg. ASCII vs. EBCIDIC).

|:| Note that the above program could be written more cleanly as:

#i ncl ude <stdio. h>
mai n()
{
int ch;
while((ch = getchar()) != EOF) {
if (ch>"a & ch<="'2)
ch=ch+A - 'a;
put char (ch);

Finally, an experienced C programmer would probably write: (The source code file toupper3.c
[./src/toupper3.c] isavailable.)

#i ncl ude <ctype. h>
#i ncl ude <stdio. h>

Page 11


./src/toupper.c
./src/toupper3.c

1.10. 1/O redirection and piping

mai n()
{
int ch;
while ((ch = getchar()) !'= EOF) {
putchar (i sl ower(ch) ? ch + "A - "a'" : ch);
/* OR sinply: putchar(toupper(ch)); */

When we look at C in more detail later on, we will see how these more efficient versions work.

1.9. Casts

Once avariable has been declared, it is possible to force it to another type with a cast.

The coercion to another type is done by preceding the expression with the name of data type we
want in parenthesis.

For example, to print out the integer i as afloating point number, use:
printf("%\n", (float) i);
Without the cast, the output would be garbage.

Castsare especially useful when pointersare used aswe shall see when welook at pointer variables.

1.10. 1/O redirection and piping

When we talk about “input” and “output”, we should really say stdin (for standard input) and stdout
(for standard output). The C library functions like printf (), putchar() and getchar() actualy
manipulate the “files’ stdin or stdout and it is the Operating System that defines what these “files’

are.

Under both UNIX and Microsoft operating systems, stdin is by default the keyboard input and stdout
isthe screen. However, both Operating Systems allow stdin and/or stdout to be redefined at the time
the command is invoked. On the command line, < file_name_in is used to redefine stdin and >
file_name_out redefines stdout.

Thus, assuming the command copyin copies stdin to stdout, we can write:

copyin < copyin.c > copyin. bak

to copy thefile copyi n. ¢ to copyi n. bak.

Page 12



1.10.1. Piping

Similarly:
upl < copyin.c > copyin.up

createsacopy of copyi n. ¢ with al thelower caseletters converted to upper caseinthefilecopyi n. up
With this useful trick, we can avoid learning about how to use files until later on.
1.10.1. Piping

Both UNIX and Windows also allow two commandsto bejoined together so that stdout of one becomes
stdin of the second. Thisis called a pipeline and the | character (vertical bar) is used to specify a
pipeline.

For example:
| engt hConversion | toupper3

directs the output of the lengthConver sion command into the input of the toupper 3 command. The
result is that al the lower case letters in the normal output of lengthConversion are converted to
upper case.

We can combine these ideas with:

| engt hConversion | toupper3 > | engthConversion. out

Page 13



Page 14



Chapter 2. Basic C Syntax
2.1. Fundamental Data Types

Integers(int):
* Upto3sizesof integers: short, | ong and default i nt ;
*  Onmost systems:. | ong and i nt are 32 bits; short is 16 bits.
* Integers can be signed or unsigned. For n-bit (signed) integers,
2Mint <21
For n-bit unsigned integers,

O<unsigned <2™1

Example 2.1. All on€'sbit pattern

Thebit pattern 1111...11 represents -1 if interpreted as asigned number or 2™-1 if interpreted
asunsigned. (We assumethat signed numbers use the two's complement convention which
is"amost" universally adopted.)

Thus the statement:
printf("-1 (signed): %l; -1 (unsigned) %, -1 (hex) Ox%\n", -1, -1, -1);
produces the output (on a machine wherei nt s are 32 bits):

-1 (signed): -1; -1 (unsigned) 4294967295, -1 (hex) Oxffffffff

(The source code file printfMinusOne.c [./src/printfMinusOne.c] is available.)

Character (char):
8 bits. Usually interpreted as signed. (ANSI C alows specification of signed or unsigned
characters.)

Reals
Real numbers are (potentially) inexact. C provides two generic types: f | oat and doubl e.

Most compilers use the IEEE standard to represent real numbers. Floats are usually 32 bits,
doubles 64 hits.

Page 15


./src/printfMinusOne.c

2.1. Fundamental Data Types

|:| There is no boolean type. Integers are used instead. False is represented as 0; true as any other value.

The table below summarizes the primitive data types.

Table 2.1. Fundamental Type Summary 1

Name Size (bits) Range

i nt 32 223

| ong 32 23t 2%

short 16 2b. 2k

unsi gned 32 0..2%%-1

unsi gned | ong 32 0..2%%-1

unsi gned short 16 0..2%-1

unsi gned char 8 0..2%1

char 8 27,211

f1 oat 32 -1.2x10°%8,..3.4x10%
doubl e 64 -2.2x1073%,1.8x10%%

This table represents typical sizes for 32-bit machines. Note, however, that smaller machines often use 16-bit integers;
64-bit machines usually hvae 64-bit | ongs.

Page 16



2.2.1. Enumerated (enum) types

2.2. Declar ations

Example 2.2. Declarations

int i, ], k5 O
short ii, jj; O
unsi gned short 111 _5; O
char ch, input_char; O
double big or_small; O

i nt aVeryLong_NameMoreThanThirtyTwoCharacters; 0O [
unsigned foo; O 0O
char CH 0O O

0 Note that characters in names can be any letter, an underscore (), or a digit but cannot
begin with a digit.

00 Names are sometimes limited to 16 or 32 characters.

Names may begin with an underscore; however, by convention only standard library or

Operating System functions do this. Do not begin a name with an underscore unless you

are sure you know what you are doing.

O  Similarly, you may use only upper case lettersin aname; again, by convention, upper-case
only names are usually used only for symbolic constants.

|

2.2.1. Enumerated (enunm types

The enumerated type specifies a subset of integers with each member having a symbolic name.

For example, we can write:

enum Col ours {RED, GREEN, BLUE};

to define the enumerated type Col our s which has three symbolic values: RED, GREEN and BLUE.

We can now declare arguments of type Col our s:

Col ours col ourl, colour2, colour3;

The variables col our 1, col our 2, and col our 3 can take on the symbolic values associated with
the Col our (enum) type. Also, since these are ultimately integers, normal integer arithmetic can
be performed on them. Thus statements like:

Page 17



2.3.1. Examples

col our2 = RED;
col our3 = col our 2++;
are legal.

* Note, however, that C does no run time checking to verify that the result of the arithmetic is a
valid integer for the enumtype. (i.e. it is not as safe as the pascal equivalent.)

* By default, the first symbolic constant will be given the integer value of zero; each additional
constant is converted to the next integer.

* Theenumerated type is auseful alternative to #def i ne preprocessor directives. For example:

enum ERROR_CODES {
ERROR_NO_MEMORY,
ERROR_BAD | NPUT_FI LE,
ERROR_BAD QUTPUT FI LE,
NUM ERROR CODES

* Note that in the above enum the integer value of NUM_ERROR_CODES would be 3—i.e. the actual
number of error codes enumerated.

2.3. Constants

* Integer constants can be written in the default decimal notation (eg. 123), as octal humbers by
using aleading 0 (eg. 0123 (octal) isthe same number as 83 (decimal), or as hex numbers by using
aleading Ox (e.g. 0x123 = 291 (decimal) = 0443 (octal)).

* Long integer constants are specified by appending an| or L to the integer. (e.g. 123 or 123L).
(Notethat L ispreferred: using | iseasily confused with the digit 1).

» Character constants are indicated by putting the character in single quotes (e.g. ' a' for the char-
acter code for the letter a).

2.3.1. Examples

| ong | ongNunber; char singleCharacter;
| ongNunber = 123L; singleCharacter ='a';

Page 18



2.4.1. Arithmetic operators
2.4. Operatorsand Expressions

2.4.1. Arithmetic operators

The following arithmetic operators are available:

Table2.2. Arithmetic operators

Operator Description

+ addition

- subtraction

* multiplication

/ division

% modulus (ints only)
++var preincrement
var++ postincrement

--var prederement

var-- postderement

|:| Note that there is no exponentiation operator.

2.4.1.1. Differences between pre- and post- operators

» Thereis no difference between the statements ++x; and x++; . They both simply increment the
value of x by 1.

* However, consider the following sequences:
X =1

y = X+t [*oor y = +4x; ¥/
printf("y: %, x: %\n", y, X);

Whenweusey = x++; , yisassigned the value x had before being incremented: x isincremented
after its value is used in the expression. Thus the values printed for y and x would be 1 and 2.

If the commented-out statementy = ++x; were used instead, X isincremented before being used
in the expression. Hence both x and y would have the value of 2 when printed.

Page 19



2.4.2. Logical Operators
2.4.2. Logical Operators

The following table lists the logical operators that can be used.

Table 2.3. Logical operators

Operator Description

== equals

= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal
| | logical or

&& logical and

! logical not

Notethat since thereisno Boolean type, the result of alogical operationisaninteger: 1if the condition
istrue; O if false. (While it istrue that, in general, any non-zero integer represents tr ue, the specific
value of 1 isused to represent atrue result of these logical operators.)

Hence, the following islegal:

int n;

n=(i >5) +(j >10);

In the above case, n will be zero only if both conditionsfail; if exactly oneistrue, n will be 1 (but we
don't know which oneistrue); if they are both true, n will be 2.

Note that when logical expressionsarejoined by thelogical and (& &), they are evaluated | eft to right
until an expression becomes false. Hence the following (which would lead to disaster in a language
like pascal) islegal and safe:

if (i '=08&&j/i > 10)

(i.e. If i is zero, the first test will fail and the second test, involving division by i, will not be done,
hence avoiding a“ divide-by-zero” error.)

Page 20



2.4.4. The sizeof operator

Similarly, expressions joined with thelogical or (| | ) are evaluated l€eft to right until one evaluates as

true.

2.4.3. The assignment oper ator

The assignment operator setsits left side to the value of the right side expression. Thisvalueis

also the value of the assignment expression

Hence, the following are valid statements:

Thei =(j =3) + (k = 2); statement is egivalent to:

C

+
_?T

N
[ N |

2.4.4. Thesi zeof operator

The sizeof (type name or variable) gives the number of bytesfor the type.

2.4.4.1. Example

|:| »  We exploit the C preprocessor's ability to concatenate strings separated by whitespace into a single

int i
char c;
long I;

printf("On this machine, ints are % bytes"

"chars are %l bytes, and"
"longs are % bytes\n",
si zeof (int),

si zeof char,

si zeof (1));

string in the above example.

» Thealternative (in K&C) would be:

printf("On this machine, ints are %l bytes\
chars are %l bytes, and\
longs are % bytes\n"



2.6.1. if statement

» Here, we use the backslash ('\) to write along string across several lines for increased readability.

» Despite appearances, si zeof isan operator, not afunction. That iswhy si zeof char islega. The
parenthesis around the operand are normally added for readability.

2.5. Simple & block statements

1. A statement can be either a simple statement or a compound statement.

2. The most elementary form of a simple statement is any expression followed by a semi-colon.
Thus:

X =i; [* A sinple statenment */
3. Theother forms of simple statements include things like the if statement to be discussed below.

4. A compound statement is any number of of statements bracketed by braces ({...}). Thus:

{ [* Conpound statement enclosed with braces {} */
X = |+t
i ++;

2.6. Flow Control

We now examine the precise syntax of the flow control statements including:
o if statement;

o if ... else statement;

* while statement;

* do statement;

» for statement;

switch statement;

2.6.1.i f statement

Given:

I f (expression)

Page 22



2.6.4. Expressionsin conditionals

St at ement

The statement (simple or compound) isexecuted only if expressionistrue (i.e. evaluatesto non-zero).
26.2.1f...el se statement

Given:

I f (expression)

t hen_st at ement
el se

el se_st at enent

Thethen_statement (simple or compound) isexecuted if expressionistrue (i.e. evaluatesto non-zero);
otherwise, the else_statement is executed.
2.6.3. Whileloop

Theform:

whi | e (expression)
st at ement

isequivalent to:

| abel : if (expression)

{

st at enent
goto | abel;

i.e. the body of the loop will be executed O or more times until the expression becomes fal se.
2.6.4. Expressionsin conditionals

1. Note that the conditional expression can be anything. If the value of the expression is zero, the
condition isfalse; otherwiseit istrue.

2. Hencethefollowing:
while (c = getchar())

Page 23



2.6.5. Do ... while loop

put char(c);

will copy stdin to stdout until anull character (ascii 0) is read.

3. Aneven morecommon idiomiis:

while ((c = getchar()) !'= EOF)
put char(c);

The above program isjust like the copyin program we saw earlier. Note that the parenthesis are
necessary to force the assignment to occur before the inequality test. If we wrote:

if (c = getchar() != EOF)
it would be interpreted as:

if (c = (getchar() !'= EOF))

Thiswould result in ¢ being assigned the value true (1) or false (0), not the value of c read in!

2.6.5. Do ... while loop

do
st at enent
whi | e (expression);

isequivalent to:

| abel : st at enent
I f (expression) goto |abel

i.e. the body of the loop will be executed 1 or more times until the expression} becomes false.

Note that while loops are safer than do loops since the former execute O or more times but the latter
executes at least once. (The do loops may be more efficient, however.) Neglecting to account for the
possibility that aloop should not be executed at all can lead to catastrophic program failure and we
strongly encourage the use of while instead of do.

To understand the differences, consider the following:

Page 24



2.6.6. For loop

[* DO version */
do
{

[* | aunch nucl ear mssiles */
} while ( /* eneny is attacking us */ )

[* WHI LE version */
while ( /* eneny is attacking us */ )
{

}

[* | aunch nucl ear mssiles */

The do version, of course, would cause the immediate, inevitable beginning of a nuclear war!

2.6.6. For loop

for (exprl; expr2; expr3)
st at ement

isequivalent to:

exprl; [* i.e. exprl is done before entering |oop */
while (expr2)
{

[* loop if expr2 i s non-zero */

st at ement /* 1 oop body proper */

expr3; [* re-initialization */

|:| All components (expr 1, expr2, and expr3) are optional.
2.6.6.1. Examples

[* Infinite |oop */
for (5 7)
st at ement

/* Counting | oops */

Page 25



2.6.6. For loop

/* Do loop for i =2, 3, 4, 5, 6, 7 */
for(i =2; 1 &8; i++)
S =s+i,;
[* Do loop for i =2, 4, 6 */
for(i =2, 1 &8, 1 =1 + 2)
S =s+i,;

/* Do loop for i =4, 3, 2, 1, 0 */

for( i =5; i--;)
S =8 +1;

/*
note: here there is no re-initialization
The test also does the re-initialization
This idiomis comon because it results
in faster |oops. (Counting down towards
zero elimnates a conparison in the [oop.)

*|

2.6.6.2. Break and Continue statements

1. Thebreak statement causes animmediate exit from aloop (or switch statement—see below). (In
the case of nested loops, only the innermost loop is exited.)

2. The continue statement causes an immediate transfer to the test component of aloop.
2.6.6.2.1. Examples

Suppose we normally want to do a loop 10 times, but sometimes want to exit or restart the loop in
themiddle:

for(i =1; i & 10; i++)
{

if ( /* some condition indicating loop exit */ )
br eak; [* Exit |oop inmmediately */

if ( /* sonme condition indicating |oop re-start */ )
conti nue; [* Co to loop test inmmediately */

Page 26



2.6.6. For loop

2.6.6.3. Switch statement

Given:

switch (expression) {

case constant1:
statement |istl

case constant2:
statement |ist2

defaul t:
statement |ist_default

}

The switch statement performs a multi-way branch. The expression is evaluated and then compared
to each of the constantsin the case statements. When amatch isfound, the corresponding statement_list
and all other following statement_lists are executed. Only when a break statement is found, does
control exit the switch statement.

2.6.6.3.1. Example

The function below determines the widest displayed line (taking into account tabs). (The source code
file pwidth.c [./src/pwidth.c] is available.)

/*
print_wdth finds widest line to be printed
when array of characters is displayed

*|

#define TABSTOP (8)

print_wdth(s)

char s[]; [* s an array of characters */

{

i nt w dth, colum, i;

width = colum = 0;

for( i =0; s[i] I'="\0"; i++) {
if ( colum > wdth) width = col um;
switch( s[i] ) {

Page 27


./src/pwidth.c

2.7. Bit Operators

case '\n': [* newine */

case '\r': [* carriage return */

case '\f': [* formfeed */

/* Reset colum count to zero for new line */
colum = 0;
break;

case '\b': | * backspace */

/* Decrement colum count for backspace, but
don't nmake col umm count negative! */

if (colum >0 ) colum--;
break;

case "\t': [* tab */

/* Increment colum count to next tab position */
colum = colum + TABSTOP - col um%rABSTCP,
break;

defaul t:

/* For regular characters, just increment colum count */
col um-++;

}

}
return (wdth);

2.7. Bit Operators

1. Besides arithmetic and pointer operators, C provides operators on bit patterns.

Table 2.4. Bitwise oper ators

Operator Meaning

& bitwise and

| bitwise or

A bitwise exclusive or

<< shift left

>> shift right

~ invert each bit
bitwise or

Page 28



2.8. Expanded Assignment Statements

2.7.1. Examples
[* Determne nunber of bits in an integer */
int i;
j =0
for(i =1; 1 I'=0; i =1i<<]1)

] ++;
printf("ints take %l bits\n", j);

[* Make n = lower 3 bits of i */
n=78&:

I* Invert all bits except |east significant 4 bits */
n = (~0xf)"n;

1. Notethat in the last example we use ~0xf to indicate a bit pattern of 1's except in the last four
positions instead of Oxfffffff0. The reason is not to save typing; rather, the ~Oxf method is
independent of the number of bitsin an integer. With the other method, we would have to use
Oxf f f 0 for 16-bit machines.

2.8. Expanded Assignment Statements

To save typing and possibly increase efficiency, the extended assignment operators can be used:

Table 2.5. Assignment operators

Operator

Page 29



2.10. The Comma (,) operator

For these operators,

X op=y
means exactly the same thing as:

X =X o0py
2.9. Conditional (?) operator

1. Anexpression using the ternary conditional operator has the following syntax:
expressionl ? expression2 : expression3

The entire expression takes on the value of expression2 if expressionl is true or of expression3
otherwise.

2. For example:
X =(1 >j) ?2i:;
isequivalent to:
if (i >])
X =i;
el se
X =],

3. Earlier, we saw another use of the ? operator in the program up3. c:

put char (islower(ch) ? ch + "A - "a'" : ch);

2.10. The Comma (,) oper ator

1. The comma operator separates expressions into a larger expression; the value of the larger ex-
pression is the value of the last comma-separated expression.

2. The comma operator is often used in for statementsto get the effect of two loop variables.

3. For example:

for (i =0, ] =0; i <10 ; i++ | +=2)
[* loop statenents */

Page 30



2.10. The Comma (,) operator

effectively definestwo loop variables, i and j wherei takesthevalues0, 1, 2 ... 9 and j the values
0,24..18.

Page 31



Page 32



Chapter 3. Project management and make

3.1. Using separ ate sour ce code files

When a program consists of more than one function, it is often useful to split the program amongst
several source code files. Each file contains the code for one or more functions and we call each file
amodule. The advantages to this approach include:

1.

Individual modulesare smaller, easier to maintain, and faster to compile than compl ete programs
contained in asinglefile.

If modules are written so that they contain a useful, generic set of functions, the modules can be
shared by different programs.

In particular, the compilation process is actually divided into 2 (or more) separate phases: 1)
compilation of source code to object code, and 2) linking of object code filesinto an executable
file.

For example, suppose a program is made up of three source code modules a.c, b.c, and c.c. In
thefirst phase, each source moduleiscompiled individually into its corresponding object module.
In this case, we would obtain the object codefiles: a. 0, b. 0, and c. 0. Next, the linker joins the
object modulestogether to produce the executable ex_name (wherethe“ex_name” of the execut-
ableis defined by the programmer).

Suppose that the program is then modified and that the changes only occur in source module
b. c. Thereisno need to re-generate the object modulesa. 0 and c. 0; only b. 0 need be re-gener-
ated.

By using the make program maintenance package, the entire program can be re-generated auto-
matically after individual modules have been modified with the minimum possible amount of
computer time. We will examine the details of the make utility later. Note that {\em make} is
available for amost all operating systems.

We will encourage this style of programming in the seminar; note, however, that the substantial
advantages of this method only become truly evident with large projects (several thousand lines
of code).

3.2. Scope of variable names

Before looking at how a program is organized into modules, it is important to clarify the scope of
names in C and how some of the features can be used to implement, at some level, the advantages of
pure block structured languages

Page 33



3.2.1. Notes

Locals:

» Variables declared within the body of a function (or any compound statement) are local
to the function;

» Locals may not be used by other functions;
* Locals do not retain their values from one call to another.
» Locasareallocated on the stack when the function is entered and de-all ocated upon exit.
* They have undefined initial values.
Globals:
* Globals are declared outside of all functions;
» Globals may be accessed by any function;
» Globalsare allocated at absolute memory locations;
* Globals are declared outside of all functions;

* Many compilerg/linkersinitialize globalsas zero if not explicitly defined in the declaration;
however, you should not rely on this behavior.

Static L ocals:
» Likeautomatic locals for scope rules, but retain their value from one call to another;
* Allocated in absolute memory (like globals).

Static Globals:
» Likenormal globals but can only be used within the same source code file.

» Useful for a module whose functions share a a module global which is private to the
module (i.e. inaccessible by users).

3.2.1. Notes
Some useful rules of thumb:
o Usedtatic locals sparingly.

* When a global seems necessary, prefer static globals within a module (for both function names
and variables) over globals. Thisis reduce the name space pollution of global variables.

Page 34



3.3.1. A Simple Example

o Carefully consider the pros and cons of having global variables vs. parameter passing between
functions. (In a nutshell, globals are often a more efficient and “easy solution” for sharing data
between related functions,; however, passing parameters may be safer! (Functionsthat manipulate
pure or static globals pr even static locals are also not re-entrant. Thismay lead to serious problems
in the server portion of client-server applications.)

3.3. Make

1. Themakeutility isauseful program maintenancetool for projects split into several modules (i.e.
source codefiles.)

2. Themake utility automates the task of regenerating target files from files that they depend on.

3. Make uses a data-base (called the makefile: usually contained in a file called Makefile or
makefile.

4. Make uses the modification time stamps on files to determine if atarget should be regenerated.
It then invokes the rules found in the makefile to do so

5. Themost common use of make isto recompile a program after editing source code files. Make
will carry out the minimum number of steps required to keep the various targets up-to-date.

3.3.1. A Simple Example

1. A target called goal dependson two files: a and b asillustrated graphically in the figure below:

Figure 3.1. A ssimple dependency tree

goal

2. The above dependency treeis described to make with the following Makef i | e:

Page 35



3.3.2. Compilation example

# Sinmple "Makefile" exanple

# Anything after a '# is ignored

#i.e. treated as a coment

goal: a b # Target "goal" depends on "a" and "b"

touch goal # rule to generate "goal" if "a" or "b"

# is nore recent

# "touch" is a command to set the nodification

# time of afileto the current tine

b: # Depends on not hi ng
touch b
a:
touch a
# NOTE: The white space before a rule
# nust be TAB.

3.3.2. Compilation example

1. A moreredlistic example of using makeinvolves compiling. The figure below shows the depend-
encies of afinal program, called prog, on three object files: p1. o, p2. 0 and p3. o. If prog does
not exist or is older than any of the three object files it depends on, it will be regenerated.

Figure 3.2. Dependency tree of smple makefile

2. Similarly, each of the object files depends on a corresponding C source code file. If any of the
source code files is newer than its object file, the object file will be regenerated. Since this will
make at |east one object file newer than the executable, make will automatically re-link the object
filesaswell.

3.  Finaly, note that two source files—p2.c and p3.c—include the custom header ex2. h. Con-
sequently, the object filesp2. 0 and p3. o both depend implicitly on ex2. h. Since make detects

Page 36



3.3.3. Additiona remarks

if atarget fileisolder than anything it depends one, the object filesp2. o0 and p3. o will beregen-
erated if ex2. h ismore recent.

4. TheMkefil e below shows how all of thisis described.

# Sinple "Makefile" exanple using conpilation
prog: pl.o p2.0 p3.0
gcc -0 prog pl.o p2.0 p3.o

pl.o: pl.c

gcc -c pl.c
p2.0: p2.c

gcc -c p2.c
p3.0: p3.c

gcc -c p3.c
# The follow ng lines give additiona
# files that object code depends on;
# in this case, these are header files
# included in the source code.
# If any of these are newer than the
# corresponding object file, the
# rules defined above will be invoked
# to re-create the object code.
p2.0: ex2.h
p3.0: ex2.h

3.3.3. Additional remarks

1. Makealowsstring variables to to assigned and referenced as follows:
VAR_NAME = bl ah bl ah

$( VAR NAVE)

2. By default, the first target is made when make is invoked. However, other targets may also be
specified. (The next example shows the common targets cl ean and depend.)

3. Normally, if acommand in arule has a non-zero exit status, make stops. However, preceding
the command with a dash (-) causes make to ignore the exit status.

4. Thisfeatureisusedinthecl ean target. Therule specifiesthat all generated files should be del eted.
Obvioudly, if any of these files do not exist, we still want the make program to proceed.

Page 37



3.3.4. Using generic rules

5. Putting these ideas together, we obtain a more elegant Makef i | e for the previous example:

# Sinmple "Makefile" exanple using conpilation
SRCS = pl.c p2.c p3.c
BJS = pl.o p2.0 p3.0

prog: $0BJYS)
gcc -0 prog $(OBIS)
pl.o: pl.
gce -
p2.0: p2.
gce -

pl.c

O O O O O

p2.c

p3.0: p3.
gcc -c p3.c

(]

depend: $( SRCS)
makedepend  $( SRCS)
cl ean:
-rm-f $(0BJS) a.out core prog
# DO NOT DELETE TH S LINE - - nake depend depends on it.
p2.0: ex2.h [usr/include/stdio.h
p3.0: ex2.h [usr/include/stdio.h

3.3.4. Using genericrules

1. You can specify, in general, how to obtain atarget from a dependent when they only differ in
their sufixes. For example, the C compiler isused to obtain an object (. o) filefrom a correspond-
ing source (. c) file.

2. Thefollowing generic rule states this:

.C.0:

$(CCO -c $*.c
where $( CO) isthe name of the system C compiler and $* is the variable representing the base
name of the target.

3. Other builtin make variables include: $@—the name of the current target; $<—the name of the
dependency file; $27—the list of dependencies newer than the target.
4. Putting these rules together, we obtain the following Makef i | e:

# Sinple "Makefile" exanple using conpilation
SRCS = pl.c p2.c p3.c
OBJS = pl.o p2.0 p3.0

Page 38



3.3.5. Parting remarks

PROG = prog
HOVE = /hone/ eccl es1/ kcl owes
| NSTALL_PATH=$( HOVE) / bi n
CFLAGS = -¢c
CC = gcc
.C.0:
$(CC $(CFLACS) $*.c
$(PROG : $(0BJIS)
gcc -0 $(PROG $(OBIS)
depend: $( SRCS)
makedepend  $( SRCS)

cl ean:
-rm-f $(OBIS) a.out core $(PROG
install: $(PROQ
cp $(PROG) $( I NSTALL_PATH)/ $( PROG
# DO NOT DELETE TH S LINE - - nake depend depends on it.
p2.0. ex2.h [usr/include/stdio.h
p3.0: ex2.h [usr/include/stdio.h

3.3.5. Parting remarks

The - n option causes make to report the commands it would invoke without actually doing them.
The-f file option alowsyou to specify afile other than Makefi | e or makefil e.

Note that a shell isinvoked for each line in a makefile's rule. For example, the two lines:

cd sub
I's

would invoke a separate subshell for each command; consequently, thels command would execute
on the current directory, not the one changed to in the previous sub-shell.

This can be avoided by putting both commands on asingle line:

cd sub; Is

In this case the entire line has its own sub-shell.

Page 39



Page 40



Chapter 4. Basic Arraysand Pointers

4.1. Arrays

1.

Single dimension arrays of any datatype are declared as:

char buffer[120], |ine[80];
i nt freq[30];
double coeff[N;

2. Anarray dimensioned n has elementsindexed from O to n-1.

3. Notethat variably-dimensioned arrays are not allowed in C. Hence, in the above exampl e declar-
ation doubl e coeff[N], N must be a symbolic constant previously defined with a #def i ne
preprocessor directive.

4. Multi-dimensional arrays are declared as “arrays of arrays’:

unsi gned short table[20][30];
float  pressure[100][100][100];
doubl e vel ocity[100][2100][100][3];

5. Weshall seelater that the use of pointersis often more efficient than the use of multiply-dimen-
sioned arrays. (In particular, there are advantages to using an array of pointers to singly-dimen-
sioned arrays instead of doubly-dimensioned arrays.)

6. Notethat multi-dimensioned arrays can require alot of memory. For example, the vel ocity vector
defined at each point in a 3-dimensional space with agrid size of 100 in each direction requires
3x100%100%100xsi zeof ( doubl e) =24 Megabytes of storage!

4.2. Pointers

1. A pointer variable contains the address of a data object. They are declared as follows:

char *cp;
I nt *integerp, **ipp;

2. Inthe above declarations, cp is a pointer; *cp refers to the object that cp is pointing to—i.e. a
character.

3. Thevariableippisapointer to a pointer to aninteger. The diagrams below illustrate the relation-

ship of a pointer variable (itself stored somewhere in memory) and the datait points to.

Page 41



4.2.2. Pointer Arithmetic

First, suppose cp points to the character A" stored somewhere in memory and ipp points to a
pointer pointing to the integer 123 stored somewhere in memory:

Figure4.1. Pointer visualization

cp L — A

Ipp — —T—— 123

4.2.1. The & Operator

The & operator is used to obtain the address of an object. Thus pointers can be initialized asfollows:

int i, j, *ip;

ip=4&; /* Make ip point to i */
j = + *ip; [* same as j = + i */

4.2.2. Pointer Arithmetic

1. Integers may be added or subtracted from pointers.

2. If nisadded to a pointer p pointing to an object obj, p isincremented to point n objects further.
(i.e. the numerical value of p becomes p + n* sizeof(object).

3. Itispossibleto perform ordinary arithmetic on pointers (i.e. arithmetic such that adding 1 to the
pointer results in incrementing the numerical value of the pointer by 1) by casting the pointer to
an integer. (More precisely, it should be cast to a (void *) or (size_t). These conventions are as-
sociated with the stdlib—we will examine their precise meaning later.)

4. Moreprecisely, itisnormally cast to an unsigned integer, or, avoid pointer (which pointsto data
of size 1).

Page 42



4.2.2. Pointer Arithmetic

5.  For example, supposeip is0x1000 (i.e. it points to data at address 0x1000). If the data it points
to is an integer and integers occupy 4 bytes, then i p++ will result in increasing the numerical
value of ip to 0x1004 (the address of the next integer).

6. However, if weuse:
(unsi gned) ip++;
[* or */
(void *) iptt;
the numerical value of ip will increase from 0x1000 to 0x1001, just like an ordinary number.

4.2.2.1. Strings are character pointers

1. A String constant (enclosed in double quotes) are set up asaNULL terminated array of characters
in memory.

2.  Thelength of the array isthe number of charactersin the string plus 1 (for the null).
3. Thevalue of the string constant is a pointer to the first character in the array.

4. For example, given the code:

char *cp;

cp = "Hello";
the compiler storesthe charactersfor theletters 'H', "€, 'I', 'I', and "o’ followed by anull termin-
ator (a literal zero) in memory and assigns the variable cp the address where the letter "H' is
stored.

The figure below illustrates this:

Figure 4.2. Pointer visualization char *cp = "Hell0";)

cp & ==t Hle [l |I |o]|w

4.2.2.1.1. Example

Given:

char *cpl, *cp2;
cpl = "Hello"
/* Make cp2 point to dynamcally allocated menmory */

Page 43



4.3. Arrays and Pointers

cp2 = malloc(strlen(cpl) + 1);
[* copy stringl to string 2 */
while (*cpl '="\0") {

}

*cp2 = *cpl,;
cpl++ ; cp2++,

*cp2 = "\0';

In the above program fragment we make use of two library routines: mal | oc() andstrlen().

strlen() returnsthe number of characters in a string (not including the null terminator); it is
passed the starting address of the string

Hencestrlen(cpl) + 1 isthetotal number of bytes required to store the string pointed to by
cpl (including the null terminator).

mal | oc(n) dynamically allocates n bytes of memory and returns an addressto thefirst byte alloc-
ated.

Hence, cp2 = mal loc(strlen(cpl) + 1) makescp2 point to the first byte of a dynamically
allocated region big enough to hold the string that cpl pointsto.

|:| The program could have been written more efficiently as:

while ( *cpl !'="\0")
*Cp2+t+ = *cpl++;
*cp2 = "\0';

Finally, the program could have been written even more efficiently as:
while (*cp2++ = *cpl++t)

Notethat thereisno loop body! Everythingisdoneinthewhi | e test including the copy of the null termin-
ator.

4.3. Arraysand Pointers

1.

Thereisastrong relationship between arrays and pointers. In particular, the name of an array is
defined in C as being the starting address of the array. This address can then be assigned to a
pointer variable, and we can step through the array by changing the pointer instead of using in-
dices. Indeed, thisis how arrays are actually implemented internally.

Consider the following:

Page 44



4.4. Functions
char c1, c[100], *cp;

int i;

/* The synbol "c" is a pointer to the start of array */
/* Hence, the following is legal */

cp = ¢,

[* 1t is equivalent to: */

cp = &c[0];

[* The follow ng are all equivalent: */

cl =c[i];

cl =*(cp +i);

/* Curiously, the followng are also |egal */
cl =ifc];

cl = "abcdef"[i];

3. Thelastidiomisquite useful; for example, consider:

vowel = "aeiou"[vowel nunber];
[* or */

hex_ascii _code = "0123456789ABCDEF"[i & OxF];
/* The above gives the ascii code for the
hex digit formed by the lower 4 bits of i */

4.4. Functions

1. Functions can return elementary datatypes or pointers to them.

2. Unless otherwise declared, functions are assumed to return integers.

3. Functions returning a data type other than integer must be declared before use.

4. Most compilers allow functions to be declared astypevoi d if they return nothing.

5. Functionsarguments are copied onto the stack. The copies are discarded when the function returns,
Hence, all arguments are pass by value.

6. The same effect as pass by reference can be achieved by passing a pointer to the data.

7. Functions should be declared before they are used; in ANSI C, we can declare a function with
aprototype that describes the type of its arguments. The compiler can use the prototype to issue
warnings about incorrect usage and to generate more efficient code.

Page 45



4.4.2. Differences between ANSI and K&R C

4.4.1. Examples

/* Prototype for function swap */
void swap(int *, int *);
/* Prototype for function pow */
doubl e pow( double, int);

/* Actual function declaration begins here */
void swap(int * ipl, int * ip2) /* function returns nothing */

{

Int tenp;
tenp = *ipl; [* tenp = what ipl is pointing at */
*Ipl = *ip2,
*Ip2 = tenp;
}
doubl e pow(double x, int i) [* function returns double */
{
doubl e tenp;
temp = 1;
if (i >0
while(i - - )
tenmp = tenp*x;
el se
= -i;
while(i - - )
tenp = tenp/x;
return tenp;
}

4.4.2. Differences between ANSI and K& R C

1. Themost visible changes between ANSI and K&R C are in the way that functions are declared.

2. InANS C, weuse:

doubl e pow(double x, int i)
{

}

/* body of function */

3. InK&RC, weuse:

Page 46



4.5.1. Comamnd line arguments

4.

doubl e pow(x, i)
doubl e x;
int i;

{
}

/* body of function */

Even if you only use ANSI C, you need to be familiar with the old-fashioned method since so
much code was written with it. (ANSI compilers do understand the older method.)

4.5. Examples of pointers

The following programsiillustrate the elementary use of pointersin very typical applications. In par-
ticular, we examine:

How command line arguments are passed to executable programs.

How to write a function with a variable number of arguments

4.5.1. Comamnd line arguments

1.

When a program is compiled and turned into an executable file, one may wish to alter the beha-
vior of the executable at the time it isinvoked by passing it arguments on the command line to
invoke it.

The simplest such standard command is echo (in both Windows and UNIX) which simply echoes
its command line arguments to stdout when it isinvoked.
For example:
OS _pronpt> echo Display this
results in the output:
Display this

The command line arguments are passed to the nai n() function of any program in a standard
way. In particular:

* Thefirst argument passed to mai n() isthetotal number of command line arguments (including
the command name). By convention (not arule that must be obeyed), thisargument is called
ar gc (“argument count”).

* The second argument passed is the staring address of an array. By convention isis called
argv (“argument values’) andisdeclared as: char *argv[] . Therearear gc elementsinthe
array and each element in the array is a pointer to a null terminated string corresponding to

Page 47



4.5.1. Comamnd line arguments

a command line argument. Array element zero (i.e. ar gv[ 0] is the command name while
array elements 1 to ar gc- 1 are the command line arguments following the command name.

|:| InUNIX, itispossibleto have different namesfor the samefile. Hence, ar gv[ 0] —i.e.
the particular namethat was used to invoke the executabl e file—can be used to determ-
ine what action to take.

For example, the common UNIX commands mv (move or rename), cp (copy), and In
(link) al refer to the identical executable file. By looking at ar gv[ 0], the program
determines what it should do.

5. Thefollowing example shows the code for a modified echo command:

/*
myecho echos its command name and
argunents to stdout.
*/
mai n(int argc, char *argv[])
{ . .
int i;
printf("M argument count is: %l\n", argc);
printf("l was invoked under the name of %\n",
argv[0]);
printf("M argunents were:\n");
for (i =1, i <argc; i+4)
printf("Arg #%:. %\n",
i, argv[i]);
exit(0);
}

6. A moreinteresting example is shown below:

#i ncl ude <stdio. h>
char progname[ 128] ;
mai n(int argc, char * argv[])
{
fl oat princ, interest;
I nt I, n_years;

strcpy(progname, argv[0]);

if (argc !'=4) {
printf("Usage: % principal interest numyears\n",
prognane) ;

Page 48



4.5.2. Variable Number of Arguments

exit(1);
}
princ = atof(argv[1]);
printf("argv[l]: %, princ: %\n", argv[l], princ);
interest = atof(argv[2]);
printf("argv[2]: %, interest: %\n", argv[2], interest);
n_years = atoi(argv[3]);
printf("argv[3]: %, n_years: %l\n", argv[3], n_years);
interest = 1. + interest/100.;
for(i =1; i <= n_years; i+t {

princ = princ*interest;

printf("After % years, new principal is: 98.2f\n"

I, princ);

}
exit(0);

» Thecommand line arguments are always passed as strings; if these strings represent numbers,
they must be converted to the proper format by the programmer.

» Thefunctionsat of () andatoi () (from standard library) perform the conversions.

* Note aso how ar gv[ 0] is copied into the global variable progname Since ar gv[ 0] isthe
name under which the program was invoked, this allows generic error handlers to print out
the program name since all functions will have accessto the global variable pr ogname Note
that under Windows, however, ar gv[ 0] also includesthe full path.)

4.5.2. Variable Number of Arguments

1.

2.

Functionslikeprintf () are passed avariable number of arguments.
The number of arguments must, however, be implicit in the arguments themsel ves.

Inthe caseof printf(),for example, the number of argumentsis equal to 1 plus the number of
(non-escaped) % characters in the formatting string which must be the first argument.

The cat example bel ow concatenates any number of strings. The number of stringsto be concat-
enated isexplicitly given asthefirst argument. (Another common way to pass a variable number
of argumentsisto make the last argument anull pointer.)

Wewill first write thisfunction in anon-standard way, illustrating the method most C compilers
use to pass parameters to functions. This can be useful information when linking with other
languages that use a different convention. It is also a good exercise in the use of pointers.

Page 49



4.5.2. Variable Number of Arguments
Warning

However, it will not work on all machines, especially RISC machineswhich passthefirst few
arguments in registers, not on the stack. For portability, st dar g. h must be used. (We shall
see how to useit shortly.)

6. In this example, we assume that arguments are passed to functions by pushing them onto the
stack, that the stack grows towards lower memory, and that the first argument is the last one
pushed on.

7. The codefollows:

/*

* Cat concatenates a variable nunber of strings, allocates

* menmory for the resulting string and returns a pointer to it.
*

* arguments:

* n - nunber of strings to concatenate

* args - "n" pointers to NULL term nated character strings
*

* returns:

* a pointer to the string of the concatenated

* argument s

*

*

*/

char * cat(int n, char * args)
{
register int i, len = 0;
char  *malloc();
regi ster char **s, *x, *start;
S = &rgs; /* s points to first argument on stack */

[* Add up the lengths of all the strings */
for(i =n;ien-- ;)
len += strlen(*s++);
[* Allocate enough menmory for all strings (plus NULL) */
x = malloc(len + 1);
start = x;

S = &rgs; /* Point back to first argument on stack */

/* Concatenate all the input strings together into x */

Page 50



4.5.2. Variable Number of Arguments

while (n-- ) {
while (*x++ = *(*s)++); [* Cat next string to x */
s++; /* Point down stack to next argunent */
X-- ; [* Backspace over NULL */

}

return start;

45.2.1. stdarg() right way to handlevariable number of arguments

1. The approach above to a variable number of arguments is useful in showing how parameter
passing on the stack is usually done and how C can be exploited to take advantage of it.

2.  However, while parameters are usually passed on the stack as indicated there, it is not always
done this way. (e.g. RISC machines sometimes use registers and the HP 3000 has a stack that
grows towards higher memory.);

3. The portable solution isto use st dar g. h (varar gs. h in K&R C compilers).

4. Cat can be re-written more portably as shown below:

/*
* PORTABLE VERSI ON using stdarg. h
|
#ifdef _ STDC _
#incl ude <stdarg. h>
#el se
#incl ude <varargs. h>
#endi f
char * cat_va(int n, ...)
{
register int i, len = 0;
char  *malloc();
va_list ap; /* points to each arg in turn */

register char *x, *start;
va_start(ap, n); /* Make ap point to first anonynous arg. */
[* Add up the lengths of all the strings */

for(i =nji-- ;)

Page 51



4.5.2. Variable Number of Arguments

len += strlen(va_arg(ap, char *));

[* Alocate enough memory for all strings (plus NULL) */
X = nmalloc(len + 1);

start = x;

va_end(ap);

va_start(ap, n); [* Make ap point to first anonymous arg. */

/* Concatenate all the input strings together into x */
while (n - - ) {

[* Cat next string to x */

while (*x++ = *(*(char **)ap)++);

va_arg(ap, char *);

X-- ; [* Backspace over NULL */

}

va_end(ap);
return start;

Page 52



Chapter 5. Pointersto functions

1.

10.

11.

Another kind of pointer used in C is a pointer to a function. Thisis a very powerful technique
that we will examinein greater detail later on. For the moment, we will concentrate on how such
pointers are declared and used; specifically, we will look at their use in the standard library
sorting function gsort ().

Pointers to functions contain the address of afunction. At the machine level, this means that the
value of afunction pointer isthe address of the first executable instruction of the function.

Function pointers can be passed to other functions which can then use the passed function.

Very common use: standard library sort function. The sort function must be passed a function
pointer of aroutinethat can compare two elements of thetypeto be sorted. (Hence the sort utility
can be used to sort any kind of data.)

The ANSI standard library describes afunction gsort () (quicker sort) that will sort an array of
objects “in place”.

Sorting “in place” means that the gsort routine gets the array as a passed parameter and, when
it returns, the array is modified so that its elements are sorted. Furthermore, no auxiliary arrays
are created.

The algorithm isnot trivial; however, if it were implemented directly, it would require different
implementations for sorting arrays of chars, ints, doubles, etc.

Examination of the routine, however, indicates that the only differences between sorting arrays
of one data type or another are related to the ways in which the elements are compared.

The solution to the problem of different versions of the sort function for arrays of different data
types can be resolved by allowing the programmer to pass, asa parameter, apointer to afunction
that will compare elements of the array.

Thisisthe solution used in the standard library gsort () function.

The function prototype for the gqsort functionis:

voi d gsort((char *) base,
size t num
size t wdth,
int ( *conpare) (const void *elntl, const void *elnt2));

The meanings of the arguments are:

base:
The starting address of the array to be sorted.

Page 53



num:
The number of elementsin the array.

width:
The size (in bytes) of each element of the array.

compare;

A pointer to a function that compares two data items and returns a negative number if
the first is less than the second, O if they are equal and a positive number if the first is

greater than the second.

12.

I:I » Notethe keyword const in the prototype for the conpar e() function.

* This means that the value of the object pointed to will not be modified by the function
gsort. It does not mean that the corresponding value in the calling routine is a constant.

13. Toinvokeqsort () tosort an array of 100 integers, use:
#include <stdlib. h>

{
int i_array[100];

gsort (i _array, 100, sizeof(i_array), iconp);

}

int icomp(const int *a, const int *h)

{

if ( *a > *h)
return 1;
else if (*a > *b)

return -1;
return O;

}

/* NOTE: the follow ng version of icnp() would be better in this case
* (al though the above illustrates the nore generally
* appl i cabl e pattern.)

*
*int iconp(const int *a, const int *b;
*
{
* return (*a - *b);
*

——

Page 54



5.1. Complex declarations

*/

5.1. Complex declarations

1. Wehavenow seen al the elementary data types C can handle.

2. Declarations for complex variables that, for example, are functions pointers that return the base
address of an array of integers can be difficult to declare.

3. Consider the following examples:

[* funcp is a pointer to a function (that

* has a single parameter of type double)

* that returns the address of an array of N
* integers

|

int (*funcp(double))[N;

/~k
*aupp is a matrix of pointers to pointers
* to structures
|
struct {
int i;
int j;

} *raupp[M[N];

Page 55



Page 56



Chapter 6. Parsing

6.1. Compilers. An Overview

1.

2.

10.

11.

In an abstract sense, a computer program is simply a sequence of bytes (or bits).

From acomputer's point of view, more concretely, thisisexactly what the source codefor ahigh
level language (HLL) is.

The source code is stored in some file on a disk and the job of the compiler isto read thisfile
and then somehow transform it into another file containing machine language that will perform
the precise tasks defined by the semantics (i.e. what a human would understand it to mean) of
the HLL source codefile.

When the compiler, which is merely another program, “reads” the source code file it simply
bringsthisfile, one byte at atime, into its memory.

This reading of the source code is entirely different from our own idea of what reading is all
about; thusif two bytes—0x69 and 0x66— are read in sequence there are no hardware bells to
signal that these correspond the the ASCI| representation for the letters "i' and “f' and that their
sequential occurrence introducesani f statement.

When a human reads, there is little conscious effort required in translating weird black shapes
into “letters’, grouping the letters into “words’ and analyzing the groupings of words by their
context into “meanings’.

Even with all these advantages, however, humans can find the process of trandation difficult.
The tranglation process—i.e. going back from abstract “meanings’ to "“groups of words’ (in
another language!) to words to letters and finally to “funny black shapes’ (which may be quite
different from the original if the we are going form English to Arabic)—requires conscious effort
from the human.

But when we want a computer to compile a program, we are asking the computer to perform an
exact translation between two languages (the C language to machine language for example) and,
at the sametime, depriving the computer of all theintuitive knowledge of “reading”, “meaning”,
“context”, etc. that we all have.

To write a compiler, not only do we have to describe in the utmost detail the translation of
“meaning” (or semantics) into adifferent language; we must also describe (i.e. write a program)
how to interpret sequences of bytes into words and how to group words into semantic units.

Thislookslike ahbig job!

If one simply attacks this big job as yet another programming assignment, it does indeed take a
lot of effort. The first Fortran compiler back in the 1950's, for example, was written from this
perspective and it has been noted that that:

Page 57



6.1.1. Lexical analysis

The first Fortran compiler, for example, took 18 staff-years to implement. 2
—Aho

12. Today, however, the compilation process is much better understood. We now have a theory of
compilation and it is not unreasonable to expect an undergraduate student to write a complete
compiler as a course project.

13. With thistheory, we divide the compilation process into three major steps.
a lexical analysis
b. parsing
C. code generation.

Each of these stages are described briefly in the following sections.
6.1.1. Lexical analysis

1. Lexica analysisis used to trandlate the incoming sequence of bytes read from the source code
fileinto more meaningful tokens.

2. Thelexical analyzer can recognize sequences of characters aswords.

3. For example, input that we read as:
thing := stuff*10;
would be read by the lexical analyzer as the following sequence of 18 bytes:

74 68 69 6e 67 20 3a 3d 20
73 74 75 66 66 2a 31 30 3b

4. Thelexical analyzer trandates these 18 bytes into a sequence of 6 tokens as follows:

<identifier (with value of "~“thing'')>
<assi gnnent oper at or>

<identifier (with value of " “stuff'')>
<mul tiply operator>

<constant (wth value of 5)>
<statenment term nator>

2 Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman Compilers: Principles, Techniques, and Tools, Addison-Wesley,

1986, page 2.

Page 58



6.1.2. Parsing

5.  Thisisnot too complicated to do. The language definition requires that keywords be separated
by white space (blanks, tabs or newlines) or by special characters (like= ; > etc. not allowed
to be part of keywords or identifiers (i.e. symbols).

6. Hencethelexical analyzer reads one byte at atime and collects them until it hits white space or
aspecial character.

7. It hasthen collected a“word” and comparesit against itslist of keywords.

8. Ifitfindsamatch it outputsatoken representing that keyword; if no matchisfound an“identifier
token” isoutput along with somelink to thetoken's“value’. Thelexical analyzer also recognizes
that aword beginning with adigit should be output asa“ constant token” with alink to the actual
digit string.

9. Finaly, special characters (like; + *) or groups of special characters (like: = >=) are also re-
cognized and have their own individual tokens.

10. Thenumber of types of tokensis quite limited. Thisisamarked contrast from natural languages
like English with vocabularies that are bigger by many orders of magnitude.

11. Thislimited vocabulary of programming languages (also called formal languagesin contrast to
natural languages) makes the lexical analyzer's job much easier.

12. Notethat the lexical analyzer makes no judgements about the significance or sensibleness of the
stream of tokens its generates.

13. (However, the lexical analyzer may be able to detect a non-sensical token such as a string like
123ax5 which, because it starts with adigit should generate a constant token while the string as
awholeis not a number.)

6.1.2. Parsing

1. Oncethelexica analyzer has converted the source code into atoken stream, the parser} (or se-
mantic analyzer) takes over.

2. Itsjobisto find meaningful patternsin the token sequence and to pass these “meanings’ to the
final stage of compilation—the code generator— which produces the final machine language
translation of the original source code.

3. Finding meaningful patterns is greatly simplified by the formal definition of the source code
language grammar.

4. The syntax (or grammar) of a forma language like C can be completely described using the

Backus-Nauf Form (BNF) notation. This notation describes how tokens can be combined to form
semantic units.

Page 59



6.1.2. Parsing
5.  Some of these semantic units are very simple. The “addop” semantic unit, for example, is either
an addition ('+") or subtraction ('-') operator and BNF uses the following notation to describethis:

<addop> :: =
<+ operator> | <- operator>

6. The'| (vertical bar) symbol is used to describe alternatives. Note that the '+' and '-' characters
are simple tokens recognized by the lexical analyzer.

7. The semantic analyzer or parser uses the above rule or pattern to recognize these simple tokens
as amore abstract semantic unit.

8. The BNF description also describes how the addop unit can be combined with other semantic
units to form yet more complex abstract entities.

9. For example, we know that we can add or subtract two or more “terms’ and that a programmer
specifiesthis by placing '+' or '-' characters between the terms.

10. Let'scall somethinglike“a+b-c” anexpression. The general BNF description for an expression
is:

<expression> ::=
<ternp {<addop> <ternp}

11. The'{"and'}' (curly braces) indicate that the symbolswithin them may be repeated zero or more
times.

12. Assuming for the moment that aterm isasimplevariable, all thefollowing are valid expressions
according to the above BNF definition:

<ternm> and O repetitions of <addop> <ternp:

a

<ternm> and 1 repetition of <addop> <ternp:
c-d

<tern> and 2 repetitions of <addop> <ternp:
at+thb-c

13. To use the BNF rule in finding these expressions, the parser would first recognize the initial
term.

Page 60



6.1.2. Parsing

14.

15.

16.

17.

18.

19.

20.

21.

It would then determine if the next semantic entity was an <addop>: if it was not, the parser
would return the simple expression; otherwise it would look for the <t er n»> that must follow the
<addop> and then repeat the sequence looking for another <addop> or the end of the expression.

The ultimate goal of the parser is to combine all the tokens and all the semantic units into the
highest-level unit of al: the <pr ogr an®. Asthe higher-level units are formed, information about
thelir structure is passed to the code generator which then has sufficient information to perform
“actions” based on the semantic structure.

These actions generate the machine code equival ent to the semantic structures of the source code.
We will consider the the example of an assignment statement to illustrate this point.

Consider the BNF:

<assi gnment statenent> ::=
<variabl e> : = <expression>

<expression> ::=
<term> {<addop> <ternp}

<addop> ::= + |

<terms .=
<factor> { * <factor> }

<factor> ::=
<variable> | ( <expression>)

If welook at how expressions are defined here, we see that any arithmetic expression involving
the'+', '-" and *' opererators and the (" and *)' grouping charactersis defined.

The definitions are recursive as an expression isdefined asagrouping of <t er mps; termsin turn
are defined using <f act or >s; finally factors are defined using <vari abl e>s and again with
<expressi on>s.

This method of defining something in terms of itself looks strange at first glance but it is a
powerful method for simple, elegant definitions of grammars.

Consider how the parser would treat the following expression:

(a+h) *c

Page 61



22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

6.1.2. Parsing

When the expression detecting routine is called, it first invokes another routine to look for the
first thing in an expression—in this case aterm. As soon asthe term routineis called, it immedi-
ately looks for its first item—a factor.

A factor, inturn, hastwo aternative definitions: either itisasimplevariable or it isan expression
enclosed within parenthesis.

The factor routine examines the first character to seeif itisasimple variable or a'('.

Inthiscase, it findsthe'(’ special character; it then movesto the next input token which it expects
to be the start of an expression and calls the expression recognition routine once again.

When the expression routine starts a second time, it again calls term and then factor.

This time, however, factor finds a simple variable and returns immediately. The term routine
then looksfor a™' to seeif it should call factor again; it doesn't find one, so it returnsimmediately.
Now the second invocation of expression looks for a'+' sign to seeif it should again call term
again to find out what should be added to the first term it found.

Expression finds a simple variable, 'c’, on the other sign of the + sign. It then looks for another
'+' or -' to seeif it should continue. Since the next character isa"')', this second invocation of
expression terminates and returns to the factor routine that called it.

Factor then expects to find a ')’ to balance the first one it detected and it returns to term after
finding the next token following the *)'. Term examines thistoken to seeif itisa™'. Sinceit s,
term calls factor again to find the other factor of the multiplication. Term then finds no more *'s
and returns to the first invocation of expression.

We are now almost done. Expression looks for another '+' or -', finds none, and terminates. The
entire expression has now been completely parsed. We now know what has to added, subtracted
and multiplied and are in a position to generate machine code to perform these operations and
evaluate the expression.

We can, of course, write a program to parse expressions based on the above syntax. Such apro-
gram, written in C, is shown below. This program does more, however, than merely recognize
expressions. It also does sometrandation; in particular, it trand ates algebrai c notation for expres-
sions defined in the BNF for expressions into Rever se Polish Notation (RPN).

With Reverse Polish Notation (used for example to enter expressions in Hewlett-Packard cal cu-
lators), the expression isread and each variable or constant is pushed onto a stack. When an op-
erator is encountered, the top two elements are popped off the stack, the operation performed on
them, and the result pushed back on the stack.

Consider the following expression and its RPN equivalent:

Page 62



6.1.2. Parsing

(atb)*(c + d +e) //algebraic
ab+cd+e+* [/ RPN equi val ent

34. If the RPN expression is examined one token at a time, then, just before encountering the first
'+' operator, the stack would look like the figure below:

Figure 6.1. RPN stack before processing first '+' in ab+cd+e+*

cp @ —

Ipp — —T—— 123

35. After processing thefirst two characters (i.e. “ab”) in the RPN expression, the stack would ook
like the figure below:

Figure 6.2. RPN stack after processing “ab” in ab+cd+e+*

Afrer processing
ab+cd+et*

36. It would then undergo the following transformations:

Page 63



Figure 6.3. RPN stack when inter preting ab+cd+e+*

d

] c
o o+bt 1 =]
Srock mrac' ob” aock mivec ' obt" Smok oA "ok d”

-

c+d c+d it

1] =] 1] =] 1] =]

Smodk oEs otk Smodk ore 'obehedet Smok ore ok die+

37.

(B -hd

=rock mivac obet oo A ™

6.1.2. Parsing

sametimethat itisparsing it we simply add thefollowing: print identifiers asthey are encountered
but defer printing a'+', - or *' until both of its terms (or factors) have been found.

38. The C program (available at parseRPN.c [./src/parseRPN.c]) is:

#include <stdio. h>

/ *

* The program works on expressions conformng to the follow ng BNF synta
* rul es:

* <expression> ::= <ternd [ <addop> <ternp ]

* <termp ::= <factor> [ <factor> ]

* <factor> ::= ( <expression>) | <id>

* <addop> ::= + | -

* <id> ::= any single character except ()*+-

*

* How to run the program The programreads al gebraic expressions for st
* wites their Reverse Polish Notation (rpn) equivalent to stdout. In or
* to avoid seeing all of this on the screen, redirect stdin or stdout. F
* exanple, postfixl < exprs will read expressions fromthe file "exprs"
* (which you have to create previously).

x|

char ch;

mai n()

{
find();

do

Page 64

To make the parser program convert the algebraic expression to reverse polish notation at the

>

din and
der
or


./src/parseRPN.c

6.1.2. Parsing

{

expression();
putchar("\n");
} while (ch ="

}

find() /* Read input until non-white space or
* end-of-1ine reached */

S )

{
while (((ch = getchar()) ==" ") || (ch =="\n"))

}

expression()
/*
* Look for an expression and print
* the + or - operand if and when a "tern
* is found after such an operand
*|

char op;
tern();
while ((ch =="+") || (ch =="-"))
{
op = ch;
find();
tern();
put char (op);

term)
/*

* Look for a termand print the * operand if and when a "factor" is flound
* after such an operand
*|
{
factor(); [* Find the initial factor and print rpn for
it ox/

/*
* Move around the "factor*factor” |oop as long as the next character
*is the "*' operand

Page 65



}
}
factor()
/* Look for a factor; if the factor is a sinple identifier, print it */
{
if (ch=="(")
{

6.1.2. Parsing

*|

while (ch =="*")

{
find(); /* Move to next non-blank character */
factor(); /* Find the factor after the '*' and,

*if it is asinple identfier, print it */
putchar('*"); [* Conplete the rpn for the factor by
* printing the '*' operand */

find(); /* Move to the next non-white character */

expression(); /* Find the expression & print rpn for it */

[* After returning "ch" should be a ')' if syntax is correct */
} else

{
/*

* |f not an expression enclosed in "(...)", it has to be a
* sinple identifier so print it

*|

put char(ch);

}

find(); /* Now nove to next non-blank character */

6.1.2.1. Parsing C declarations

1. Thesyntax of C declarations (espcially pointers to functions!) can be confusing. We now look
at the formal BNF specification of declarations and how we can write a program to interpret
these declarations.

2. These notes are based on the programs on pages 122—-126 of The C Programming Language by
Kernighan and Ritchie (2nd edition).

3. Firgt, the simplified BNF syntax of adeclarationis:

Page 66



6.1.2. Parsing

4.

5.

<dcl > ::= {*} <direct_dcl>
<direct _dcl> ::= <name>
| (" <dcI>")'

| <direct_dcl>"(" ")
| <direct_dcl > ['<size>']

A C declaration can beinterpreted by arelatively simple recursive-descent parser of the type we
have looked at.

The source code (available at parse_dcl.c [./src/parse_dcl.c]) is:

/***

NAME
par se_dcl
PURPCSE
This program parses C declaratations (reading from stdin)
and outputs an English | anguage description of each declaration's
meani ng to stdout.
NOTES
This programis a |sightly different version of the program
given in Section 5.12 (pages 122--126) of the K & R book
second edition.

A simplified formof C declaration is used, as descri bed
in the foll owing BNF:

<typed_decl aration> ::= <type> <decl aration>
<declaration> ::={ "*" } <direct _declaration>
<direct declaration> ::= <name>

| '(' <declaration>")
| <declaration>"'(' ")
| <declaration> '[" <dinension> ']

<name> ::= a sequence of characters
<dinension> ::= { <digit> }
EXAMPLES

Assum ng the programis called parse _c_decs, then
parse_c_decs << XXXX
char *** abc;
char *sinple()
char (*foo0)();
char (*(*bar())[])();

Page 67


./src/parse_dcl.c

Page 68

XXXX

produces:

BUGS

This is denmonstration programonly. It does not

understand the full C syntax of declarations.

For exanples, structs are not supported, type qualifiers

like "const" or "volatile" are not supported, function argunent
types are not supported, etc.

H STORY

kcl owes (Ken Clowes) - Sept 25, 1993: Created.

***/

#incl ude <stdlib. h>
#incl ude <strings. h>
#i ncl ude <stdio.h>
#incl ude <ctype. h>

#tdef i ne
#tdef i ne

enum

{

6.1.2. Parsing

)00

int (*(*foobar[2][3]
()

float (*(*f)())[3]

abc is a pointer to pointer to pointer to char
sinple is a function returning pointer to char
foois a pointer to function returning char

bar is a function returning pointer to array[] of pointer to fun
returning char

foobar is a array[2] of array[3] of pointer to function returnin
pointer to function returning int

f is a pointer to function returning pointer to array[5] of func
returning float

MAX_TOKEN_LENGTH 100
MAX_DESCRI PTI ON_LENGTH 1000

ction

tion



6.1.2. Parsing

NAE,
BOTH_PARENS,
BRACKETS,
LEFT_PARENS,

RI GHT_PARENS,
DECLARATI ON_END

t ypedef struct
{ .

int type;

char val ue[ MAX_DESCRI PTI ON_LENGTH ;
} token_t;

static token_t token; /* next token frominput stream*/
static char description[ MAX_DESCRI PTI ON_LENGTH] ;

static char name[ MAX TOKEN LENGTH] ;

static int |ine;

static int n_errors;

voi d decl aration(void);

int gettoken(void);
voi d direct _declaration(void);

int min(int argc, char *argv[])

{
char data_type[ MAX TOKEN LENGTH ;
for (line =1, nerrors = 0; gettoken() !'= ECF; |inet+)
{

[* 1st token is data declaration type */
strcpy(data_type, token.value);
description[0] = "\0";

decl aration();

I f (token.type != DECLARATI ON_END)

{
fprintf(stderr, "Syntax error on line %l\n", line);
n_errors++;
}
printf("% is a % %\n", nane, description, data_type);

}

exit(n_errors);

Page 69



6.1.2. Parsing

}
/**
NAME
int gettoken()
PURPOSE
Reads the next token fromstdin and set the global variable
token to it.
ARGS:
> None
RETURNS:
< The token type: i.e. NAVE, BOTH PARENS, BRACKETS, LEFT_PAREN,
RI GHT_PARENS, or the last return value form getchar
NOTES:
The "last return value" fromgetchar may, or course, be EOF
**/

int gettoken()
{
int ch;
char *p = token. val ue;

while((ch = getchar()) ==" " || ch =="\t" || ch =="\n")
if'(c ="(")
{
if ((ch =getchar()) ==")")
{
strcpy(token.value, "()");
return token.type = BOTH PARENS

el se

{
ungetc(ch, stdin);
return token.type = LEFT_PARENS;

}
}
elseif (ch=="[")
{
for(*p++ = ch; (*p++ = getchar()) !'="]";)
*p='"\0";
return token.type = BRACKETS,

}

Page 70



6.1.2.

Parsing

else if (isalpha(ch))
{
for (*p+t+ = ch; isalnun{ch = getchar()); )
*p++ = ch;
*p="\0",;
ungetc(ch, stdin);
return token.type = NAME

}
elseif (ch==";")
return token.type = DECLARATI ON_END
elseif (ch==")")
return token.type = Rl GHT_PARENS
el se
return token.type = ch
}
/**
NAME
declaration
PURPOSE
Parses the foll owi ng BNF
<declaration> ::={ "*' } <direct _declaration>
ARGS:
> None.
RETURNS:
< Not hi ng.
NOTES:
**/
voi d decl aration(void)
{
int numstars;
for(numstars = 0; gettoken() == "'*"; numstars++)
direct _declaration();
whi I e(num stars-- > 0)
strcat(description, " pointer to");
}
/**
NAME

Page 71



6.1.2. Parsing

direct _declaration
PURPCSE
| npl enents the parsing of:
<direct _declaration> ::= <name>
| '(' <declaration>")
| <declaration>'(' ")
| <declaration>'[" <dinension> "]
ARGS:
> None
RETURNS:
< Not hi ng
NOTES:
Called fromdeclaration, so |eading <declaration> if any, already

par sed.
**/

voi d direct _decl aration(void)
{
I f (token.type == NAME)
strcpy(nane, token.val ue);
el se
i f (token.type == LEFT_PARENS)
{
declaration();
I f (token.type != RI GHT_PARENS)

{
fprintf(stderr, "mssing ) on line %\n", line);
n_errors++;
}
}
el se
{
fprintf(stderr, "expected name or (dcl) on line %\n", line);
n_errors++;
}
for(gettoken();
t oken. type == BOTH _PARENS || token.type == BRACKETS
get t oken())

i f (token.type == BOTH _PARENS)
strcat(description, " function returning");
el se
{
strcat (description, array");
strcat(description, token.value);

Page 72



6.1.2. Parsing

strcat (description, " of");

}

Page 73



Page 74



Chapter 7. Data Structures

7.1. Structures and Unions

1. A struct (likea“record” in Pascal) groups data items into asingle logical unit. For example:

R
The follow ng declares a structure data type
cal led "conpl x".
No storage is reserved; only the name and data
type of the conponent fields of the structure
are defined.
|
struct conpl x {
doubl e real
double im

}s

. [*

The follow ng declares two arrays of 100 itens each

Each array itemis a structure of the type
defined above

*|

struct conplx z[100], y[100];

2. Portions of astructure are accessed as follows:
z[2].real =y[1].real * y[1].real - y[1].im* y[1].im

7.2. Structure Examples

1. struct person {
char *first_nang;
char *|ast_nanme;
char sex;
int age;

} persons[10];

/*
In the above declaration, both the definition

Page 75



7.3. Using typedef

of the structure fields and the allocation of
of an array of 10 such structures i s comnbined
into a single declaration.

*|

persons[0].last _name = "Jones";
persons[0].first_name = "Robert";
persons[0].sex ="M
persons[ 0] .age = 23,

Note that structures can be assigned. Thus:
persons[ 4] = persons|8];
will copy structure #8 to structure #4.

I:I Beginners are sometimes surprised that structures can be assigned but not arrays. They become
even more amazed when told that if they make the array the only member of astructure, it can
be assigned

Can you see why C works this way?

7.3. Using t ypedef

1.

It is often convenient to use a “typedef” to give a user defined name to a declaration. (Thisis
much like the “type” keyword in Pascal.)

For example, to define anew datatype called “Complx” that correspondsto the complex number
data structure we saw earlier, we write:

typedef struct conpl x {

doubl e real;
double im
} Conpl x;

The word Conpl x will now be interpreted by the compiler as the name for a data type. Thus:
Compl x z[ 100], y[100];

Note: typedefs are useful for things other than structures. For example, consider:

typedef unsigned char byte;

byte varl, var?2,

Page 76



7.4. Pointers to structures

This creates a new data type called byt e which isan alias for an unsigned char. Variables varl
and var2} are then declared as type byte.

7.4. Pointersto structures

1. Pointers to structures are extremely useful for common data structures such as linked lists or
trees.

2. Alinked listisagroup of structureswhere each structure contains a pointer to the next structure
in the list. The declaration of such a structure is an example of self-referential data structures.

3. For example:

struct node {
int data;
struct node * next;

}s

4. Notethat if atypedef is used, the typedef name cannot (unfortunately) be used in the structure
declaration. Thus we must write:

typedef struct node {
int data;
struct node * next;
} node, * nodePtr;
node al | _nodes[ NN ;
nodePtr node ptr = &all _nodes[3];

5. However, this blemish can be avoided by separating the typedef from the struct declaration as
follows:

typedef struct node node, * nodePtr;
struct node {
int data;
nodePtr next;
b
node al | _nodes[ NN ;
nodePtr node_ptr = &all _nodes[3];

Page 77



7.6. Initializing Linked listsin declarations

7.5. SingleLinked List Example

The following code fragments illustrate the methods used in allocating storage for new structures,
accessing a specific structure on alinked list and stepping through alinked list.

typedef struct elemelem * elenPtr;
struct elem{

}s

char nane[ 30] ;
el enPtr next;

elenPtr first, tenp;

[* i.e. first is a pointer to a structure called el em
The structure contains two fields:

a 30 character array and a pointer called next

to an other structure of the same type */

first = (elenPtr) malloc(sizeof elen;
strcpy(first->nane, "Smth");
tenp = first->next

= (elenPtr) malloc(sizeof elem;
tenp->next = (elenPtr) nalloc(sizeof elen;

[* Print out 3rd name */
printf("%\n", first->next->next->nane);

[* Step through list */
for(tenp = first; tenp !'= NULL ; tenp = tenp->next)
printf("%\n", tenp->nane);

7.6. Initializing Linked listsin declarations

1.

2.

The following code fragment shows how alinked list can be set up at compile time.
The example below sets up acircular linked list of three nodes.

Note that structures on the list referred to that have not yet been declared require an ext er n de-
claration before they are referred to.

The sample codeis:

typedef struct node node, * nodePtr;
struct node {
int data,;

Page 78



7.7. Unions

nodePtr next;
i
extern node node2;
extern node node3;

node nodel = {

1
&node?

b

node node2 = {
22,
&node3

b

node node3 = {
333,
&nodel

b

7.7. Unions

1. A unionisadataitem that can hold different types of data (at different times).
2. For example, we may wish to manipulate a number that may be stored as either an integer or as
afloating point number. The following union allows this:

uni on nunber {

int integer;

float floating point;
} nl, n2;

3. Thecompiler will force the size of number to be big enough to hold the largest variant. It isthe
programmer's responsibility to keep track of how the data is represented within the union.

4. The union member is referenced much like structure elements. For example, to print n1 (stored
as an integer) and n2 (stored as a floating point number), we use:

printf("nl: $d; n2: %\n", nl.integer, n2.floating_point);

Page 79



7.8. Example: Doubly Linked List

Unions are often combined with structures, with one field in the structure indicating the format

of the union.

For exampl e, suppose we sometimeswish to store complex point numbersin rectangular notation
and sometimes in polar coordinates. We could use the following:

struct cartesian {

float real;
float inmag;
ji s
struct polar {
fl oat mag;
float angle;

};

typedef struct {
enum { CARTESI AN, POLAR } conpl ex_type;
uni on {
struct cartesian cart;
struct polar polar;
} val ue;
} Conpl ex;

7.8. Example: Doubly Linked List

1.

A “doubly-linked list” has both forward and backwards pointers; this kind of list requires more
storage (two pointers per structure) and more time to insert or delete an item. Many problems
are more easily solved with the added flexibility, however. The following examples show how

doubly linked lists can be manipulated.
These examples also illustrate:
» Splitting a problem into smaller parts,

» Using function pointers as arguments.

» Using the comma operator to obtain 2 loop variablesin afor loop. (Thisisacommon idiom

when manipulating linked lists.)

The following sections give details.

Page 80



7.8.2. Main routine
7.8.1. Header filedoubl eLi nkedLi st . h

The header file defines the basic data structures and macros. The source code (available at
doublel inkedList.h [./src/doublelLinkedList.h]) is:

/* Header file describing structures
for a doubly-linked Iist */
#include <stdlib. h>
typedef struct rec {
char word[80];
struct rec *next;
struct rec *prey;
} REC, *RECP

#define NILREC ( (RECP) NULL)
#define allocrec (RECP) mal |l oc(sizeof (REC))

7.8.2. Main routine

[* Copyright K C owes (kcl ones@e.ryerson.ca) 1996
* May be copied, nodified, etc. by anyone.

* The Copyright notice does NOT have to be retained.
x|

/*
This routine reads words fromstdin
and inserts themin sorted order into
a doubly linked Iist.

It then prints out the list in forward
and reverse order.
|

#i ncl ude <stdio. h>

#i ncl ude "doubl e. h"
RecPtr headPtr, tailPtr;
RecPtr Forward();
RecPtr Backward();

mai n()

{
[* Initialize the list as enpty */
headPtr = tailPtr = N LREC,

Page 81


./src/doubleLinkedList.h

7.8.2. Main routine

I* Create the doubly linked ist */
Bui I dList();

[* Qutput the list in forward and reverse order */
PrintList(headPtr, Forward);
printf("\n");
PrintList(tailPtr, Backward);
}
\end{verbatin}
\subsection{Build |ist}

% verbatimisting{c_progs/doubl eLi nkedLi st s/ dbui | d. c}
\ begi n{verbatin}

[* Copyright K O owes (kclowes@e.ryerson.ca) 1996
* May be copied, nodified, etc. by anyone.

* The Copyright notice does NOT have to be retained.
*|

/*
Bui | dList reads stdin a line at a tine
and builds a sorted doubly-Iinked |ist
fromthe input.

*/

#i ncl ude <stdio. h>

#i ncl ude "doubl e. h"

extern RecPtr headPtr, tailPtr

Bui | dLi st ()

{
RecPtr newPtr, prevPtr, currentPtr;

while((newPtr = allocrec)
&& (scanf("9%", newPtr->word) != EOF)) {
for(currentPtr = headPtr, prevPtr = N LREC
currentPtr !'= NILREC && strcnp(currentPtr->word, newPtr->word) < 0;
prevPtr = currentPtr, currentPtr = currentPtr->next);

newPt r - >next currentPtr;
newPtr->prev = prevPtr;
if ( currentPtr == N LREC)
tailPtr = newPtr;
el se
currentPtr->prev = newPtr;
if ( prevPtr == N LREC

Page 82



7.8.3. Print list

headPtr = newPtr;
el se
prevPtr->next = newPtr;
}
if ( newkPtr == NILREC) {
fprintf(stderr, "I1ITIT OQUT OF MEMORY !ITITE™):
exit(1);
}
}
7.8.3. Print list

[* Copyright K C owes (kcl ones@e.ryerson.ca) 1996
* May be copied, nodified, etc. by anyone.

* The Copyright notice does NOT have to be retained.
*/

/-k
PrintList prints the contents of a linked |ist
using a supplied function to determne the
next elenent on the list.

Argunent s:
RecPtr start: ptr to the first itemon the Iist

getnext: pointer to a function to return the next
itemfromthe current item
*|

#i ncl ude <stdi o. h>
#i ncl ude "doubl e. h"

PrintList(RecPtr startPtr, RecPtr (*getNextProc)(RecPtr))

{
RecPtr tempPtr;

for(tempPtr = startPtr;
tenpPtr !'= N LREC
tempPtr = (*get NextProc) (tenpPtr))
printf("%\n", tenpPtr->word);

Page 83



7.8.4. Notes

RecPtr Forward(RecPtr recPtr)
{

return(recPtr->next);

}

RecPtr Backwar d(RecPtr recPtr)
{

return(recPtr->prev);

}

7.8.4. Notes

If the linked list were implemented as a circular list, insertion and deletion would be simpler. The
circular list would beinitialized with a structure containing aword lexically beyond any possible real
words (e.g “zzzzzz").

Page 84



Chapter 8. The Preprocessor

1.

The C preprocessor is is the first stage of the compilation process. It transforms the original
source code into a “transformed” source code that is fed to the actual compiler.

Note that the preprocessor is, in effect, atext manipulator (or a batch editor). Both its input and
output are text files. It is quite possible to use the C preprocessor for languages other than C.

To use the C preprocessor for other languages requires either a special option to the C compiler
or is a stand-along program.

The concept of automatic trandation of one form of source code to another has been extended
in projects such as D. Knuth's web project. Here, asingle “source codefile” is transformed into
separate documentation and implementation files. Knuth's original work was targeted to Pascal,
but his ideas have been ported to other languages (such as the cweb package for C).

8.1. Using the Preprocessor

1. Preprocessor commands begin with a# and we have already used two such commands: #i ncl ude
and #def i ne.

2. Proper use of the pre-processor helps in making programs easier to read (and write!), easier to
maintain, more portable, and more efficient. We now examine the features of the preprocessor
in more detail.

3. Wewill first look at those preprocessor features common to both ANSI and K&R C. Later, we
will ook at the enhanced capabilities only availablein ANSI C.

8.1.1. #include

1. The#incl ude directive ssimply inserts the named file into the source code. Thefileiscalled a
“header file” and, by convention, its name ends with . h.

2. Themost common type of include statement looks like:

#i ncl ude <header name. h>

3. Thisisusually used to include a header file associated with functions (or macros) supplied with
the compiler. For example, #i ncl ude <stdi o. h>.

4. The compiler knows where to find the file.

* InUNIX, it usually looks for the header filein/ usr/incl ude and/ usr/ | ocal /i ncl ude.

* Under Windows using the gcc compiler and the cygwin package, it looks in C:\ cyg-
wi n\usr\incl ude.

Page 85



8.1.2. #define

5.  However, the compiler can beinstructed to look for theincludefilein other directoriesby giving
their namesto the - | option in the compiler. Thus, if the compiler should look for header files
in directory / usr/ me/ ny_i ncl udes, use the command line:

UNI X PROVPT% cc -1/usr/mel/includes source file.c

6. The other way to specify an include file is with:
#include "path_file"

7. Inthiscase, the exact path (relative or absolute) for thefileis given.

8. For example, if the header file head. h isin the same directory as the source code, smply use:
#include "head. h"

9. Itisaso very common for alarge project to be divided into several sub-directories. src for
source code, doc for documentation, i ncl ude for header files, etc.

10. Thusasource code filesin sub-directory sr ¢ can access header files by moving up to the parent
directory (..) and down to thei ncl ude directory as follows:

#include "../include/head. h"

8.1.2. #define

1. Wehaveused #def i ne to define the values of symbolic constants. It can be used to define any-
thing.

2. Symbolic constants can be re-used in other #def i ne statements as shown below:

[*Cock freq (kHz) divided by prescaler*/
#define CLOCK 4000/ 32
#define INT_TIME 200 [* in units of mlliseconds */
#def i ne COUNT (I NT_TI ME* CLOCK)
[* Split 24 bit COUNT into 8 bit parts (hi, md, lo) */
#defi ne COUNTHI ( COUNT/ ( 256* 256))
#define COUNTM D ( COUNT/ 256 - COUNTHI *256)
#def i ne COUNTLO ( COUNT9256)
3. #defi ne directives can aso be parameterized to define macros. For example:

Page 86



8.1.3. #ifdef and #fndef

#define max(A, B) (((A > (B) ? (A : (B))

4. If, later in the source code, we see:
] = max(i+2, k);
the preprocessor replaces this with:

Jo=(((1+2) > (k) ? (i+2) @ (k))

5. A macro appearsto behave like afunction. However, it is more efficient sinceit is expanded in-
line. (There is no subroutine call or return.)

6. For example, we have been using get char () asif it were a function. In fact it is (usualy) a
macro defined in st di 0. h.

7. There are dangers, however, in the fact that macros and functions look the same. In particular:
* You cannot take the address of a macro (and passit as function pointer).

* You must be careful about any possible side effects associated with a macro. For example,
consider:

m= max(++, +4);

where max() isthe parameterized macro previously defined.

It will be expanded to:
m= (((++i) > (+4) ? (+40) @ (+4]))

Asaresult, eitheri orj will beincremented twicel

8.1.3. #i f def and #i f ndef

1. The#ifdef (if defined) preprocessor directiveis used to conditionally compile certain sections
of code. Thisoften leads to more portable code and code that can easily be recompiled to behave
in adifferent, configurable way.

2. Theform:
#i f def Synbol

#endi f

Page 87



8.1.4. #undef

results in the statements between the #i f def and the matching #endi f being compiled only if
the string Synbol has been defined by a previous #def i ne statement (or command line option
when the compiler was invoked).

3. For example, consider:
#i f def MOT68K
t ypedef unsigned int big_nunbers;
#endi f
#i f def | NTEL8088
t ypedef unsigned |ong bi g_nunbers;
#endi f

4. Here, the proper t ypedef will be compiled so that the type bi g_nunber s} will be an unsigned
32-hit integer on both PCs (which use Intel 8088 chips) and UNIX 680x0 machines.

5. A very common use for #i f def isto surround debugging statements with #i f def DEBUG as
shown below:

#i f def DEBUG
printf("i: %l nown", i);
#endi f

6. When developing the code, DEBUG is defined; hence the debug statements are compiled and ex-
ecuted at run time. Once the program works, it is re-compiled without defining DEBUGand it will
now run without the debugging statements.

7. Notethat thisis preferable to deleting the debugging statements. After all, a hidden bug may be
reported later on. In this case, the program has to be debugged again but there is no need to re-
write the debugging statements; simply re-compile with DEBUG defined.

8. Note that a symbol can be defined on the command line that invokes the compiler instead of in
the program itself. Thus, to compile with debugging statements, we write:

SHELL PROMPT% gcc - DDEBUG source file.c

9. Thedirective#i f ndef worksjust like #i f def except that the statements following it up to the
#endi f areonly compiled if the symbol is not defined.

8.1.4. #undef

1. Theeffect of a#def i ne statement can be undone with the #undef directive.

Page 88



8.1.5. ANSI C preprocessor

2. Thisis often useful if you want to use a function for something that is normally a macro. For
example, if you want to use your own function get char () (which isamacro expansion by de-
fault), use:

#undef getchar

int getchar() {
/* Your function body */

}

3. Another way of forcing get char () to be afunction rather than amacroisto use: (get char) ().
8.1.5. ANSI C preprocessor

1. Inaddition to the familiar #i ncl ude, #def i ne, #i f def , etc., the following features have been
added to the preprocessor in ANSI C.

2. The#if constant integer expression has been added for conditional compilation. The “constant
integer expression” isconsidered trueif it evaluatesnon-zero and falseif itiszero. The expression
can use C style syntax aswell asthedef i ned( nane) which evaluatesastrueif “name’ has been
defined.

3. Thenew directives#el se and #el i f (elseif) have also been included. For example:

#i f SYSTEM == UNI XV. 3\
|| SYSTEM == SUNOS\
|| SYSTEM == XEN X
#define UNI X
#endi f
#if !defined(UNIX) && SYSTEM != MSDOS
#error Do not know operating system
#endi f
# f defi ned( DEBUG
#i f defined(UNI X)
#def i ne 1 NCLUDE uni xdebug. h
#elif defined( MSDOS)
#defi ne 1 NCLUDE nmsdosdebug. h
#endi f
#el se
#i f defined(UNI X)
#define 1 NCLUDE uni x. h
#elif defined( MSDOS)
#define | NCLUDE nmsdos. h
#endi f

Page 89



8.1.5. ANSI C preprocessor

#tendi f
#i ncl ude < HEADER >

4. Thenew operators# and ## can be used to generate strings by concatenation by the preprocessor.

5. When aparameter name in amacro is preceded by a#, the parameter will be quoted and concat-
enated with any surrounding strings.

6. The## operator is used to quote and concatenate adjacent macro arguments.

7. Thepredefinedidentifiers_ LINE _, FILE , DATE , TIME_ ,and__STDC havebeen
added to the preprocessor. They contain, respectively, the decimal number of the current line,
the name of the current source code file, the date and the time. __ STDC _ isdefined as 1 if the
compiler conformsto the ANSI standard. For example:

#define err( m) fprintf(stderr,\
"Error on line %:" #m"\n", _LINE )

err(print this message after colon);

8. Theuse of ## is shown below:

#define instance( prefix, root, postfix)\
prefix ## root ## postfix

I =] + instance(pre, _body , 5);
/* Above is creates i =) + pre_body 5; */

Page 90



Chapter 9. The Standard library

1. Anaccomplished C programmer does not re-invent the wheel. The standard library of functions
defined by ANSI C includes a good number of useful routines that should not be re-written.

2. For example, some of these routines (especially the string and memory search and copy ones)
may be hand-crafted in assembler to exploit the underlying machine architecture to the maximum.
Thislevel of detail is something that most of us wish to avoid.

Of course, one has to know what they are. We now examine the most important ones.

9.1. Strings

Use:
#include <string. h>
to use any of these functions.

strlen(char * cp)
returns the number of charactersin its string argument;

strcnp(char * source, char * target)

compares (character by character) its two string arguments and returns -1, O, or 1 if the first
is aphabeticaly before, identical or after the second;

strcat(char * to, char * this)
concatenates its second string argument to itsfirst;

strcpy(char * copy_to, char * copy_from
copies its second string argument to itsfirst;

1. Many of these have n-variants that limit the number of characters to be compared, copied, etc.
For example,
strncpy(char * to, char * from int n)

copies at most n characters from “from” to “to”.

2. Theseversions are often preferable; for example, to prevent buffer overflows.

9.2. ctype.h

Thisinclude file contains several very efficient macros for determining character type. Use of these
macros requires the statment:

#i ncl ude <ctype. h>
int isdigit(int ch)
Evaluatestrue if the character isadigit;

Page 91



i nt

i nt

i nt

i nt

i nt

i nt

9.2.1. Implementation of ctype.h

I sspace(int ch)

Evaluatestrue if the character is awhite space character (e.g. tab, space, newline, etc.);
I sal pha(int ch)

Evaluatestrueif the character is aletter of the alphabet;
i sal nun{int ch)

Evaluatestrue if the character is aletter of the alphabet or adigit;
i spunct (int ch)

Evaluates true if the character is a punctuation character;
I sl ower(int ch)

Evaluatestrueif the character is alower case alphabetic;
i supper (int ch)

Evaluates true if the character is a upper case alphabetic;

Other macros convert the character argument into another character:

i nt

i nt

t oupper (i nt ch)
Converts the character to upper case (does nothing if it is already upper case);

t ol ower (i nt ch)
Converts the character to lower case (does nothing if it is already lower case);

9.2.1. Implementation of ct ype. h

1.

2.

Thect ype. h header fileisagood example of how the power of the preprocessor can be exploited
to yield very efficient code.

Hereisatypical (abridged) example:

#def i ne Y, 01

#def i ne L 02

#define N 04

#define _S 010

#def i ne _P 020

#define e 040

#def i ne B 0100

#def i ne X 0200

extern char _ctype[];

#def i ne I sal pha(c) ((_ctypetl)[c]& _U _L))
#def i ne | supper (c) ((_ctypetl)[c]& U
#def i ne I sl ower (c) ((_ctypetl)[c]& L)
#def i ne Isdigit(c) ((_ctypetl)[c]& N
#def i ne I sxdigit(c) ((_ctypetl)[c] & X)
#def i ne | sspace(c) ((_ctypetl)[c] & S)
#def i ne I spunct (c) ((_ctypetl)[c]& _P))

Page 92



9.3. stdio.h

#define I sal nunt c) ((_ctypetl)[c]& _U LI _N)
#define I sprint(c) ((_ctypetl)[c]& _P|_U LI _N _B))
#define I sgraph(c) ((_ctypetl)[c]& _P|_U L|_N)
#define iscntrl(c) ((_ctypetl)[c] & O

#define I sascii(c) ((unsi gned) (c¢) <=0177)

#define _toupper(c) ((c)-"a"+ A")

#define t oupper (c) (islower(c) ? _toupper(c) : (c))

3. Note how the macro like isdigit works. Given:

#define S 010
#define I sspace(c) ((_ctypetl)[c] & S

4. Thearray _ctype is 257 characterslong and each entry contains a bit pattern indicating if the
corresponding ascii codeisalower caseletter, adigit, etc. (each of the 8 bit positions corresponds
to one of the primitive types).

5. Thebitwise“and” (&) isolates an appropriate bit of the ct ype array element and the expression
evaluates to either 0 or 010 (i.e. 8 decimal) which are interpreted respectively as false and true.
(Note that the macro exploits the fact that C considers any non-zero value to be true. It is only
the results of logical operations (& &, >=, etc.) that guarantee that “true’ will be 1 (one).)

9.3.stdio.h

1. Include
#i ncl ude <stdi o>

before invoking the very commonly used functions/macros of this package.
2.  We have already used some of these such as:

e printf()

e getchar()

e putchar()

aswell as constants such as EOF (“End Of File”).

3. Another commonly used functionisscanf () which performsformatted input where the format
isspecified in astring (likeprintf (). Theargumentsto scanf () must be passed by reference
(i.e. pointers to the actual arguments).

Page 93



9.3.1. Filel/O
Warning

Note that scanf () can cause security violations (through buffer overflows). It should be
avoided in any sensitive programs (such as SUID code)

9.3.1. Filel/O
We also need st di 0. h to perform file 1/O (on other than stdin and stdout).
9.3.1.1. Opening afile

1. Beforebeing used, files must be opened with the f open() function:
#incl ude <stdio. h>

FILE *filep;

if ((filep = fopen("nyfile", "r")) == NULL) {
[* handle error */
}

2. Thefilecaled “myfile” is opened for reading with the f open() call.

3. fopen() returnsapointer to a FILE structure (defined in st di 0. h, its details do not concern us
here). If it cannot open the file, NULL (also defined in st di 0. h) isreturned.

4. Thereturned file pointer must be used to access thefile later on.

5. Ingenerd, thefirst argument to f open() isthe name of the file and the second argument is the
mode. Legal modes are:

o r forreading afile;

» wforwriting to afile from the beginning (and creating it if it does not exist). If it does already
exist, the previous contents will be overwritten.

» afor appending (writing) to afilefrom the end of an existing file. If the file does not already
exigt, it is created.

» r+for reading and writing to an existing file;
» w+ for reading and writing to afile (if the file does not aready exist, it is created)

» at for reading and appending (writing) to a file from the end of an existing file. If the file
does not already exigt, it is created.

Page 94



9.4. assert.h

9.3.1.2. Writingto afile

1. Theeasest way towritetoafileistousefprintf().

2. Itworksjust likeprintf(), except it hasan additional initial argument for the file pointer.

3. For example, to write to file with the handlef i | elp (assumed to be aready opened), use:
fprintf(filelp, "Hello, world: 1 + 1 = %l\n", 1+1);

4. Notethat the operating system automatically opens 3 files for you: stdin, stdout and stderr. We
have, of course, used the first two extensively. The third should be used for all error messages.

By default, stderr is connected to the screen just like stdout. However, if stdout is re-directed or
piped, stderr isnot. Hence, even with aredirected command, the error messageswill still appear
on the screen.

5. Thefollowing arelegal:

fprintf(stdout, "Hello, world\n");
[* In fact, printf is really a macro that expands:
printf("Hello, world\n");
to the above fprintf statement */
fprintf(stderr, "Hello, world\n");

9.3.1.3. Reading afile

1. Thesimplest way to read afileis one character at atimeisget ¢(FI LE * strean).

2. Notethattheget char () function (previously used) isjust asimpleway toinvokeget c(stdin).
9.3.1.4. Closing afile

Once you have finished with afile, close it with:

close(file ptr);

9.4. assert.h

1. A sanity check in aprogram can use theassert macro. For example:

#i ncl ude <assert.h>
assert(i >j);

Page 95



9.5. Memory

2. Should the condition be false, an error message will be printed to stderr indicating the failed
condition, the line number and the file name. The program then aborts.

3. If NDEBUGis defined, the assert macro expands to a null expression.

4. Examining an implementation of the assert macro can be instructive. Here's atypical version:

[* Typical assert.h header */
#undef assert

#i f def NDEBUG
#define assert(test) ((void) 0)
#el se
void _Assert(char *);
#define _STR(x) _VAL(x)
#define _VAL(Xx) #x
#define assert(test) ((test) ? (void) 0\
_Assert(__FILE _":" _STR_(__LINE_ ) " " #test))
#endi f
9.5. Memory

Standard routines exist for alocating and releasing memory dynamically and or copying, comparing,
and searching memory. (Some of these functions are declared in string.h, othersin stdlib.h)

Wefirst consider the memory allocation and release routines. The primary memory allocate routines
are:
void * malloc(size t size):
allocates size bytes and returns a pointer to the areaor NULL if no memory is available.
void * calloc(size t n_elemsize t size):
allocates and clears n_elem items each of size bytes; returns a pointer to the area or NULL if
no memory available.
void * realloc(void * buf, size t size):
reallocates the area pointed to by buf so that it is size bytes long.

The memory block routines are:

void * nmenmove(void * to, void * from size t count):
copies count bytes from from to to and ensures that if the areas overlap, the original from
bytes in the overlapping region are copied before being overwritten; it returns a pointer to
from.

void * nencpy(void * to, void * from size t count):
like mermove() but can handle overlapping regionsin any way.

Page 96



9.7. Handling errors

int nmencnp(void * bufl, void * buf2, size t count):
compares at most count bytes and returns a negative number, zero, or a positive number de-
pending on whether buflis less than, equal to or greater than buf2.

9.6.stdarg. h

1. A portion of atypical st darg. h header fileis shown below:

typedef char *va list;

#define va_start(ap,v) ap = (va_list)& + sizeof(v)
#define va_arg(ap,t) ((t *)(ap += sizeof (t)))[-1]
#define va_end(ap) ap = NULL

2. Note that the va_arg(ap, t) macro does essentially what was done by hand in the first cat
program we examined previougly.

3. Theheader alsoillustrates the use of type casts:
« The((t *) caststheentire expression into a pointer of the proper type.

* Theap (“argument pointer”) variable isincremented by the size of thistype (hence pointing
to the next argument to be retrieved) and the -1 index retrieves the appropriate address of
what ap was pointing to before being incremented.

9.7. Handling errors

1. Many of the system calls (the routines documented in Section 2 of the UNIX manual and int16
callson DOS machines) return O if successful, -1 if an error is detected (and possibly some other
values). When an error occurs, the global variableer r no is set to anumber indicating the nature
of the malfunction.

2. Theinclude file errno. h defines symbolic constants for all the kernel error numbers. A short
excerpt from thisfile (for UNIX) is shown below:

#def i ne EPERM 1 /* Not super-user */

#def i ne ENCENT /* No such file or directory */
#def i ne ESRCH /* No such process */

#def i ne El NTR [* interrupted systemcall */
#def i ne EIO [* 1/Oerror */

o1 B~ WD

3. Since no one likes numerical error codes as messages, the function perror(char * ny_nsg)
can be used to output the user message ny_nsg to stderr followed by an English description of
the problem indicated by the global err no variable.

Page 97



4. A useful universal error handler using these features is shown below:

Page 98

#define err_msg(nsg) my_perror(nsg,

“at line: % in%: ", LINE_, FILE )
my_perror(char * al, char * a2, int |, char * f)
{
perror(al);
fprintf(stderr, a2, |, f);
fprintf(stderr, "\n");
}

9.7. Handling errors



Chapter 10. Data-driven Programming

1.

6.

Solutions to problems can be described with algorithms (programs) or data organization (struc-
tures).

Many problems are best solved with simple algorithms and more complex data structures than
the other way around.

Programs driven by data are much easier to adapt to different situations (only the data need be
changed).

Often the dataitself can be generated with machine aid giving yet an even more flexible solution
to the original problem.

Sometimes the algorithm required to manipulate the more complex data structure is itself so
simplethat it isamost “like data’” and the program itself can be generated automatically!

THINK about data-driven solutions before blindly writing a program.

10.1. Example—Finite State Machine

1.

Consider the state machine defined by the diagram below:

Page 99



10.1.1. The BAD Way

Figure 10.1. A simple state machine
1

2. Wenow examine different ways to implement a C program to simulate this state machine.
10.1.1. The BAD Way

1. Thefollowingisthemost atrocious C program | hopeyou will ever see. Hopefully, abad example
will encourage thoughtful solutions.
/*
This programillustrates the WRONG WAY of
witing programs. The programis an attenpt to
simul ate a state machine having three states;
the al gorithm chosen seens straight forward,
but solves the problemthrough brute force

Page 100



10.1.1. The BAD Way

i nstead of exam ning the fundanentals.

The program "goodstate3" shows the correct method.

*/

#i ncl ude <stdio. h>
#incl ude <ctype. h>
#define RED (0)
#define GREEN (1)
#define BLUE (2)

mai n()

{
I nt switch_code, ¢, new state, state;
state = RED,

printf("Initial state is RED\n");
printf("Enter switch_code value: ");

while ((c = getchar()) '= ECF ) {

swtch code =¢c - '0';
iIf (state == RED) {
iIf (switch _code == 0) {
new state = GREEN,
} else
new state = BLUE

} else if (state == GREEN) {

iIf (switch_code == 0)
new state = RED;
el se {

new state = BLUE
}

} else if (switch_code ==

new state = BLUE
el se
new state = RED;
printf("New state is ");
state = new state;
iIf (state == RED)
printf("RED\n");

else if (state == GREEN
printf("GREEN\N");
el se

printf("BLUE\n");

printf("\nEnter switch code value: ");

Page 101



10.1.2. A BETTER Way

while (lisdigit(c = getchar()))
unéetc(c, stdin);
}
}

10.1.2. A BETTER Way

1. Recognizing that the entire pictorial representation of astate machine may betrandated into data
structures, the far superior solution to the the state machine problem is shown below:

/*

This programillustrates the BETTER WAY of writing programns.
W again attenpt to sinulate a state machine
having three states.

The al gorithmused here is sinplicity itself (the heart of
the programis one line long and can be used for any state
machi ne of arbitrary conplexity!).

Al'l the information about the state nmachine is naintained
as data (in data structures) not in the programcode itself.
*|

#i ncl ude <stdio. h>

typedef struct State State, *StatePtr;
/* Note that a state has 3 associated properties:
* - the state's nane;
- an indicator of the next state if the input is 0
- an indicator of the next state if the input is 1

This initial description of the state's fields
can be inproved.

In particular, the last 2 properties (next state if input is O,
next state if input is 1) share a common property: each indicates
a "next state".

Furthermore, the one to follow is chosen using the input (either
0 or 1).

>* >* >* >* >* >* >* >* >* >* >* >* >* >*

This suggests putting both of these "next state indicators" into
an array. The programcan use the input to index into the

Page 102



10.1.2. A BETTER Way

* array (i.e. either next[0] or next[1]).

*

* Wth this approach, the program does not have to use

* |f/Else logic to select which arrowto follow, if the

* input is "input_value", the next state can be directly

* accessed as next[input_val ue].

*

* Finally, this approach is nuch nore general and flexible.

* Suppose, for exanple, that we had to sinulate a state machine
* that had 8 possible inputs.

* Al that need be done would be to dimension the "next" array
* to have 8 elements and define the data stuctures properly.

*

*|

struct State {
char * name;
StatePtr next[2];

}i

State red, green, blue;

I* Define the fields of each state */
State red = {"Red", {&green, &blue}};
State green = {"Geen", {&ed, &green}};
State blue = {"Blue", {&ed, &green}};

int main()
{ .
int sw
int ch;
StatePtr currentStatePtr = &red:;

printf("%\n", currentStatePtr->name);
while((ch = getchar()) !'= EOF) {
if((ch!="0") & (ch !'="1")) /* Ignore all chars except 0 & 1 */
conti nue;
sw=ch-"'0";

[* Heart of program */
currentStatePtr = currentStatePtr->next[sw;

/* Display new state */
printf("%\n", currentStatePtr->name);

Page 103



10.1.3. Doing It All Automatically

10.1.3. Doing It All Automatically

1. Theonly state machine dependenciesin the previous code is the declarations and definitions.

2. Let'swriteaC program that takes a description of a state machine with any number of states and
any number of inputs. The programis:

/

Page 104

*

genSt at eMachi ne takes the description of a state machine (from stdin)
and produces (on stdout) the C source code to sinulate
the state machine.

The format of the input describing the state machi ne nust be:

nunber of states

nunber of switches
nane of 1st state
nane of 2nd state

name of nth state
next state when in 1st state and switch input =0
next state when in 1st state and switch input =1

next state when in 1st state and switch input = (2**n_switches) -1
next state when in 2nd state and switch input =0

next state when in 2nd state and switch input = (2**n_switches) -1

next state when in nth state and switch input = (2**n_switches) -1

Nornal 'y the programwould be run with redirection of stdin & stdout.

For exanple, to generate a C programcalled test.c from
a state nachine descriptionin file "test.state", use:



10.1.3. Doing It All Automatically

genSt at eMachi ne < rgbMachi ne. state > rgbMachine. c
O course, "cc -0 rgbMachine rgbMachine.c" is then used to conpile the nmechanical
generated program "rgbMachine" is subsequently used to run the

simul ator.

Note that the format of the input description of the state nmachine
Is very strict.
The solution, naturally, is to wite yet another program that
allows a user to enter the description of a state machine
in a nuch nore convenient (i.e. "user-friendly") way and which
in turn nmechanically generates the nore formal description
required here.
*|

int n_swtches, n_states, n_arrows, i, j;
char next _state[16], state name[16][100];

#i ncl ude <stdio. h>

mai n()

{
scanf ("%l%l", &nh states, & _sw tches);
n_arrows = power(2, n_swtches);

printf("/* This programwas generated mechanically by genStateMachine */\n");
printf("#include <stdio.h>n");

(
(
printf("#include <ctype.h>\n");
printf("typedef struct State State, *StatePtr;\n");
printf("struct State {\n");
printf(" char * name;\n");
printf(" StatePtr next[%l];\n};\n", n_arrows);
(

printf("State ");

for(i =0; i <n_states; i++) {
scanf("%", state nane[i]);
printf("%", state nane[i]);

printf("%", i <n_states-1? ", " : ":\n");
}
for(i =0; i <n_states; i++) {
printf("State % = {\"%\", {", state nane[i], state name[i]);
for(j =0; J < n_arrows; |++) {
scanf("9%", next _state);
printf("&¥%%", next state, j < n.arrows-1?", " : "}};\n");
}

Page 105



10.1.3. Doing It All Automatically
}

printf("int main()\n{\n int sw\n int ch;\n StatePtr currentStatePtr = &");
printf("%;\n", state nane[0]);

(
(
printf(" printf(\"%@\\n\", currentStatePtr->nane);\n");
printf(" while((ch = getchar()) !'= EOF) {\n");
printf(" if ('isdigit(ch)) continue;\n");
printf(" sw=ch- "'0;\n");
printf(" currentStatePtr = currentStatePtr->next[sw;\n");
printf(" printf(\"%s\\n\", currentStatePtr->name);\n");
printf(" }\n exit(0);\n}\n");
}
power (n, i)
int n, i;
{ .
int tenp;
temp = 1,
while (i > 0) {
=1 -1
temp = tenp*n;
}
return tenp;
}

10.1.3.1. Example

1. To usethe genStateM achine to generate (for example) the source code for the 3-state “ Red-
Green-Blue” machine, wefirst prepare afile(calledr gbMachi ne. st at e) that describesthe state
machine in the specified format as follows:

3

1

red
green
bl ue
green
bl ue
red
green
red
green

Page 106



10.1.3. Doing It All Automatically

2. Next, generate the C source code (in the file rgbMachi ne. ¢) from the description with the
command:

genSt at eMachi ne < rgbMachi ne. state > rgbMachine. c

3.  Examinethe generated filer gbMachi ne. c. It should be:

[* This programwas generated mechanically by genStateMachine */
#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
typedef struct State State, *StatePtr;
struct State {
char * nane;
StatePtr next[2];
b
State red, green, blue;
State red = {"red", {&green, &blue}};
State green = {"green", {&ed, &green}};
State blue = {"blue", {&red, &green}};
int main()
{ .
I nt sw
int ch;
StatePtr currentStatePtr = &red;
printf("%\n", currentStatePtr->nane);
while((ch = getchar()) != EOF) {
if (lisdigit(ch)) continue;
sw=ch-'0;
currentStatePtr = current StatePtr->next[sw;
printf("%\n", currentStatePtr->nane);

}
exit(0);
}
4,
10.1.3.2. Notes

1. Itwould probably be better to use a“scripting language” (such as Perl, python, etc.) for at |east
part of the program generator.

2. Inaddition, the unvarying part of the program should bein filesinstead of embedded inprint f ()
statements.

Page 107



10.2. Example—FSM and function pointers

3. Onecould consider using aformal language as afront end to the program generator. The formal
language would describe the state machine; the language could be interpreted by a parser of the
type we saw previously.

4. For example, we might want to describe the machine with statements like:

STATE NAMES = RED, GREEN, BLUE, YELLOW
SW TCH NAME = BUSY, READY

RED to GREEN i f 1x

RED to RED i f Ox

10.2. Example—FSM and function pointers

1. The state machine can be made more general by having a pointer to afunction defined for each
possible transition. Consider, for example, the following declarations of a more complex state
machine:

[* States for sets */
enum SET_STATE {
SET_OFF,
SET_READY,
SET_BUSY_1,
SET_HOLD 1,
SET_BUSY 2,
SET_HOLD 2,
N _SET_STATES
b
[* A structure as follows defines
the behavior for a single state */
typedef struct {
/* Next state to go to */
int next state;
/* Function to inplenent transition */
int (*transition_func)();
/* Secondary function passed to first */
int (*second_func)();
} TRANSI TI ON_STRUCTURE;

#i f ndef GLOBAL_DECLARE
EXTERN TRANSI TI ON_STRUCTURE
set _state _machine [N _SET_STATES] [N _EVENTS];
#el se
EXTERN TRANSI TI ON_STRUCTURE

Page 108



10.3. Menu Driven Code

set _state machine [N _SET_STATES] [N _EVENTS] = {
[* Transitions if in SET_OFF */
{
[* EVENT_LOGON */ { SET_READY, set_logon, NULL },
[ * EVENT _LOGOFF */ { SET _OFF, ignore_event, NULL },
[ * EVENT_FORCECFF */ { SET _OFF, ignore_event, NULL },
[ * EVENT_RI NG _START */ { SET _OFF, ignore_event, NULL },
. etc.
/* Do set state machine */
old _set state = set _state[event.set nunj;
new set state =
set state machine[old set state][event code].next _state;
secondary_func =
set state machine[old set state][event code].second_func;
if ( (*set_state machine[ol d _set state][event code].transition_func)
(event, event code, new set state, secondary_ func)
== ) {

set _state[event.set nuni = new set state;

}

10.3. Menu Driven Code

1. Menudriven applications are often preferred by occasional users.
2. Data-driven techniques the best way to implement user menu interface.
3.  Typicaly, amenu application displays alist of selections on the screen.

4. Theuser selectsanitem by typing in the menu number (... or moving the mouse, ... or highlighting
items with cursor keys, etc.);

5. Themenu-handler program then invokes a specific routine to handle the user's request or signals
that the request isinvalid.

6. Set up the following array of structures with each structure corresponding to a menu selection
PLUS one additional structure for invalid selections (this will be the last one).

Each structure contains the following:
* A pointer to the function to handle the menu item
* A string indicating the name (on the screen) of the menu selection.

* The column and row where the menu item should be displayed.

Page 109



10.3. Menu Driven Code

A pattern (say asingle letter) that the user must enter to select thisitem

7. A step-by-step algorithm to handle menu selectionis:

1.

2.

Page 110

Read the user's response.

Store the user'sresponse in the pattern part of the structure corresponding to erroneousinput
(this structure must be the last one in the array).

March through the array of menu item structures one by one until the user entered pattern
matches the pattern required to select this entry;

Note that a match is guar anteed—no need to keep track of how many itemsthere are
Invoke the function that will act upon the user's wishes.

When the function returns, redraw the menu screen (in case the function has modified the
screen) and start over again.

Notethat if the user requested to quit the menu entirely, the function of the “ quit selection”
would call exi t () and hence never return—so even thisevent does not have to be considered
specially by the menu handler.



Bibliography

[KandR78] Brian Kernighan and Dennis Ritchie. The C Programming Language. First Edition.

Page 111



	Notes on C
	Table of Contents
	Preface
	1. Latest (last?) version

	Chapter 1. Tutorial Introduction to C
	1.1. Software and Computer Languages
	1.2. Evolution of C
	1.3. Warning: C may be “dangerous”
	1.4. Overview of Basic C
	1.5. Examples
	1.6. Some details
	1.6.1. Using printf() formatting
	1.6.2. Character Escape Sequences

	1.7. Using functions
	1.7.1. Centimetres to Inches (version 2)

	1.8. Simple data conversion (Filters)
	1.8.1. Copying input to output
	1.8.2. Translating lower case to upper case

	1.9. Casts
	1.10. I/O redirection and piping
	1.10.1. Piping


	Chapter 2. Basic C Syntax
	2.1. Fundamental Data Types
	2.2. Declarations
	2.2.1. Enumerated (enum) types

	2.3. Constants
	2.3.1. Examples

	2.4. Operators and Expressions
	2.4.1. Arithmetic operators
	2.4.1.1. Differences between pre- and post- operators

	2.4.2. Logical Operators
	2.4.3. The assignment operator
	2.4.4. The sizeof operator
	2.4.4.1. Example


	2.5. Simple & block statements
	2.6. Flow Control
	2.6.1. if statement
	2.6.2. if...else statement
	2.6.3. While loop
	2.6.4. Expressions in conditionals
	2.6.5. Do ... while loop
	2.6.6. For loop
	2.6.6.1. Examples
	2.6.6.2. Break and Continue statements
	2.6.6.2.1. Examples

	2.6.6.3. Switch statement
	2.6.6.3.1. Example



	2.7. Bit Operators
	2.7.1. Examples

	2.8. Expanded Assignment Statements
	2.9. Conditional (?) operator
	2.10. The Comma (,) operator

	Chapter 3. Project management and make
	3.1. Using separate source code files
	3.2. Scope of variable names
	3.2.1. Notes

	3.3. Make
	3.3.1. A Simple Example
	3.3.2. Compilation example
	3.3.3. Additional remarks
	3.3.4. Using generic rules
	3.3.5. Parting remarks


	Chapter 4. Basic Arrays and Pointers
	4.1. Arrays
	4.2. Pointers
	4.2.1. The & Operator
	4.2.2. Pointer Arithmetic
	4.2.2.1. Strings are character pointers
	4.2.2.1.1. Example



	4.3. Arrays and Pointers
	4.4. Functions
	4.4.1. Examples
	4.4.2. Differences between ANSI and K&R C

	4.5. Examples of pointers
	4.5.1. Comamnd line arguments
	4.5.2. Variable Number of Arguments
	4.5.2.1. stdarg() right way to handle variable number of arguments



	Chapter 5. Pointers to functions
	5.1. Complex declarations

	Chapter 6. Parsing
	6.1. Compilers: An Overview
	6.1.1. Lexical analysis
	6.1.2. Parsing
	6.1.2.1. Parsing C declarations



	Chapter 7. Data Structures
	7.1. Structures and Unions
	7.2. Structure Examples
	7.3. Using typedef
	7.4. Pointers to structures
	7.5. Single Linked List Example
	7.6. Initializing Linked lists in declarations
	7.7. Unions
	7.8. Example: Doubly Linked List
	7.8.1. Header file doubleLinkedList.h
	7.8.2. Main routine
	7.8.3. Print list
	7.8.4. Notes


	Chapter 8. The Preprocessor
	8.1. Using the Preprocessor
	8.1.1. #include
	8.1.2. #define
	8.1.3. #ifdef and #ifndef
	8.1.4. #undef
	8.1.5. ANSI C preprocessor


	Chapter 9. The Standard library
	9.1. Strings
	9.2. ctype.h
	9.2.1. Implementation of ctype.h

	9.3. stdio.h
	9.3.1. File I/O
	9.3.1.1. Opening a file
	9.3.1.2. Writing to a file
	9.3.1.3. Reading a file
	9.3.1.4. Closing a file


	9.4. assert.h
	9.5. Memory
	9.6. stdarg.h
	9.7. Handling errors

	Chapter 10. Data-driven Programming
	10.1. Example—Finite State Machine
	10.1.1. The BAD Way
	10.1.2. A BETTER Way
	10.1.3. Doing It All Automatically
	10.1.3.1. Example
	10.1.3.2. Notes


	10.2. Example—FSM and function pointers
	10.3. Menu Driven Code

	Bibliography

