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Announcements 

• Course management distributed in class last week. 

• No labs this week.  Labs start next Monday, January 16. 

• Counselling hours (ENG-449): Mon 1 pm – 2 pm, Fri 2 pm – 3 pm, kclowes@ryerson.ca

Topics

• An informal look at some basic algorithms
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• Algorithm analysis examples

• Big-O (“Big Oh”), Big-  (“Big Theta”), Big-  (“Big Omega”) notations

• Discussion of lab 1

Informal analysis of selected algorithms

Searching an unordered list (a linear algorithm)

• How many items do you have to look at?

• If very lucky, the first one you look at is the one you're trying to find!  This is the best case.

• But if you're unlucky, it may be the last one you look at.

• If there are n items, you have to look at all of them in the worst case.

• If the item you are looking for is not in the list, you have to look at all n of them.

• In this course, we are almost always interested in the worst case.

• Searching a list with n items requires examining n elements in the worst case.

• If n is bigger, it takes more time.

• For example, if it takes you 1 minute to search a deck of 100 cards, then it will take 3 minutes 
to search a deck of 300 cards.

• Since the time for searching is proportional to the size of the list (n), we call this a linear 
algorithm.

Searching an unordered list for minimum/maximum (a linear algorithm)

• All items need to be examined.

• Consequently, this is also a linear algorithm.

Searching an ordered list for minimum (or maximum) (a constant time algorithm)

• A very simple algorithm:

• If looking for minimum, just look at the first item.

• I looking for the maximum, just look at the last item.

• No matter how big n is, you only have to look at one item.

• This is a constant time algorithm.

Searching an ordered list for a specific value (a logarithmic algorithm)

• The algorithm:
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• Look at the middle element.

• If it is what you are searching for, STOP.

• Otherwise, if the item you want is smaller than the middle element, repeast the search in the 
first half of the list; other wise repeat the search in the second half.

• In either case, the problem size is cut in half.

• For example, if n were 63, the problem would reduce to searching 31 elements.  Then 15, then 
7, then 3 and then 1 element.

• This is a logarithmic algorithm.

Remarks on algorithmic complexity

• A problem of size n may be solved by an algorithm that could be:

• Constant time: the time to solve the problem is independent of the problem size. 
Example: Finding the largest (or smallest) item in a sorted list.

• Logarithmic time: the time to solve the problem is proportional to the logarithm of the 
size, i.e. .  Example: “Binary search” to find an item in a sorted list.

• Linear time: . Example: Finding an item  (or the maximum or minimum) in an 
unordered list.

• Log-linear time: , Example: Optimal sort algorithms such as merge sort 
or heap sort.

• Quadratic time:  Example: Elementary sort algorithms such as bubble sort, 
insertion sort or selection sort.

• Knowing only the time for a particular size and the nature of the algorithm, it is possible to 
estimate the time for other sizes (assuming the size is large). Some examples:

• If a linear algorithm solves a problem of size 3000 in 5 ms, how long will it take to solve a 
problem of size 9000?

▪ Answer: 15 ms, because if the size is is 3 times bigger, the time will also increase by a 
factor of 3.

• If a quadratic algorithm solves a problem of size 3000 in 5 ms, how long will it take to solve
a problem of size 9000?

▪ Answer: 45 ms, because if the size is is 3 times bigger, the time will  increase by a factor
of .

• If a logarithmic algorithm solves a problem of size 1000 in 5 ms, how long will it take to 
solve a problem of size 1,000,000?
▪ Answer: 10 ms, because the logarithm of 1,000,000 is twice as big as the logarithm of 

1000.  i.e. 
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What is an algorithm?

An algorithm is a precise description of how to solve a problem and must have the following 
features:

• It must terminate in finite time.
• Each step must be precisely defined. (No ambiguity allowed.)
• There must be zero or more inputs.
• There are one or more outputs.

Analysis of selected algorithms

Selection sort

                   SelectionSort  Algorithm: Sort n cards

Step 1: If there are no cards to sort, then  STOP.  (Time per step: a; number steps: n + 1)

Step 2: Otherwise, find the smallest card, remove it and place it on top of 
the sorted card pile. (Time per step: X -- see below; number of steps: n)

Step 3: Go back to step 1. (Time per step: c; number of steps: n)

• Hence total time to sort = 

• Problem: Step 2 is not elementary; the time it takes depends on how many cards we have to 
examine to determine the minimum.  Thus X is not a constant.  To determine the minimum we 
have to examine n cards the first time, then n-1 the second time, n-2 the third time, etc. If the 
time to examine a card is 2b, then:

• So, total time to sort = 

• SelectionSort is a quadratic algorithm.

Euclid's algorithm (and a first look at recursion)

               Euclid's  Algorithm: Find greatest common divisor of big and small integers
                  Non-recursive version

Step 1: Set remainder = big mod small
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Step 2: If remainder is 0, answer is small. STOP
Step 3: Otherwise, Set big = small and Set small = remainder
Step 4: Go back to Step 1.

               Euclid's Algorithm: Find greatest common divisor of big and small integers
                  Recursive version

Step 1: Set remainder = big mod small
Step 2: If remainder is 0, answer is small. STOP
Step 3: Otherwise, find GCD of small and remainder using this algorithm

//Non-recursive version of gcd (in C)
unsigned int gcd(unsigned int big, unsigned int small) {

unsigned int remainder = big % small;
while(remainder!= 0) {

big = small;
small = remainder;
remainder = small % remainder;

}
return small;

}

//Recursive version of gcd (in C)
unsigned int gcd(unsigned int big, unsigned int small) {

unsigned int remainder = big % small;
return (remainder == 0)? small : gcd(small, remainder);

}

• The recursive version is shorter and, arguably, more “elegant”.

• Both versions implement the same algorithm and have the same computational complexity 
(they are both logarithmic: i.e.  time ).

• Many (most) algorithms in this course are best expressed recursively.

• This is especially true for “divide and conquer” algorithms.
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• A partial proof that the complexity is logarithmic:

◦ It can be shown that the worst possible case is when small and big are two sequential 
Fibonacci numbers.

◦ The gcd is 1 in this case and all the smaller Fibonacci numbers are generated as remainders.

◦ But  where  where  is the i'th Fibonacci number.

◦ Consequently, in the worst case, the number of steps is 

◦ In other words, Euclid's algorithm has logarithmic complexity.  (Recall, the logarithm base 
is irrelevant.)

MergeSort

MergeSort Algorithm (deck of n cards, time = T(n))
Step 1: If there is only one card (or none), STOP. (time = a)
Step 2: Divide the deck of cards in 2.             (time = b)
Step 3: Sort the left deck using this algorithm.   (time = T(n/2))
Step 4: Sort the right deck using this algorithm.  (time = T(n/2))
Step 5: Merge the two decks.                       (time = cn + d)

• By definition,  is the time to sort n cards.

• (Note: merging two sorted decks is a linear algorithm which is why the merge step 5 is a linear 
function of n. It is linear because we simply choose the smaller of the top card in the two decks 
and add it to the merged deck.)

• Adding up the times for each step, we get:

• This kind of equation where the function value depends on its value for smaller arguments) is 
called a recurrence.

Solving recurrences

• There is no “universal” algorithm for solving recurrences.  (This is similar to integration: 
sometimes you use integration by parts, sometimes trigonometric substitutions, sometimes other
methods...)

• Consider the simplified recurrence: 

• We also need a base case.  T(1) will be some constant.  For simplicity, let's assume T(1) = 0.

• Working “bottom up”, we have:

◦

◦
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◦

◦

◦

◦

• Examining the numbers allows us to guess: 
• If this is guess is correct, it can be proven using mathematical induction.

What is mathematical induction?

• (Note: more explanation is available in a wikipedia article.)

• Is used to prove a formula with a single integer is true for all integers.

• You have to show that the formula is true for at least one base case.  (Show it is trur for n = 1.)

• Example: Show that the sum of n integers is 

◦ It is true for base cases for n = 1 and n = 2.

◦ We assume that it is true for n and prove that it must also be true for n + 1:

◦ By definition: 

◦ This can be re-written as:  Q.E.D.

Proving that T(n) = 2T(n/2) + n = n lg n by Mathematical Induction

• We modify induction.  Instead of proving that if T(n) implies T(n+1), we will show that if T(n) 
is true then so is T(2n).

• In other words, we will assume that n is a power of 2 (i.e.  and do mathematical 
induction on i.)

• The “guess”,  is clearly true for several base cases (n = 1, 2, 4, 
8...64) as demonstrated earlier.

• Our inductive hypothesis is 
• We need to prove that .
• By definition, .
• Using the inductive hypothesis, we obtain: 
• Factoring out 2n, we obtain: 
• Noting that , we can write:  
• Using the identity that , we can say 
• Q.E.D.

Finding a guess by “unfolding” (aka “substitution”)

• Previously we calculated T(n) from the bottom up.
• We can “unfold” it  from the “top down” as follows:
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                 etc... 
• If we assume that n is a power of 2,  we would eventually obtain: 
• Since we have assumed T(1) = 0, this implies

Finding a guess by drawing a recursion-tree

• We start by representing  as a graph where we 
put the non-recursive part (n in this case) on the top row and put each recursive part on a row 
below.

                                                                                                                          

                                                          

• We now expand the tree diagram downwards:

                                                                                                                          

                                                                                                              

                                                   

Asymptotic notation

Big-O

• We say that  if there exist constants c and  such that:
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                   for all 

Big-Omega ( )

• We say that  if there exist constants c and  such that:

                   for all 

Big Theta ( )

• We say that  if there exist constants  and  such that:

                   for all 

• Equivalently,  iff  and .

Questions

Questions from these notes

1. An algorithm with complexity  takes 6 ms to solve a problem of size 1600.  Estimate the
time to solve a problem of size 10,000.

2. Draw a recursion tree for .  Guess the exact solution and prove it 
by mathematical induction.

3. Draw  a  recursion  tree  for  .   Guess  the  solution.
Try  to  prove  it.                              

                             

4. A proposed simpler implementation for Euclid's algorithm is: 

unsigned long gcd(unsigned long big, unsigned long small) {
      return small == 0 ? big : gcd(small, big % small);
}

            Will this work?  Explain. (You can try it!)
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Questions from CLRS textbook

1-1, 2-1

Questions from my book

1.1, 1.2, 1.3,.1.4, 1.5, 1.9,1.13,1.15, 1.20, 1.22

References (text book and online)

• CLRS:   Chapter 1, 2, 3.1 

• kclowes book: Chapter 1, 2.1. 2.2, 2.6, 4.1, 4.2, 4.3 (Click here)

• My C programming notes. (Click here)

• Wikipedia article on algorithms.
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