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ABSTRACT 

Intel’s recently introduced Hyper-Threading Technology 
promises to increase application- and system-level 
performance through increased utilization of processor 
resources.  It achieves this goal by allowing the 
processor to simultaneously maintain the context of 
multiple instruction streams and execute multiple 
instruction streams or threads.  These multiple streams 
afford the processor added flexibility in internal 
scheduling, lowering the impact of external data latency, 
raising utilization of internal resources, and increasing 
overall performance. 

We compare the performance of an Intel Xeon 
processor enabled with Hyper-Threading Technology to 
that of a dual Xeon processor that does not have Hyper-
Threading Technology on a range of compute-intensive, 
data-parallel applications threaded with OpenMP1.  The 
applications include both real-world codes and hand-
coded “kernels” that illustrate performance 
characteristics of Hyper-Threading Technology. 

The results demonstrate that, in addition to functionally 
decomposed applications, the technology is effective for 

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
1 OpenMP is an industry-standard specification for multi-
threading data-intensive and other highly structured 
applications in C, C++, and Fortran.  See 
www.openmp.org for more information. 

many data-parallel applications.  Using hardware 
performance counters, we identify some characteristics 
of applications that make them especially promising 
candidates for high performance on threaded processors. 

Finally, we explore some of the issues involved in 
threading codes to exploit Hyper-Threading Technology, 
including a brief survey of both existing and still-needed 
tools to support multi-threaded software development. 

INTRODUCTION 
While the most visible indicator of computer 
performance is its clock rate, overall system performance 
is also proportional to the number of instructions retired 
per clock cycle.  Ever-increasing demand for processing 
speed has driven an impressive array of architectural 
innovations in processors, resulting in substantial 
improvements in clock rates and instructions per cycle. 

One important innovation, super-scalar execution, 
exploits multiple execution units to allow more than one 
operation to be in flight simultaneously.  While the 
performance potential of this design is enormous, 
keeping these units busy requires super-scalar 
processors to extract independent work, or instruction-
level parallelism (ILP), directly from a single instruction 
stream.  

Modern compilers are very sophisticated and do an 
admirable job of exposing parallelism to the processor; 
nonetheless, ILP is often limited, leaving some internal 
processor resources unused.  This can occur for a 
number of reasons, including long latency to main 
memory, branch mis -prediction, or data dependences in 
the instruction stream itself.  Achieving additional 
performance often requires tedious performance 
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analysis, experimentation with advanced compiler 
optimization settings, or even algorithmic changes.  
Feature sets, rather than performance, drive software 
economics.  This results in most applications never 
undergoing performance tuning beyond default comp iler 
optimization. 

An Intel processor with Hyper-Threading Technology 
offers a different approach to increasing performance.  
By presenting itself to the operating system as two 
logical processors, it is afforded the benefit of 
simultaneously scheduling two potentially independent 
instruction streams [1].  This explicit parallelism 
complements ILP to increase instructions retired per 
cycle and increase overall system utilization.  This 
approach is known as simultaneous multi-threading, or 
SMT. 

Because the operating system treats an SMT processor 
as two separate processors, Hyper-Threading 
Technology is able to leverage the existing base of multi-
threaded applications and deliver immediate performance 
gains. 

To assess the effectiveness of this technology, we first 
measure the performance of existing multi-threaded 
applications on systems containing the Intel® Xeon 
processor with Hyper-Threading Technology.  We then 
examine the system’s performance characteristics more 
closely using a selection of hand-coded application 
kernels.  Finally, we consider the issues and challenges 
application developers face in creating new threaded 
applications, including existing and needed tools for 
efficient multi-threaded development. 

APPLICATION SCOPE 
While many existing applications can benefit from 
Hyper-Threading Technology, we focus our attention on 
single-process, numerically intensive applications.  By 
numerically intensive, we mean applications that rarely 
wait on external inputs, such as remote data sources or 
network requests, and instead work out of main system 
memory.  Typical examples include mechanical design 
analysis, multi-variate optimization, electronic design 
automation, genomics, photo-realistic rendering, weather 
forecasting, and computational chemistry. 

A fast turnaround of results normally provides 
significant value to the users of these applications 
                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 

through better quality products delivered more quickly 
to market.  The data-intensive nature of these codes, 
paired with the demand for better performance, makes 
them ideal candidates for multi-threaded speed-up on 
shared memory multi-processor (SMP) systems. 

We considered a range of applications, threaded with 
OpenMP, that show good speed-up on SMP systems.  
The applications and their problem domains are listed in 
Table 1.  Each of these applications achieves 100% 
processor utilization from the operating system’s point 
of view.  Despite external appearances, however, 
internal processor resources often remain underutilized.  
For this reason, these applications appeared to be good 
candidates for additional speed-up via Hyper-Threading 
Technology. 

Table 1: Applications type 

Code  Description 

A1 Mechanical Design Analysis (finite element method)  
This application is used for metal-forming, drop testing, and 
crash simulation. 

A2 Genetics 
A genetics application that correlates DNA samples from 
multiple animals to better understand congenital diseases.  

A3 Computational Chemistry 
This application uses the self-consistent field method to 
compute chemical properties of molecules such as new 
pharmaceuticals.  

A4 Mechanical Design Analysis 
This application simulates the metal-stamping process.  

A5 Mesoscale Weather Modeling 
This application simulates and predicts mesoscale and 
regional-scale atmospheric circulation. 

A6 Genetics 
This application is designed to generate Expressed Sequence 
Tags (EST) clusters, which are used to locate important 
genes. 

A7 Computational Fluid Dynamics 
This application is used to model free-surface and confined 
flows. 

A8 Finite Element Analysis 
This finite element application is specifically targeted toward 
geophysical engineering applications.  

A9 Finite Element Analysis 
This explicit time-stepping application is used for crash test 
studies and computational fluid dynamics. 

 

One might suspect that, for applications performing very 
similar operations on different data, the instruction 
streams might be too highly correlated to share a 
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threaded processor’s resources effectively.  Our results 
show differently. 

METHODOLOGY 
To assess the effectiveness of Hyper-Threading 
Technology for this class of applications, we measured 
the performance of existing multi-threaded executables, 
with no changes to target the threaded processor 
specifically. 

We measured the elapsed completion time of stable, 
reproducible workloads using operating-system- 
provided timers for three configurations: 

1. single-threaded execution on an single-processor 
SMT system 

2. dual-threaded execution on a single-processor SMT 
system 

3. dual-threaded execution on a dual-processor, non-
SMT system 

We then computed application speed-up as the ratio of 
the elapsed time of a single-threaded run to that of a 
multi-threaded run.  Using the Intel VTune Performance 
Analyzer, we gathered the following counter data 
directly from the processor during a representative time 
interval of each application2: 

• Clock cycles 

• Instructions retired 

• Micro-operations retired 

• Floatingpoint instructions retired 

From this raw data, we evaluated these ratios: 

• Clock cycles per instruction retired (CPI) 

• Clock cycles per micro-operation retired (CPu) 

• Fractional floating-point instructions retired 
(FP%) 

APPLICATION RESULTS 
Naturally, highly scalable applications; that is, those that 
speed up best when run on multiple, physical 
processors, are the best candidates for performance 
improvement on a threaded processor.  We expect less 

                                                                 
 VTune is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
2 The counters and their significance are described in the 
Appendix. 

scalable applications to experience correspondingly 
smaller potential benefits. 

As shown in Figure 1, this is generally the case, with all 
of the applications, except application A1, receiving a 
significant benefit from the introduction of Hyper-
Threading Technology.  It is important to note that the 
applications realized these benefits with little to no 
incremental system cost and no code changes. 
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Figure 1: Application relative speed-up  

Because the Intel Xeon processor is capable of 
retiring up to three micro-operations per cycle, the best-
case value of clocks per micro-op (CPu) is 1/3.  Table 2 
shows counter data and performance results for the 
application experiments.  The comparatively high CPI 
and CPu values indicate an individual stream does not 
typically saturate internal processor resources.  While 
not sufficient, high CPu is a necessary condition for 
good speed-up in an SMT processor.

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries.  
 Xeon is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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Table 2: Counter data and performance results 

Exactly which resources lie idle, however, is not clear.  
The fraction of floating-point instructions (FP%) gives 
one indication of the per-stream instruction mix.  For the 
chosen applications, the FP% ranges from zero, for 
application A6, to the range of 4.6% to 35.5% for the 
remaining applications.  It may seem unusual that the 
FP% of these numerically intensive applications is so 
low; however, even in numerically intensive code, many 
other instructions are used to index into arrays, manage 
data structures, load/store to memory, and perform flow 
control.  The result can be a surprisingly balanced 
instruction mix. 

Even though the instruction mix within a stream may be 
varied, a data parallel application typically presents pairs 
of similar or even identical instruction streams that could 
compete for processor resources at each given moment.  
The performance results, however, show that Hyper-
Threading Technology is able to overlap execution of 
even highly correlated instruction streams effectively.  
To understand how this can occur, consider two threads 
consisting of identical instruction streams.  As these 
threads execute, spatial correlation exists only with 
particular temporal alignments; a slight shift in the timing 
of the streams can eliminate the correlation, allowing a 
more effective interleaving of the streams and their 
resource demands.  The net result is that two identical 
but time-shifted instruction streams can effectively share 
a pool of resources. 

By reducing the impact of memory latency, branch mis -
prediction penalties, and stalls due to insufficient ILP, 
Hyper-Threading Technology allows the Xeonprocessor 
to more effectively utilize its internal resources and 
increase system throughput. 

TEST KERNEL RESULTS 
To examine these effects more closely, we developed 
four test kernels.  The first two kernels (int_mem and 
dbl_mem) illustrate the effects of latency hiding in the 
memory hierarchy, while the third kernel (int_dbl) 
attempts to avoid stalls due to low ILP.  The fourth 
kernel (matmul) and a corresponding, tuned library 
function illustrate the interplay between high ILP and 
SMT speed-up. The performance results of all the 
kernels are shown in Table 3.  The int_mem kernel, 
shown in Figure 2, attempts to overlap cache misses with 
integer operations.  It first creates a randomized access 
pattern into an array of cache-line-sized objects, then 
indexes into the objects via the randomized index vector 
and performs a series of addition operations on the 
cache line. 

#pragma omp for 

    for (i = 0; i < buf_len; ++i) { 

        j = index[ i ]; 

        for (k = 0; k < load; ++k) { 

            buffer[ j ][ 0 ] += input; 

            buffer[ j ][ 1 ] += input; 

            buffer[ j ][ 2 ] += input; 

            buffer[ j ][ 3 ] += input; 

        } 

    } 

Figure 2: The int_mem benchmark 

 

Application Cycles/instruction Cycles/uop FP% SMT speedup SMP Speedup 

A1 2.04 1.47 29 1.05 1.65 

A2 1.11 0.89 4.6 1.09 1.79 

A3 1.69 0.91 16 1.09 1.77 

A4 1.82 1.29 20 1.11 1.54 

A5 2.48 1.45 36 1.17 1.68 

A6 2.54 1.60 0.1 1.19 2.00 

A7 2.80 2.05 10 1.23 1.75 

A8 1.69 1.27 19 1.28 1.85 

A9 2.26 1.76 20 1.28 1.89 
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Table 3: Kernel performance results 

Code Benchmark CPI CPuops  FP%  SMT Speed-up 

M1 int_mem (load=32) 1.99 0.94 0.0% 1.08 

M2 int_mem (load=4) 6.91 3.61 0.0% 1.36 

M3 dbl_mem (load=32) 1.81 1.47 23.2% 1.90 

M4 int_dbl 3.72 1.63 9.8% 1.76 

M5 matmul 2.17 1.60 34.5% 1.64 

M6 dgemm 1.63 1.58 58.0% 1.00 

 

We tested two variants (M1 and M2).  In the first, we 
assigned a value of 32 to the parameter “load”; in the 
second test, “load” was 4.  The larger value of “load” 
allows the processor to work repeatedly with the same 
data.  Cache hit rates are consequently high, as is integer 
unit utilization.  Smaller values of “load” cause the code 
to access second-level cache and main memory more 
often, leading to higher latencies and increased demand 
on the memory subsystem.  Provided these additional 
accesses do not saturate the memory bus bandwidth, the 
processor can overlap the two threads’ operations and 
effectively hide the memory latency.  This point is 
demonstrated by the inverse relationship between clocks 
per instruction and speed-up. 

The dbl_mem kernel is identical to int_mem, but with the 
data variables changed to type “double.”  The results 
with “load” equal to 32 (M3) demonstrate the same 
effect, instead interleaving double-precision floating-
point instructions with cache misses.   In addition, the 
floating-point operations can overlap with the 
supporting integer instructions in the instruction mix to 
allow the concurrent use of separate functional units 
resulting in near-linear speed-up. 

The int_dbl kernel (M4), shown in Figure 3, calculates an 
approximation to Pi via a simple Monte Carlo method.  
This method uses an integer random number generator 
to choose points in the x-y plane from the range [-1…1].  
It then converts these values to floating point and uses 
each point’s distance from the origin to determine if the 
point falls within the area of the unit radius circle.  The 
fraction of points that lies within this circle approximates 
Pi/4.  Like dbl_mem, this kernel achieves excellent speed-
up, but for a different reason: the different functional 
units inside the processor are utilized simultaneously. 

 

#pragma omp for reduction(+:count) 

    for (i = 0; i < NPOINTS; ++i) { 

        double x, y; 

        // guess returns a pseudo-random 
number 

        x = guess(&seed, 2.0)-1.0; 

        y = guess(&seed, 2.0)-1.0; 

        if ( sqrt(x*x + y*y) <= 1.0 ) { 

            /* The current point is 

               inside the circle... */ 

            ++count; 

        } 

    } 

Figure 3: The int_dbl benchmark 

The “matmul” kernel (M5), shown in Figure 4, computes 
the product of two 1000 x 1000 matrices using a naïve 
loop formulation written in FORTRAN.  Comparing its 
absolute performance and speed-up to that of a 
functionally equivalent, but hand-tuned library routine 
illustrates the effect of serial optimization on the 
effectiveness of Hyper-Threading Technology.  The 
naïve loop formulation (M5) has comparatively poor 
absolute performance, executing in 3.4 seconds, but 
achieves good SMT speed-up.  The hand-optimized 
dgemm (M6) library routine executes in a fraction of the 
time (0.6s), but the speed-up vanishes.  The highly tuned 
version of the code effectively saturates the processor, 
leaving no units idle3. 

!$omp parallel do  

      DO  26  J = 1,N 

          DO  24  K = 1,N 

              DO  22  I = 1,N 

                  C(I,J) = C(I,J) + A(I,K) 
* B(K,J) 

   22         CONTINUE 

   24     CONTINUE 

   26 CONTINUE 

                                                                 
3 Note that the FP% for M6 is due to SIMD packed 
double precision instructions, rather than the simpler x87 
instructions used by the other test codes. 
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Figure 4: The Matmul kernel 

MEMORY HIERARCHY EFFECTS 
Depending on the application characteristics, Hyper-
Threading Technology’s shared caches [1] have the 
potential to help or hinder performance.  The threads in 
data parallel applications tend to work on distinct 
subsets of the memory, so we expected this to halve the 
effective cache size available to each logical processor.  
To understand the impact of reduced cache, we 
formulated a very simplified execution model of cache-
based system. 

In a threaded microprocessor with two logical 
processors, the goal is to execute both threads with no 
resource contention issues or stalls.  When this occurs, 
two fully independent threads should be able to execute 
an application in half the time of a single thread.  
Likewise, each thread can execute up to 50% more slowly 
than the single-threaded case and still yield speed-up. 

Figure 5 exhibits the approximate time to execute an 
application on a hypothetical system with a three-level 
memory hierarchy consisting of registers, cache, and 
main memory. 

Given:  
N  = Number of instructions executed 
Fmemory   = Fraction of N that access memory 
Ghit  = Fraction of loads that hit the cache 
Tproc = #cycles to process an instruction 
Tcache = #cycles to process a hit  
Tmemory  = #cycles to process a miss 

 Texe = Execution time 

Then: 

Texe/N = (1 – Fmemory ) Tproc + Fmemory  [Ghit Tcache 
+ (1 – Ghit) Tmemory ] 

Figure 5: Simple performance model for a single-level 
cache system 

While cache hit rates, Ghit, cannot be easily estimated for 
the shared cache, we can explore the performance impact 
of a range of possible hit rates.  We assume 
Fmemory =20%, Tproc=2, Tcache=3, and Tmemory =100.  For a 
given cache hit rate in the original, single-threaded 
execution, Figure 6 illustrates the effective miss rate, 
T’

miss, which would cause the thread to run twice as 
slowly as in serial.  Thus, any hit rate that falls in the 
shaded region between the curves should result in 
overall speed-up when two threads are active. 
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Figure 6: Hit rate tolerance for 2x slowdown in 
performance 

The shaded region narrows dramatically as the original 
cache hit rate approaches 100%, indicating that 
applications with excellent cache affinity will be the least 
tolerant of reduced effective cache size.  For example, 
when a single-threaded run achieves a 60% hit rate, the 
dual-threaded run’s hit rate can be as low as 10% and 
still offer overall speed-up.  On the other hand, an 
application with a 99% hit rate must maintain an 88% hit 
rate in the smaller cache to avoid slowdown. 

TOOLS FOR MULTI-THREADING 
It is easy to see that the existence of many multi-
threaded applications increases the utility of Hyper-
Threading Technology.  In fact, every multi-threaded 
application can potentially benefit from SMT without 
modification.  On the other hand, if no applications were 
multi-threaded, the only obvious benefits from SMT 
would be throughput benefits from multi-process 
parallelism.  Shared memory parallel computers have 
existed for more than a decade, and much of the 
performance benefits of multi-threading have been 
available, yet few multi-threaded applications exist.  
What are some of the reasons for this lack of multi-
threaded applications, and how might SMT technology 
change the situation? 

First and foremost among these reasons is the difficulty 
of building a correct and well-performing multi-threaded 
application.  While it is not impossible to build such 
applications, it tends to be significantly more difficult 
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than building sequential ones.  Consequently, most 
developers avoid building multi-threading applications 
until their customers demand additional performance.  
The following constraints often drive performance 
requirements: 

• Real-time requirements to accomplish some 
computing task that cannot be satisfied by a single 
processor, e.g., weather forecasting, where a 24-hour 
forecast has value only if completed and published 
in well under 24 hours. 

• Throughput requirements, usually in interactive 
applications, such that users are not kept waiting for 
too long, e.g., background printing while editing in a 
word processor. 

• Turnaround requirement, where job completion time 
materially impacts the design cycle, e.g., 
computational fluid dynamics used in the design of 
aircraft, automobiles, etc. 

Most software applications do not have the above 
constraints and are not threaded.  A good number of 
applications do have the throughput requirement, but 
that particular one is easier to satisfy without particular 
attention to correctness or performance. 

Another reason for the lack of many multi-threaded 
applications has been the cost of systems that can 
effectively utilize multiple threads.  Up until now, the 
only kinds of systems that could provide effective 
performance benefits from multiple threads were 
expensive multiple-processor systems.  Hyper-Threading 
Technology changes the economics of producing multi-
processor systems, because it eliminates much of the 
additional “glue” hardware that previous systems 
needed. 

Economics alone cannot guarantee a better computing 
experience via the efficient utilization of Hyper-
Threading Technology.  Effective tools are also 
necessary to create mu lti-threaded applications.  What 
are some of the capabilities of these tools?  Do such 
tools already exist in research institutions?   

One of the difficulties is the lack of a good programming 
language for multi-threading.  The most popular multi-
threading languages are the POSIX∗ threads API and the 
Windows* Threads API.  However, these are the 
threading equivalent of assembly language, or C at best.  
All the burden of creating high-level structures is placed 
upon the programmer, resulting in users making the same 

                                                                 
∗Other brands and names may be claimed as the property 
of others.  

mistakes repeatedly.  Modern programming languages 
like Java and C# include threading as a part of the 
language, but again few high-level structures are 
available for programmers.  These languages are only 
marginally better than the threading APIs.  Languages 
like OpenMP [3,5] do offer higher-level constructs that 
address synchronous threading issues well, but they 
offer little for asynchronous threading.  Even for 
synchronous threading, OpenMP [3,5] has little market 
penetration outside the technical computing market.  If 
OpenMP [3,5] can successfully address synchronous 
threading outside the technical market, it needs to be 
deployed broadly to ease the effort required to create 
multi-threaded applications correctly.  For asynchronous 
threading, perhaps the best model is the Java- and C#- 
like threading model, together with the threading APIs. 

Besides threaded programming languages, help is also 
needed in implementing correct threaded programs.  The 
timing dependencies among the threads in multi-
threaded programs make correctness validation an 
immense challenge.  However, race detection tools have 
existed in the research community for a long time, and 
lately some commercial tools like Visual Threads [7] and 
Assure [6] have appeared that address these issues.  
These tools are extremely good at finding bugs in 
threaded programs, but they suffer from long execution 
times and large memory-size footprints.  Despite these 
issues, these tools are a very promising start for 
ensuring the correctness of multi-threaded programs and 
offer much hope for the future. 

After building a correct multi-threaded program, a tool to 
help with the performance analysis of the program is also 
required.  There are some very powerful tools today for 
analysis of sequential applications, like the VTune 
Performance Analyzer.  However, the equivalent is 
missing for multi-threaded programs.  Again, for 
OpenMP [3,5], good performance-analysis tools do exist 
in the research community and commercially.  These 
tools rely heavily on the structured, synchronous 
OpenMP [3,5] programming model.  The same tools for 
asynchronous threading APIs are non-existent, but seem 
necessary for the availability of large numbers of multi-
threaded applications.  Hyper-Threading Technology 
presents a unique challenge for performance-analysis 
tools, because the processors share resources and 
neither processor has all of the resources available at all 
times.  In order to create a large pool of multi-threaded 
applications, it seems clear that effective tools are 
necessary.  It is also clear that such tools are not yet 
                                                                 
 VTune is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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available today.  To exploit Hyper-Threading 
Technology effectively, multi-threaded applications are 
necessary, and tools to create those are key.   

CONCLUSION 
High clock rates combined with efficient utilization of 
available processor resources can yield high application 
performance.  As microprocessors have evolved from 
simple single-issue architectures to the more complex 
multiple-issue architectures, many more resources have 
become available to the microprocessor.  The challenge 
now is effective utilization of the available resources.  As 
processor clock frequencies increase relative to memory 
access speed, the processor spends more time waiting 
for memory accesses.  This gap can be filled using 
extensions of techniques already in use, but the cost of 
these improvements is often greater than the relative 
gain.  Hyper-Threading Technology uses the explicit 
parallel structure of a multi-threaded application to 
complement ILP and exploit otherwise wasted resources.  
Under carefully controlled conditions, such as the test 
kernels presented above, the speed-ups can be quite 
dramatic. 

Real applications enjoy speed-ups that are more modest.  
We have shown that a range of existing, data-parallel, 
compute-intensive applications benefit from the 
presence of Hyper-Threading Technology with no 
source code changes.  In this suite of multi-threaded 
applications, every application benefited from threading 
in the processor.  Like assembly language tuning, Hyper-
Threading Technology provides another tool in the 
application programmer’s arsenal for extracting more 
performance from his or her computer system.  We have 
shown that high values of clock cycles per instruction 
and per micro-op are indicative of opportunities for good 
speed-up. 

While many existing multi-threaded applications can 
immediately benefit from this technology, the creation of 
additional multi-threaded applications is the key to fully 
realizing the value of Hyper-Threading Technology.  
Effective software engineering tools are necessary to 
lower the barriers to threading and accelerate its 
adoption into more applications. 

Hyper-Threading Technology, as it appears in today’s 
Intel Xeon processors, is just the beginning.  The 

                                                                 
 Intel is a registered trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
 Xeon and VTune are trademarks of Intel Corporation or 
its subsidiaries in the United States and other countries. 

fundamental ideas behind the technology apply equally 
well to larger numbers of threads sharing additional 
resources.  Just as the number of distinct lines in a 
telephone network grows slowly relative to the number 
of customers served, Hyper-Threading Technology has 
the potential to modestly increase the number of 
resources in the processor core and serve a large 
numbers of threads.  This combination has the potential 
to hide almost any latency and utilize the functional units 
very effectively.   

APPENDIX: PERFORMANCE METRICS 
Using the VTune™ Performance Analyzer, one can 
collect several execution metrics in situ as the 
application runs.  While the Intel Xeon™ processor 
contains a host of counters, we focused on the following 
set of raw values and derived ratios. 

Clock Cycles 
The numb er of clock cycles used by the application is a 
good substitute for the CPU time required to execute the 
application.  For a single threaded run, the total clock 
cycles multiplied by the clock rate gives the total running 
time of the application.  For a mu ltithreaded application 
on a Hyper-Threading Technology-enabled processor, 
the process level measure of clock cycles is the sum of 
the clocks cycles for both threads. 

Instructions Retired 
When a program runs, the processor executes sequences 
of instructions, and when the execution of each 
instruction is completed, the instructions are retired.  
This metric reports the number of instructions that are 
retired during the execution of the program. 

Clock Cycles Per Instruction Retired 
CPI is the ratio of clock cycles to instructions retired.  It 
is one measure of the processor’s internal resource 
utilization.  A high value indicates low resource 
utilization. 

Micro-Operations Retired 
Each instruction is further broken down into micro-
operations by the processor.  This metric reports the 
number of micro-operations retired during the execution 
of the program.  This number is always greater than the 
number of instructions retired. 
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Clock Cycles Per Micro-Operations Retired 
This derived metric is the ratio of retired micro-
operations to clock cycles.  Like CPI, it measures the 
processor’s internal resource utilization.  This is a finer 
measure of utilization than CPI because the execution 
engine operates directly upon micro-ops rather than 
instructions.  The Xeon processor core is capable of 
retiring up to three micro-ops per cycle.   

Percentage of Floating-Point Instructions 
This metric measures the percentage of retired 
instructions that involve floating-point operations.  To 
what extent the different functional units in the 
processor are busy can be determined by the instruction 
type mix because processors typically have multiple 
floating-point, integer, and load/store functional units.  
The percentage of floating-point instructions is an 
important indicator of whether the program is biased 
toward the use of a specific resource, potentially leaving 
other resources idle. 
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