
Hyper-Threading Technology: Impact on Compute-Intensive Workloads 1

Hyper-Threading Technology: Impact on
Compute-Intensive Workloads

William Magro, Software Solutions Group, Intel Corporation
Paul Petersen, Software Solutions Group, Intel Corporation
 Sanjiv Shah, Software Solutions Group, Intel Corporation

Index words: SMP, SMT, Hyper-Threading Technology, OpenMP, Compute Intensive, Parallel
Programming, Multi-Threading

ABSTRACT

Intel’s recently introduced Hyper-Threading Technology
promises to increase application- and system-level
performance through increased utilization of processor
resources. It achieves this goal by allowing the
processor to simultaneously maintain the context of
multiple instruction streams and execute multiple
instruction streams or threads. These multiple streams
afford the processor added flexibility in internal
scheduling, lowering the impact of external data latency,
raising utilization of internal resources, and increasing
overall performance.

We compare the performance of an Intel Xeon
processor enabled with Hyper-Threading Technology to
that of a dual Xeon processor that does not have Hyper-
Threading Technology on a range of compute-intensive,
data-parallel applications threaded with OpenMP1. The
applications include both real-world codes and hand-
coded “kernels” that illustrate performance
characteristics of Hyper-Threading Technology.

The results demonstrate that, in addition to functionally
decomposed applications, the technology is effective for

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
1 OpenMP is an industry-standard specification for multi-
threading data-intensive and other highly structured
applications in C, C++, and Fortran. See
www.openmp.org for more information.

many data-parallel applications. Using hardware
performance counters, we identify some characteristics
of applications that make them especially promising
candidates for high performance on threaded processors.

Finally, we explore some of the issues involved in
threading codes to exploit Hyper-Threading Technology,
including a brief survey of both existing and still-needed
tools to support multi-threaded software development.

INTRODUCTION
While the most visible indicator of computer
performance is its clock rate, overall system performance
is also proportional to the number of instructions retired
per clock cycle. Ever-increasing demand for processing
speed has driven an impressive array of architectural
innovations in processors, resulting in substantial
improvements in clock rates and instructions per cycle.

One important innovation, super-scalar execution,
exploits multiple execution units to allow more than one
operation to be in flight simultaneously. While the
performance potential of this design is enormous,
keeping these units busy requires super-scalar
processors to extract independent work, or instruction-
level parallelism (ILP), directly from a single instruction
stream.

Modern compilers are very sophisticated and do an
admirable job of exposing parallelism to the processor;
nonetheless, ILP is often limited, leaving some internal
processor resources unused. This can occur for a
number of reasons, including long latency to main
memory, branch mis -prediction, or data dependences in
the instruction stream itself. Achieving additional
performance often requires tedious performance

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 2

analysis, experimentation with advanced compiler
optimization settings, or even algorithmic changes.
Feature sets, rather than performance, drive software
economics. This results in most applications never
undergoing performance tuning beyond default comp iler
optimization.

An Intel processor with Hyper-Threading Technology
offers a different approach to increasing performance.
By presenting itself to the operating system as two
logical processors, it is afforded the benefit of
simultaneously scheduling two potentially independent
instruction streams [1]. This explicit parallelism
complements ILP to increase instructions retired per
cycle and increase overall system utilization. This
approach is known as simultaneous multi-threading, or
SMT.

Because the operating system treats an SMT processor
as two separate processors, Hyper-Threading
Technology is able to leverage the existing base of multi-
threaded applications and deliver immediate performance
gains.

To assess the effectiveness of this technology, we first
measure the performance of existing multi-threaded
applications on systems containing the Intel® Xeon
processor with Hyper-Threading Technology. We then
examine the system’s performance characteristics more
closely using a selection of hand-coded application
kernels. Finally, we consider the issues and challenges
application developers face in creating new threaded
applications, including existing and needed tools for
efficient multi-threaded development.

APPLICATION SCOPE
While many existing applications can benefit from
Hyper-Threading Technology, we focus our attention on
single-process, numerically intensive applications. By
numerically intensive, we mean applications that rarely
wait on external inputs, such as remote data sources or
network requests, and instead work out of main system
memory. Typical examples include mechanical design
analysis, multi-variate optimization, electronic design
automation, genomics, photo-realistic rendering, weather
forecasting, and computational chemistry.

A fast turnaround of results normally provides
significant value to the users of these applications

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

through better quality products delivered more quickly
to market. The data-intensive nature of these codes,
paired with the demand for better performance, makes
them ideal candidates for multi-threaded speed-up on
shared memory multi-processor (SMP) systems.

We considered a range of applications, threaded with
OpenMP, that show good speed-up on SMP systems.
The applications and their problem domains are listed in
Table 1. Each of these applications achieves 100%
processor utilization from the operating system’s point
of view. Despite external appearances, however,
internal processor resources often remain underutilized.
For this reason, these applications appeared to be good
candidates for additional speed-up via Hyper-Threading
Technology.

Table 1: Applications type

Code Description

A1 Mechanical Design Analysis (finite element method)
This application is used for metal-forming, drop testing, and
crash simulation.

A2 Genetics
A genetics application that correlates DNA samples from
multiple animals to better understand congenital diseases.

A3 Computational Chemistry
This application uses the self-consistent field method to
compute chemical properties of molecules such as new
pharmaceuticals.

A4 Mechanical Design Analysis
This application simulates the metal-stamping process.

A5 Mesoscale Weather Modeling
This application simulates and predicts mesoscale and
regional-scale atmospheric circulation.

A6 Genetics
This application is designed to generate Expressed Sequence
Tags (EST) clusters, which are used to locate important
genes.

A7 Computational Fluid Dynamics
This application is used to model free-surface and confined
flows.

A8 Finite Element Analysis
This finite element application is specifically targeted toward
geophysical engineering applications.

A9 Finite Element Analysis
This explicit time-stepping application is used for crash test
studies and computational fluid dynamics.

One might suspect that, for applications performing very
similar operations on different data, the instruction
streams might be too highly correlated to share a

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 3

threaded processor’s resources effectively. Our results
show differently.

METHODOLOGY
To assess the effectiveness of Hyper-Threading
Technology for this class of applications, we measured
the performance of existing multi-threaded executables,
with no changes to target the threaded processor
specifically.

We measured the elapsed completion time of stable,
reproducible workloads using operating-system-
provided timers for three configurations:

1. single-threaded execution on an single-processor
SMT system

2. dual-threaded execution on a single-processor SMT
system

3. dual-threaded execution on a dual-processor, non-
SMT system

We then computed application speed-up as the ratio of
the elapsed time of a single-threaded run to that of a
multi-threaded run. Using the Intel VTune Performance
Analyzer, we gathered the following counter data
directly from the processor during a representative time
interval of each application2:

• Clock cycles

• Instructions retired

• Micro-operations retired

• Floatingpoint instructions retired

From this raw data, we evaluated these ratios:

• Clock cycles per instruction retired (CPI)

• Clock cycles per micro-operation retired (CPu)

• Fractional floating-point instructions retired
(FP%)

APPLICATION RESULTS
Naturally, highly scalable applications; that is, those that
speed up best when run on multiple, physical
processors, are the best candidates for performance
improvement on a threaded processor. We expect less

 VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
2 The counters and their significance are described in the
Appendix.

scalable applications to experience correspondingly
smaller potential benefits.

As shown in Figure 1, this is generally the case, with all
of the applications, except application A1, receiving a
significant benefit from the introduction of Hyper-
Threading Technology. It is important to note that the
applications realized these benefits with little to no
incremental system cost and no code changes.

0

0.5

1

1.5

2

2.5

A1 A2 A3 A4 A5 A6 A7 A8 A9

Application

R
el

at
iv

e
S

p
ee

d
u

p

SMP
HyperThreading
Serial

Figure 1: Application relative speed-up

Because the Intel Xeon processor is capable of
retiring up to three micro-operations per cycle, the best-
case value of clocks per micro-op (CPu) is 1/3. Table 2
shows counter data and performance results for the
application experiments. The comparatively high CPI
and CPu values indicate an individual stream does not
typically saturate internal processor resources. While
not sufficient, high CPu is a necessary condition for
good speed-up in an SMT processor.

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 4

Table 2: Counter data and performance results

Exactly which resources lie idle, however, is not clear.
The fraction of floating-point instructions (FP%) gives
one indication of the per-stream instruction mix. For the
chosen applications, the FP% ranges from zero, for
application A6, to the range of 4.6% to 35.5% for the
remaining applications. It may seem unusual that the
FP% of these numerically intensive applications is so
low; however, even in numerically intensive code, many
other instructions are used to index into arrays, manage
data structures, load/store to memory, and perform flow
control. The result can be a surprisingly balanced
instruction mix.

Even though the instruction mix within a stream may be
varied, a data parallel application typically presents pairs
of similar or even identical instruction streams that could
compete for processor resources at each given moment.
The performance results, however, show that Hyper-
Threading Technology is able to overlap execution of
even highly correlated instruction streams effectively.
To understand how this can occur, consider two threads
consisting of identical instruction streams. As these
threads execute, spatial correlation exists only with
particular temporal alignments; a slight shift in the timing
of the streams can eliminate the correlation, allowing a
more effective interleaving of the streams and their
resource demands. The net result is that two identical
but time-shifted instruction streams can effectively share
a pool of resources.

By reducing the impact of memory latency, branch mis -
prediction penalties, and stalls due to insufficient ILP,
Hyper-Threading Technology allows the Xeonprocessor
to more effectively utilize its internal resources and
increase system throughput.

TEST KERNEL RESULTS
To examine these effects more closely, we developed
four test kernels. The first two kernels (int_mem and
dbl_mem) illustrate the effects of latency hiding in the
memory hierarchy, while the third kernel (int_dbl)
attempts to avoid stalls due to low ILP. The fourth
kernel (matmul) and a corresponding, tuned library
function illustrate the interplay between high ILP and
SMT speed-up. The performance results of all the
kernels are shown in Table 3. The int_mem kernel,
shown in Figure 2, attempts to overlap cache misses with
integer operations. It first creates a randomized access
pattern into an array of cache-line-sized objects, then
indexes into the objects via the randomized index vector
and performs a series of addition operations on the
cache line.

#pragma omp for

 for (i = 0; i < buf_len; ++i) {

 j = index[i];

 for (k = 0; k < load; ++k) {

 buffer[j][0] += input;

 buffer[j][1] += input;

 buffer[j][2] += input;

 buffer[j][3] += input;

 }

 }

Figure 2: The int_mem benchmark

Application Cycles/instruction Cycles/uop FP% SMT speedup SMP Speedup

A1 2.04 1.47 29 1.05 1.65

A2 1.11 0.89 4.6 1.09 1.79

A3 1.69 0.91 16 1.09 1.77

A4 1.82 1.29 20 1.11 1.54

A5 2.48 1.45 36 1.17 1.68

A6 2.54 1.60 0.1 1.19 2.00

A7 2.80 2.05 10 1.23 1.75

A8 1.69 1.27 19 1.28 1.85

A9 2.26 1.76 20 1.28 1.89

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 5

Table 3: Kernel performance results

Code Benchmark CPI CPuops FP% SMT Speed-up

M1 int_mem (load=32) 1.99 0.94 0.0% 1.08

M2 int_mem (load=4) 6.91 3.61 0.0% 1.36

M3 dbl_mem (load=32) 1.81 1.47 23.2% 1.90

M4 int_dbl 3.72 1.63 9.8% 1.76

M5 matmul 2.17 1.60 34.5% 1.64

M6 dgemm 1.63 1.58 58.0% 1.00

We tested two variants (M1 and M2). In the first, we
assigned a value of 32 to the parameter “load”; in the
second test, “load” was 4. The larger value of “load”
allows the processor to work repeatedly with the same
data. Cache hit rates are consequently high, as is integer
unit utilization. Smaller values of “load” cause the code
to access second-level cache and main memory more
often, leading to higher latencies and increased demand
on the memory subsystem. Provided these additional
accesses do not saturate the memory bus bandwidth, the
processor can overlap the two threads’ operations and
effectively hide the memory latency. This point is
demonstrated by the inverse relationship between clocks
per instruction and speed-up.

The dbl_mem kernel is identical to int_mem, but with the
data variables changed to type “double.” The results
with “load” equal to 32 (M3) demonstrate the same
effect, instead interleaving double-precision floating-
point instructions with cache misses. In addition, the
floating-point operations can overlap with the
supporting integer instructions in the instruction mix to
allow the concurrent use of separate functional units
resulting in near-linear speed-up.

The int_dbl kernel (M4), shown in Figure 3, calculates an
approximation to Pi via a simple Monte Carlo method.
This method uses an integer random number generator
to choose points in the x-y plane from the range [-1…1].
It then converts these values to floating point and uses
each point’s distance from the origin to determine if the
point falls within the area of the unit radius circle. The
fraction of points that lies within this circle approximates
Pi/4. Like dbl_mem, this kernel achieves excellent speed-
up, but for a different reason: the different functional
units inside the processor are utilized simultaneously.

#pragma omp for reduction(+:count)

 for (i = 0; i < NPOINTS; ++i) {

 double x, y;

 // guess returns a pseudo-random
number

 x = guess(&seed, 2.0)-1.0;

 y = guess(&seed, 2.0)-1.0;

 if (sqrt(x*x + y*y) <= 1.0) {

 /* The current point is

 inside the circle... */

 ++count;

 }

 }

Figure 3: The int_dbl benchmark

The “matmul” kernel (M5), shown in Figure 4, computes
the product of two 1000 x 1000 matrices using a naïve
loop formulation written in FORTRAN. Comparing its
absolute performance and speed-up to that of a
functionally equivalent, but hand-tuned library routine
illustrates the effect of serial optimization on the
effectiveness of Hyper-Threading Technology. The
naïve loop formulation (M5) has comparatively poor
absolute performance, executing in 3.4 seconds, but
achieves good SMT speed-up. The hand-optimized
dgemm (M6) library routine executes in a fraction of the
time (0.6s), but the speed-up vanishes. The highly tuned
version of the code effectively saturates the processor,
leaving no units idle3.

!$omp parallel do

 DO 26 J = 1,N

 DO 24 K = 1,N

 DO 22 I = 1,N

 C(I,J) = C(I,J) + A(I,K)
* B(K,J)

 22 CONTINUE

 24 CONTINUE

 26 CONTINUE

3 Note that the FP% for M6 is due to SIMD packed
double precision instructions, rather than the simpler x87
instructions used by the other test codes.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 6

Figure 4: The Matmul kernel

MEMORY HIERARCHY EFFECTS
Depending on the application characteristics, Hyper-
Threading Technology’s shared caches [1] have the
potential to help or hinder performance. The threads in
data parallel applications tend to work on distinct
subsets of the memory, so we expected this to halve the
effective cache size available to each logical processor.
To understand the impact of reduced cache, we
formulated a very simplified execution model of cache-
based system.

In a threaded microprocessor with two logical
processors, the goal is to execute both threads with no
resource contention issues or stalls. When this occurs,
two fully independent threads should be able to execute
an application in half the time of a single thread.
Likewise, each thread can execute up to 50% more slowly
than the single-threaded case and still yield speed-up.

Figure 5 exhibits the approximate time to execute an
application on a hypothetical system with a three-level
memory hierarchy consisting of registers, cache, and
main memory.

Given:
N = Number of instructions executed
Fmemory = Fraction of N that access memory
Ghit = Fraction of loads that hit the cache
Tproc = #cycles to process an instruction
Tcache = #cycles to process a hit
Tmemory = #cycles to process a miss

 Texe = Execution time

Then:

Texe/N = (1 – Fmemory) Tproc + Fmemory [Ghit Tcache
+ (1 – Ghit) Tmemory]

Figure 5: Simple performance model for a single-level
cache system

While cache hit rates, Ghit, cannot be easily estimated for
the shared cache, we can explore the performance impact
of a range of possible hit rates. We assume
Fmemory =20%, Tproc=2, Tcache=3, and Tmemory =100. For a
given cache hit rate in the original, single-threaded
execution, Figure 6 illustrates the effective miss rate,
T’

miss, which would cause the thread to run twice as
slowly as in serial. Thus, any hit rate that falls in the
shaded region between the curves should result in
overall speed-up when two threads are active.

Cache Hit Rate Tolerance

0

10

20

30

40

50

60

70

80

90

100

60 70 80 90 100

Original Hit Rate

N
ew

 H
it

 R
at

e

Hit Rate to Cause 2x Slowdown

Hit rate for no slowdown

Figure 6: Hit rate tolerance for 2x slowdown in
performance

The shaded region narrows dramatically as the original
cache hit rate approaches 100%, indicating that
applications with excellent cache affinity will be the least
tolerant of reduced effective cache size. For example,
when a single-threaded run achieves a 60% hit rate, the
dual-threaded run’s hit rate can be as low as 10% and
still offer overall speed-up. On the other hand, an
application with a 99% hit rate must maintain an 88% hit
rate in the smaller cache to avoid slowdown.

TOOLS FOR MULTI-THREADING
It is easy to see that the existence of many multi-
threaded applications increases the utility of Hyper-
Threading Technology. In fact, every multi-threaded
application can potentially benefit from SMT without
modification. On the other hand, if no applications were
multi-threaded, the only obvious benefits from SMT
would be throughput benefits from multi-process
parallelism. Shared memory parallel computers have
existed for more than a decade, and much of the
performance benefits of multi-threading have been
available, yet few multi-threaded applications exist.
What are some of the reasons for this lack of multi-
threaded applications, and how might SMT technology
change the situation?

First and foremost among these reasons is the difficulty
of building a correct and well-performing multi-threaded
application. While it is not impossible to build such
applications, it tends to be significantly more difficult

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 7

than building sequential ones. Consequently, most
developers avoid building multi-threading applications
until their customers demand additional performance.
The following constraints often drive performance
requirements:

• Real-time requirements to accomplish some
computing task that cannot be satisfied by a single
processor, e.g., weather forecasting, where a 24-hour
forecast has value only if completed and published
in well under 24 hours.

• Throughput requirements, usually in interactive
applications, such that users are not kept waiting for
too long, e.g., background printing while editing in a
word processor.

• Turnaround requirement, where job completion time
materially impacts the design cycle, e.g.,
computational fluid dynamics used in the design of
aircraft, automobiles, etc.

Most software applications do not have the above
constraints and are not threaded. A good number of
applications do have the throughput requirement, but
that particular one is easier to satisfy without particular
attention to correctness or performance.

Another reason for the lack of many multi-threaded
applications has been the cost of systems that can
effectively utilize multiple threads. Up until now, the
only kinds of systems that could provide effective
performance benefits from multiple threads were
expensive multiple-processor systems. Hyper-Threading
Technology changes the economics of producing multi-
processor systems, because it eliminates much of the
additional “glue” hardware that previous systems
needed.

Economics alone cannot guarantee a better computing
experience via the efficient utilization of Hyper-
Threading Technology. Effective tools are also
necessary to create mu lti-threaded applications. What
are some of the capabilities of these tools? Do such
tools already exist in research institutions?

One of the difficulties is the lack of a good programming
language for multi-threading. The most popular multi-
threading languages are the POSIX∗ threads API and the
Windows* Threads API. However, these are the
threading equivalent of assembly language, or C at best.
All the burden of creating high-level structures is placed
upon the programmer, resulting in users making the same

∗Other brands and names may be claimed as the property
of others.

mistakes repeatedly. Modern programming languages
like Java and C# include threading as a part of the
language, but again few high-level structures are
available for programmers. These languages are only
marginally better than the threading APIs. Languages
like OpenMP [3,5] do offer higher-level constructs that
address synchronous threading issues well, but they
offer little for asynchronous threading. Even for
synchronous threading, OpenMP [3,5] has little market
penetration outside the technical computing market. If
OpenMP [3,5] can successfully address synchronous
threading outside the technical market, it needs to be
deployed broadly to ease the effort required to create
multi-threaded applications correctly. For asynchronous
threading, perhaps the best model is the Java- and C#-
like threading model, together with the threading APIs.

Besides threaded programming languages, help is also
needed in implementing correct threaded programs. The
timing dependencies among the threads in multi-
threaded programs make correctness validation an
immense challenge. However, race detection tools have
existed in the research community for a long time, and
lately some commercial tools like Visual Threads [7] and
Assure [6] have appeared that address these issues.
These tools are extremely good at finding bugs in
threaded programs, but they suffer from long execution
times and large memory-size footprints. Despite these
issues, these tools are a very promising start for
ensuring the correctness of multi-threaded programs and
offer much hope for the future.

After building a correct multi-threaded program, a tool to
help with the performance analysis of the program is also
required. There are some very powerful tools today for
analysis of sequential applications, like the VTune
Performance Analyzer. However, the equivalent is
missing for multi-threaded programs. Again, for
OpenMP [3,5], good performance-analysis tools do exist
in the research community and commercially. These
tools rely heavily on the structured, synchronous
OpenMP [3,5] programming model. The same tools for
asynchronous threading APIs are non-existent, but seem
necessary for the availability of large numbers of multi-
threaded applications. Hyper-Threading Technology
presents a unique challenge for performance-analysis
tools, because the processors share resources and
neither processor has all of the resources available at all
times. In order to create a large pool of multi-threaded
applications, it seems clear that effective tools are
necessary. It is also clear that such tools are not yet

 VTune is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 8

available today. To exploit Hyper-Threading
Technology effectively, multi-threaded applications are
necessary, and tools to create those are key.

CONCLUSION
High clock rates combined with efficient utilization of
available processor resources can yield high application
performance. As microprocessors have evolved from
simple single-issue architectures to the more complex
multiple-issue architectures, many more resources have
become available to the microprocessor. The challenge
now is effective utilization of the available resources. As
processor clock frequencies increase relative to memory
access speed, the processor spends more time waiting
for memory accesses. This gap can be filled using
extensions of techniques already in use, but the cost of
these improvements is often greater than the relative
gain. Hyper-Threading Technology uses the explicit
parallel structure of a multi-threaded application to
complement ILP and exploit otherwise wasted resources.
Under carefully controlled conditions, such as the test
kernels presented above, the speed-ups can be quite
dramatic.

Real applications enjoy speed-ups that are more modest.
We have shown that a range of existing, data-parallel,
compute-intensive applications benefit from the
presence of Hyper-Threading Technology with no
source code changes. In this suite of multi-threaded
applications, every application benefited from threading
in the processor. Like assembly language tuning, Hyper-
Threading Technology provides another tool in the
application programmer’s arsenal for extracting more
performance from his or her computer system. We have
shown that high values of clock cycles per instruction
and per micro-op are indicative of opportunities for good
speed-up.

While many existing multi-threaded applications can
immediately benefit from this technology, the creation of
additional multi-threaded applications is the key to fully
realizing the value of Hyper-Threading Technology.
Effective software engineering tools are necessary to
lower the barriers to threading and accelerate its
adoption into more applications.

Hyper-Threading Technology, as it appears in today’s
Intel Xeon processors, is just the beginning. The

 Intel is a registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.
 Xeon and VTune are trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

fundamental ideas behind the technology apply equally
well to larger numbers of threads sharing additional
resources. Just as the number of distinct lines in a
telephone network grows slowly relative to the number
of customers served, Hyper-Threading Technology has
the potential to modestly increase the number of
resources in the processor core and serve a large
numbers of threads. This combination has the potential
to hide almost any latency and utilize the functional units
very effectively.

APPENDIX: PERFORMANCE METRICS
Using the VTune™ Performance Analyzer, one can
collect several execution metrics in situ as the
application runs. While the Intel Xeon™ processor
contains a host of counters, we focused on the following
set of raw values and derived ratios.

Clock Cycles
The numb er of clock cycles used by the application is a
good substitute for the CPU time required to execute the
application. For a single threaded run, the total clock
cycles multiplied by the clock rate gives the total running
time of the application. For a mu ltithreaded application
on a Hyper-Threading Technology-enabled processor,
the process level measure of clock cycles is the sum of
the clocks cycles for both threads.

Instructions Retired
When a program runs, the processor executes sequences
of instructions, and when the execution of each
instruction is completed, the instructions are retired.
This metric reports the number of instructions that are
retired during the execution of the program.

Clock Cycles Per Instruction Retired
CPI is the ratio of clock cycles to instructions retired. It
is one measure of the processor’s internal resource
utilization. A high value indicates low resource
utilization.

Micro-Operations Retired
Each instruction is further broken down into micro-
operations by the processor. This metric reports the
number of micro-operations retired during the execution
of the program. This number is always greater than the
number of instructions retired.

Intel Technology Journal Q1, 2002. Vol. 6 Issue 1.

Hyper-Threading Technology: Impact on Compute-Intensive Workloads 9

Clock Cycles Per Micro-Operations Retired
This derived metric is the ratio of retired micro-
operations to clock cycles. Like CPI, it measures the
processor’s internal resource utilization. This is a finer
measure of utilization than CPI because the execution
engine operates directly upon micro-ops rather than
instructions. The Xeon processor core is capable of
retiring up to three micro-ops per cycle.

Percentage of Floating-Point Instructions
This metric measures the percentage of retired
instructions that involve floating-point operations. To
what extent the different functional units in the
processor are busy can be determined by the instruction
type mix because processors typically have multiple
floating-point, integer, and load/store functional units.
The percentage of floating-point instructions is an
important indicator of whether the program is biased
toward the use of a specific resource, potentially leaving
other resources idle.

REFERENCES
[1] D. Marr, et al., “Hyper-Threading Technology

Architecture and Microarchitecture,” Intel
Technology Journal, Q1, 2002.

[2] Intel® Pentium® 4 Processor Optimization Reference
Manual.

[3] http://developer.intel.com/software/products/compile
rs/

[4] http://www.openmp.org/

[5] http://developer.intel.com/software/products/kappro/

[6] http://developer.intel.com/software/products/assure/

[7] http://www.compaq.com/products/software/visualthr
eads/

AUTHORS’ BIOGRAPHIES
William Magro manages the Intel Parallel Applications
Center, which works with independent software vendors
and enterprise developers to optimize their applications
for parallel execution on multiple processor systems. He
holds a B.Eng. degree in Applied and Engineering
Physics from Cornell University and M.S. and Ph.D.
degrees in Physics from the University of Illinois at
Urbana-Champaign. His e-mail is bill.magro@intel.com.

Paul Petersen is a Principal Engineer at Intel’s KAI
Software Lab. He currently works with software
development tools to simplify threaded application
development. He has been involved in the creation of

the OpenMP parallel programming language and tools
for the performance and correctness evaluation of
threaded applications. He holds a B.S. degree from the
University of Nebraska and M.Sc. and Ph.D. degrees
from the University of Illinois at Urbana-Champaign, all
in Computer Science. His e-mail is
paul.petersen@intel.com

Sanjiv Shah co-manages the compiler and tools groups
at Intel’s KAI Software Lab. He has worked on
compilers for automatic parallelization and vectorization
and on tools for software engineering of parallel
applications. He has been extensively involved in the
creation of the OpenMP specifications and serves on the
OpenMP board of directors. Sanjiv holds a B.S. degree
in Computer Science with a minor in Mathematics and an
M.S. degree in Computer Science from the University of
Michigan. His e-mail is sanjiv.shah@intel.com.

Copyright © Intel Corporation 2002. This publication
was downloaded from http://developer.intel.com/ .

Other names and brands may be claimed as the property
of others.

Legal notices at:

http://developer.intel.com/sites/corporate/privacy.htm

