ele428 Lab 1

C Review

by Ken Clowes

Table of contents

1 Prelab Preparation............coi ettt e e e sreen e ne e ene s
2 g 140 0 (U1 (1) o FHUURRU TR

4.3 Edit, Compile, Link and Run the program..............ccceeeeiieieceese e
5 Requirement 1: implement MYSOrt..........ccoovieeiieieeeese e
VAT 1 1T 0o RSP R R STPOTPRRORN

7 Requirement 2: Use argc and argv in main funCtion...........cccccveveecieeiin e
8 Requirements and Lab SUDMISSION.........ccccciiiiieiieiece et
8.1 QUESLIONS......eeeiteeireeitee et e eteeete e st e et e e e tee s b e e sbeesabeeebeeaaseesseesaseesbesssseeaseesabeesseesaseeaseesnreens
S B o]0 11 1 =T = o

ele428 Lab 1

Before coming to the lab you should:
« Print out a hardcopy of the lab and read it.
Create the lab directory and copy the files for the lab to it. (See the ELE428 Lab Guide.)

Thislab reviews more basic C programming. Y ou will:

« Learn how to use a program devel opment methodology that emphasizes incremental
improvement and frequent testing.

» Usetesting and debugging techniques.
Use command line arguments.

Suppose that the requirements for alab were:

1. Amai n() functioninafilenamed sort Mai n. ¢ uses ahardcoded array of integers,
invokes afunction called my Sor t () and prints the sorted values to stdout.

2. Themai n() function must invoke the sorting method as:

mySort (int data[], unsigned int n);

w

The sourcefilesor t Mai n. ¢ must include the fileny Sor t . h which contains:

/* DO NOT EDI T */
void nySort(int array[], unsigned int num el enents);

Furthermore, you must provideamy Sort () function that conformsto this signaturein
afilenamed nySort . c.

Clearly, we need threefiles: mySort . ¢, mySort . h and sort Mai n. c. Luckily,
my Sor t . h has been furnished; aswell, templatesfor sort Mai n. c andnnySort . c are
given.

There are two general approaches we could now take:

ele428 Lab 1

1. Write an implementation of mySor t . ¢ and modify sort Mai n. c totest it.
2. Modify sort Mai n. ¢ sothat it can test any implementation of the ny Sor t .

We opt for the second approach.

The main routine must:
« Declare and initialize the data to be sorted—i.e. an array of integers.

» InvokethenySort function with the proper parameters. the data array name and the
number of items to be sorted.

« Once the sorting function returns, it should print the sorted array to stdout.

While these are necessary requirements, the mai n() could do more; in particular,

« After sorting the array, it could check that the datareally is sorted. If it is not correctly
sorted, it should inform the user of what problem was encountered and exit with a
non-zero exit code.

An implementation of thesor t Mai n. ¢ module is shown below:

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude "nysort.h"

int main(int argc, char * argv[])
i nt data[100000]; /* Array of ints to sort */
i nt nDat al t ens; /* nunber of actual items in the array */
int i;

/* Test data */
nDat al tens = 4;

data[0] = 10;
data[1] = 20;
data[2] = 30;
dat a[3] = 40;

nySort (data, nDataltens);

/* Check that the data array is sorted. */
for(i = 0; i < nDataltens-1; i++) {
if (data[i] > data[i+1]) {
fprintf(stderr, "Sort error: data[%] (= %)"
" should be <= data[]%] (= %)- -aborting\n",

Page 3

ele428 Lab 1

i, data[i], i+1, data[i+1]);
exit(1);

}

/* Print sorted array to stdout */
for(i = 0; i < nDataltens; i++) {
printf("%l\n", data[i]);

exit(0);
}

When you copied the needed files for this lab, you obtained a stub version of the source code
filesort Mai n. c. Edit thisfile so that the source code is as shown above.

Compile the source code file with the commands:

gcc -c sortMain.c
gcc -c nySort.c

Now, link the object files and create the executablet est Sor t with:
gcc -0 testSort mySort.o sortMain.o
Y ou can now run the command t est Sor t . It should produce the following output:

10
20
30
40

Y ou may well have some questions about what has been done so far.
Question:

Why write the test and output parts before doing the real work—writing the function to
sort an array of numbers?

Answer:

It is best to try and develop software one piece at at time focusing your attention on a
single problem. Here, although no work has been done on the sorting function, we do
have aworking main function. We know that it:

1. Invokes the sorting function.

Page 4

ele428 Lab 1

2. Determinesif the datareally is sorted (and hence detects bugs in the sorting function.)
3. If no errors are detected, the sorted numbers are written to stdout.
Question:

It seemsweird! The testSort command reports NO errors and the sort function hasn't been
written!

Answer:

The reason no errors were detected is that the test data was set up so that it was alr eady
sorted. In fact, we are quite relieved that no error was reported!

Question:

Ahal I've got you. The test doesn't test anything since the data is fudged. So what's the
point?

Answer:

As stated previoudly, at least we know the error detection code does not find sorting
errors when there are none. However, as the question implies, the testing code has not yet
been completely tested. This should be done.

Question:

How can that be done without writing the sort function?

Answer:

Simple. Just edit the main function and change one of the dataitems so that they are no
longer initialized in sorted order.

Try it! Errors should now be reported and nothing should be written to stdout.
Question:

Why are the error messages written to stderr instead of stdout?

Answer:

There are at least two reasons:

1. Therequirementsfor the program are that the sorted numbers should be written to
stdout. Nothing else should be written there.

2. If the program is used and stdout is redirected, we still want the user to see the error
messages. Redirection only affects the stdout stream; the stderr stream is not
redirected and continues to be displayed on the screen.

Question:
OK, what's next?
Answer:

Page 5

ele428 Lab 1

WEell, now that we have aworking and tested main function, it's time to implement the
sorting function. The next section describes the requirements.

The first requirement for the lab is to implement a sorting algorithm that respects the
following specifications:

1. The source code for the implementation must bein afilenamed nmySort. c.

2. A function called mySor t (coded inthenySort . c file) that conforms to the signature
innmySor t . h will perform the sorting.

The specifications are precise. However, you are free to achieve them in any way you wish.
For example, although you must have afunction called nySor t inafilecallednySort . c,
nothing in the specsimply:

e The particular sorting algorithm to use.

« Theuse of other object modules in solving the problem.

e Theinclusion of other functions (apart fromnySort (...) inthesourcefile
mySort . c¢) isOK. (Frankly, | cannot see any simple reasons for do this...but it is
permitted...)

Y our mark for this portion of the lab depends on whether or not it works. This means (for
example) that it is up to you to choose an algorithm for sorting that isrelatively easy to
implement.

Y ou are even allowed to pattern your source code on an existing function that you find in
atext book or on the web. However, you will learn more by trying to write the function
by yourself from scratch. (Suggestion: use the selection sort algorithm as described in
Chapter 1 of the on-line book.)

In thistutorial you will learn how to obtain and use and command line arguments that were
entered by the user when a command is invoked.

ele428 Lab 1

We now examine how the parametersar gc and ar gv that are passed to the main function
can be used. Consider the following standalone program (that is furnished to you in the file
cndl i neAr gsDeno. ¢):

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
int main(int argc, char * argv[])

int i;
fprintf(stderr, "I was invoked with the conmand: %\n", argv[O0]);
if (argc > 1)
fprintf(stderr, "The command |ine argunents are:\n");
for(i = 1; i < argc; i++)
fprintf(stderr, " argv[%l] (as string): %\n"
" (as int): %\ n"
" (as int in hex): %\ n\n",
i, argv[i], atoi(argv[i]), atoi(argv[i]));
} else {
fprintf(stderr, "There were no command |ine argunments.\n");
}
exit(0);

}
Create an executable from this source code file with the command:

gcc -o cndl i neDeno cndl i neAr gsDenp. ¢

Invoke the command with:
cndl i neDeno
The output should be:

| was invoked with the command: cndl i neDenp
There were no conmand |ine argunents.

Now try the command:
cmdl i neDenmo hello 125 22 -6
The output should be:

I was invoked with the conmand: cndli neDeno
The conmand |ine argunments are:
argv[1l] (as string): hello
(as int): O
(as int in hex): O

argv[2] (as string): 125
(as int): 125
(as int in hex): 7D

Page 7

ele428 Lab 1

argv[3] (as string): 22
(as int): 22

(as int in hex): 16
argv[4] (as string): -6

(as int): -6
(as int in hex): FFFFFFFA

Copy your sor t Mai n. c tosort Mai n2. c. Modify the new file so that the command
works as follows:

« If no command line arguments are given, sort the hardcoded test data as before.

« |If there are command line arguments, convert them to integers and use them values to
initialize the data array to be sorted.

Complete both requirements described previously and answer the following questions.

Answer the following questionsin afile named READMVE.

1. Suppose you were given an object module (with no access to source code) that sorted an
array of integers very efficiently. However, the sort function in the object module must be
invoked with the following signature:
betterSort(int data[], first, last);

where the array to sort is data and the parametersf i r st and | ast give theindices of
the portion of the array that is to be sorted.

How could you writeamny Sor t () function with the signature used in this lab that could
exploit the better sorting function in the supplied object module?

Submit your lab at least 48 hours before your next lab period. Use the command:
make submit

This command must be invoked from your el e428/ | ab2 directory.

	1 Prelab preparation
	2 Introduction
	3 Problem statement (Version 1)
	4 Tutorial I (Initial stab at lab)
	4.1 What should main()do?
	4.2 The initial sortMain.c module
	4.3 Edit, Compile, Link and Run the program
	4.3.1 Questions and answers

	5 Requirement 1: implement mySort
	5.1 Warning
	5.2 Tip

	6 Tutorial II: Command line arguments
	7 Requirement 2: Use argc and argv in main function
	8 Requirements and Lab Submission
	8.1 Questions
	8.2 Submit the lab

