
COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 1 of 13

COE428 Lecture Notes Week 3 (January 23, 2017)

Table of Contents
Topics (from course outline)..1
Topics...2
Review...2
Answers to last week's questions...3
Preamble: Week 3 and 4 lectures...4
Some math..4
• Arithmetic series..4
• Geometric series..4
• logarithms..4
• Harmonic series...5
• Notes on exponential functions...5
Asymptotic (Big-O, Big-Θ, Big-Ω) notation..5
• Big-O (upper bound)...5
• Big-Omega (lower bound)...5
• Big-Theta (tight bound)...5
Recurrence Trees..6
• Different ways to draw recursion-trees...6
• T(n) = 2T(n/2) + k1*n + k2 recurrence tree and analysis...6
Big-O analysis of T(n) = T(n/2) + 2 T(n/4) + n...6
• Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-O..7
• Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-Omega..8
• Big Theta...8
More about Asymptotic Notation...8
• Big-Theta by inspection: some “rules of thumb”..9
Questions..11
References (text book and online)..12

Topics (from course outline)

The following table shows the topics for this course week by week.

The topics in bold is for this week.

The topics in grey have been covered.

Other topics are for the future....

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 2 of 13

Week Date Topics

1 Jan 9 Introduction. Course overview. Intro to algorithms.

2 Jan 16 Analyzing and designing algorithms. Recursion.

3 Jan 23 Complexity analysis.

4 Jan 30 Recurrence equations. Data Structures.

5 Feb 6 Stacks and Queues.

6 Feb 13 Heapsort. Hashing.

Feb 20 Study week.

7 Feb 27 Trees and Priority Queues.

8 March 6 Binary Search Trees (BST).

9 March13 Balanced BSTs (including Red-Black Trees)

10 March 20 Graphs.

11 March 27 Elementary graph algorithms.

12 April 3 Elementary graph algorithms. (continued)

13 April 20 Review

Review

• The time to perform recursive algorithms is often expressed as a recurrence.

• Example: Merge Sort: (time to merge sort n items = time to sort each half
+ time to merge two sorted lists where merging is a linear algorithm.)

• Closed-form exact solution to is which can be proven by
mathematical induction.

• The algorithms so far:

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 3 of 13

Name Description Complexity

Selection Sort Sort by selecting minimum (over and over) quadratic

Merge Sort Sort by splitting in 2, sorting each half, then merging Linear logarithmic

Binary search Search an ordered list logarithmic

Euclid's algorithm Greatest common divisor between “big” and “small” logarithmic

Towers of Hanoi Move disks from one tower to another respecting rules Exponential ()

Answers to last week's questions

1. An algorithm with complexity takes 6 ms to solve a problem of size 1600. Estimate the
time to solve a problem of size 10,000.

Answer: . So it takes ms to solve a problem of size

10,000

2. Draw a recursion tree for . Guess the exact solution and prove it
by mathematical induction.

Answer: Discussed in class (see below)

3. Draw a recursion tree for . Guess the solution. Try to prove it.

Answer: We will look at the recursion tree below. A reasonable guess would be .
Unfortunately, it is wrong! The table below calculates a few values bottom up assuming that .

1 0 0

2 0 + 0 + 2 = 2 2

4 0 + 2 + 4 = 6 8

8 2*2 + 8 + 8 = 20 24

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 4 of 13

Preamble: Week 3 and 4 lectures

• The topics for this week and the next are mainly mathematical.

• The techniques used will be used to analyze algorithms studied in the rest of the course.

Some math

• You are expected to know certain mathematical facts. (Usually, no formula sheet or calculators
are allowed in tests/exams.)

• Some of these basic formulas:

Arithmetic series

•

Geometric series

•

logarithms

•

•

•

•

Harmonic series

• Harmonic numbers are defined as

• The Harmonic series is divergent, but it diverges slowly.

• For large n,

• Hence any multiple of is a logarithmic.

Notes on exponential functions

• Any function (where) ultimately grows faster than any polynomial.

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 5 of 13

• For example, grows faster than . (This is easy to prove using L'Hopital's rule.)

• Consider compared to where a > b. Then grows “infinitely” faster than .

Asymptotic (Big-O, Big-Θ, Big-Ω) notation

Big-O (upper bound)

• We say that if there exist constants c and such that:

 for all

Big-Omega (lower bound)

• We say that if there exist constants c and such that:

 for all

Big-Theta (tight bound)

• We say that if there exist constants and such that:

 for all

• Equivalently, iff and .

How to “guess” a recurrence solution

Finding a guess by “unfolding” (aka “substitution”)

• Previously we calculated T(n) from the bottom up.
• We can “unfold” it from the “top down” as follows:

 etc...
• If we assume that n is a power of 2, we would eventually obtain:
• Since we have assumed T(1) = 0, this implies

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 6 of 13

Finding a guess by drawing a recursion-tree

• We start by representing as a graph where we
put the non-recursive part (n in this case) on the top row and put each recursive part on a row
below.

• We now expand the tree diagram downwards:

Different ways to draw recursion-trees

• The textbook (CLRS) starts with a diagram with a single node: T(n).

• It then expands each node isolating the non-recursive part and adding child nodes for each
recursive part.

• For example, to draw the recursion-tree for , start with:

T(n) = 2T(n/2) + k1*n + k2 recurrence tree and analysis

 Guess:
 Assuming n is a power of 2 and that

 We need to prove that

◦ By definition:

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 7 of 13

◦ Using the inductive hypothesis, we have:

◦ Simplifying, we obtain:

◦ Noting that , we get:

◦ Using the identity , we obtain:

◦ QED

Big-O analysis of T(n) = T(n/2) + 2 T(n/4) + n

• We start by drawing a recursion tree:

• Expanding the second row, we get:

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 8 of 13

• If we continue the expansion, we will see that the sum of the non-recursive elements for each
level is n.

• Alas, the sum of the non-recursive elements is not n for all levels.

• First, note that the leaves of the tree are for

• Hence the left-most branch of the tree has depth whereas the right-most branch has depth
.

• Hence for all levels below contribute less than n.

Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-O

• Recall that if there exist constants c and such that:

 for all

• Now, suppose we “pretend” that every level of the recursion
tree contributed n. (Of course, this is not true for levels greater than (i.e. for the bottom
half of the tree.)

• But we can now say that all levels contribute to the total.

• Furthermore, the leaves (the bottom nodes on the tree) are , so they contribute nothing.

• The maximum depth of the tree is and since each level contributes at most n, we can say
that .

• Consequently,

Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-Omega

• When we say that an algorithm has O(g(n)) complexity, this means the algorithm is no worse
than g(n). In other words, Big-Oh gives an upper bound on the complexity.

• It is also possible to define an asymptotic lower bound called Big-Omega. When we say an
algorithm has complexity, we guarantee that the algorithm is no better than g(n)
asymptoticly (i.e. for large enough n).

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 9 of 13

• We define Big-Omega as follows: if there exist constants c and such that:

 for all

• Consider the recursion-tree for .

• Suppose we only consider the top half: i.e. the first levels.

• Since more than half of the tree is neglected, the total contributions from these levels will be
less than the real total.

• But we have already seen that each of these levels contributes n.

• Consequently, we can say

• Therefore,

Big Theta

• We say that if there exist constants and such that:

 for all

• Equivalently, iff and .

• Since is both and , we
can also say that

More about Asymptotic Notation.

• Another way to determine whether functions are Big-O or Big-Omega is to use limits.

• We assume that all functions are monotonically increasing and non-negative for sufficiently
large n.

• In particular, if , then

• However, if , then

• Finally, , then

Big-Theta by inspection: some “rules of thumb”

• If is the sum of terms, find the term that grows fastest. That gives you
. And ignore anything that multiplies this term (or any other term).

• Examples:

◦
◦

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 10 of 13

◦
◦

◦

◦

Solving where

• Start with the basic recursion tree:

• Now expand the layer noting that

• Let's expand one more layer noting that:

• We get:

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 11 of 13

• Let's add up the (non-recursive) contributions of each layer:

• Let's add up the (non-recursive) contributions of each layer:

 (Level 0)

 (L 1)

 (L 2)

 (L 3)

• How many levels are there?
• Assuming , there will be levels.
• Adding up the contributions from each level, we get:

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 12 of 13

•

• But .
• So,

Questions

1. Fill in the columns labelled , and as true or
false.

 ? ? ?

n

2. Determine the Big-Oh complexity of . (You may find this
challenging!) (Note: valid only for . You may assume any convenient base case. You
may also assume that n is a power of 2.)

3. Determine the simplest Big-Theta complexity of each the functions below by inspection.

a)
b)

c)

d)

e)

References (text book and online)

• CLRS: Chapter 3.1, 3.2

• kclowes book: Chapter 4

VERSION 1.0 Last updated: January 25, 2017

COE428 Lecture Notes: Week 3 (January 23 – 27, 2017) 13 of 13

Copyright © 2015 Ken Clowes. This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

VERSION 1.0 Last updated: January 25, 2017

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Topics (from course outline)
	Review
	Answers to last week's questions
	Preamble: Week 3 and 4 lectures
	Some math
	Arithmetic series
	Geometric series
	logarithms
	Harmonic series
	Notes on exponential functions

	Asymptotic (Big-O, Big-Θ, Big-Ω) notation
	Big-O (upper bound)
	Big-Omega (lower bound)
	Big-Theta (tight bound)

	How to “guess” a recurrence solution
	Finding a guess by “unfolding” (aka “substitution”)
	Finding a guess by drawing a recursion-tree
	Different ways to draw recursion-trees
	T(n) = 2T(n/2) + k1*n + k2 recurrence tree and analysis

	Big-O analysis of T(n) = T(n/2) + 2 T(n/4) + n
	Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-O
	Analyzing T(n) = 2T(n/4) + T(n/2) + n using Big-Omega
	Big Theta

	More about Asymptotic Notation.
	Big-Theta by inspection: some “rules of thumb”

	Questions
	References (text book and online)

