COEA428 Lecture Notes: Week 1 10of10

COE428 Lecture Notes Week 1 (Week of January 9, 2017)

Table of Contents

COE428 Lecture Notes Week 1 (Week of January 9, 2017).....c.ceevieviieriieiieeiieieeeie e 1
ANNOUINCEIMEIILS. ... uteeeiiieeeiiie ettt et te ettt e ettt e ettt e sttt e ettt e satteesateeeasbeessbeesabbeesabeeesabeeesabeeasaseesannbseeeesannnes 1
L0303 (¢ ST PPSRR 1
Informal analysis of selected algOrithms............c.cooiiiiiiiiiiiii e 2

Searching an unordered list (a linear algorithm).............ccocoviiiiiiiiniieieceeee e 2
Searching an unordered list for minimum/maximum (a linear algorithm).........c..ccccceeerviiniinennnnen. 2
Searching an ordered list for minimum (or maximum) (a constant time algorithm)........................ 2
Searching an ordered list for a specific value (a logarithmic algorithm)...........ccoccevveiniiiniinnnnn. 2
Remarks on algorithmic COMPIEXITY......ccuvieiieriiiiieiiecie ettt ettt e et seaeebeeesaeenneeenes 3
What is an algorithim?..........oooiiiii ettt ettt ettt et 4
Analysis of selected alOritims..........c.cooiiiiiiiiiiiicii et e 4
NS (51015 0 1 1Y o) o F O OO 4
Euclid's algorithm (and a first 100K at TECUISION)......ccuieriieriiiriieiiieiieeie e e e e eeereeeeerae s 4
IMLETZESOTE. ..ttt ettt ettt et e e et e st et e s et e be e sat e et e et eenaneee s 6
SOIVING TECUITEIICES. ..ceeuvveeeiiieeiiie ettt e ettt e ettt e etteeeteeesteeessseeessseeensseeesseesnsseeansseessnsssaaeessnnnssneeesannnes 6
What is mathematical INAUCHIONT..........cooiiiiiiiiiiiee et 7
Proving that T(n) = 2T(n/2) + n = n Ig n by Mathematical Induction..............cccceeceereeniieneennenne 7
Finding a guess by “unfolding” (aka “SubStitution™)..........cccceeeriieriiiiiienie e 7
Finding a guess by drawing @ réCUISION-tIEe...........cueeruieriierrierieeiienreeteesteeereesseeereesseeesneneeessseeas 8
ASYMPLOLIC TOTALION. ...ttt ettt et et e et e e tee e bt e s aeeeabeesaeeenbeesaeeenbeesnneeesnsbeeeanseeesnnnes 8
BAZ-0. ettt ettt e a e h e e bt e a e e et et e enb e e e nt e e e bt e enteeeanee 8
BIZ-OMMEEZA ()-+euveveenteriieniteie ettt ettt sttt et b et st a et h e bttt s h e a et e h e b et e eeaees 9
2 3o 1 1< 7 T () PSP RURSRRP 9
(QUEBSTIONIS. ...ttt e ettt e e eeett e e e ettt e e e e et e e e eeaaeeeeeeaaaeeeeeeaaaeeeeeaaeeeeeeasseeeeasssseeeessseeeeessseeeeenasaesaaaeaeeeaaaans 9
References (text bOOK and ONIINE)...........oecvieriiiiiiieriieiiecie ettt ettt re e teesteeebeessaeensaeeeenes 9
Announcements

* Course management distributed in class last week.
* No labs this week. Labs start next Monday, January 16.
* Counselling hours (ENG-449): Mon 1 pm — 2 pm, Fri 2 pm — 3 pm, kclowes@ryerson.ca

Topics

* An informal look at some basic algorithms

Last modified: January 12, 2017 1.0

COEA428 Lecture Notes: Week 1 2 0of 10

* Algorithm analysis examples
* Big-O (“Big Oh”), Big-O (“Big Theta”), Big-{2 (“Big Omega”) notations

¢ Discussion of lab 1

Informal analysis of selected algorithms

Searching an unordered list (a linear algorithm)

* How many items do you have to look at?

If very lucky, the first one you look at is the one you're trying to find! This is the best case.
* But if you're unlucky, it may be the last one you look at.

* If there are n items, you have to look at all of them in the worst case.

» If the item you are looking for is not in the list, you have to look at all » of them.

* In this course, we are almost always interested in the worst case.

* Searching a list with z items requires examining » elements in the worst case.

* If nis bigger, it takes more time.

* For example, if it takes you 1 minute to search a deck of 100 cards, then it will take 3 minutes
to search a deck of 300 cards.

* Since the time for searching is proportional to the size of the list (n), we call this a linear
algorithm.

Searching an unordered list for minimum/maximum (a linear algorithm)

¢ All items need to be examined.

* Consequently, this is also a linear algorithm.

Searching an ordered list for minimum (or maximum) (a constant time algorithm)

* Avery simple algorithm:
* Iflooking for minimum, just look at the first item.
* I looking for the maximum, just look at the last item.
* No matter how big n is, you only have to look at one item.

* This is a constant time algorithm.

Searching an ordered list for a specific value (a logarithmic algorithm)

* The algorithm:

Last modified: January 12, 2017 1.0

COEA428 Lecture Notes: Week 1 30f10

* Look at the middle element.
* Ifitis what you are searching for, STOP.

* Otherwise, if the item you want is smaller than the middle element, repeast the search in the
first half of the list; other wise repeat the search in the second half.

* In either case, the problem size is cut in half.

* For example, if n were 63, the problem would reduce to searching 31 elements. Then 15, then
7, then 3 and then 1 element.

* This is a logarithmic algorithm.

Remarks on algorithmic complexity

* A problem of size n may be solved by an algorithm that could be:

* Constant time: the time to solve the problem is independent of the problem size.
Example: Finding the largest (or smallest) item in a sorted list.

* Logarithmic time: the time to solve the problem is proportional to the logarithm of the
size, i.e. T'(n) o log n. Example: “Binary search” to find an item in a sorted list.

* Linear time: T'(n) « n. Example: Finding an item (or the maximum or minimum) in an
unordered list.

» Log-linear time: T'(n) < nlogn, Example: Optimal sort algorithms such as merge sort
or heap sort.

* Quadratic time: T'(n) < n? Example: Elementary sort algorithms such as bubble sort,
insertion sort or selection sort.

* Knowing only the time for a particular size and the nature of the algorithm, it is possible to
estimate the time for other sizes (assuming the size is large). Some examples:

* Ifalinear algorithm solves a problem of size 3000 in 5 ms, how long will it take to solve a
problem of size 9000?

= Answer: 15 ms, because if the size is is 3 times bigger, the time will also increase by a
factor of 3.

e If a quadratic algorithm solves a problem of size 3000 in 5 ms, how long will it take to solve
a problem of size 9000?

= Answer: 45 ms, because if the size is is 3 times bigger, the time will increase by a factor
of 32 = 9.

e [falogarithmic algorithm solves a problem of size 1000 in 5 ms, how long will it take to
solve a problem of size 1,000,000?

= Answer: 10 ms, because the lobgarithm of 1,000,000 is twice as big as the logarithm of

. log 1,000,000 _ log10® _ 6logl0 __ _
1000. i.e. =925660 = Tog10° — 3Tog10 — 6/3 =2

Last modified: January 12, 2017 1.0

COEA428 Lecture Notes: Week 1 4 of 10

What is an algorithm?

An algorithm is a precise description of how to solve a problem and must have the following
features:

* [t must terminate in finite time.

* Each step must be precisely defined. (No ambiguity allowed.)
* There must be zero or more inputs.

* There are one or more outputs.

Analysis of selected algorithms

Selection sort

SelectionSort Algorithm: Sort n cards
Step 1: If there are no cards to sort, then STOP. (Time per step: a; number steps: n + 1)

Step 2: Otherwise, find the smallest card, remove it and place it on top of
the sorted card pile. (Time per step: X -- see below; number of steps: n)

Step 3: Go back to step 1. (Time per step: c; number of steps: n)

* Hence total time to sort =a(n + 1) + Xn + cn

* Problem: Step 2 is not elementary; the time it takes depends on how many cards we have to
examine to determine the minimum. Thus X is not a constant. To determine the minimum we
have to examine # cards the first time, then n-/ the second time, n-2 the third time, etc. If the
time to examine a card is 2b, then:

* So, total time to sort=a(n+ 1) +bn(n+1) +cn=bn*+ (a+b+c)n+a

* SelectionSort is a quadratic algorithm.

Euclid's algorithm (and a first look at recursion)

Euclid's Algorithm: Find greatest common divisor of big and small integers
Non-recursive version

Step 1: Set remainder = big mod small

Last modified: January 12, 2017 1.0

COE428

Lecture Notes: Week 1 50f10

Step 2: If remainder is 0, answer is small. STOP
Step 3: Otherwise, Set big = small and Set small = remainder
Step 4: Go back to Step 1.

Euclid's Algorithm: Find greatest common divisor of big and small integers
Recursive version

Step 1: Set remainder = big mod small
Step 2: If remainder is 0, answer is small. STOP
Step 3: Otherwise, find GCD of small and remainder using this algorithm

//Non-recursive version of gcd (in C)
unsigned int gcd(unsigned int big, unsigned int small) {

unsigned int remainder = big % small;
while (remainder!= 0) {

big = small;

small = remainder;

remainder = small $ remainder;

}

return small;

//Recursive version of gcd (in C)

unsigned int gcd(unsigned int big, unsigned int small) {
unsigned int remainder = big % small;
return (remainder == 0)? small : gcd(small, remainder);

* The recursive version is shorter and, arguably, more “elegant”.

* Both versions implement the same algorithm and have the same computational complexity
(they are both logarithmic: i.e. time o log small).

* Many (most) algorithms in this course are best expressed recursively.

* This is especially true for “divide and conquer” algorithms.

Last modified: January 12, 2017 1.0

COEA428 Lecture Notes: Week 1 6 0of 10

* A partial proof that the complexity is logarithmic:

o It can be shown that the worst possible case is when small and big are two sequential
Fibonacci numbers.

© The ged is 1 in this case and all the smaller Fibonacci numbers are generated as remainders.
o ButF;, = |¢"/v/5+ .5] where ¢ = (1 + /5)/2 where F; is the i'th Fibonacci number.
o Consequently, in the worst case, the number of steps is log, n

© In other words, Euclid's algorithm has logarithmic complexity. (Recall, the logarithm base
is irrelevant.)

MergeSort
MergeSort Algorithm (deck of n cards, time = T(n))
Step 1: If there is only one card (or none), STOP. (time = a)
Step 2: Divide the deck of cards in 2. (time = b)
Step 3: Sort the left deck using this algorithm. (time = T(n/2))
Step 4: Sort the right deck using this algorithm. (time = T(n/2))
Step 5: Merge the two decks. (time = cn + d)

* By definition, 7'(n) is the time to sort # cards.

* (Note: merging two sorted decks is a linear algorithm which is why the merge step 5 is a linear
function of n. It is linear because we simply choose the smaller of the top card in the two decks
and add it to the merged deck.)

* Adding up the times for each step, we get:
Tn)=a+b+2Tn/2) +cn+d=2T(n/2) + kin + ks

* This kind of equation where the function value depends on its value for smaller arguments) is
called a recurrence.

Solving recurrences

* There is no “universal” algorithm for solving recurrences. (This is similar to integration:
sometimes you use integration by parts, sometimes trigonometric substitutions, sometimes other
methods...)

» Consider the simplified recurrence: 7'(n) = 27'(n/2) +n
* We also need a base case. T(1) will be some constant. For simplicity, let's assume T(1) = 0.
* Working “bottom up”, we have:

o T(2)=2T1)+2=2

o T(4)=2T(2)+4=28

Last modified: January 12, 2017 1.0

COE428

Lecture Notes: Week 1 7 0of 10

o T(8)=2T(4)+8=24

o T(16) = T()+ 16 = 64

o T(32) =2T(16) 4+ 32 = 160

o T(64) =2T(32) 4+ 64 = 384

Examining the numbers allows us to guess: T'(n) = nlgn

If this is guess is correct, it can be proven using mathematical induction.

What is mathematical induction?

(Note: more explanation is available in a wikipedia article.)

Is used to prove a formula with a single integer is true for all integers.

You have to show that the formula is true for at least one base case. (Show it is trur forn=1.)
Example: Show that the sum of n integers is S(n) = %

o Ttis true for base cases forn=1 and n = 2.

o We assume that it is true for n and prove that it must also be true for n + 1:

o By definition: S(n+1)=n+1+Sn)=n+1+ n(n+1)

o This can be re-written as: S(n + 1) = 2("+1)+"("+1) (nH)(nH) Q.E.D.

Proving that T(n) = 2T(n/2) + n = n Ig n by Mathematical Induction

We modify induction. Instead of proving that if T(n) implies T(n+1), we will show that if T(n)
is true then so is T(2n).

In other words, we will assume that n is a power of 2 (i.e. n = 2' and do mathematical
induction on i.)

The “guess”, T'(n) = 217'(n/2) + n = nlgn is clearly true for several base cases (n =1, 2, 4,
8...64) as demonstrated earlier.

Our inductive hypothesis is T'(n) = nlgn

We need to prove that 7'(2n) = 2nlg2n.

By definition, 7'(2n) = 27'(n) + 2n.

Using the inductive hypothesis, we obtain: 7'(2n) = 2nlgn + 2n

Factoring out 2n, we obtain: 7'(2n) = 2n(lgn + 1)

Noting that 1 = 1g 2, we can write: T'(2n) = 2n(lgn + 1g2)

Using the identity that log a + log b = log ab, we can say T'(2n) = 2nlg2n

Q.E.D.

Finding a guess by “unfolding” (aka “substitution”)

Previously we calculated 7(n) from the bottom up.
We can “unfold” it from the “top down” as follows:

Last modified: January 12, 2017 1.0

http://en.wikipedia.org/wiki/Mathematical_induction

COEA428 Lecture Notes: Week 1 g of 10

etc...
» If we assume that # is a power of 2, we would eventually obtain: T'(n) = nT'(n/n) + nlgn

* Since we have assumed T(1) = 0, this implies
T(n)=nT(n/n)+nlgn=nT(1)+nlgn=nx0+nlgn=nlgn

Finding a guess by drawing a recursion-tree

* We start by representing 7'(n) = 27'(n/2) +n =T (n/2) + T (n/2) + n as a graph where we
put the non-recursive part (z in this case) on the top row and put each recursive part on a row
below.

T(n/2) T(n/2)

* We now expand the tree diagram downwards:

/n / \2/

7N
/ // AN

/

T(n/4) T(n/4) T(n/4) T(n/4)

Asymptotic notation

Big-O

* We say that f(n) = O(g(n)) if there exist constants ¢ and n such that:

Last modified: January 12, 2017 1.0

COEA428 Lecture Notes: Week 1 90f10

f(n) < cg(n)foralln > ng

Big-Omega (12)

* We say that f(n) = Q(g(n)) if there exist constants ¢ and ng such that:
f(n) > cg(n) for all n > ng

Big Theta (©)

* We say that f(n) = ©(g(n)) if there exist constants ¢y, co and ng such that:
c19(n) < f(n) < cag(n)foralln > ng

* Equivalently, f(n) = ©(g(n))iff f(n) = O(g(n)) and f(n) = Q(g(n)).

Questions

Questions from these notes

1. An algorithm with complexity ©(y/n) takes 6 ms to solve a problem of size 1600. Estimate the
time to solve a problem of size 10,000.

2. Draw a recursion tree for T'(n) = 2T(n/2) + kin + ko. Guess the exact solution and prove it
by mathematical induction.

3. Draw a recursion tree for T'(n)=2T(n/4)+T(n/2)+n. Guess the solution.
Try to prove it

4. A proposed simpler implementation for Euclid's algorithm is:

unsigned long gcd(unsigned long big, unsigned long small) {
return small == 0 ? big : gcd(small, big % small);

}

Will this work? Explain. (You can try it!)

Last modified: January 12, 2017 1.0

COEA428 Lecture Notes: Week 1

Questions from CLRS textbook

10 of 10

1-1,2-1

Questions from my book

1.1,1.2,1.3,.1.4,1.5,1.9,1.13,1.15, 1.20, 1.22

References (text book and online)

e CLRS: Chapter1,2,3.1
* kclowes book: Chapter 1, 2.1. 2.2, 2.6, 4.1, 4.2, 4.3 (Click here)
* My C programming notes. (Click here)

* Wikipedia article on algorithms.

Last modified: January 12, 2017 1.0

https://en.wikipedia.org/wiki/Algorithm
http://www.ee.ryerson.ca/~kclowes/documents/CNotes.pdf
http://www.ee.ryerson.ca/~kclowes/documents/eaads.pdf

	COE428 Lecture Notes Week 1 (Week of January 9, 2017)
	Announcements
	Topics
	Informal analysis of selected algorithms
	Searching an unordered list (a linear algorithm)
	Searching an unordered list for minimum/maximum (a linear algorithm)
	Searching an ordered list for minimum (or maximum) (a constant time algorithm)
	Searching an ordered list for a specific value (a logarithmic algorithm)
	Remarks on algorithmic complexity

	What is an algorithm?
	Analysis of selected algorithms
	Selection sort
	Euclid's algorithm (and a first look at recursion)
	MergeSort
	Solving recurrences
	What is mathematical induction?
	Proving that T(n) = 2T(n/2) + n = n lg n by Mathematical Induction
	Finding a guess by “unfolding” (aka “substitution”)
	Finding a guess by drawing a recursion-tree

	Asymptotic notation
	Big-O
	Big-Omega ()
	Big Theta ()

	Questions
	Questions from these notes
	Questions from CLRS textbook
	Questions from my book

	References (text book and online)

