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ABSTRACT 

An auto-tuning framework for GPU devices is presented for tuning 

application kernels of OpenCL. The GPU tuner employs multi-

objective optimization methodology to improve the performance 

and power consumption of applications. It efficiently explores a 

user defined solution space comprising of possible tunable 

algorithmic and hardware counter variations through code 

transformations. The methodology targets GPU code tuning 

situations where performance and energy consumption are critical. 

The proposed framework is evaluated for 2D convolution kernels. 

It utilizes a non-dominated sorting Genetic Algorithm with 

hardware power sensor data for application code transformation 

through code rewrite and validation. Various algorithmic variations 

such as loop unrolling, caching, workgroup size and memory 

utilization are applied. The final pareto optimal configurations code 

utilized around 30% less power and 4% faster execution time. The 

analysis shows the convergence of optimization, and 45% 

improvement in standard deviation. 
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1 INTRODUCTION 
According to the world economic forum, the technology sector 

will be consuming 20% of the produced electricity by the year 

2025 [1]. Portable, and sustainable (power consumption efficient) 

computing is crucial for GPU-based technology and research. 

Power consumption has also become a bottleneck for many 

embedded and mobile platforms. Automatic code transformation 

that provides better performance and power efficiency of 

computing is of prime importance. As the CPU-GPU devices have 

improved over the years, built-in sensors can be utilized to steer 

the optimization process to a global optimal solution. Our research 

focuses on tuning and validation based on the hardware counters 

and with feedback tuning by using power measurement sensor 

data. Salient features of our proposed framework are listed below. 

• Multi-objective auto-tuning (Pareto Optimal Points) 

• Integrated power and time calculation 

• Online and offline auto-tuning 

• User defined parameters and constraints 

 

Various researchers have adopted different code tuning 

methodologies such as iterative methods [2], differential 

evolutions [3], machine learning [4, 5], empirical approaches [6, 

7], and open-source exploration tools [8]. 

1.1  GPU Code Tuners 

Lin et al. present an auto-tuner involving execution time and 

energy consumption estimation model that employs simulated 

annealing or Genetic Algorithm (GA) to determine an optimal 

configuration for either power or performance [9]. OpenTuner is a 

generic tuner with a user defined cost function, which generates 

the search space based on the user defined parameters [10]. It 

provides several search space optimization techniques such as 

particle swarm optimization, random search, etc. OpenTuner 

employs multi-objective optimization, however multi-objective 

related details are not reported. 

CLTune has been presented as a generic OpenCL and CUDA 

kernel tuner [11]. It uses design search space exploration 

strategies like particle swarm optimization, simulated annealing, 

random and full search. ATF has been reported as a generic auto-

tuner, which is claimed to provide tuning of OpenCL kernels for 

optimal performance and/or power consumption [12]. Since there 

are no pareto optimal points reported, it is difficult for the user to 

make decisions regarding kernel configurations. Kernel Tuning 

Toolkit (KTT) is a kernel tuner that has been developed on the 

concept of CLTune [13]. The Periscope Tuning Framework 

provides tuning plugins for OpenCL kernels related to CPU, GPU, 

and Xeon Phi coprocessors [14]. 

1.2  Power Estimation 

Optimizing the power utilization of heterogenous systems is of 

critical importance. One can find several studies regarding the 

GPU profiling of power utilization using internal or external 

sensors [15, 16]. CPUs related power utilization models show 

some degree of convergence, but the GPU power utilization 

models are not matured and recognized yet. CPU power is mostly 

measured using a linear model however, similar practice is not 

valid for GPUs. Some researchers argue that statistical linear 

regression models are more appropriate for GPUs [17]. Song et al. 

claim that these models are inadequate to monitor the intricacies 

of GPU [18]. They improved linear regression model by utilizing 

tools such as NVIDIA NVML and CUPTI [19, 20]. 

Adhinarayanan et. al. applied instantaneous power utilization and 

averaging to get the final value [21]. In the past, power 

measurement models were calculated with external sensors. 

However, recent GPUs have on board power sensors that provide 

instantaneous power measurement [22]. 
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2 MOKAT FRAMEWORK 
Our tuning framework for OpenCL kernels provides multi-

objective optimization for performance and power utilization. A 

search space comprising of user defined tunable variables is 

created. An elitist Non-dominated Sorting Genetic Algorithm 

(NSGA-II [23]) in conjunction with the integrated power 

calculation is employed to compute a pareto optimal solution set. 

The proposed auto tuning framework, MOKAT (Multi-Objective 

Kernel Auto-Tuner) is depicted in Figure 1. 

Kernel optimization is a combinatorial optimization problem, 

which is a process of searching the maximum or minimum value 

from a function. Software tuning and code regeneration is a multi-

objective combinatorial optimization problem that strives to find 

the optimal solution in all possible configurations [24]. The search 

space is discrete and the resulting pareto optimal solution will not 

be necessarily a continuous function. In this paper, the quality of 

the resulting solution set is compared by applying multiple GPU 

specific objective functions (time, power, energy, etc.)  to be 

optimized. Each objective function will be either minimized or 

maximized. MOKAT minimizes both objective functions of 

power utilization and execution time. 

2.1  Search Space Creation 

Search space is created by iterating through all possible values of 

the given variables. Constraints are applied to prune the search 

space and remove invalid configurations. For ‘n’ number of 

variables, each variable 𝑉𝑘 has 𝑉𝑘
𝑥 number of possible values and 

the number of possible configurations would be: 𝑉 = {𝑉1, 𝑉2. . . 𝑉𝑛} 
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2.2  OpenCL Kernel 

OpenCL offers functional portability in terms of its execution on 

different devices; however, it does not offer performance 

portability. When a tuned code achieves high performance on one 

device then executing the same code on another device may often 

perform poorly. Therefore, the code must be re-tuned for each 

new device before its execution. The problem of performance 

portability is not just related to OpenCL. This issue arises when 

we try to transfer a code from one device to another of a different 

generation or vendor. However, this problem is aggravated with 

OpenCL as it is designed for a greater range of heterogenous 

devices with different architectures. 

 
Figure 1: MOKAT Framework 

2.3  Power Calculation 

MOKAT utilizes the NVIDIA NVML [19] to acquire the internal 

sensor values of  power consumption for GPU utilization above 

zero. It obtains readings at 10msec intervals and uses the average 

of these readings during the execution of kernel. Power utilization 

for high performance computer (HPC) systems is determined 

either through external or internal techniques. Many researchers 

have employed internal sensors for power calculations. Ferro and 

others have used GPU sensors [25], and Schöne et al. have 

calculated energy with the power measured during a given time 

interval [26]. 



 

 

2.4  Non-dominated Sorting Genetic Algorithm 

Non-dominated Sorting Genetic Algorithm (NSGA-II) is an 

efficient algorithm featuring diversity preservation mechanism 

[23]. Initial parent population 0popP  of size N is created from 

the X  search space created by the OpenCL kernel configuration. 

Child population 0popQ  of size N is created by crossover and 

mutation of the parent population. The two populations are joined 

into a 2N size of 0popR  population. 

           :  1, 2 ,..,k k kpopR popP popQ where k gen=  =  (3) 

Non-dominated sorting is applied onto the 0popR  

population to get the non-dominated Fronts i.e., 1 2, ,.. nF F F . 

( )1 2 1 2,..        ,..k npopP F F F where size F F N=     =  (4) 

After the non-dominated sorting operation, the Fronts are 

joined to form the kpopP , where 1,2,..,k gen= . We 

applied crowding sort and selected the configuration using 

crowding distance technique given in Figure 2. After creating the 

new popP , mutation and crossover processes are applied to get 

the child population of size N. The Genetic Algorithm is 

implemented by employing real variables. Genetic operators affect 

the performance of evolutionary process. We utilized single point 

crossover and random gene mutation process. Power utilization 

and execution time of the kernel is used to evaluate the final 

dominance. 

 

 
Figure 2: Crowding Distance Technique 

3 CASE STUDY: CONVOLUTION KERNEL 
Since the advent of GPUs, their usage has increased continuously, 

and many data-intensive applications are also being executed by 

GPUs. GPUs are not limited to supercomputing and researchers in 

every field are using them for operational intensive applications 

such as neural networks. For that reason, research has been done 

on how deep learning applications run efficiently on HPC 

systems. Convolution is the most common operation in neural 

networks. We have employed the highly tunable convolution in 

Werkhoven’s work for convolution kernel tuning [27]. 

Description of all the tunable parameters of 2D convolution 

kernel are given in Table 1. The total amount of work is divided 

into workgroups of size TBX and TBY, where TBX and TBY are 

the workgroup X-axis and Y-axis dimensions. WPTX and WPTY 

are defined as the work per thread. The architecture of the GPU 

dictates what is the best possible combination of work per thread 

in both dimensions. A small value of work per thread can cause a 

higher communication overhead. Vector width, V is either less or 

equal to work per thread value. It is applied only when the 

LOCAL in terms of cache is at level 2 (see Table 1). UF 

(unrolling factor) value depends on the filter size, which is either 

enabled or disabled for loops. PD defines the local memory 

padding. The parameter LOCAL is for three caching stages: no 

local memory, every thread caches the value at its coordinates (x, 

y), and helper threads are launched. We analyzed the 2D 

convolution kernel for 3424 possible number of configurations. 

We used the filter size of 7x7 for an image size 8192x4096. The 

results show that the process varies by analyzing the MOKAT 

results in different perspectives and explained in the next section. 

 

Table 1: Tunable Variables of 2D Convolution Kernel 

Variable Name 
 

Detail 
Possible 

Values 

TBX, TBY 
 

Workgroup size 
8, 16, 32, 

64 

WPTX,WPTY  Work per Thread 1, 2, 4, 8 

LOCAL  Caching 0, 1, 2 

V  Vector Width 1, 2, 4 

UF 
 Loop Unrolling 

Factor 

1, Filter 

Size 

PD  Padding 0, 1 

3.1  Effect of NSGA-II Parameters 

We evaluated MOKAT for power and performance by selecting 

different values of GA parameters for 2D convolution as shown in 

Table 2. For ease of usage, the GA parameters can be entered as 

runtime variables. User can input a list of various GA parameters 

such as number of generations (Gen), population size (Pop), 

mutation probability (MP) and crossover probability (CP) [28]. 

MOKAT is evaluated in detail for eight variations of the NSGA-II 

parameters. We have summarized Eight cases in Table 2. It can be 

concluded that higher mutation probability adds diversity to the 

solution. Therefore the algorithm needs a large number of 

generations for converging to optimal configuration as for Case 5. 

It can also be observed in Case no 4 that by having lower 

mutations and crossover probabilities will result in fewer number 

of pareto optimal points, as it does not have diversity. For optimal 

results one should employ the following steps in the selection of 

optimal GA parameters for the auto-tuner. 

• Select a population size and number of generations relative 

to each other and the search space size. 

• For the search space X, MOKAT should iterate at least 30% 

of X i.e., X_n ≥ 30% of X, where X_n is the total number of 

configurations executed on the GPU. 

For NSGA-II, if the generation size is 30 it will iterate through 

60 configurations for the 1st generation. The number of 

configurations that will be iterated (X_n) can be calculated by 

equation (5). 



 

 

𝑋𝑛 = (𝑃𝑝 ∗ 2) + (𝑃𝑜𝑝 ∗ (𝐺𝑒𝑛 − 1))   (5) 

Table 2: NSGA-II Optimization Parameters and Pareto-

Optimal Points with Kernel Execution time, Power & Energy. 

 
Whereas: a) Gen: Generations, b) Pop: Populations, c) CP: Crossover 

Probability, d) MP: Mutation Probability. Note 1: The points sorted in order of 

increasing power. 

 

Convolution search space is not exceptionally large, and we 

have taken equation (5) into consideration. Therefore, the 

population size becomes a don’t care condition if it is not 

significantly lower than the requirement. The number of 

generations will affect the quality of pareto points providing the 

most optimal solution. 

3.2  Quality of Optimal Configurations 

The best pareto front is for Case 7 as shown in Figure 3. It has 

pareto-points with the lowest energy and execution time. The 

main reason is the higher number of generations, which provide 

enough time for the algorithm to converge to the near global 

optimal configurations. Although the number of generations (Gen) 

for Case 7 and 8 are equal, the quality of Pareto-optimal points for 

Case 7 are significantly better than Case 8. Case 7 has lower 

population size that reduces the chances of redundant exploration, 

and the algorithm converges to an optimal solution. A detailed 

search space graph for Case 7 is depicted in Figure 4. 

3.3  Case 7: The Best Reported Solution Set 

The details of the best solution i.e. Case 7 is provided in Figure 4. 

All the best possible fronts of the final generation are drawn to 

understand the algorithm convergence towards the best solution. 

All the points in the objective space, which are considered by the 

auto-tuner during the tuning process can be observed in Figure 4. 

All the configurations in the objective space with respect to power 

and time is depicted in Figure 4 providing a clear insight. It shows 

how the first population of Gen 1 represented by purple dot (.) is 

spread in the objective space from top right (the worst) to bottom 

left (the most optimal area for minimization). Last Generation is 

also shown by the orange dot (.) that converges to the bottom-left 

area after 50 generations. The best and globally most optimal 

Pareto-front is represented by an orange triangle shaped legend, 

indicating the best possible configurations recorded from all the 

seven cases. Table 3 provides the details of all the variables for 

the most optimal configurations given by equation (1). After 

considering the kernel configurations from 1st generation of Case 

7 and few Pareto optimal configurations, we noticed a 30% 

reduction in power and 4% in execution time. 

 

 
Figure 3: Time vs Power for the Pareto Optimal Fronts  (for 

Table 2 Data) 

 

 
Figure 4: Generation 50, Population 30, Crossover Probability 

0.5 & Mutation Probability 0.5 for Tesla K20c 

3.4  GPU Tuning Variable Values 

Table 3 lists the optimization variable and tunable parameter 

values regarding the Pareto-optimal solutions for all the eight 

cases. Case 7 (see Table 2 and Table 3) is selected for detailed 

discussion on the impact of tunable variables. It can be observed 

from Table 2 and Table 3 that the Pareto-point 4 of case 7 has 

minimum execution time, and it has the highest power/energy as 

compared to other Pareto-points. Pareto-point 4 has a workgroup 

size X:Y equal to 32:8 and all the threads use cache to store their 

coordinate values. The workgroup per thread values (X:Y) are 

(2:4) and a vector width of 2, where loop unrolling factor is 7. 

Considering all the pareto-fronts’ values, it can be concluded that 

the higher values of the workgroup size do not always lead to the 

most reliable solution. Increasing the number of works per thread 

and workgroup size will add latency to access the global memory. 

In other words, GPU occupancy is limited by the registers 

available, local memory bandwidth and the hardware scheduler. 

The variation in the parameter values for Case 7 suggests a 

workgroup size of 8x32, 32x8, or 16x16 (a total of 256) as seen in 

Table 3. It can also be observed that for smaller workgroup size, 

the work per thread value is higher for keeping the GPU 

occupancy at a fair level. This is to compensate for the work loss. 

Points 3 and 4 have low execution times and both have utilized the 
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loop unrolling of 7 (filter size). The energy difference between the 

best and the worst point is 0.92kJ. It can be concluded that the 

four Pareto-points are the best choices. 

 

Table 3: Best Pareto-Optimal Variable/Parameter Values 2D 

Convolution Kernel. 
 

 
Where as: 1) Work Group Size X 2) Work Group Size Y 3) Caching Strategy 4) 

Work Per Thread X 5) Work Per Thread Y 6) Vector Width 7)  Loop Unrolling 

Factor 8) Padding  9) Work Group Size X- XL 10) Work Group Size Y-XL. 

 

We can infer from the results shown in Table 3 that the best 

workgroup size is multiple of 256, and caching value ‘1’ is better 

if the workgroup size is not less than 256. Loop unrolling factor at 

its best is 7 as it helps to improve the performance without 

significantly affecting the power. The higher values of TBX_XL 

and TBY_XL needs a caching value of 2, which has always 

increased the power values of the kernel. 

3.5  Probability Distributions 

A detailed analysis of Case 1 to Case 8 is depicted in Figure 5 and 

Figure 6 to show the probability distribution with respect to Power 

(Left Green) and Time (Right Blue). Figure 5 shows the 

probability distribution of the first generation for all the cases and 

Figure 6 provides the probability distribution for the final 

generation of the eight cases. It can be observed that the execution 

time has relatively less converging trend, but the probability 

distribution for power indicates a positive trend towards low 

power utilization in the final generation. We have discussed the 

best case (Case 7) earlier where Figure 4 indicates the power 

reduction by 30% and execution time reduction by 4%. The power 

and time measurments are summed up and standard deviation is 

calculated for the overall 1st and last population. After calculating 

the best case scenerio (i.e. Case 7), 45% reduction in standard 

deviation is observed that  means the algorithm converges to the 

most optimal solution. 

4 CONCLUSIONS 
The proposed GPU code tuner is evaluated for 2D convolution 

kernel (test/benchmark problem) on a Tesla GPU. A detailed 

account of optimal configuration sets for the benchmark kernel is 

provided and discussed including their execution time and average 

power consumption. It is concluded that the unroll factor speeds 

up the process without affecting the power values. The energy 

consumption of a kernel and its power utilization shows a direct 

relation to each other as indicated in Table 2. Our framework 

provides optimal diverse solution for appropriately selected GA 

parameters. The most promising contribution of this research is 

that it provides a powerful, flexible, and generic GPU code tuning 

tool for designing energy efficient high performance computing 

applications without compromising computational performance. 

The HPC design engineer can systematically select the optimal 

configuration depending on the application’s objective priority. 
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