
©G. Khan

Hardware-Software Co-Design:
System Partitioning

EE8205: Embedded Computer Systems
http://www.ee.ryerson.ca/~courses/ee8205/

Dr. Gul N. Khan
http://www.ee.ryerson.ca/~gnkhan
Electrical and Computer Engineering

Ryerson University______________
Overview
• Hardware-Software Codesign
• Task Graph Representations
• Scheduling for Partitioning
• GDL Scheduling and Partitioning
• DADGP-based Partitioning
Introductory Articles on Hardware-Software Partitioning available at the course webpage,

Part of Chapter 7, 5 of the Text by Wayne Wolf

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 1

©G. Khan

Embedded System Design

Embedded Computer Systems are the ideal candidate

for hardware-software codesign.

• Separate HW and SW design has been explored and
examined very thoroughly.

• Joint design remains an area of rapidly growing study

• Old embedded devices always built from scratch

– within reasonable amount of time

• Components - smaller and faster - IP cores

• Tools required for the product engineer.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 2

©G. Khan

Hardware-Software Codesign

• Functional exploration: Define a
desired product's requirements and
produce a specification of the system
behavior.

• Map this specification
onto various hardware and
software architectures

• Partition the functions between
silicon and code, and map them
directly to hardware or software
components

• Integrate system for prototype test.

System (Embedded)
Functional Exploration

Architectural Mapping

Hardware-Software
Partitioning

System Integration

Hardware
Implementation

Software
Implementation

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 3

©G. Khan

HS-Codesign

• Co-Specification: Describe system functionality at the
abstract level

• System description is converted into a task graph
representation

• HW-SW Partitioning: Take the task graph and decide
which components are implemented where/how ?
i.e. Dedicated hardware,

Software -- one CPU or multiple CPUs

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 4

©G. Khan

HS-Codesign

• HW-SW Co-Synthesis: Analyze the task graph and decide
on the system architecture.

(incorporates HW/SW partitioning as heart of co-
synthesis process)

• HW-SW Co-Simulation: Simulate embedded device’s
functionality before prototype construction.

• Co-Verification: Mathematical or simulation based
verification that device meets requirements.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 5

©G. Khan

HW/SW Partitioning

• Both textual and graphical representation like DAG
(Directed Acyclic Graph) are used to describe system.

• Analyzes task graph to determine each task’s placement
(HW or SW)

• Many algorithms have been developed

• Major problem involves the computation time of the
algorithm.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 6

©G. Khan

System Design Patterns

Design Pattern: A generalized description of the design of
a certain type of program that can also be used for
system representation and hardware-software
partitioning.

• State Diagram

• Data Flow Graph (DFG)

• Control Data Flow Graph (CDFG)

• Directed Acyclic Graph (DAG) similar to DFG

• Directed Acyclic Data Dependence Graph with Precedence

(DADGP) proposed by one of my past Graduate student.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 7

©G. Khan

State Machine: Seat-belt System

switch (state) {

case IDLE: if (seat) { state = SEATED; timer_on = TRUE; } break;

case SEATED: if (belt) state = BELTED;

else if (timer) state = BUZZER; break;
… … …

}

idle

buzzer seated

belted

no seat/-

seat/timer on

no belt
and no
timer/-

no belt/timer on

belt/-
belt/

buzzer off

Belt/buzzer on

no seat/-

no seat/
buzzer off

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 8

©G. Khan

Data Flow Graph

DFG: Data Flow Graph

• DFG does not represent control

• It models the Basic Block: code or a
system block with one entry and exit

• Describes the minimal ordering
requirements on operations

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 9

©G. Khan

Data Flow Graph: Software Module

x = a + b;

y = c - d;

z = x * y;

y1 = b + d;

+ -

+*

DFG

a b c d

z

x
y

y1

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:10

©G. Khan

Control Data Flow Graph

CDFG: represents control and data.

• Uses data flow graphs as components.

• Two types of nodes:
 Data Flow Node encapsulate a DFG

 Decision Nodes

x = a + b;
y = c + d

cond
T

F

valuev1

v2 v3

v4

Equivalent Forms

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:11

©G. Khan

Control Data Flow Graph Example

if (cond1) bb1();
else bb2();
bb3();
switch (test1) {

case c1: bb4(); break;
case c2: bb5(); break;
case c3: bb6(); break;

}

cond1 bb1()

bb2()

bb3()

bb4()

test1

bb5() bb6()

F

c1

c2

c3

T

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:12

©G. Khan

DADGP

• Extension of DAG

• New type of link implies
no need for data transfer
to execute the descendent
link.

• Represent variable
execution order of tasks
T1 and T2

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:13

©G. Khan

What is DADGP
• Directed Acyclic Data dependency Graph with

Precedence is an extension of DAG

• DADGP is a super set of DAG

• Two types of edges:
1) Weighted Dependency edge
2) Precedence edge

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:14

©G. Khan

Scheduling for Partitioning

The main input to scheduling for partitioning is a graph
representation in the form of DFG and/or CFG.

Complex designs contain thousands of both control and
data processing operations ranging from:

• Complex arithmetic operations (multiplication,
division) or logic-level bit-operations.

• All the above interleaved operations by multiple
control operations (if-then-else or case statements)
and loops.

Such designs contain thousands of data-dependencies,
basic blocks and control paths.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:15

©G. Khan

DFG-based Scheduling & Partitioning

Data-flow based scheduling techniques extract
parallelism from the input description (DFG).

• Schedule operations in parallel to satisfy the
constraints.

• Two most common DF-based scheduling methods.
1) List Scheduling (LS): Minimize the number of control steps
under resource constraints.

2) Force-directed Scheduling (FDS): Minimize the number of
resource constraints under a fixed number of control steps.

3) Mixed (FDLS): Force-directed technique is employed as the
cost function during list scheduling.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:16

©G. Khan

DF-Scheduling

List scheduling algorithm uses a cost function to
select the operation to be scheduled from a list.

• DF-approach provides flexible cost-function, and it
can be easily adapted to generate resource-constraint
as well as time-constraint schedules.

• The cost function can represent any design measure
such as HW area, delay, etc.

The result is only as good as the cost function.

• DF-based algorithms can analyze all the parallelism in
the DFG independently.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:17

©G. Khan

DF- Scheduling Example

1

2

3

4

r:=a+b

s:=r+c

t:=s-d

u:=a-b

CFG

a b

- +

ru

c

+

s d

-
t

DFG

+ -

+

-

1

2

4

3

st1

st2

st3

DFG-Schedule

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:18

©G. Khan

CF-Scheduling

Analyze the sequences of operations in CFG called
control flow paths and schedule the CFG with
minimum number of control steps in each path.

 Path-based scheduling is one of the main
example of this scheme.

• Analyze all the paths in the CFG and schedule each of
them independently.

• It minimizes the number of control steps in each path
rather than minimizing the number of states.

• Paths in CFG come from loops and conditional
operations.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:19

©G. Khan

Path-based Scheduling

10ns4
5
6
7

8

9

1
2
3

10
11

-

10ns

a’

-

-

+

10ns

IF
a

Path-1 = 1 2 3 4 5 6 7 10 11
- + - 10 10

Path-2 = 1 2 3 8 9 10 11
10 10

1,2,3
4(a), 8(a’)

5, 6, 7

10, 11

9, 10, 11

a’
a

+

Resources: One Adder and
Subtractor each.

Constraints: 15ns State
Cycle

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:20

©G. Khan

Path-based Scheduling

10ns4
7
6
5

8

9

1
2
3

10
11

-

+

a’

-

-

10ns

10ns

IF
a

Path-1 = 1 2 3 4 7 6 5 10 11
+ - 10 - + 10

1,2,3
4(a), 7(a), 8(a’)

5, 6, 10, 11 9, 10, 11

a’
a

After Reordering path-1

+

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:21

©G. Khan

Partitioning Approaches

Simple one CPU and an ASIC architecture is the most
common.

• Early approaches (mainly heuristic): Initially assume
all tasks mapped to software (one CPU Hardware)

• Move tasks to HW incrementally until system
requirements (system or individual task execution
time) are met.

• Other early approaches: Initially all tasks are mapped
to dedicated hardware.

• Move tasks incrementally to SW (CPU) until system
requirements (system or individual task execution
time) are met.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:22

©G. Khan

Optimal Partitioning

• Exhaustive approaches are characterized by attempting
all possible combinations there by always selecting the
best option.

• Exhaustive approaches are generally computationally
intensive, consume huge-time in the range of hours or
even days to find an optimal partition.

• Limited to smaller task graphs (often < 30 nodes)
– Large telecom or other embedded systems can have
4000 or more nodes

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:23

©G. Khan

Dynamic Programming

• Recursive, iterative algorithm
• Good for problems where calculating all possibilities is

computationally infeasible (good for partitioning!)
• Problem has to be divided into stages
• Decision required at each stage
• Decisions can alter the current state
• Decisions are independent (directly) on past decisions.
• HW/SW Partitioning works well, it can be approached

as a recursive, iterative state-based problem.
• Dynamic approaches can yield high quality solutions

with very fast run times.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:24

©G. Khan

GDL Scheduling for Partitioning

4513C

555B

663A

PE2PE1PE0

Scheduling is the key part of partitioning process
General dynamic level (GDL) scheduling is an extension of

typical list scheduling.
• It assigns dynamic priority to nodes and schedule nodes with

the highest priority first.
• Dynamic priority assignment is key to GDL scheduling.

A B C
1 4

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:25

©G. Khan

Simple Partitioning Example

A B C
1 4

PE0 PE1 PE2

A 3 6 6

B 5 5 5

C 13 5 4

A

B C

4 9 13

PE0

PE1

PE2

A B

C

3 8 12

PE0

PE1

PE2

16

GDL result Result of not considering decedents

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:26

©G. Khan

Another Example

A B C
10 11 PE0 PE1

A 1 2

B 2 2

C 20 1

A

B C

1

11 13 14

PE0

PE1
GDL Result

A B C

2 4 5

PE0

PE1 Optimal Solution

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:27

©G. Khan

DADGP: Directed Acyclic Data
Dependency Graph with Precedence

• Arrow represents dependence
relationship

• Precedence edge is represented with a
line

• Precedence dependency captures the
order of execution between nodes and
such nodes can be executed in parallel.

• Only necessary parallelism is exposed

A

B

C

D

1

3

10

5

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:28

©G. Khan

Relevant Partitioning Research

• HW-SW Partitioning is a difficult and NP-hard
problem.

• To find optimal partitioning set, it is very difficult due
to many factors affecting the partitioning decision.

• A new partitioning Heuristics are being researched.

• HW/SW Partitioning based on DADGP, Directed
Acyclic Data Dependency Graph with Precedence.

• Specified a new task-graph format with less restrictive
types of communication links.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:29

©G. Khan

DADGP-based Partitioning Structure

Specification

Profiling

LD Path Search

Mapping

Scheduling

Finish
Yes Yes

No

No

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:30

©G. Khan

DADGP-based Partitioning

i. Profiling and building an initial DADGP

ii. Find the LD_path (longest delay path) in DADGP

iii. Mapping of LD-path nodes to hardware

iv. Schedule and if invalid mapping then go to Step iii

v. Update DADGP and calculate the total execution
time of target system.

vi. If system constraints (specified by the user) are not
met then got Step ii, otherwise quit.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:31

©G. Khan

Profiling

Profiler collects the following data for
each task node (module)

• Hardware/Software execution time

• Hardware Area

• Amount of data transfer

• Execution order

• Data dependencies between nodes

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:32

©G. Khan

Longest Delay Path Search

Longest Delay path means, longest execution path

• Finding the longest delay path (LD-path) in
DADGP is equivalent to finding a bottleneck of
the system.

• Minimizes search space for mapping

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:33

©G. Khan

Mapping

• Maps a node to be implemented as a dedicated
hardware unit

• Mapping can change the Longest Delay path, as well
as DADGP

• Mapping of a node is valid if implementing that node
to Hardware gives the shortest LD-path in the
modified DADGP

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:34

©G. Khan

Scheduling

• Very simple List-based scheduling approach.

• Schedules the earliest node first without violating the
resource limit.

• Exposes parallelism and changes the DADGP
accordingly.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:35

©G. Khan

DADGP-based Scheduling

• Start scheduling from the root of DADGP.

• Traverse down the LD-path tree and schedule the earliest
starting time node.

• If the node is connected by a precedence dependency edge,
check whether exposing parallelism can eliminate that edge.
When an edge is eliminated, DADGP structure may convert to
two DADGPs. Roots of the two DADGPs are combined to
form a single DADGP with a dummy root node.

• In case of multiple descendants, schedule them forcibly by
adding PEs.

• Update the PE resource (HW-SW) library.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:36

©G. Khan

Constraints

• Constraints of deadline and cost is given by the
system designer.

• Hardware cost is calculated by the gate or transistor
count.
i.e. equivalent to chip or board size.

• Different granularity level should be explored if no
solution is found.

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:37

©G. Khan

Varying Granularity

• Task graphs can vary greatly in granularity

• Low-level granularity: each task is a basic
operation (multiply, add, sub, …)

• High-level granularity: each task is an entire
process (MPEG decode, JPEG encode, . . .)

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:38

©G. Khan

Edge Detection Example
Pair of masks are convolved to estimate

gradients, Gx and Gy

Overall G2 = (Gx
2 + Gy

2)

HW-SW Library

Data
dependency

Precedence
dependency

Gx

Gy
2

Gy

Gx
2

Add

Operation SW

EXE

(ms)

HW

EXE

(ms)

HW Area

(gates)

Gradient

(Gx or Gy)

9.4 1.4 1200

Square 5.2 0.9 500

Add 3.88 0.3 100

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:39

©G. Khan

SOBEL Edge Detection

SOBEL masks
-1 0 +1

-2 0 +2

-1 0 +1

+1 +2 +1

0 0 0

-1 -2 -1

Gx Gy

a11 a12 a13

a21 a22 a23

a31 a32 a33

m11 m12 m13

m21 m22 m23

m31 m32 m33

b11 b12 b13

b21 b22 b23

b31 b32 b33

Input Image Mask Output Image

b22=(a11*m11)+(a12*m12)+(a13*m13)+(a21*m21)+(a22*m22)+(a23*m23)+(a31*m31)+(a32*m32)+(a33*m33

)

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 40

©G. Khan

Sobel Edge Detection
main() {
unsigned char image_in[ROWS][COLS];
unsigned char image_out[ROWS][COLS];
int r, c; /* row and column array counters */
int pixel; /* temporary value of pixel */

/*filter the image and store result in output array */
for (r=1; r<ROWS-1; r++)
for (c=1; c<COLS-1; c++) { /* Apply Sobel operator. */

pixel = image_in[r-1][c+1]–image_in[r-1][c-1]
+ 2*image_in[r][c+1] - 2*image_in[r][c-1]
+ image_in[r+1][c+1] - image_in[r+1][c-1];

/* Normalize and take absolute value */
pixel = abs(pixel/4);
/* Check magnitude */
if (pixel > Threshold)
pixel= 255; /*EDGE_VALUE;*/
/* Store in output array */
image_out[r][c] = (unsigned char) pixel;

}
}

EE8205: Embedded Computer Systems, HW-SW Partitioning Page: 41

©G. Khan

Edge Detection Solutions

0.1

0.1

0.1

0.1

0.1

Gx

Gy
2

Gy

Gx
2

Ad
d

Gx

Gy
2

Gy

Gx
2

Ad
d

0.1

0.1

0.1

0.1

Gx

Gy
2

Gy

Gx
2

Ad
d

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Gx

Gy
2

Gy

Gx
2

Ad
d

Gx

Gy
2

Gy

Gx
2

Ad
d

0.1

0.1

0.1

0.1

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:42

©G. Khan

Performance Improvement vs. HW area

2.8

6.38

10.68

15.88

23.68

33.8

0

5

10

15

20

25

30

35

40

0 1200 2400 2900 3400 3500

HW area

S
ec

on
ds

EE8205: Embedded Computer Systems, HW-SW Partitioning Page:43

