

GPU Auto-tuning Framework for Optimal Performance and Power

Consumption

Sunbal Cheema and Gul N. Khan

Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University, Toronto ON CANADA,

sunbal.cheema@torontomu.ca, gnkhan@torontomu.ca

ABSTRACT

An auto-tuning framework for GPU devices is presented for tuning

application kernels of OpenCL. The GPU tuner employs multi-

objective optimization methodology to improve the performance

and power consumption of applications. It efficiently explores a

user defined solution space comprising of possible tunable

algorithmic and hardware counter variations through code

transformations. The methodology targets GPU code tuning

situations where performance and energy consumption are critical.

The proposed framework is evaluated for 2D convolution kernels.

It utilizes a non-dominated sorting Genetic Algorithm with

hardware power sensor data for application code transformation

through code rewrite and validation. Various algorithmic variations

such as loop unrolling, caching, workgroup size and memory

utilization are applied. The final pareto optimal configurations code

utilized around 30% less power and 4% faster execution time. The

analysis shows the convergence of optimization, and 45%

improvement in standard deviation.

KEYWORDS

Auto-tuning, Code transformation, Multi-objective optimization,

GPU code regeneration, Performance power optimization

1 INTRODUCTION
According to the world economic forum, the technology sector

will be consuming 20% of the produced electricity by the year

2025 [1]. Portable, and sustainable (power consumption efficient)

computing is crucial for GPU-based technology and research.

Power consumption has also become a bottleneck for many

embedded and mobile platforms. Automatic code transformation

that provides better performance and power efficiency of

computing is of prime importance. As the CPU-GPU devices have

improved over the years, built-in sensors can be utilized to steer

the optimization process to a global optimal solution. Our research

focuses on tuning and validation based on the hardware counters

and with feedback tuning by using power measurement sensor

data. Salient features of our proposed framework are listed below.

• Multi-objective auto-tuning (Pareto Optimal Points)

• Integrated power and time calculation

• Online and offline auto-tuning

• User defined parameters and constraints

Various researchers have adopted different code tuning

methodologies such as iterative methods [2], differential

evolutions [3], machine learning [4, 5], empirical approaches [6,

7], and open-source exploration tools [8].

1.1 GPU Code Tuners

Lin et al. present an auto-tuner involving execution time and

energy consumption estimation model that employs simulated

annealing or Genetic Algorithm (GA) to determine an optimal

configuration for either power or performance [9]. OpenTuner is a

generic tuner with a user defined cost function, which generates

the search space based on the user defined parameters [10]. It

provides several search space optimization techniques such as

particle swarm optimization, random search, etc. OpenTuner

employs multi-objective optimization, however multi-objective

related details are not reported.

CLTune has been presented as a generic OpenCL and CUDA

kernel tuner [11]. It uses design search space exploration

strategies like particle swarm optimization, simulated annealing,

random and full search. ATF has been reported as a generic auto-

tuner, which is claimed to provide tuning of OpenCL kernels for

optimal performance and/or power consumption [12]. Since there

are no pareto optimal points reported, it is difficult for the user to

make decisions regarding kernel configurations. Kernel Tuning

Toolkit (KTT) is a kernel tuner that has been developed on the

concept of CLTune [13]. The Periscope Tuning Framework

provides tuning plugins for OpenCL kernels related to CPU, GPU,

and Xeon Phi coprocessors [14].

1.2 Power Estimation

Optimizing the power utilization of heterogenous systems is of

critical importance. One can find several studies regarding the

GPU profiling of power utilization using internal or external

sensors [15, 16]. CPUs related power utilization models show

some degree of convergence, but the GPU power utilization

models are not matured and recognized yet. CPU power is mostly

measured using a linear model however, similar practice is not

valid for GPUs. Some researchers argue that statistical linear

regression models are more appropriate for GPUs [17]. Song et al.

claim that these models are inadequate to monitor the intricacies

of GPU [18]. They improved linear regression model by utilizing

tools such as NVIDIA NVML and CUPTI [19, 20].

Adhinarayanan et. al. applied instantaneous power utilization and

averaging to get the final value [21]. In the past, power

measurement models were calculated with external sensors.

However, recent GPUs have on board power sensors that provide

instantaneous power measurement [22].

mailto:sunbal.cheema@torontomu.ca
mailto:gnkhan@torontomu.ca

2 MOKAT FRAMEWORK
Our tuning framework for OpenCL kernels provides multi-

objective optimization for performance and power utilization. A

search space comprising of user defined tunable variables is

created. An elitist Non-dominated Sorting Genetic Algorithm

(NSGA-II [23]) in conjunction with the integrated power

calculation is employed to compute a pareto optimal solution set.

The proposed auto tuning framework, MOKAT (Multi-Objective

Kernel Auto-Tuner) is depicted in Figure 1.

Kernel optimization is a combinatorial optimization problem,

which is a process of searching the maximum or minimum value

from a function. Software tuning and code regeneration is a multi-

objective combinatorial optimization problem that strives to find

the optimal solution in all possible configurations [24]. The search

space is discrete and the resulting pareto optimal solution will not

be necessarily a continuous function. In this paper, the quality of

the resulting solution set is compared by applying multiple GPU

specific objective functions (time, power, energy, etc.) to be

optimized. Each objective function will be either minimized or

maximized. MOKAT minimizes both objective functions of

power utilization and execution time.

2.1 Search Space Creation

Search space is created by iterating through all possible values of

the given variables. Constraints are applied to prune the search

space and remove invalid configurations. For ‘n’ number of

variables, each variable 𝑉𝑘 has 𝑉𝑘
𝑥 number of possible values and

the number of possible configurations would be: 𝑉 = {𝑉1, 𝑉2. . . 𝑉𝑛}

1

n

x

kPossibleConfigurations V
 

=  
 
 (1)

For ‘m’ number of constraints on variables, the number of

constraint values are 𝐶𝑙
𝑥: 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑀}

()
1 1

n m

x x

k lSearch Space X V C
   

= −   
   
  (2)

2.2 OpenCL Kernel

OpenCL offers functional portability in terms of its execution on

different devices; however, it does not offer performance

portability. When a tuned code achieves high performance on one

device then executing the same code on another device may often

perform poorly. Therefore, the code must be re-tuned for each

new device before its execution. The problem of performance

portability is not just related to OpenCL. This issue arises when

we try to transfer a code from one device to another of a different

generation or vendor. However, this problem is aggravated with

OpenCL as it is designed for a greater range of heterogenous

devices with different architectures.

Figure 1: MOKAT Framework

2.3 Power Calculation

MOKAT utilizes the NVIDIA NVML [19] to acquire the internal

sensor values of power consumption for GPU utilization above

zero. It obtains readings at 10msec intervals and uses the average

of these readings during the execution of kernel. Power utilization

for high performance computer (HPC) systems is determined

either through external or internal techniques. Many researchers

have employed internal sensors for power calculations. Ferro and

others have used GPU sensors [25], and Schöne et al. have

calculated energy with the power measured during a given time

interval [26].

2.4 Non-dominated Sorting Genetic Algorithm

Non-dominated Sorting Genetic Algorithm (NSGA-II) is an

efficient algorithm featuring diversity preservation mechanism

[23]. Initial parent population 0popP of size N is created from

the X search space created by the OpenCL kernel configuration.

Child population 0popQ of size N is created by crossover and

mutation of the parent population. The two populations are joined

into a 2N size of 0popR population.

 : 1, 2 ,..,k k kpopR popP popQ where k gen=  = (3)

Non-dominated sorting is applied onto the 0popR

population to get the non-dominated Fronts i.e., 1 2, ,.. nF F F .

()1 2 1 2,.. ,..k npopP F F F where size F F N=     = (4)

After the non-dominated sorting operation, the Fronts are

joined to form the kpopP , where 1,2,..,k gen= . We

applied crowding sort and selected the configuration using

crowding distance technique given in Figure 2. After creating the

new popP , mutation and crossover processes are applied to get

the child population of size N. The Genetic Algorithm is

implemented by employing real variables. Genetic operators affect

the performance of evolutionary process. We utilized single point

crossover and random gene mutation process. Power utilization

and execution time of the kernel is used to evaluate the final

dominance.

Figure 2: Crowding Distance Technique

3 CASE STUDY: CONVOLUTION KERNEL
Since the advent of GPUs, their usage has increased continuously,

and many data-intensive applications are also being executed by

GPUs. GPUs are not limited to supercomputing and researchers in

every field are using them for operational intensive applications

such as neural networks. For that reason, research has been done

on how deep learning applications run efficiently on HPC

systems. Convolution is the most common operation in neural

networks. We have employed the highly tunable convolution in

Werkhoven’s work for convolution kernel tuning [27].

Description of all the tunable parameters of 2D convolution

kernel are given in Table 1. The total amount of work is divided

into workgroups of size TBX and TBY, where TBX and TBY are

the workgroup X-axis and Y-axis dimensions. WPTX and WPTY

are defined as the work per thread. The architecture of the GPU

dictates what is the best possible combination of work per thread

in both dimensions. A small value of work per thread can cause a

higher communication overhead. Vector width, V is either less or

equal to work per thread value. It is applied only when the

LOCAL in terms of cache is at level 2 (see Table 1). UF

(unrolling factor) value depends on the filter size, which is either

enabled or disabled for loops. PD defines the local memory

padding. The parameter LOCAL is for three caching stages: no

local memory, every thread caches the value at its coordinates (x,

y), and helper threads are launched. We analyzed the 2D

convolution kernel for 3424 possible number of configurations.

We used the filter size of 7x7 for an image size 8192x4096. The

results show that the process varies by analyzing the MOKAT

results in different perspectives and explained in the next section.

Table 1: Tunable Variables of 2D Convolution Kernel

Variable Name

Detail
Possible

Values

TBX, TBY

Workgroup size
8, 16, 32,

64

WPTX,WPTY Work per Thread 1, 2, 4, 8

LOCAL Caching 0, 1, 2

V Vector Width 1, 2, 4

UF
 Loop Unrolling

Factor

1, Filter

Size

PD Padding 0, 1

3.1 Effect of NSGA-II Parameters

We evaluated MOKAT for power and performance by selecting

different values of GA parameters for 2D convolution as shown in

Table 2. For ease of usage, the GA parameters can be entered as

runtime variables. User can input a list of various GA parameters

such as number of generations (Gen), population size (Pop),

mutation probability (MP) and crossover probability (CP) [28].

MOKAT is evaluated in detail for eight variations of the NSGA-II

parameters. We have summarized Eight cases in Table 2. It can be

concluded that higher mutation probability adds diversity to the

solution. Therefore the algorithm needs a large number of

generations for converging to optimal configuration as for Case 5.

It can also be observed in Case no 4 that by having lower

mutations and crossover probabilities will result in fewer number

of pareto optimal points, as it does not have diversity. For optimal

results one should employ the following steps in the selection of

optimal GA parameters for the auto-tuner.

• Select a population size and number of generations relative

to each other and the search space size.

• For the search space X, MOKAT should iterate at least 30%

of X i.e., X_n ≥ 30% of X, where X_n is the total number of

configurations executed on the GPU.

For NSGA-II, if the generation size is 30 it will iterate through

60 configurations for the 1st generation. The number of

configurations that will be iterated (X_n) can be calculated by

equation (5).

𝑋𝑛 = (𝑃𝑝 ∗ 2) + (𝑃𝑜𝑝 ∗ (𝐺𝑒𝑛 − 1)) (5)

Table 2: NSGA-II Optimization Parameters and Pareto-

Optimal Points with Kernel Execution time, Power & Energy.

Whereas: a) Gen: Generations, b) Pop: Populations, c) CP: Crossover

Probability, d) MP: Mutation Probability. Note 1: The points sorted in order of

increasing power.

Convolution search space is not exceptionally large, and we

have taken equation (5) into consideration. Therefore, the

population size becomes a don’t care condition if it is not

significantly lower than the requirement. The number of

generations will affect the quality of pareto points providing the

most optimal solution.

3.2 Quality of Optimal Configurations

The best pareto front is for Case 7 as shown in Figure 3. It has

pareto-points with the lowest energy and execution time. The

main reason is the higher number of generations, which provide

enough time for the algorithm to converge to the near global

optimal configurations. Although the number of generations (Gen)

for Case 7 and 8 are equal, the quality of Pareto-optimal points for

Case 7 are significantly better than Case 8. Case 7 has lower

population size that reduces the chances of redundant exploration,

and the algorithm converges to an optimal solution. A detailed

search space graph for Case 7 is depicted in Figure 4.

3.3 Case 7: The Best Reported Solution Set

The details of the best solution i.e. Case 7 is provided in Figure 4.

All the best possible fronts of the final generation are drawn to

understand the algorithm convergence towards the best solution.

All the points in the objective space, which are considered by the

auto-tuner during the tuning process can be observed in Figure 4.

All the configurations in the objective space with respect to power

and time is depicted in Figure 4 providing a clear insight. It shows

how the first population of Gen 1 represented by purple dot (.) is

spread in the objective space from top right (the worst) to bottom

left (the most optimal area for minimization). Last Generation is

also shown by the orange dot (.) that converges to the bottom-left

area after 50 generations. The best and globally most optimal

Pareto-front is represented by an orange triangle shaped legend,

indicating the best possible configurations recorded from all the

seven cases. Table 3 provides the details of all the variables for

the most optimal configurations given by equation (1). After

considering the kernel configurations from 1st generation of Case

7 and few Pareto optimal configurations, we noticed a 30%

reduction in power and 4% in execution time.

Figure 3: Time vs Power for the Pareto Optimal Fronts (for

Table 2 Data)

Figure 4: Generation 50, Population 30, Crossover Probability

0.5 & Mutation Probability 0.5 for Tesla K20c

3.4 GPU Tuning Variable Values

Table 3 lists the optimization variable and tunable parameter

values regarding the Pareto-optimal solutions for all the eight

cases. Case 7 (see Table 2 and Table 3) is selected for detailed

discussion on the impact of tunable variables. It can be observed

from Table 2 and Table 3 that the Pareto-point 4 of case 7 has

minimum execution time, and it has the highest power/energy as

compared to other Pareto-points. Pareto-point 4 has a workgroup

size X:Y equal to 32:8 and all the threads use cache to store their

coordinate values. The workgroup per thread values (X:Y) are

(2:4) and a vector width of 2, where loop unrolling factor is 7.

Considering all the pareto-fronts’ values, it can be concluded that

the higher values of the workgroup size do not always lead to the

most reliable solution. Increasing the number of works per thread

and workgroup size will add latency to access the global memory.

In other words, GPU occupancy is limited by the registers

available, local memory bandwidth and the hardware scheduler.

The variation in the parameter values for Case 7 suggests a

workgroup size of 8x32, 32x8, or 16x16 (a total of 256) as seen in

Table 3. It can also be observed that for smaller workgroup size,

the work per thread value is higher for keeping the GPU

occupancy at a fair level. This is to compensate for the work loss.

Points 3 and 4 have low execution times and both have utilized the

E

T

 E T C K

C C C C C C C C

T

 W

S S T C K

R

loop unrolling of 7 (filter size). The energy difference between the

best and the worst point is 0.92kJ. It can be concluded that the

four Pareto-points are the best choices.

Table 3: Best Pareto-Optimal Variable/Parameter Values 2D

Convolution Kernel.

Where as: 1) Work Group Size X 2) Work Group Size Y 3) Caching Strategy 4)

Work Per Thread X 5) Work Per Thread Y 6) Vector Width 7) Loop Unrolling

Factor 8) Padding 9) Work Group Size X- XL 10) Work Group Size Y-XL.

We can infer from the results shown in Table 3 that the best

workgroup size is multiple of 256, and caching value ‘1’ is better

if the workgroup size is not less than 256. Loop unrolling factor at

its best is 7 as it helps to improve the performance without

significantly affecting the power. The higher values of TBX_XL

and TBY_XL needs a caching value of 2, which has always

increased the power values of the kernel.

3.5 Probability Distributions

A detailed analysis of Case 1 to Case 8 is depicted in Figure 5 and

Figure 6 to show the probability distribution with respect to Power

(Left Green) and Time (Right Blue). Figure 5 shows the

probability distribution of the first generation for all the cases and

Figure 6 provides the probability distribution for the final

generation of the eight cases. It can be observed that the execution

time has relatively less converging trend, but the probability

distribution for power indicates a positive trend towards low

power utilization in the final generation. We have discussed the

best case (Case 7) earlier where Figure 4 indicates the power

reduction by 30% and execution time reduction by 4%. The power

and time measurments are summed up and standard deviation is

calculated for the overall 1st and last population. After calculating

the best case scenerio (i.e. Case 7), 45% reduction in standard

deviation is observed that means the algorithm converges to the

most optimal solution.

4 CONCLUSIONS
The proposed GPU code tuner is evaluated for 2D convolution

kernel (test/benchmark problem) on a Tesla GPU. A detailed

account of optimal configuration sets for the benchmark kernel is

provided and discussed including their execution time and average

power consumption. It is concluded that the unroll factor speeds

up the process without affecting the power values. The energy

consumption of a kernel and its power utilization shows a direct

relation to each other as indicated in Table 2. Our framework

provides optimal diverse solution for appropriately selected GA

parameters. The most promising contribution of this research is

that it provides a powerful, flexible, and generic GPU code tuning

tool for designing energy efficient high performance computing

applications without compromising computational performance.

The HPC design engineer can systematically select the optimal

configuration depending on the application’s objective priority.

ACKNOWLED EMENT

Authors acknowledge the financial support from FEAS, Toronto

Metropolitan Univ., and GPU-based HPC Systems from CMC.

REFERENCES
[1] N. Jones. 2018. How to stop data centres from gobbling up the world's electricity.

Nature News Feature, 12 Sept. 2018. [Online]. Available:

https://www.nature.com/articles/d41586-018-06610-y [Accessed: Feb. 2023].

[2] J. F. Fabeiro, D. Andrade, and B. B. Fraguela. 2013. OCLoptimizer: An Iterative

Optimization Tool for OpenCL. Procedia Computer Science, vol. 18, pp. 1322–1331.

[3] H. Jordan et al. 2012. A multi-objective auto-tuning framework for parallel codes.

Int. Conf. on High Performance Computing, Networking, Storage and Analysis, pp.

1-12.

[4] A. Magni, C. Dubach, and M. O'Boyle. 2014. Automatic optimization of thread-

coarsening for graphics processors. 23rd Int. Conf. on Parallel Architectures and

Compilation, pp. 455-466.

[5] T. L. Falch and A. C. Elster. 2015. Machine Learning based Auto-Tuning for

Enhanced OpenCL Performance Portability. IEEE International Parallel and

Distributed Processing Symposium Workshop, pp. 1231-1240.

[6] J. Fang, H. Sips, P. Jaaskelainen, and A. L. Varbanescu. 2014. Grover: Looking

for Performance Improvement by Disabling Local Memory Usage in OpenCL

Kernels. Int. Conf. on Parallel Processing, 2014, pp. 162-171.

[7] S. Hirasawa, H. Takizawa, and H. Kobayashi. 2015. A Verification Framework

for Streamlining Empirical Auto-Tuning. 3rd Int. Symp. on Computing and

Networking, pp. 508-514.

[8] E. Paone et al. 2015. Customization of OpenCL Applications for Efficient Task

Mapping under Heterogeneous Platform Constraints. Design, Automation and Test in

Europe Conference & Exhibition (DATE), pp. 736-741.

[9] C. Lin, S. Teng, and P. Hsiung. 2016. Auto-tuning for GPGPU applications using

performance and energy model. J. of Systems Architecture, vol. 62, pp. 40-53.

[10] J. Ansel et al. 2014. OpenTuner: An extensible framework for program

autotuning. International Conference on Parallel Architecture and Compilation

Techniques (PACT), pp. 303-315.

[11] C. Nugteren and V. Codreanu. 2015. CLTune: A Generic Auto-Tuner for

OpenCL Kernels. IEEE 9th International Symposium on Embedded Multicore/Many-

core Systems-on-Chip, Turin Italy, pp. 195-202.

[12] A. Rasch, M. Haidl, and S. Gorlatch. 2017. ATF: A Generic Auto-Tuning

Framework. IEEE 19th International Conference on High Performance Computing

and Communication, pp. 64-71.[13] F. Petrovič et al. 2020. A benchmark set of

highly-efficient CUDA and OpenCL kernels and its dynamic autotuning with Kernel

Tuning Toolkit. Future Generation Computer Systems, vol. 108, pp. 161–177.

[14] R. Mijaković, M. Firbach, and M. Gerndt. 2016. An architecture for flexible

auto-tuning: The Periscope Tuning Framework 2.0. 2nd International Conference on

Green High Performance Computing (ICGHPC), pp. 1-9.

[15] R. A. Bridges, N. Imam, and T. M. Mintz. 2016. Understanding GPU Power: A

Survey of Profiling, Modeling, and Simulation Methods. ACM Computing Surveys,

vol. 49, no. 3, pp. 41:1–41:27.

[16] Terpstra, H. Jagode, H. You and J. Dongarra. 2009. Collecting performance data

with PAPI-C. In Tools for High Performance Computing, M. Müller, M. Resch, A.

Schulz and W. Nagel, Eds., Springer, Berlin Heidelberg, pp. 157–173.

[17] H. Nagasaka et al. 2010. Statistical Power Modeling of GPU Kernels Using

Performance Counters. IEEE Int. Conf. on Green Computing, pp. 115–122.

Figure 5: First Generation Probability Distribution of 2D Convolution Kernels - Power and Execution Time

Figure 6: Last Generation Probability Distribution of 2D Convolution Kernels - Power and Execution Time

[18] S. Song, C. Su, B. Rountree, and K. W. Cameron. 2013. A Simplified and

Accurate Model of Power-Performance Efficiency on Emergent GPU Architectures.

Int. Symp. on Parallel and Distributed Processing, pp. 673–686.

[19] NVIDIA. NVML API Reference Manual. Available online:

https://developer.nvidia.com/nvidia-management-library-nvml

[20] CUPTI: User’s Guide, NVIDIA Corporation, July 2013. Available online:

https://docs.nvidia.com/cuda/cupti/index.html

[21] V. Adhinarayanan, B. Subramaniam, and W. chun Feng. 2016. Online Power

Estimation of Graphics Processing Units. 16th IEEE/ACM Int. Symp. on Cluster,

Cloud and Grid Computing, Cartagena, Columbia, pp. 245–254.

[22] M. Burtscher, I. Zecena, and Z. Zong. 2014. Measuring GPU power with the

K20 built-in sensor. ACM Workshop on General Purpose Processing Using GPUs,

pp. 28-36.

[23] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. 2002. A fast and elitist

multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary

Computation, vol. 6, no. 2, pp. 182-197.

[24] A. Blot, M. Kessaci, and L. Jourdan. 2018. Survey and unification of local

search techniques in metaheuristics for multi-objective combinatorial

optimisation. Journal of Heuristics, vol. 24, no. 6, pp. 853-877.

[25] M. Ferro, A. Yokoyama, V. Klôh, G. Silva, R. Gandra, R. Bragança ̧ A. Bulcão,

B. Schulze. 2017. Analysis of GPU Power Consumption Using Internal Sensors. 16th

Workshop em Desempenho de Sistemas Computacionais e de Comunicação, pp.

1698-1711.

[26] J. Schöne et al. 2014. Tools and Methods for Measuring and Tuning the Energy

Efficiency of HPC Systems. Scientific Programming, vol. 22, pp. 273–283.

[27] B. Van Werkhoven, J. Maassen, H. E. Bal, and F. J. Seinstra. 2014. Optimizing

Convolution Operations on GPUs Using Adaptive Tiling. Future Generation

Computer Systems, vol. 30, pp. 14–26.

[28] C. A. Coello. 2000. An updated Survey of GA-based multi-objective Optimizing

Techniques. ACM Computing Surveys, vol. 32, no. 2 pp. 109–143.

