
Coe628 Study Guide 2017 1/6

Coe628 Midterm Study Guide (2017)

The Questions

1. Multi-core state diagram

A single CPU (core) has a state transition diagram indicating the possible process state changes (RUN-
READY-BLOCKED). Suppose there are 4 cores. Some process is running on each core: call these
states RUN-1, RUN-2, RUN-3 and RUN-4.

What state transitions are allowable?

2. Amdahl's Law

An algorithm is 20% serial; the rest can be run in parallel. What is the maximum speedup if 5
processors can be used?

3. Threads vs. Processes

a) What are some pros and cons of processes verses threads?

b) What is the main advantage and main disadvantage to user threads vs. Kernel threads.

c) Give 3 characteristics common to both threads and processes.

4. Deadlock avoidance

TaskA and TaskB both need both resources, P and Q, in order to do some work. Each Task can
acquire a resource with acquireP() or acquireQ(). The resources cannot be shared. If a Task tries to
acquire a resource that is already in use, it blocks. When a Task no longer needs a resource it owns it
can release it with releaseP() or releaseQ().

a) Each task runs its own code and uses the functions acquireP(), acquireQ(), doWork(), releaseP() and
releaseQ(). Each thread releases its resources after invokes “doWork()”; the resources are released in
the opposite order they were obtained.

Show a sequence of operations for each thread so that deadlock is impossible.

Version 1.1 Modified: February 27, 2017

Coe628 Study Guide 2017 2/6

 TaskA TaskB

b) Show a sequence of operations for each task such that deadlock is possible. Then show a
specific sequence where deadlock is avoided (task switching takes place at just the right times) and
another specific sequence that does result in deadlock.
 ThreadA ThreadB (with sequence that does NOT deadlock)

5. Fork/exec/shell parsing

1. The following program is run. Assume that it's process ID is 1000 and that the next processes
created will have process IDs 1001, 1002, 1003, etc. What is the output from the program?

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main() {
 int i = 3;
 int child;
 int status;
 if((child = fork()) == 0) {
 i = i + 2;
 printf("X %d %d\n", child, i);
 if((child = fork()) == 0) {
 printf("Z %d %d\n", child, ++i);
 return -2;
 }
 wait(&status);
 printf("A %d %d\n", child, i);
 return -1;
 }
 wait(&status);

Version 1.1 Modified: February 27, 2017

Coe628 Study Guide 2017 3/6

 printf("Y %d %d\n", child, i);
 return 0;
}

The Answers

1. Multi-core state diagram

The following transitions are legal:

• RUN-(1 or 2 or 3 or 4) TO BLOCKED

• RUN-(1 or 2 or 3 or 4) TO READY

• READY TO RUN-(1 or 2 or 3 or 4)

• BLOCKED TO READY

2. Amdahl's Law

ANSWER (BASIC): The speed up factor is 2.8.

3. Threads vs. Processes

 a) Processes have independent memory spaces; threads share global memory. Thread creation is
simpler than process creation.

 b) Kernel threads can be blocked (from a system call) without blocking other threads. If a user-level
thread blocks from a system call, all threads associated with the process will also be blocked.

c) Both threads and processes can be in states such as RUN-READY-BLOCKED. Both Threads and
Processes have associated tables which give the state, saved registers, ids etc. Of each entry.

Version 1.1 Modified: February 27, 2017

Coe628 Study Guide 2017 4/6

4. Deadlock avoidance

TaskA and TaskB both need both resources, P and Q, in order to do some work. Each Task can
acquire a resource with acquireP() or acquireQ(). The resources cannot be shared. If a Task tries to
acquire a resource that is already in use, it blocks. When a Task no longer needs a resource it owns it
can release it with releaseP() or releaseQ().

a) Each task runs its own code and uses the functions acquireP(), acquireQ(), doWork(), releaseP() and
releaseQ(). Each thread releases its resources after invokes “doWork()”; the resources are released in
the opposite order they were obtained.

Show a sequence of operations for each thread so that deadlock is impossible.

 TaskA TaskB

b) Show a sequence of operations for each task such that deadlock is possible. Then show a
specific sequence where deadlock is avoided (task switching takes place at just the right times) and
another specific sequence that does result in deadlock.
 ThreadA ThreadB (with sequence that does NOT

5. Fork/exec/shell parsing

1. The following program is run. Assume that it's process ID is 1000 and that the next processes
created will have process IDs 1001, 1002, 1003, etc. What is the output from the program?

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main() {
 int i = 3;
 int child;
 int status;

Version 1.1 Modified: February 27, 2017

Coe628 Study Guide 2017 5/6

 if((child = fork()) == 0) {
 i = i + 2;
 printf("X %d %d\n", child, i);
 if((child = fork()) == 0) {
 printf("Z %d %d\n", child, ++i);
 return -2;
 }
 wait(&status);
 printf("A %d %d\n", child, i);
 return -1;
 }
 wait(&status);
 printf("Y %d %d\n", child, i);
 return 0;
}

The Answers

1. Multi-core state diagram

The following transitions are legal:

• RUN-(1 or 2 or 3 or 4) TO BLOCKED

• RUN-(1 or 2 or 3 or 4) TO READY

• READY TO RUN-(1 or 2 or 3 or 4)

• BLOCKED TO READY

2. Amdahl's Law

ANSWER (BASIC): The speed up factor is 2.8.

3. Threads vs. Processes

 a) Processes have independent memory spaces; threads share global memory. Thread creation is

Version 1.1 Modified: February 27, 2017

Coe628 Study Guide 2017 6/6

simpler than process creation.

 b) Kernel threads can be blocked (from a system call) without blocking other threads. If a user-level
thread blocks from a system call, all threads associated with the process will also be blocked.

c) Both threads and processes can be in states such as RUN-READY-BLOCKED. Both Threads and
Processes have associated tables which give the state, saved registers, ids etc. Of each entry.

4. Deadlock avoidance

If each thread acquires the resources in OPPOSITE order, deadlock is POSSIBLE (but NOT
inevitable).

If acquired in the same order, no deadlock can occur.

5. Fork/exec/shell parsing
X 0 5
Z 0 6
A 1002 5
Y 1001 3

Version 1.1 Modified: February 27, 2017

	The Questions
	1. Multi-core state diagram
	2. Amdahl's Law
	An algorithm is 20% serial; the rest can be run in parallel. What is the maximum speedup if 5 processors can be used?
	3. Threads vs. Processes
	a) What are some pros and cons of processes verses threads?
	b) What is the main advantage and main disadvantage to user threads vs. Kernel threads.
	c) Give 3 characteristics common to both threads and processes.
	4. Deadlock avoidance
	5. Fork/exec/shell parsing
	The Answers
	1. Multi-core state diagram
	2. Amdahl's Law
	ANSWER (BASIC): The speed up factor is 2.8.
	3. Threads vs. Processes
	4. Deadlock avoidance
	5. Fork/exec/shell parsing
	The Answers
	1. Multi-core state diagram
	2. Amdahl's Law
	ANSWER (BASIC): The speed up factor is 2.8.
	3. Threads vs. Processes
	4. Deadlock avoidance
	If each thread acquires the resources in OPPOSITE order, deadlock is POSSIBLE (but NOT inevitable).
	If acquired in the same order, no deadlock can occur.
	5. Fork/exec/shell parsing

