
628 Lecture Notes Week 5 (February 6, 2017) 1/10

628 Lecture Notes Week 5

Table of Contents
Recap..1
Tables maintained by the Operating System..2

1.The Process Table...2
2.Tables maintained for EACH process..2

The Thread Table..2
The File Table...3

More about Threads...3
1.Why threads can be tricky..3
2.Kernel Threads vs. User Threads...3

Inter-process Communication (IPC)..4
1.A basic problem: critical sections and atomic operations..4

Using the pthread library..5
Creating threads, running concurrently, no synchronization...5
1.Using “mkdir” for exclusive access to critical section...6
2.Using “pthread_mutex” for exclusive access to critical section..7
3.Using “pthread_mutex” with many Threads..8

Recap

• So far, we have concentrated on the “what” and “why” of Operating Systems.

• “What”: An OS manages the computing systems resources (CPU, memory, devices). It
exploits and uses both hardware and software.

• “Why”: Efficiency. When there are multiple processes, a process that needs to perform I/O
will be “Blocked” until the I/O had been done. In the meantime, other processes can run.

• “How”: Lots has YET to be covered. Nonetheless, there are some things we know:

◦ The OS maintains a fixed size table of the processes it manages. Each entry in the table
contains information such as: the Process ID (PID), its state (READY, RUN,
BLOCKED) and the machine register values to restart the process.

◦ For each process the OS maintains a fixed size table of file descriptors. (Entries 0, 1 and
2 are opened by the OS and correspond to stdin, stdout, and stderr.)

Last revised: February 2, 2017

628 Lecture Notes Week 5 (February 6, 2017) 2/10

Tables maintained by the Operating System

1. The Process Table

The process table contains information about each process including:

• Its Process Identification (PID): a unique positive integer.

• The PID of its parent process (PPID).

• Its current State (Running, Blocked or Ready).

◦ Note: There may be more specific types of the Blocked state such as “waiting for a
semaphore” and other states to be discussed later.

• The limits of its various address spaces including:

◦ Its text area (where the machine language instructions are located).

◦ Its global data area.

◦ Its heap area (for dynamically allocated memory).

◦ Its stack area (for local variables and subroutine linkage).

◦ Its global read-only data area.

• The register values when the process was last running.

• Various bookkeeping and statistics such as “time the process started”, “cumulative cpu time in
user mode and system mode”, etc.

2. Tables maintained for EACH process

Each process also maintains a table for resources of that process.

The Thread Table

• Each Thread has an id (TID).

• A State (like a process it can be “running”, “blocked” or “ready”.

• The register values when the thread was last running. (Sometimes only the Stack pointer is
needed.)

• The stack area for the process. (The other memory areas are shared with the process that
created it an all other threads of the process.)

Last revised: February 2, 2017

628 Lecture Notes Week 5 (February 6, 2017) 3/10

The File Table

The file table (of finite size per process) contains slots for all open and available file descriptors.

Each file descriptor for an open file contains:

• Hooks to read, write or close a file.

• The size of the file and the current position,

More about Threads

1. Why threads can be tricky

• While it is easy for threads to interact (since they share the same global variables and open
files), the interaction can be tricky.

• For example, if 2 ATMs are accessed concurrently, a separate Thread handles each, both
Threads have access to the global variable account_balance and a deposit of $100 is made
to each when the current balance is $1000, following is possible:

◦ Each Thread executes (at the machine language level):

loadRegister balance
addToRegister deposit
storeRegister balance

If each Thread executes this sequence of instructions without interruption, everything will work and the
balance will increased by $200 (i.e. 2 deposits of $100 each.)

◦ However, if one Thread is interrupted just after the “loadRegister” instruction, the other
Thread will correctly increase the balance by $100. Alas, when the interrupted Thread
regains control, it will still think the balance is $1000...

2. Kernel Threads vs. User Threads

• Some OSes support Threads natively but Threads can also be implemented in User space.

• OS calls are more “expensive” than function calls in user space because an interrupt (such as a
software interrupt or “trap” instruction) is required. This involves saving all registers on the
stack and (usually) switching stacks (from user stack to supervisor stack). Typically, OS calls
are an order of magnitude more costly than simple function invocations.

• User Threads can be managed in user space. The Thread table needs to hold the register values
for each process along with its state and priority. Switching from one Thread to another (the
context switch) can be done without kernel calls. Similarly, the scheduler can be done in user
space.

• Similarly, things like timers can be done in user space.

• However, since the kernel is completely unaware of the threads (it knows only about the

Last revised: February 2, 2017

628 Lecture Notes Week 5 (February 6, 2017) 4/10

process that contains the threads) if a single Thread performs an OS call (such as I/O) that puts
the process into the Blocked state, then all Threads are prevented from running.

• When the kernel knows about the Threads, a Thread that blocks does not prevent other threads
from running. The kernel can also use more sophisticated scheduling algorithms (such as
MacOS's Grand Central Dispatch).

• Support for Threads is also common in programming languages such as Java, Go, D and many
others.

• In the case of Java, code runs in the Java Virtual Machine (JVM) which controls all I/O and
typical OS calls. So all threads are effectively user level (and hence efficient). The Java
language also includes direct support for inter-process communication. (We shall examine
Java's mechanisms later.)

Inter-process Communication (IPC)

1. A basic problem: critical sections and atomic operations

• Threads (almost always) use shared resources such as global variables.

• At a minimum, some mechanism is required to ensure that only one thread can perform certain
operations at a given time.

• Such as section of code is called a critical section.

• Note: we have to think of the program executing machine language, not “lines of C code”.

◦ For example, the C code i = i + 1; may be translated into a single machine language
instruction (such as increment i) or several instructions (such as loadRegister i;
addRegister 1; storeRegister i)

◦ If the operation (incrementing the value of i by 1) is done in a single instruction, then it is an
atomic operation. It is impossible that the instruction begin execution and then control is
given to another Thread before the operation completes. (OK, to be more complete, once
we look at virtual memory we discover that it is possible for a single instruction to be
“interrupted” by a page fault; nonetheless, as we shall see, even then the operation of a
single instruction is effectively atomic.)

Last revised: February 2, 2017

628 Lecture Notes Week 5 (February 6, 2017) 5/10

Using the pthread library
See introduction to pthreads for details on using this package.

Creating threads, running concurrently, no synchronization

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>

#define N_REPEAT 200

void *print_string(void *ptr);

int main() {
 pthread_t thread1, thread2;
 char * string1 = "abcd";
 char * string2 = "WXYZ";
 int iret1, iret2;

 /* Create independent threads each of which will execute function */

 iret1 = pthread_create(&thread1, NULL, print_string, (void*) string1);
 iret2 = pthread_create(&thread2, NULL, print_string, (void*) string2);

 /* Wait till threads are complete before main continues. Unless we */
 /* wait we run the risk of executing an exit which will terminate */
 /* the process and all threads before the threads have completed. */

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 printf("Thread 1 returns: %d\n", iret1);
 printf("Thread 2 returns: %d\n", iret2);
 exit(0);
}

void * print_string(void *ptr) {
 char *cp;
 for (int i = 0; i < N_REPEAT; i++) {
 cp = (char *) ptr;
 while (*cp) {
 putchar(*cp);
 fflush(stdout);
 cp++;
 }
 usleep(1);
 }

 }

Last revised: February 2, 2017

http://www.cs.cmu.edu/afs/cs/academic/class/15492-f07/www/pthreads.html#BASICS

628 Lecture Notes Week 5 (February 6, 2017) 6/10

1. Using “mkdir” for exclusive access to critical section

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/stat.h>

#define N_REPEAT 2000

void *print_string(void *ptr);

int main() {
 pthread_t thread1, thread2;
 char * string1 = "abcd";
 char * string2 = "WXYZ";
 int iret1, iret2;

 /* Create independent threads each of which will execute function */

 iret1 = pthread_create(&thread1, NULL, print_string, (void*) string1);
 iret2 = pthread_create(&thread2, NULL, print_string, (void*) string2);

 /* Wait till threads are complete before main continues. Unless we */
 /* wait we run the risk of executing an exit which will terminate */
 /* the process and all threads before the threads have completed. */

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 printf("Thread 1 returns: %d\n", iret1);
 printf("Thread 2 returns: %d\n", iret2);
 exit(0);
}

void *print_string(void *ptr) {
 char *cp;
 for (int i = 0; i < N_REPEAT; i++) {
 cp = (char *) ptr;
 while (mkdir("junk", 0777) != 0) {
 usleep(100);
 }
 while (*cp) {
 putchar(*cp);
 fflush(stdout);
 cp++;
 }
 rmdir("junk");
 }
}

Last revised: February 2, 2017

628 Lecture Notes Week 5 (February 6, 2017) 7/10

2. Using “pthread_mutex” for exclusive access to critical section

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/stat.h>

#define N_REPEAT 2000

void *print_string(void *ptr);
pthread_mutex_t mutex_stdout = PTHREAD_MUTEX_INITIALIZER;

int main() {
 pthread_t thread1, thread2;
 char * string1 = "abcd";
 char * string2 = "WXYZ";
 int iret1, iret2;

 /* Create independent threads each of which will execute function */

 iret1 = pthread_create(&thread1, NULL, print_string, (void*) string1);
 iret2 = pthread_create(&thread2, NULL, print_string, (void*) string2);

 /* Wait till threads are complete before main continues. Unless we */
 /* wait we run the risk of executing an exit which will terminate */
 /* the process and all threads before the threads have completed. */

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 printf("Thread 1 returns: %d\n", iret1);
 printf("Thread 2 returns: %d\n", iret2);
 exit(0);
}

void * print_string(void *ptr) {
 char *cp;
 for (int i = 0; i < N_REPEAT; i++) {
 cp = (char *) ptr;

 pthread_mutex_lock(&mutex_stdout);

 while (*cp) {
 putchar(*cp);
 fflush(stdout);
 cp++;
 }
 pthread_mutex_unlock(&mutex_stdout);
 }
}

Last revised: February 2, 2017

628 Lecture Notes Week 5 (February 6, 2017) 8/10

3. Using “pthread_mutex” with many Threads

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/stat.h>

#define N_REPEAT 1000
#define N_THREADS 5

void *print_string(void *ptr);
pthread_mutex_t mutex_stdout = PTHREAD_MUTEX_INITIALIZER;

int main() {
 pthread_t thread[N_THREADS];
 char * strings[] = {"abcd", "WXYZ", "1234", "++++", "------"};
 int iret[N_THREADS];

 /* Create independent threads each of which will execute function */

 for (int i = 0; i < N_THREADS; i++) {
 iret[i] = pthread_create(&thread[i], (void *) 0,
 print_string, (void*) strings[i]);
 }

 /* Wait till threads are complete before main continues. Unless we */
 /* wait we run the risk of executing an exit which will terminate */
 /* the process and all threads before the threads have completed. */
 for (int i = 0; i < N_THREADS; i++) {
 pthread_join(thread[i], NULL);
 }

 printf("All Done\n");
 exit(0);
}

void *print_string(void *ptr) {
 char *cp;
 printf("PID: %d, Thread ID: %d\n", getpid(), pthread_self());
 for (int i = 0; i < N_REPEAT; i++) {
 cp = (char *) ptr;

 pthread_mutex_lock(&mutex_stdout);

 while (*cp) {
 putchar(*cp);
 fflush(stdout);

Last revised: February 2, 2017

628 Lecture Notes Week 5 (February 6, 2017) 9/10

 cp++;
 }
 pthread_mutex_unlock(&mutex_stdout);
 }
}

Notes of Lab 4

• Example of using a pipe:

#include <stdlib.h>
#include <stdio.h>

char *cmd1[] = {"ls", 0}; //Output goes to pipe input
char *cmd2[] = {"/usr/bin/tr", "a-z", "A-Z", 0}; //Input comes from pipe

output

int
main(int argc, char **argv) {
 int pid, status;
 int fd[2];

 pipe(fd); //Create a pipe; fd[0] is input, fd[1] is output

 switch (pid = fork()) {

 case 0: /* child */

 /* Using close/dup */
 close(0);
 dup(fd[0]);
 /* Preferred: use dup2*/
 // dup2(fd[0], 0); //pipe input is now stdin for child
 close(fd[1]); //child does not use pipe output
 execvp(cmd2[0], cmd2); //child executes "tr" command
 perror(cmd2[0]); //SHOULD NOT GET HERE!
 exit(1);

 case -1://SHOULD NOT GET HERE (indicates fork failure)
 perror("fork");
 exit(1);

 default: /* parent */
 dup2(fd[1], 1);
 close(fd[0]); /* the parent does not need this end of the pipe */
 execvp(cmd1[0], cmd1);
 perror(cmd1[0]); //SHOULD NOT GET HERE (exec failure)
 break;

 }

Last revised: February 2, 2017

628 Lecture Notes Week 5 (February 6, 2017) 10/10

 exit(0);
}

Last revised: February 2, 2017

	1.The Process Table 2
	2.Tables maintained for EACH process 2
	1.Why threads can be tricky 3
	2.Kernel Threads vs. User Threads 3
	1.A basic problem: critical sections and atomic operations 4
	Creating threads, running concurrently, no synchronization 5
	1.Using “mkdir” for exclusive access to critical section 6
	2.Using “pthread_mutex” for exclusive access to critical section 7
	3.Using “pthread_mutex” with many Threads 8
	Recap
	Tables maintained by the Operating System
	1. The Process Table
	2. Tables maintained for EACH process
	The Thread Table
	The File Table

	More about Threads
	1. Why threads can be tricky
	2. Kernel Threads vs. User Threads

	Inter-process Communication (IPC)
	1. A basic problem: critical sections and atomic operations

	Using the pthread library
	Creating threads, running concurrently, no synchronization
	1. Using “mkdir” for exclusive access to critical section
	2. Using “pthread_mutex” for exclusive access to critical section
	3. Using “pthread_mutex” with many Threads

	Notes of Lab 4

