
COE 628 (Operating Systems) Lab 2 (2017) Page 1 of 5

Operating Systems (coe628) Lab 2

Week of January 23, 2017

Duration: 1 week

Objectives

• Learn how to use command line arguments in a C program.
• Learn how to give the same program different names and make it behave differently

according to the name it is invoked by.
• Run multiple processes simultaneously and coordinate them using an atomic command.

Notes

• The lab can be done on any computer (Windows, Linux, Mac OS X, etc.)
• You also need a Unix shell and a C compiler. Linux and Macs already come with these.

For Windows, you also need cygwin.

Getting started: download the templates
• Download the lab 2 Netbeans templates zip file and save the zip file in your coe628 directory.
• Unzip lab2.zip. This creates a lab2 directory and two sub-directories: lab2a and

lab2b. Each of these sub-directories contains the template files for a Netbeans project.

Part A: Using command line arguments and exit codes

Some theory for Part A

argc and argv

• C programs start at int main(int argc, char * argv[]).
• When, for example, command called “foo” is invoked as foo bar zoo, then the

command line consists of 3 words: “foo”, “bar” and “zoo”.
• Main is passed the parameter argc (argument count) with the number of words in the

command line (in this case 3).
• The parameter argv (arg values) is array of the command line words.
• In this example, argv[0] would be the string “foo” and argv[1]and argv[2] would

be “bar” and “zoo”.
• Note that argc cannot be less than 1; there is always a command name as the first word in

the command.
• The exact same file can have different names. In particular, the same executabel file can

have 2 or more names and its behaviour can depend on the name under which it was
invoked.

 Version 1.0 .2 (January 26, 2016)

http://www.ee.ryerson.ca/~kclowes/628/lab2.zip

COE 628 (Operating Systems) Lab 2 (2017) Page 2 of 5

Exit codes

• “main” is declared to return an int. The return value is called the exit code.
• If the program works, the exit code should be 0 (zero). If there is a problem, a non-zero exit

code should be used (a small integer). Different errors should have different non-zero exit
codes.

• An exit code of zero is interpreted by the shell (command line interpreter) as true. Any non-
zero value is false.

• Commands can be “joined” with the logical AND operator “&&”.
• For example, the command line foo && bar will execute the “foo” command. If it is “true”

(i.e. has a 0 exit code), it will then execute the “bar” command. (If “foo” is false, “goo” will not
be executed.)

• You can also determine the exit code of the last command executed with echo $?.
mkdir junk
echo $?
0
mkdir junk
mkdir: cannot create directory ‘junk’: File exists
echo $?
1
mkdir junk 2> /dev/null
echo $?
1
rmdir junk
echo $?
0
mkdir junk
echo $?
0

Giving the same file different names with ln

• If you have a file called “foo”, you can give it another name with the ln (link) command:
ln foo goo (this is called a “hard link”).

• Alternatively, you can use a symbolic link: ln -s foo go

Requirements for Part A

1. Start Netbeans and open the project at “coe628/lab2/lab1a”
2. It should compile and run.
3. (NOTE: if you are running Windows or MAC OS X (or another version of Linux)
4. Modify the body of the main function so that it has the following behaviour:

• It prints a string in the form “greeting person”.

 Version 1.0 .2 (January 26, 2016)

COE 628 (Operating Systems) Lab 2 (2017) Page 3 of 5

• The greeting is Hello (by default) or Bye if the program is invoked with a
command that ends in the string bye

• If there is exactly one argument to the command main should return 0 (zero) as
the exit code. Otherwise, it should return 1 if there are no arguments and 2 if
there is more than one argument.

Once compiled, the executable is placed in the project's Debug directory and is called lab2a.
Make links (or “aliases”) of that command using the following shell commands:
 ln lab2a hello
 ln lab2a goodbye

5. A typical interactive session is shown below where user input is this font and the output is
in italic.

hello
Hello UNKNOWN
bye Alice
Bye Alice
hello bob
Hello bob
bye Cathy Ng
Bye Cathy
hello dave smith && bye al
Hello dave
hello "dave smith" && bye al
Hello dave smith
Bye al

Part B: Multiprocessing and synchronization

Consider the following program.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define N_REPS 50
#define DEFAULT_SLOWDOWN 10000

int main(int argc, char * argv[]) {
 int i;

 Version 1.0 .2 (January 26, 2016)

COE 628 (Operating Systems) Lab 2 (2017) Page 4 of 5

 int slow_down = DEFAULT_SLOWDOWN;

 if (argc == 1) {
 fprintf(stderr, "Usage: %s string [delay]\n", argv[0]);
 return 1;
 }
 if (argc >= 3) {
 slow_down = atoi(argv[2]);
 }

 for (i = 0; i < N_REPS; i++) {
 char * cp = argv[1];

 while (*cp) {
 printf("%c", *cp++);
 fflush(stdout);
 usleep(random() % slow_down);
 }
 usleep(5000);
 }
 return EXIT_SUCCESS;
}

• Suppose the compiled executable is called lab2b. The invoking lab2b abcd will
result in the output: abcdabcdabce etc.

• (Note: even if you are not familiar with all the coding conventions, you should examine
the code sufficiently to convince yourself that it does do something like this.)

• If you now run two “lab2b” processes concurrently with, for example, the command:
lab2b abcd & foo WXYZ, you will see output something like:
aWXbYcZWdXaYZWXbYcZWdXaYZbWcXdYZabWcXdYaZbWcXdYaZbWcXdYaZbW
cdXaYbZcWXdYaZWbXcYZdWaXYbZcWXdYaZWbXcYZdWaXYbZcWXdYaZWbXYc
ZdWXaYbZWcXdYaZWbXcYZdWaXYZWXYZWXYZWXYZWXY

• One process prints lower case letters; the other uppercase letters. But they are all
intermixed. We would like the lower and upper case letters not to be jumbled together.

• For example, we would like the output to be something like:
WXYZabcdWXYZabcdWXYZabcdWXYZabcdWXYZabcdabcdWXYZabcd

• To achieve this, only one process at a time should be able to perform the
“while(*cp)” loop.

• Your goal in Part B is to modify the code to achieve this.
• To achieve this, you have to identify a “critical section” that only one process at a time

should be allowed to execute.
• Use while(system("mkdir junk") != 0); and system("rmdir

junk"); to achieve this.

 Version 1.0 .2 (January 26, 2016)

COE 628 (Operating Systems) Lab 2 (2017) Page 5 of 5

And Finally: Submit your lab
To submit your lab:

1. Submit the project as follows:

• If you did the lab on a Departmental computer, you can do the following:

• cd coe628
• zip -r lab2.zip lab2
• submit coe628 lab2 lab2.zip
•
• If you did the lab on your own computer, zip the lab1 folder (remember to do this

recursively so that all sub-folders are included), then transfer the zip file to a
Departmental machine, logon to a Departmental machine which can be done remotely)
and type in the submit command:

• submit coe628 lab2 lab2.zip

That's all folks....

Copyright © 2014, 2016 Ken Clowes. This work is licensed under the Creative Commons Attribution 3.0

Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

 Version 1.0 .2 (January 26, 2016)

http://creativecommons.org/licenses/by/3.0/

	Getting started: download the templates
	Part A: Using command line arguments and exit codes
	Some theory for Part A
	argc and argv
	Exit codes
	Giving the same file different names with ln

	Requirements for Part A
	Part B: Multiprocessing and synchronization
	And Finally: Submit your lab

