COE428 Notes Week 4 (Week of Jan 30, 2017)

Table of Contents

Announcements	2
Answers to last week's questions	2
Review	
Big-O, Big-Omega and Big-Theta analysis of recurrences	
Prove that $T(n) = 2T(n/2) + n = O(n^2)$	
Prove that $T(n) = 2T(n/2) + n = O(n \log n)$	
Prove that $T(n) = 2T(n/2) + n = \Omega(n \log n)$	
Prove that $T(n) = 4 T(n/2) + n = O(n^2)$	
Prove that $T(n) = 2T(n/4) + T(n/2) + n = O(n \log n)$	
Solving recurrences using recursion tree: more examples	6
T(n) = 2T(n/2) + 1	6
Exercises	
Questions	7
Suggested problems	
References (text book and online)	
Appendix: Some Basic Math	8

Announcements

- Midterm: Wednesday, March 8, 2017
- Midterm material (Subject to change!):
 - From CLRS textbook:
 - Chapter: 2 (Getting Started, 3.1 Insertion sort, 3.2 Analyzing algorithms, 3.3 Designing algorithms)
 - Chapter 3 (Growth of functions, 3.1 Asymptotic notation, 3.2 Standard notations and common functions)
 - Chapter 4 (Divide-and-Conquer, (4.3 The substitution method for solving recurrences, 4.4 The recursion-tree method for solving recurrences)
 - My lecture notes: Week 1–6
 - Labs: lab 1–5
 - My book:
 - Chapter 1 (Algorithms)
 - Chapter 2 (**Recursion**)
 - Chapter 4 (**Complexity**)

Answers to last week's questions

1. Fill in the columns labelled f(n) = O(g(n)), $f(n) = \Omega(g(n))$ and $f(n) = \Theta(g(n))$ as true or false.

f(n)	g(n)	f(n) = O(g(n))?	$f(n) = \Omega(g(n))?$	$f(n) = \Theta(g(n))?$
$2^{\lg n} + 5$	n	true	true	true
$1.001^n + 6n^3$	1.2^{n}	true	false	false
$1.001^n + 6n^3$	n^{1000}	false	true	false
$3 \times 4^{\lg n} + 5n\sqrt{n}$	$n^{1.5}$	false	true	false
$3 \times 4^{\lg n} + 5n\sqrt{n}$	n^2	true	true	true
$\log n!$	$n\log n + n$	true	true	true

2. Determine the Big-Oh complexity of $T(n) = 2T(n/2) + n/\lg n$. (You may find this challenging!) (Note: valid only for $n \ge 2$. You may assume any convenient base case. You may also assume that *n* is a power of 2.)

Answer: See below where we examine this case in detail in Friday's lecture.

3. Determine the simplest Big-Theta complexity of each the functions below by inspection.

a)
$$32 + n \log_5 n + n^2 \sqrt{n} = \Theta(n^{3.5})$$

b) $1000000n + 5 \times 2^{n^2} + 123 \times 3^n = \Theta(2^{n^2})$
c) $5n^3 + \left(\sum_{i=1}^n i^2\right)^2 + 20n^5 = \Theta(n^6)$
d) $\log_{10} n! + n^2 \lg n = \Theta(n^2 \log n)$
c) $\left(\sum_{i=1}^n 1/i\right)^{1.2} + 15 \lg n = \Theta(n^2 \log n)$

e)
$$\left(\sum_{i=1}^{n} 1/i\right) + 15 \lg n = \Theta(\ln^{1.2} n)$$

Review

Growth of functions

- It is easy to find the fastest growing term for polynomials.
- The following list shows examples from slowest growing to fastest growing functions:
 - $\circ \quad 5 = \Theta(1)$

$$\circ \quad 23 + 7\log\log n = \Theta(\log\log n)$$

 $\circ \quad 7\ln n + 8\lg n + 3\log\log n + 8 = \Theta(\log n)$

$$\circ \quad \sum_{i=1} 1/i + \log \log n = \Theta(\log n)$$

$$\circ \quad \log n + \log \log n + \log^2 n = \Theta(\log^2 n)$$

$$\circ \quad n\log n! + n\log n = \Theta(n^2\log n)$$

$$\circ \quad n^{100} + 1.01^n = \Theta(1.01^n)$$

Prove that $T(n) = 2T(n/2) + n = O(n^2)$

- (Yes, this seems silly. We have already rigorously proved that $T(n) = 2T(n/2) + n = n \lg n$ so we already **know** that $T(n) = O(n^2)$; indeed we know that $T(n) = O(n \log n)$ and $T(n) = \Theta(n \log n)$) But this simple example illustrates the technique for using mathematical induction to prove an *inequality* instead of an equality as done previously.)
- We start with:
 - A base case: $T(1) = \Theta(1)$
 - Our hypothesis: $T(n) \leq cn^2$ $\forall n > n_0$ for some c, n_0
- Our Inductive Hypothesis is $T(m) \le cm^2$ for all m < n.
 - So: T(n) = 2T(n/2) + n (by definition)
 - \circ $\;$ Using the hypothesis, we get: $T(n) \leq 2(c(n/2)^2 + n$
 - $\circ \quad \text{Simplifying we get:} \ T(n) \leq cn^2/2 + n$
 - \circ $\;$ We wish to prove our hypothesis: $T(n) \leq cn^2$
 - So we need to prove: $cn^2/2 + n \le cn^2$ for all $n > n_0$ for some constants n_0, c
 - Let's re-write this as: $cn^2/2 + cn^2/2 cn^2/2 + n = cn^2 n \le cn^2$
 - $\circ \quad \mbox{Or, show that } cn^2 n \leq cn^2$
 - Or, show that we have to prove: *hypothesis extra* \leq *hypothesis*
 - Or, simply prove that $extra \ge 0$.
 - In this case, find some n_0 such that for all $n > n_0$.
 - This is clearly true if $n_0 = 0$

Prove that $T(n) = 2T(n/2) + n = O(n \log n)$

- We start with:
 - A base case: $T(1) = \Theta(1)$
 - Our hypothesis: $T(n) \le c' n \log n$ $\forall n > n_0$ for some c, n_0
- Our Inductive Hypothesis is $T(m) \le c'm \log m = cm \lg m$ for all m < n.
 - So: T(n) = 2T(n/2) + n (by definition)
- Using the inductive hypothesis, we get:

0.9 (Updated February 1, 2017)

$$T(n) \le 2(cn/2 \lg n/2) + n$$

= $cn \lg (n/2) + n$
= $cn(\lg n - \lg 2) + n$
= $cn(\lg n - 1) + n$
= $cn \lg n - cn + n$
= $cn \lg n - (cn - n)$

- Recall we wish to prove $T(n) \le cn \lg n$ so we must prove:
 - $^{\circ} \quad T(n) = cn \lg n (cn n) \le cn \lg n$
 - OR *hypothesis extra* <= *hypothesis*
 - In short, prove "extra ≥ 0 "
 - Here "extra" is cn n = n(c 1)
 - So we need to show that $n(c-1) \ge 0$.
 - $\circ \quad \operatorname{Any} c > 1 \text{ and any } n > 0 \text{ will do.}$
 - QED!

Prove that $T(n) = 2T(n/2) + n = \Omega(n \log n)$

- We start with:
 - A base case: $T(1) = \Theta(1)$
 - Our hypothesis: $T(n) \ge cn \lg n$ $\forall n > n_0$ for some c, n_0
- Our Inductive Hypothesis is $T(m) \ge cm \lg m$ for all m < n.
 - So: T(n) = 2T(n/2) + n (by definition)
- Using the inductive hypothesis, we get:

$$T(n) \ge 2(cn/2\lg n/2) + n$$

= $cn\lg(n/2) + n$
= $cn(\lg n - \lg 2) + n$
= $cn(\lg n - 1) + n$
= $cn\lg n - cn + n$
= $cn\lg n - (cn - n)$

- Recall we wish to prove $T(n) \ge cn \lg n$ so we must prove:
 - $\circ \quad cn \lg n cn + n \ge cn \lg n \text{ or } n(1-c) > 0$
 - \circ This is clearly true if 0 < c < 1
- QED

Prove that $T(n) = 4 T(n/2) + n = O(n^2)$

- Base case: $T(1) = \Theta(1)$
- Hypothesis: $T(n) \le cn^2$
- $T(n) = 4T(n/2) + n \le 4(c(n/2)^2 + n = cn^2 (-n))$
- **Oops!** The "extra" is -n which cannot be greater than zero!
- Try a stronger hypothesis: $T(m) \leq cm^2 cm$ $\forall m < n$
- Then $T(n) = 4T(n/2) + n \le 4(c(n/2)^2 - cn/2) + n = cn^2 - 2cn + n = cn^2 - cn - (c-1)n$
- Now "extra" is n(c-1).
- If $c \ge 1$ the "extra" is non-negative and the hypothesis is proven. **QED**
- (See also the example $T(n) = T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + 1$ on page 85 of the MIT text book.)

Prove that $T(n) = 2T(n/4) + T(n/2) + n = O(n \log n)$

- Inductive hypothesis: $T(m) \le cm \lg m$ for all m < n.
- Using this hypothesis, we get:

$$T(n) = 2T(n/4) + T(n/2) + n$$

$$T(n) \le 2(cn/4 \lg n/4) + c(n/2) \lg n/2 + n$$

$$= \frac{cn}{2} \lg(n/4) + \frac{cn}{2} \lg n/2 + n$$

$$= \frac{cn}{2} (\lg n - \lg 4) + \frac{cn}{2} (\lg n - \lg 2) + n$$

$$= \frac{cn}{2} (\lg n - 2) + \frac{cn}{2} (\lg n - 1) + n$$

$$= cn \lg n - 3cn/2 + n$$

$$= cn \lg n - n(3c/2 - 1)$$

$$= hypothesis - extra$$

- The "extra" must be non-negative. This is assured for all n if $c \ge 2/3$.
- QED

Solving recurrences using recursion tree: more examples

T(n) = 2T(n/2) + 1

- This is similar to the merge sort recurrence (T(n) = 2T(n) + 1).
- Except, only a constant (1) is added as the non-recursive part.
- Drawing a recursion tree, we would get the non-recursive part totals for each row as 1, 2, 4, 8, 16, etc.

0.9 (Updated February 1, 2017)

DRAFT

- The depth of the tree would be $m = \lg n$, so the total would be $\sum_{i=0}^{m} 2^i = 2^{m+1} - 1 = 2n - 1$
- Yes, this is an exact solution, but let's prove rigorously that $T(n) = \Theta(n)$
- First, let's prove that T(n) = O(n), i.e. that T(n) < cn
 - True for base case: i.e. assume $T(1) \leq c$
 - Inductive hypothesis: $T(n) \leq cn$
 - Now prove that $T(2n) \leq c2n$
 - By definition: T(2n) = 2T(n) + 1
 - \circ $\;$ Substituting our inductive hypothesis, we must prove $T(2n) \leq 2cn+1$
 - Oops!
 - Try a *stronger* inductive hypothesis: T(n) = cn k
 - Now we need prove (for suitable constants) that $T(2n) \leq 2(cn-k) + 1 = 2cn (k-1)$

Exercises

- 1. Prove that $T(n) = 4T(n/2) + n = O(n^3)$.
- 2. Prove that $T(n) = 4T(n/2) + n = \Omega(n)$.

Questions

1. Draw a recursion tree for $T(n) = \sqrt{n}T(\sqrt{n}) + n$ for $n \ge 2$ and determine its $\Theta()$ complexity. (Hint: assume $n = 2^{2^m}$.)

Suggested problems

CLRS: 3-1, 3-2 (but not small-o and small-omega), 3-3, 3-4, 4-1, 4-3 My book: 4.1, 4.2, 4.3, 4.4, 4.7

References (text book and online)

- CLRS: Chapter 4.3
- kclowes book: Chapter 4

Appendix: Some Basic Math

$$\begin{split} \log_a x &= \frac{\log_b x}{\log_b a} \\ a^{\log_a n} &= n \\ a^{\log_b n} &= n^{\log_b a} \\ \ln n &< \sum_{i=1}^n 1/i = H_n < \ln n + 1 \text{ or } H_n = \Theta(\log n) \\ \sum_{i=1}^n i &= n(n+1)/2 \\ \sum_{i=0}^n r^i &= \frac{r^{n+1} - 1}{r - 1} = \frac{1 - r^{n+1}}{1 - r} \\ \log n! &= \Theta(n \log n) \end{split}$$

Copyright © 2017 Ken Clowes. This work is licensed under a <u>Creative Commons</u> <u>Attribution-NonCommercial-ShareAlike 4.0 International License</u>. COE428

9 of 9