
COE 628 (Operating Systems) Lab 7 (2016) Page 1 of 4

Operating Systems (coe628) Lab 7
March 12, 2017
Duration 1 week

Description

This is a tutorial lab to introduce you to the basics of multi-threading in a programming language that
supports the monitor concept of concurrency control. (Yes, the lab is very simple. Its purpose is to
remind you of how Java works and introduce concurrency control in a multi-threaded Java application.)

In particular, we examine how to use Java concurrency control.

A bare-bones Tutorial on Java Threads
• Like everything else in Java, a Thread is some kind of Object.
• Java provides a Thread class which is usually sub-classed for a specific kind of Thread.
• For example,

package coe628.lab7;

public class CounterThread extends Thread {

 Counter counter;
 int n = 0;

 public CounterThread(Counter counter, int n) {
 this.counter = counter;
 this.n = n;
 }

 @Override
 public void run() {
 for (int i = 0; i < n; i++) {
 counter.add(i);
 }
 }
}

• It looks like an ordinary class. It has two instance variables: counter and n. The counter

Version 1.0 (March 11, 2017)

COE 628 (Operating Systems) Lab 7 (2016) Page 2 of 4

instance variable is some kind of object of type Counter and n is a simple integer.
• Since it extends the class Thread it is reasonable to assume that it inherits useful stuff. Indeed,

it does, including a method called start whose use we shall see shortly.
• The CounterThread class also implements a method called run which is public, returns

nothing and has no parameters.
• The run method is absolutely essential, however; it specifies what the Thread should do when

it runs.
• In this case, run invokes the add method of its Counter object n times.
• As we are about to see, doing this adds the integers 1 + 2 + ... n-1 ().
• Here is the (initial) code for the Counter class:

package coe628.lab7;
public class Counter {
 int count = 0;

 public void add(int value) {
 this.count += value;
 try {
 Thread.sleep(10);
 } catch (InterruptedException ex) {
 System.err.println("Should not get here!" + ex);
 }
 }
}

• Basically, the add method adds “value” to the object's “count” instance variable.

• The remaining code (try...catch..) is boiler-plate code to deal with something called an
“InterruptedException”.

• For the purposes of this tutorial, you do not have to understand this. It is just necessary for a
variety of reasons.

• The main method that gets things going is shown below:

package coe518.lab7;

public class Main {
 public static void main(String[] args)
 throws InterruptedException {
 Counter counter = new Counter();
 Thread threadA = new CounterThread(counter, 10);
 Thread threadB = new CounterThread(counter, 11);
 System.out.println("Starting A");
 threadA.start();

Version 1.0 (March 11, 2017)

COE 628 (Operating Systems) Lab 7 (2016) Page 3 of 4

 System.out.println("Starting B");
 threadB.start();
 threadB.join();
 threadA.join();
 System.out.println("count: " + counter.count);
 }
}

• Two threads are created; each is passed the same counter object and different
values of n (10 and 11).

• ThreadA will increment the counter object 45 times while ThreadB will increment it
55 times.

• In all the counter will be incremented 100 times.

• However, there is a race condition as both threads are changing the same “count”
instance variable in the Counter object.

• When you run the project, you may get 100 as the final answer but you are more
likely to get a lower total.

• To fix it, all that needs to be done is make the “add” method in Counter
synchronized. This is done as follows:

public synchronized void add(int value) {
• When a method is synchronized, only one Thread at a time is allowed to execute it.

This solves the race condition.

What you have to do (tutorial)
• Download the Netbeans project (a zip file) here

• Unzip the file. This creates the lab7 project.

• Run the code.

• Insert the keyword synchronized into the add method and observe that the result is
now correct.

• You should now get the correct result.

• Try commenting out one or both of the “join” statements. Expalin what happens.

And Finally: Submit your lab
To submit your lab do:

1. Zip your source code files (*.java) into a file called Lab6.zip

Version 1.0 (March 11, 2017)

http://www.ee.ryerson.ca/~kclowes/628/lab7.zip

COE 628 (Operating Systems) Lab 7 (2016) Page 4 of 4

2. Submit the zip file with the command: submit coe518 lab7 Lab7zip

That's all folks....

Copyright © 2013 Ebrahim Bagheri. Copyright © 2014, 2016Ken Clowes. This work is licensed under the
Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

Version 1.0 (March 11, 2017)

http://creativecommons.org/licenses/by/3.0/

	Description
	A bare-bones Tutorial on Java Threads
	What you have to do (tutorial)
	And Finally: Submit your lab

