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Topics (from course outline)

The following table shows the topics for this course week by week.

The topics in bold is for this week.

The topics in grey have been covered.

Other topics are for the future....
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Week Date Topics

1 Jan 9 Introduction. Course overview. Intro to algorithms.

2 Jan 16 Analyzing and designing algorithms. Recursion.

3 Jan 23 Complexity analysis.

4 Jan 30 Recurrence equations. Data Structures.

5 Feb 6 Stacks and Queues.

6 Feb 13 Heapsort. Hashing.

Feb 20 Study week.

7 Feb 27 Trees and Priority Queues.

8 March 6 Binary Search Trees (BST).

9 March13 Balanced BSTs (including Red-Black Trees)

10 March 20 Graphs.

11 March 27 Elementary graph algorithms.

12 April 3 Elementary graph algorithms. (continued)

13 April 20 Review

Review

• The time to perform recursive algorithms is often expressed as a recurrence.

• Example: Merge Sort:  (time to merge sort n items = time to sort each half
+ time to merge two sorted lists where merging is a linear algorithm.)

• Closed-form exact solution to  is  which can be proven by 
mathematical induction.

• The algorithms so far:
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Name Description Complexity

Selection Sort Sort by selecting minimum (over and over) quadratic

Merge Sort Sort by splitting in 2, sorting each half, then merging Linear logarithmic

Binary search Search an ordered list logarithmic

Euclid's algorithm Greatest common divisor between “big” and “small” logarithmic

Towers of Hanoi Move disks from one tower to another respecting rules Exponential ( )

Answers to last week's questions

1. An algorithm with complexity  takes 6 ms to solve a problem of size 1600.  Estimate the
time to solve a problem of size 10,000.

Answer: . So it takes  ms to solve a problem of size 

10,000

2. Draw a recursion tree for .  Guess the exact solution and prove it 
by mathematical induction.

Answer:     Discussed in class (see below)    

         

3. Draw a recursion tree for .  Guess the solution. Try to prove it.

Answer: We will look at the recursion tree below.  A reasonable guess would be . 
Unfortunately, it is wrong!  The table below calculates a few values bottom up assuming that .

1 0 0

2 0 + 0 + 2 = 2 2

4 0 + 2 + 4 = 6 8

8 2*2 + 8 + 8 = 20 24
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Preamble: Week 3 and 4 lectures

• The topics for this week and the next are mainly mathematical.

• The techniques used will be used to analyze algorithms studied in the rest of the course. 

Some math

• You are expected to know certain mathematical facts.  (Usually, no formula sheet or calculators 
are allowed in tests/exams.)

• Some of these basic formulas:

Arithmetic series

•   

Geometric series

•

logarithms

•

•

•

•

Harmonic series

• Harmonic numbers are defined as 

• The Harmonic series is divergent, but it diverges slowly.

• For large n, 

• Hence any multiple of  is a logarithmic.

Notes on exponential functions

• Any function  (where ) ultimately grows faster than any polynomial.
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• For example,  grows faster than .  (This is easy to prove using L'Hopital's rule.)

• Consider  compared to  where a > b. Then  grows “infinitely” faster than .

Asymptotic  ( Big-O, Big-Θ, Big-Ω) notation 

Big-O (upper bound)

• We say that  if there exist constants c and  such that:

                   for all 

Big-Omega (lower bound)

• We say that  if there exist constants c and  such that:

                   for all 

Big-Theta (tight bound)

• We say that  if there exist constants  and  such that:

                   for all 

• Equivalently,  iff  and .

How to “guess” a recurrence solution

Finding a guess by “unfolding” (aka “substitution”)

• Previously we calculated T(n) from the bottom up.
• We can “unfold” it  from the “top down” as follows:

                

                 etc... 
• If we assume that n is a power of 2,  we would eventually obtain: 
• Since we have assumed T(1) = 0, this implies
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Finding a guess by drawing a recursion-tree

• We start by representing  as a graph where we 
put the non-recursive part (n in this case) on the top row and put each recursive part on a row 
below.

                                                                                                                          

                                                          

• We now expand the tree diagram downwards:

                                                                                                                          

                                                                                                              

                                                   

Different ways to draw recursion-trees

• The textbook (CLRS) starts with a diagram with a single node: T(n).

• It then expands each node isolating the non-recursive part and adding child nodes for each 
recursive part.

• For example, to draw the recursion-tree for , start with:

T(n) = 2T(n/2) + k1*n + k2 recurrence tree and analysis

    Guess: 
             Assuming n is a power of 2 and that 

             We need to prove that 

◦ By definition: 
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◦ Using the inductive hypothesis, we have: 

◦ Simplifying, we obtain: 

◦ Noting that , we get: 

◦ Using the identity , we obtain: 

◦ QED

Big-O analysis of T(n) = T(n/2) + 2 T(n/4) + n

• We start by drawing a recursion tree:

                                                                     

                                                                

• Expanding the second row, we get:
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• If we continue the expansion, we will see that the sum of the non-recursive elements for each 
level is n.

• Alas, the sum of the non-recursive elements is not n for all levels.

• First, note that the leaves of the tree are for 

• Hence the left-most branch of the tree has depth  whereas the right-most branch has depth
.

• Hence for all levels below  contribute less than n.  

Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-O

• Recall  that  if there exist constants c and  such that:

                   for all 

• Now, suppose we “pretend” that every level of the  recursion 
tree contributed n.  (Of course, this is not true for levels greater than (i.e. for the bottom 
half of the tree.)

• But we can now say that all levels contribute to the total.

• Furthermore, the leaves (the bottom nodes on the tree) are , so they contribute nothing.

• The maximum depth of the tree is  and since each level contributes at most n, we can say 
that .

• Consequently, 

Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-Omega

• When we say that an algorithm has O(g(n)) complexity, this means the algorithm is no worse 
than g(n).  In other words, Big-Oh gives an upper bound on the complexity.

• It is also possible to define an asymptotic lower bound called Big-Omega.  When we say an 
algorithm has  complexity, we guarantee that the algorithm is no better than g(n) 
asymptoticly (i.e. for large enough n).
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• We define Big-Omega as follows:  if there exist constants c and  such that:

                   for all 

• Consider the recursion-tree for .

• Suppose we only consider the top half: i.e. the first  levels.

• Since more than half of the tree is neglected, the total contributions from these levels will be 
less than the real total.

• But we have already seen that each of these levels contributes n.

• Consequently, we can say 

• Therefore, 

Big Theta

• We say that  if there exist constants  and  such that:

                   for all 

• Equivalently,  iff  and .

• Since  is both  and , we 
can also say that 

More about Asymptotic Notation.

• Another way to determine whether functions are Big-O or Big-Omega is to use limits.

• We assume that all functions are monotonically increasing and non-negative for sufficiently 
large n.

• In particular, if , then 

• However, if , then 

• Finally, , then 

Big-Theta by inspection: some “rules of thumb”

• If  is the sum of terms, find the term that grows fastest.  That gives you
.  And ignore anything that multiplies this term (or any other term).

• Examples:

◦
◦
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◦
◦

◦

◦

Solving  where 

• Start with the basic recursion tree:

                                                                    

                                                                                 

• Now expand the  layer noting that

                                                                    

                                                                                 

                                                                                  

• Let's expand one more layer noting that:

• We get:
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• Let's add up the (non-recursive) contributions of each layer:

• Let's add up the (non-recursive) contributions of each layer:

                                                                                                                                          (Level 0)

                                                                                                                    (L 1)

                                                                                        (L 2)

                                                                               (L 3)

• How many levels are there?
• Assuming , there will be  levels.
• Adding up the contributions from each level, we get:
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•

• But .
• So, 

Questions

1. Fill in the columns labelled ,  and  as true or 
false.

            

 ?  ?  ?

n

2. Determine the Big-Oh complexity of .  (You may find this 
challenging!)  (Note: valid only for .  You may assume any convenient base case. You 
may also assume that n is a power of 2.)

3. Determine the simplest Big-Theta complexity of each the functions below by inspection.

a)  
b)  

c)  

d)  

e)  

References (text book and online)

• CLRS:   Chapter 3.1, 3.2

• kclowes book: Chapter 4
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