Signals and Systems I

Topic 2

Today:

Useful Signal Operations

- Time Shift
- Amplitude Scaling
- Time Scaling
- Time Reversal
- Combined Operation

One more signal classification: Odd and Even Signals

 $x(t-T) \Rightarrow \text{Shift to Right if } T > 0 \text{ (Delayed, After, Forward)}$

 $x(t-T) \Rightarrow$ Shift to Left if T < 0 (Advanced, Before, Backward)

Example: For $y_2(t) = x(t+10)$ find the values for $y_2(-10), y_2(0), y_2(5), y_2(9), y_2(10), y_2(11)$ and Plot $y_2(t)$

 $x(t-T) \Rightarrow \text{Shift to Right if } T > 0 \text{ (Delayed, After, Forward)}$

 $x(t-T) \Rightarrow$ Shift to Left if T < 0 (Advanced, Before, Backward)

Note: get used to labeling any Transformed (operated) signal with a new name. For example here y(t) and z(t)

Example: For $y_2(t) = x(t+10)$ find the values for $y_2(-10), y_2(0), y_2(5), y_2(9), y_2(10), y_2(11)$ and Plot $y_2(t)$

Example: For $y_2(t) = x(t+10)$ find the values for $y_2(0), y_2(5), y_2(9), y_2(10), y_2(11)$ and Plot $y_2(t)$

Example: For $y_2(t) = x(t+10)$ find the values for $y_2(0), y_2(5), y_2(9), y_2(10), y_2(11)$ and Plot $y_2(t)$

$$y_2(-10) = x(-10+10) = x(\mathbf{0})$$

 $y_2(\mathbf{0}) = x(0+10) = x(10)$

In general finding the value of $y_2(0)$ and also value of t_0 for which $y_2(t_0) = x(0)$ are useful.

Here to find t_0 we have to have $t_0 + 10 = 0$ which means $t_0 = -10$

Example: plot y(t) = x(t-3)

Example: plot y(t) = x(t-3)

$$y(3) = x(3-3) = x(0)$$

 $y(0) = x(0-3) = x(-3)$

Finding the value of y(0) and also value of t_0 for which $y(t_0) = x(0)$ are useful.

Here to find t_0 we have to have $t_0 - 3 = 0$ which means $t_0 = 3$

Example: If $x(t) = e^{-2t}$, then what are y(t) = x(t-1) and z(t) = x(t+1)? Plot y(t) and z(t)

Example: If $x(t) = e^{-2t}$, then what are y(t) = x(t-1) and z(t) = x(t+1)? Plot y(t) and z(t)

$$y(t) = x(t-1) = e^{-2((\mathbf{t}-\mathbf{1}))} = e^2 e^{-2t}$$

 $z(t) = x(t+1) = e^{-2((\mathbf{t}+\mathbf{1}))} = e^{-2} e^{-2t}$

$$z(t) = x(t+1) = e^{-2((\mathbf{t}+1))} = e^{-2}e^{-2t}$$

Amplitude Scaling:

$$y(t) = Ax(t)$$

Time Reversal:

$$y(t) = x(-t)$$

Example: plot y(t) = x(-t) first find y(1), y(2), y(0), y(-1), and y(-2)

Time Reversal:

$$y(t) = x(-t)$$

Example: plot y(t) = x(-t) first find y(1), y(2), y(0), y(-1), and y(-2)

$$y(t) = x(\alpha t)$$

Note that Time Reversal is a special case of Time Scaling with $\alpha=1$

Example: Find y(t) = x(2t) and $z(t) = x(\frac{t}{2})$.

$$y(t) = x(2t)$$

 $y(0) = x(0)$
 $y(1) = x(2)$
 $y(-1) = x(-2)$
 $y(2) = x(4)$
 \vdots
 $y(10) = x(20)$
 $y(11) = x(22)$

$$z(t) = x(\frac{t}{2})$$

$$z(0) = x(0)$$

$$z(1) = x(\frac{1}{2})$$

$$z(-1) = x(\frac{-1}{2})$$

$$z(2) = x(\frac{2}{2})$$

$$\vdots$$

$$z(10) = x(\frac{10}{2})$$

$$z(11) = x(\frac{11}{2})$$

Generally, it is a good idea to always check for couple of points when per-forming time scale operation.

y(10) = x(20)y(11) = x(22)

$$y(t) = x(\alpha t)$$

 Squeezing, if $\alpha > 1$
 Expanding, if $0 < \alpha < 1$

$$y(t) = x(2t)$$

 $y(0) = x(0)$
 $y(1) = x(2)$
 $y(-1) = x(-2)$
 $y(2) = x(4)$
 $y = x(2t)$
A
$$0 \frac{20}{2} = 10$$

$$z(t) = x(\frac{t}{2})$$

$$z(0) = x(0)$$

$$z(1) = x(\frac{1}{2})$$

$$z(-1) = x(\frac{-1}{2})$$

$$z(2) = x(\frac{2}{2})$$

$$\vdots$$

$$z(10) = x(\frac{10}{2})$$

$$z(11) = x(\frac{11}{2})$$

Generally, it is a good idea to check for couple of points when per-forming time scale operation.

$$y(t) = x(\alpha t)$$
 Squeezing, if $|\alpha| > 1$ Expanding, if $0 < |\alpha| < 1$

$$y(t) = x(\alpha t)$$
 Squeezing, if $|\alpha| > 1$ Expanding, if $0 < |\alpha| < 1$

 $x(\alpha t)$

For $\alpha < 0$:

In this case: $\alpha = -|\alpha|$

example: -2 = -|-2|

$$y(t) = x(\alpha t) = x(-|\alpha|t)$$

x(-2t) = x(-(2t)) additional flipping

Soosan Beheshti, Ryerson University

Plot
$$y(t) = x(3t)$$
 and $z(t) = x(-t/4)$

$$2 = 3 +$$

$$z(t) = Ax(\alpha t - T)$$

We first plot $y(t) = x(\alpha t - T)$ then plot z(t) = Ay(t)

Two methods to plot y(t)

Method 1	Method 2
1- Shift by T	1- Time scale by α
$y_2(t) = x(t - T)$	$y_1(t) = x(\alpha t)$
o . TTV	
2- Time scale by α	2- Shift by T/α
$y(t) = y_2(\alpha t) = x(\alpha t - T)$	$y(t) = y_1(t - T/\alpha) = x(\alpha(t - T/\alpha)) = x(\alpha t - T)$

$$y(t) = x(\alpha t - T)$$

Example $\alpha > 1$, T > 0

$$y(t) = y_2(\alpha t) = x(\alpha t - T)$$

$$\frac{T}{\alpha} \frac{b+T}{\alpha} t$$

Or 21

Soosan Beheshti, Ryerson University

$$y(t) = x(\alpha t - T)$$

Example $\alpha < -1, T > 0$

$$y(t) = y_2(\alpha t) = x(\alpha t - T)$$

$$y_1(t) = x(\alpha t)$$

$$\frac{b}{\alpha} = 0$$

$$y(t) = y_1(t - T/\alpha) = x(\alpha t - T)$$

Soosan Beheshti, Ryerson University

Easy steps for combined operations

Given x(t) plot $z(t) = Ax(\alpha t - T)$

- 1- Shift by T
- 2- Time scale by $|\alpha|$
- 3- If α is positive go to step 4. If α is negative, flip the signal (time reverse)
- 4- Scale the signal by A

23

Find
$$y(t) = Ax(\alpha t - T)$$

 $Step\ One$

Find
$$y(t) = Ax(\alpha t - T)$$

 $Step\ One$

 $Step\ Two$

Find $y(t) = Ax(\alpha t - T)$ $\alpha < 0$

Step One

 $y_3(t) = y_2(-t) = y_1(-|\alpha|t - T)$

Step Two

Find $y(t) = Ax(\alpha t - T)$ $\alpha < 0$

 $\int_{1}^{\infty} y_3(t) = y_2(-t) = y_1(-|\alpha|t - T)$

 $Step\ One$

 $\frac{b+T}{\alpha} = \frac{T}{\alpha}$

 $Step\ Two$

Step Four

27

Example: Plot x(3t), x(t+2), -4x(3t+2), and $x(\frac{-t}{2}-3)$

Combined Operations:

Answer:

 \bullet x(3t)

Combined Operations:

 \bullet x(3t)

• x(t+2)

x(t)

Combined Operations:

Answer:

• -4x(3t+2)

Same As

Combined Operations:

Answer:

• $x(\frac{-t}{2}-3)$ Time Shift

Time Scale

Time Scale x(t-3) x(t-3) $x(\frac{t}{2}-3)$ $x(\frac{t}{2}-3)$

Odd and Even Functions (Signals):

Even functions	odd functions
$x_{e}(-t) = x_{e}(t)$ $\int_{-\infty}^{\infty} x_{e}(t)dt = 2 \int_{-\infty}^{\infty} x_{e}(t)dt$	$x_o(-t) = -x_o(t)$
$\frac{\int\limits_{-\infty}^{x_e(t)at-2}\int\limits_{0}^{x_e(t)at}}{Examp}$	$\int_{-\infty}^{\infty} x_o(t)dt = 0$ oles

Ελαπιρι

cos(t)

sin(t)

Odd and Even Functions (Signals):

In general signals can be neither odd nor even. However, all signals can be represented as sum of their even & odd components!

For any signal x(t) we have:

$$x(t) = x_e(t) + x_o(t) \tag{1}$$

How to find these components (?)

$$x_e(t) = \frac{x(t) + x(-t)}{2}, \qquad x_o(t) = \frac{x(t) - x(-t)}{2}$$

To prove the above claim we need to show the following facts:

1)
$$x_e(t) = x_e(-t)$$

2)
$$x_o(t) = -x_o(-t)$$

1)
$$x_e(t) = x_e(-t)$$
 2) $x_o(t) = -x_o(-t)$ 3) $x(t) = x_e(t) + x_o(t)$

showing 3):

$$x_e(t) + x_o(t) = \frac{x(t) + x(-t)}{2} + \frac{x(t) - x(-t)}{2} = 2\frac{x(t)}{2} = x(t)$$

Odd and Even Functions (Signals):

In general signals can be neither odd nor even. However, all signals can be represented as sum of their even & odd components!

For any signal x(t) we have:

$$x(t) = x_e(t) + x_o(t) \tag{1}$$

How to find these components (?)

$$x_e(t) = \frac{x(t) + x(-t)}{2}, \qquad x_o(t) = \frac{x(t) - x(-t)}{2}$$

To prove the above claim we need to show the following facts:

How about 1) and 2)?

1)
$$x_e(t) = x_e(-t)$$

2)
$$x_o(t) = -x_o(-t)$$

1)
$$x_e(t) = x_e(-t)$$
 2) $x_o(t) = -x_o(-t)$ 3) $x(t) = x_e(t) + x_o(t)$

showing 3):

$$x_e(t) + x_o(t) = \frac{x(t) + x(-t)}{2} + \frac{x(t) - x(-t)}{2} = 2\frac{x(t)}{2} = x(t)$$

Example: Find odd & even parts of the following signal.

Example: Find odd & even parts of the following signal.

Example: Find odd & even parts of the following signal.

t

Try adding $x_e(t)$ and $x_o(t)$ to generate x(t) itself!

