
COE 518 (Operating Systems) Lab 3 (2017) Page 1 of 3

Operating Systems (coe628) Lab 3

Week of January 30, 2017

Duration 1 week

Objectives

• Learn how to use fork(), execXX() and wait()

• Write a simple shell.

Getting started
1. Create a C Project called lab3.

2. Your first shell will print the prompt “Your command> ” and then read one line of
input that consists of a single word that names a command.

3. The shell then forks and the child process should execute the command.

4. The parent process should wait for the child to complete unless the line ended with an
ampersand character (&).

5. Assume that if the line ends with an '&' that it is not preceded by a space. (For
example, “ls” and “ls&” are OK but not “ls &”. (This assumption will make your
life easier, not harder!)

Continuing on

Next, modify the “command line parser” so that the line can consist of 1 or more words optionally
followed by the ampersand character.

Making the shell a loop

Finally, put the whole thing in a loop so that commands can be executed one after the other.

 Version 1.1.1 (January 22, 2017)

COE 518 (Operating Systems) Lab 3 (2017) Page 2 of 3

And Finally: Submit your lab
To submit your lab do:

1. Change to the lab3 directory.

2. submit628

That's all folks....

Hints and suggestions

• Use getchar() not scanf(...) to read stdin to “collect” the input line.
• For example, look at the basic structure we saw in Week 1 for “filter” applications (programs

that read from “stdin” and write to “stdout”).

 int ch;
 while((ch = getchar()) != EOF) {
 putchar(toupper(ch));
 }

• Use this pattern. But, look for a newline ('\n') instead of “end-of-file” (EOF).
• As each character is read, put it in the next position of an array of chars (or dynamically

allocated memory). (You may assume that the maximum lenght of a line is 100 characters.)
• Once the line has been read, check if the last character read was '&'. If so, set a flag and use the

flag to determine if the parent should wait for its child to die.
• Make sure that you end the line with a nul ('\0') character.
• When the command is a single word such as “ls”, “ps”, “pwd”, etc. You need only make your

“arg pointer” be the adddress of the first character in the word.
• To parse a multi-word command you can read in the whole line. Then replace each space with

a nul character and make the next “arg pointer” be the address of the character following the
space. (Alternatively you could do this while reading the line.)

• Parsing the input should be done before forking. (The child inherits all of the parent's variables
including the array of “arg pointers”.

• I suggest you use the “execvp” version of “exec”.
• You can run a working version of lab3 on the Department's linux machines with the command

~/courses/coe612/bin/lab3. Note that this command prints debugging information to
stderr. Looking at the debugging output may give you additional hints.

• To see how lab3 shoudl work without the debugging information, use
~/courses/coe612/bin/lab3 2> /dev/null

 Version 1.1.1 (January 22, 2017)

COE 518 (Operating Systems) Lab 3 (2017) Page 3 of 3

• Good luck!

Copyright © 2016 Ken Clowes. This work is licensed under the Creative Commons Attribution 3.0 Unported

License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

 Version 1.1.1 (January 22, 2017)

http://creativecommons.org/licenses/by/3.0/

	Getting started
	Continuing on
	Making the shell a loop
	And Finally: Submit your lab
	Hints and suggestions

