
COE428 Lecture Notes: Week 1 1 of 10

COE428 Lecture Notes Week 1 (Week of January 9, 2017)

Table of Contents
COE428 Lecture Notes Week 1 (Week of January 9, 2017)..1

Announcements...1
Topics..1
Informal analysis of selected algorithms...2

Searching an unordered list (a linear algorithm)..2
Searching an unordered list for minimum/maximum (a linear algorithm).......................................2
Searching an ordered list for minimum (or maximum) (a constant time algorithm)........................2
Searching an ordered list for a specific value (a logarithmic algorithm)...2
Remarks on algorithmic complexity...3

What is an algorithm?..4
Analysis of selected algorithms...4

Selection sort..4
Euclid's algorithm (and a first look at recursion)...4
MergeSort...6
Solving recurrences..6
What is mathematical induction?..7
Proving that T(n) = 2T(n/2) + n = n lg n by Mathematical Induction..7
Finding a guess by “unfolding” (aka “substitution”)..7
Finding a guess by drawing a recursion-tree..8

Asymptotic notation..8
Big-O..8
Big-Omega ()..9
Big Theta ()...9

Questions...9
References (text book and online)...9

Announcements

• Course management distributed in class last week.

• No labs this week. Labs start next Monday, January 16.

• Counselling hours (ENG-449): Mon 1 pm – 2 pm, Fri 2 pm – 3 pm, kclowes@ryerson.ca

Topics

• An informal look at some basic algorithms

Last modified: January 12, 2017 1.0

COE428 Lecture Notes: Week 1 2 of 10

• Algorithm analysis examples

• Big-O (“Big Oh”), Big- (“Big Theta”), Big- (“Big Omega”) notations

• Discussion of lab 1

Informal analysis of selected algorithms

Searching an unordered list (a linear algorithm)

• How many items do you have to look at?

• If very lucky, the first one you look at is the one you're trying to find! This is the best case.

• But if you're unlucky, it may be the last one you look at.

• If there are n items, you have to look at all of them in the worst case.

• If the item you are looking for is not in the list, you have to look at all n of them.

• In this course, we are almost always interested in the worst case.

• Searching a list with n items requires examining n elements in the worst case.

• If n is bigger, it takes more time.

• For example, if it takes you 1 minute to search a deck of 100 cards, then it will take 3 minutes
to search a deck of 300 cards.

• Since the time for searching is proportional to the size of the list (n), we call this a linear
algorithm.

Searching an unordered list for minimum/maximum (a linear algorithm)

• All items need to be examined.

• Consequently, this is also a linear algorithm.

Searching an ordered list for minimum (or maximum) (a constant time algorithm)

• A very simple algorithm:

• If looking for minimum, just look at the first item.

• I looking for the maximum, just look at the last item.

• No matter how big n is, you only have to look at one item.

• This is a constant time algorithm.

Searching an ordered list for a specific value (a logarithmic algorithm)

• The algorithm:

Last modified: January 12, 2017 1.0

COE428 Lecture Notes: Week 1 3 of 10

• Look at the middle element.

• If it is what you are searching for, STOP.

• Otherwise, if the item you want is smaller than the middle element, repeast the search in the
first half of the list; other wise repeat the search in the second half.

• In either case, the problem size is cut in half.

• For example, if n were 63, the problem would reduce to searching 31 elements. Then 15, then
7, then 3 and then 1 element.

• This is a logarithmic algorithm.

Remarks on algorithmic complexity

• A problem of size n may be solved by an algorithm that could be:

• Constant time: the time to solve the problem is independent of the problem size.
Example: Finding the largest (or smallest) item in a sorted list.

• Logarithmic time: the time to solve the problem is proportional to the logarithm of the
size, i.e. . Example: “Binary search” to find an item in a sorted list.

• Linear time: . Example: Finding an item (or the maximum or minimum) in an
unordered list.

• Log-linear time: , Example: Optimal sort algorithms such as merge sort
or heap sort.

• Quadratic time: Example: Elementary sort algorithms such as bubble sort,
insertion sort or selection sort.

• Knowing only the time for a particular size and the nature of the algorithm, it is possible to
estimate the time for other sizes (assuming the size is large). Some examples:

• If a linear algorithm solves a problem of size 3000 in 5 ms, how long will it take to solve a
problem of size 9000?

▪ Answer: 15 ms, because if the size is is 3 times bigger, the time will also increase by a
factor of 3.

• If a quadratic algorithm solves a problem of size 3000 in 5 ms, how long will it take to solve
a problem of size 9000?

▪ Answer: 45 ms, because if the size is is 3 times bigger, the time will increase by a factor
of .

• If a logarithmic algorithm solves a problem of size 1000 in 5 ms, how long will it take to
solve a problem of size 1,000,000?
▪ Answer: 10 ms, because the logarithm of 1,000,000 is twice as big as the logarithm of

1000. i.e.

Last modified: January 12, 2017 1.0

COE428 Lecture Notes: Week 1 4 of 10

What is an algorithm?

An algorithm is a precise description of how to solve a problem and must have the following
features:

• It must terminate in finite time.
• Each step must be precisely defined. (No ambiguity allowed.)
• There must be zero or more inputs.
• There are one or more outputs.

Analysis of selected algorithms

Selection sort

 SelectionSort Algorithm: Sort n cards

Step 1: If there are no cards to sort, then STOP. (Time per step: a; number steps: n + 1)

Step 2: Otherwise, find the smallest card, remove it and place it on top of
the sorted card pile. (Time per step: X -- see below; number of steps: n)

Step 3: Go back to step 1. (Time per step: c; number of steps: n)

• Hence total time to sort =

• Problem: Step 2 is not elementary; the time it takes depends on how many cards we have to
examine to determine the minimum. Thus X is not a constant. To determine the minimum we
have to examine n cards the first time, then n-1 the second time, n-2 the third time, etc. If the
time to examine a card is 2b, then:

• So, total time to sort =

• SelectionSort is a quadratic algorithm.

Euclid's algorithm (and a first look at recursion)

 Euclid's Algorithm: Find greatest common divisor of big and small integers
 Non-recursive version

Step 1: Set remainder = big mod small

Last modified: January 12, 2017 1.0

COE428 Lecture Notes: Week 1 5 of 10

Step 2: If remainder is 0, answer is small. STOP
Step 3: Otherwise, Set big = small and Set small = remainder
Step 4: Go back to Step 1.

 Euclid's Algorithm: Find greatest common divisor of big and small integers
 Recursive version

Step 1: Set remainder = big mod small
Step 2: If remainder is 0, answer is small. STOP
Step 3: Otherwise, find GCD of small and remainder using this algorithm

//Non-recursive version of gcd (in C)
unsigned int gcd(unsigned int big, unsigned int small) {

unsigned int remainder = big % small;
while(remainder!= 0) {

big = small;
small = remainder;
remainder = small % remainder;

}
return small;

}

//Recursive version of gcd (in C)
unsigned int gcd(unsigned int big, unsigned int small) {

unsigned int remainder = big % small;
return (remainder == 0)? small : gcd(small, remainder);

}

• The recursive version is shorter and, arguably, more “elegant”.

• Both versions implement the same algorithm and have the same computational complexity
(they are both logarithmic: i.e. time).

• Many (most) algorithms in this course are best expressed recursively.

• This is especially true for “divide and conquer” algorithms.

Last modified: January 12, 2017 1.0

COE428 Lecture Notes: Week 1 6 of 10

• A partial proof that the complexity is logarithmic:

◦ It can be shown that the worst possible case is when small and big are two sequential
Fibonacci numbers.

◦ The gcd is 1 in this case and all the smaller Fibonacci numbers are generated as remainders.

◦ But where where is the i'th Fibonacci number.

◦ Consequently, in the worst case, the number of steps is

◦ In other words, Euclid's algorithm has logarithmic complexity. (Recall, the logarithm base
is irrelevant.)

MergeSort

MergeSort Algorithm (deck of n cards, time = T(n))
Step 1: If there is only one card (or none), STOP. (time = a)
Step 2: Divide the deck of cards in 2. (time = b)
Step 3: Sort the left deck using this algorithm. (time = T(n/2))
Step 4: Sort the right deck using this algorithm. (time = T(n/2))
Step 5: Merge the two decks. (time = cn + d)

• By definition, is the time to sort n cards.

• (Note: merging two sorted decks is a linear algorithm which is why the merge step 5 is a linear
function of n. It is linear because we simply choose the smaller of the top card in the two decks
and add it to the merged deck.)

• Adding up the times for each step, we get:

• This kind of equation where the function value depends on its value for smaller arguments) is
called a recurrence.

Solving recurrences

• There is no “universal” algorithm for solving recurrences. (This is similar to integration:
sometimes you use integration by parts, sometimes trigonometric substitutions, sometimes other
methods...)

• Consider the simplified recurrence:

• We also need a base case. T(1) will be some constant. For simplicity, let's assume T(1) = 0.

• Working “bottom up”, we have:

◦

◦

Last modified: January 12, 2017 1.0

COE428 Lecture Notes: Week 1 7 of 10

◦

◦

◦

◦

• Examining the numbers allows us to guess:
• If this is guess is correct, it can be proven using mathematical induction.

What is mathematical induction?

• (Note: more explanation is available in a wikipedia article.)

• Is used to prove a formula with a single integer is true for all integers.

• You have to show that the formula is true for at least one base case. (Show it is trur for n = 1.)

• Example: Show that the sum of n integers is

◦ It is true for base cases for n = 1 and n = 2.

◦ We assume that it is true for n and prove that it must also be true for n + 1:

◦ By definition:

◦ This can be re-written as: Q.E.D.

Proving that T(n) = 2T(n/2) + n = n lg n by Mathematical Induction

• We modify induction. Instead of proving that if T(n) implies T(n+1), we will show that if T(n)
is true then so is T(2n).

• In other words, we will assume that n is a power of 2 (i.e. and do mathematical
induction on i.)

• The “guess”, is clearly true for several base cases (n = 1, 2, 4,
8...64) as demonstrated earlier.

• Our inductive hypothesis is
• We need to prove that .
• By definition, .
• Using the inductive hypothesis, we obtain:
• Factoring out 2n, we obtain:
• Noting that , we can write:
• Using the identity that , we can say
• Q.E.D.

Finding a guess by “unfolding” (aka “substitution”)

• Previously we calculated T(n) from the bottom up.
• We can “unfold” it from the “top down” as follows:

Last modified: January 12, 2017 1.0

http://en.wikipedia.org/wiki/Mathematical_induction

COE428 Lecture Notes: Week 1 8 of 10

 etc...
• If we assume that n is a power of 2, we would eventually obtain:
• Since we have assumed T(1) = 0, this implies

Finding a guess by drawing a recursion-tree

• We start by representing as a graph where we
put the non-recursive part (n in this case) on the top row and put each recursive part on a row
below.

• We now expand the tree diagram downwards:

Asymptotic notation

Big-O

• We say that if there exist constants c and such that:

Last modified: January 12, 2017 1.0

COE428 Lecture Notes: Week 1 9 of 10

 for all

Big-Omega ()

• We say that if there exist constants c and such that:

 for all

Big Theta ()

• We say that if there exist constants and such that:

 for all

• Equivalently, iff and .

Questions

Questions from these notes

1. An algorithm with complexity takes 6 ms to solve a problem of size 1600. Estimate the
time to solve a problem of size 10,000.

2. Draw a recursion tree for . Guess the exact solution and prove it
by mathematical induction.

3. Draw a recursion tree for . Guess the solution.
Try to prove it.

4. A proposed simpler implementation for Euclid's algorithm is:

unsigned long gcd(unsigned long big, unsigned long small) {
 return small == 0 ? big : gcd(small, big % small);
}

 Will this work? Explain. (You can try it!)

Last modified: January 12, 2017 1.0

COE428 Lecture Notes: Week 1 10 of 10

Questions from CLRS textbook

1-1, 2-1

Questions from my book

1.1, 1.2, 1.3,.1.4, 1.5, 1.9,1.13,1.15, 1.20, 1.22

References (text book and online)

• CLRS: Chapter 1, 2, 3.1

• kclowes book: Chapter 1, 2.1. 2.2, 2.6, 4.1, 4.2, 4.3 (Click here)

• My C programming notes. (Click here)

• Wikipedia article on algorithms.

Last modified: January 12, 2017 1.0

https://en.wikipedia.org/wiki/Algorithm
http://www.ee.ryerson.ca/~kclowes/documents/CNotes.pdf
http://www.ee.ryerson.ca/~kclowes/documents/eaads.pdf

	COE428 Lecture Notes Week 1 (Week of January 9, 2017)
	Announcements
	Topics
	Informal analysis of selected algorithms
	Searching an unordered list (a linear algorithm)
	Searching an unordered list for minimum/maximum (a linear algorithm)
	Searching an ordered list for minimum (or maximum) (a constant time algorithm)
	Searching an ordered list for a specific value (a logarithmic algorithm)
	Remarks on algorithmic complexity

	What is an algorithm?
	Analysis of selected algorithms
	Selection sort
	Euclid's algorithm (and a first look at recursion)
	MergeSort
	Solving recurrences
	What is mathematical induction?
	Proving that T(n) = 2T(n/2) + n = n lg n by Mathematical Induction
	Finding a guess by “unfolding” (aka “substitution”)
	Finding a guess by drawing a recursion-tree

	Asymptotic notation
	Big-O
	Big-Omega ()
	Big Theta ()

	Questions
	Questions from these notes
	Questions from CLRS textbook
	Questions from my book

	References (text book and online)

