EES8205: Embedded Computer Systems

Electrical, Computer & Biomedical Engineering, Ryerson University

Scheduling Real-time Applications using pVision and RTX

1. Objectives

This lab introduces students to develop RTX based multithreaded applications for ARM Cortex-M3 processors.
The students will learn how to schedule multithreaded applications by employing round-robin, priority
preemptive scheduling supported by uVision, RTX operating system and CMSIS libraries. Moreover, you will
learn how to schedule and implement a Rate Monotonic Scheduling (RMS), which is a popular Fixed Priority
Scheduling (FPS) technique.

2. Creating New Project:

e After launching pVision, select Project >> New pVision Project in the main menu bar. If a project already
exists, first close the project by selecting Project >> Close Project. Then Select New pVision Project as
shown in Figure 1.

| Prcuject Flash Debug Peripheral:
Mew pWision Project...
Mew Multi-Project Workspace...
COpen Project...
Close Project

1 Export

Ir Manage

Figure 1

e You should see a window shown in Figure 2. Select the icon for "New Folder" and name your working
folder “Lab3". Then name the project as “Multitasking” and Press Save.

e Type “LPC1768” as shown in the Figure 3 and select the device and press OK.

e Select the following Packages from Run Time Environment and add those to your project as depicted in
Figure 4.
a. CMSIS>CORE
b. CMSIS>RTOS(API)>Keil RTX
c¢. Device > Startup

Press OK once selected

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 1of 17

Organize « New folder
" A~
70 Favorites Warrie
B Desktop
& Downloads

‘l:;ﬂ Recent places
& Google Drive
@ Creative Cloud Fi

B Desktop
@ Homegroup
A Dev
18 This PC
4 Libraries
€ Network
18 TECHTAP-DEV ,,

4 |l » ThisPC » LocalDisk(E) » Ryerson MASc » COE7IBTA c vl

Date modified Type Size

Ma items match your search,

Search [ab-3

P m——
File nameff| Multitasking j
Save as type: | =Wvproj; *.uvprojx

“ Hide Folders

Figure 2

Select Device for Target ‘Target 1'...

Devicel

| Software Packs

Vendor: NXP
Device: LPC1768

Toolzet: W__\

=]

Diescription:

E-@ NXP
=% LPC1700 Series

INXP’s LPC1700 seres are high peformance MCUs for embedded
applications featuring a high level of integration and low power
consumption,

=715 LPCI Typical applications include eMeterng, Lighting, Industral netwaorking,
@ Alam sy=tems, White goods and Motor control,
- Quadrature Enceder interface,

- Metor contral PWM for three-phase motor

- Fnput plus Z-output 125-bus inteface

- Code Read Protection (CRP) with different security levels.
- Unigue device senal number

) _ b |

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX

20f17

Software Component Sel. Variant Version Description
4 Board Support MCB1700 1.0.0 Keil Development Board MCB1700
o CMsis Cortex Microcontroller Software Interface Components
¥ CORE v 54.0 CMSI5-CORE for Cortex-M, 5C000, SC300, ARMvE-M, ARMwE.1-M
¥ DSP r Source | 1.8.0 CMSIS-DSP Library for Cortex-M. SCO00, and SC300
¥ NN Lib [1.3.0 CMSIS-NM Meural Network Library
-4 RTOS (AP)) 1.0.0 CMSIS-RTOS AP for Cortex-M, SCO00, and SC300
¥ FreeRTOS] 10.3.1 CM5I5-RTOS implementation for Cortex-M based on FreeRTOS
¥ Keil RTX5 r 5.5.2 CM5IS-RTOS RTXS implementation for Cortex-M, SC000, and 5C300
¥ Keil RTX v 4820 CMSIS-RTOS RTX implementation for Cortex-M, SCOD0. and SC300
4 RTOS2 (API) 213 CMSIS-RTOS AP for Cortex-M, SCO00, and SC300
& CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
€ CMSIS RTOS Validation CMSIS-RTOS Validation Suite
@ Compiler ARM Compiler 1.6.0 Compiler Extensions for ARM Compiler 5 and ARM Compiler 6
¥ GPDMA] 1.2.0 GPDMA driver used by RTE Drivers for LPC1700 Series
¥ GPIO [1.1.0 GPIO driver used by RTE Drivers for LPC1 7o Series
¥ PIN [1.0.0 Pin Connect driver used by RTE Drivers for LPC1700 Series
¥ Startup '3 1.0.0 System Startup for NXP LPC1700 Series
€ File System MDK-Plus w | 6.13.6 File Access on various storage devices
-3 Graphics MDK-Plus w | 6.10.8 User Interface on graphical LCD displays
0 Metwork MDK-Plus w7131 IPvd Networking using Ethernet or Serial protocols
@ RTOS FreeRTOS 10.3.1 FreeRTOS Real Time Kernel
@ USB MDK-Plus w | 6140 USE Communication with various device classes
Figure 4

e Now your Project files should look like as shown in Figure 5.

Praoject

=92 Project: Multitasking
- Target1

1 Source Group 1
=€ cMmsis
ﬁ RTX_CM3.lib (RTOS:Keil RTX)
-] RTX_Conf_CM.c (RTOS:Keil RTX)
=4 Device
-] RTE_Device.h (Startup)
:j startup_LPC1 7o (Startup)
_] systern_LPC1 7o (Startup)

Figure 5

e Right click on Source Groupl folder and select “Add New Item to Group ‘Source Group 1’ as shown in

Figure 6.

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX

3of 17

| &9 Project: Bitband

=45 Target 1
lj Seurce Group 1 i :
EI’ Board Support Idﬁk Options for Group "Source Graup 1.
; ‘ET LER R R D 1) _"Addfdm [temto Group "Source Group 1.
4 CMSIS b
; Add Existing Files to Group "Source Group 1'..,
= ‘ Compiler " ¥ p

| R Gl ‘5 Gl 1" and its Fil
o Iﬁ EventRecorder.c (Event Recarc ket S At b UL

|j EventRecorderConf.h (Event R (£

i Rebuild all target files
El" Device [%] Build Target =4
- L RTE Deviceh (Startup)

1] startup_LPC170cs (Startup)
: P. P
L) system_LPC17xcc (Startup)

ﬁ Manage Project ltems...

| ﬂ Show Include File Dependencies

Figure 6

e Seclect the User Code Template >expand CMSIS >RTOS:KeilRTX> CMSIS-RTOS’main’ function. Then
click Add as shown in Figure 7. The file will be added to the project.

Léj C Fie () Add template file(s) to the project.

= Com_pctn ent) Mame
\ﬂ B e) : CMSI5-RTOS 'main’ function
— - RTOS:Kel
L!ﬂ Header File (h) - RTOS:Keil RTX
RTOS:Keil RTX CMSIS-RTOS Message Queue
~ RTOSKeil RTX | CMSIS-RTOS Mutex
 RTOS:Keil RTX CMSIS-RTOS Semaphare
RTOSKeil RTX | CMSIS-RTOS Thread

. RTOS:Keil RTX CMSIS-RTOS Timer

| RTOS:Keil RTX CMSIS-RTOS User SVC

= | Text File (b))
=

| lJser Code Template

| osObjects.h main.c

| E:\Ryerson MASC\COET18 TAYab-3

Add

Figure 7

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 40f17

e Repeat and this time select CMSIS>RTOS:Keil RTX> CMSIS-RTOS Thread. Then click Add and
another file will be added to your project as shown in Figure 8.

Add te te fil to th ject.
@ C Fie (o) mplate file(s) & proje

2 Compenent MNarme
@ G+ Fie [opm] RTOSKeil RTX | CMSIS-RTOS Mail Queue
\ﬂ Asm Fike (s) Pl PGS 0 WonnwyFeal
-RTO%:Keil RTX | CM35I5-RTOS Message Queue
\ﬂ Header File (h) RTOS:Keil RTX | CMSIS-RTOS Mutex

= RTOS:Kejl RIX :
é Thaktitn (5] & RT0S:Keil RTX CMSIS-RTOS Thread

Image File (. R i

@ IUser Code Template

[——

. RTOS:Keil RTX | CMSIS-RTOS User SVC

Type: I User Code Template

I Thread.c

| E:\Ryerson MASC\COE718 TAYab-3

Add

Figure 8

e Now your Project Folders should look like the Figure 9 depicted below.

Project o B
=% Project: Multitasking
4% Target]
E L Source Group 1
. J main.c
: ._] Thread.c
=9 CMsis
[T RTX_CM3.Iib (RTOS:Keil RTX)
] RTX_Conf_CM.c (RTOS:Keil RTX)
5 ¥ Device
-] RTE_Deviceh (Startup)
L] startup_LPC17xcs (Startup)
f J systern_LPC1 e c (Startup)

Figure 9

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX Sof 17

e Click on the icon on the top menu as shown in Figure 10

L]

EEEIE
SR Avd

Figure 10

e Do the Following changes shown in Figure 11: Under Target. ARM Compiler> Use default compiler
version 5. Check Use > Micro LIB.

Device Target | Output | Listing | User | C/Ce+ | Asm | Linker | Debug | Uities |
N¥P LPC1768 ~Code Generation -il'"---_
ARM Compiler: @compﬂauaﬂ'on5 ;I
¥tal (MHz): [12.0 R
Operating system: IHTXKE""EI j ze Cross-Module Optimization
System Viewer File: (v Ufe MicroLIB ™ BigErdian
LPC1 7exisvd J
[Use Custom Fils
— Read/Only Memory Areas — Read/Wrte Memary Areas
default off-chip Start Size Startup default offchip Start Size Molnit
~ RoM1 | | C ~ RaMI: | | [
r Romz | | s r Ramz | | [
~ Rom3: | | o ~ Ram3: | | g
on-chip ’_,..--"ﬂﬂﬂ:n'ﬁ __""-\‘
% 1Rom: [0 [o<a0000 7T & 1Ram: [B10000000 [oxe000 -
™ 1ROM2: | | W IRAM2: |B2007C000 [0xB000 [
g e ™
i ——
OK | Cancel | Defauts | Help |
Figure 11

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 60f 17

e Select C/C++ and a window similar to Figure 12 will appear.

Device | Target | Output | Listing | User C/C++ | Asm | Linker | Debug | Liiites |

- Preprocessor Symbols
Define: I
Undefine: |

— Language / Code Generation
[T BExecute-only Code [T Strict ANSIC WWamings: |AII Wamings _ﬂ
Optimization: m ™ Enum Cortainer always int [T Thumb Maode

[T Optimize for Time [T Plain Charis Signed [T Mo Auto Includes
[~ Split Load and Store Muttiple [T Read-Only Position Independent [~ C59 Mode

¥ ©One ELF Section per Function [T Read-Write Position Independent [T GNU extensions

Include I

Compiler |-¢ —cpu Cortex-M3-0_ RTX -0 EVAL g -00 —apes<interwork —split_sections
cortrol |- /RTE/Device/LPC1768
string

Figure 12

e Then select Debug option and check Use Simulator. Perform the following changes also.
Dialog DLL: DARMPI1.DLL, Parameter: -pLPC1768

Debug Window should look like the one in Figure 13. Then Press OK.

Now the Project Directory is all set for the Lab3 and related assignment.
Debug and Run the project and make sure no errors or warnings exist.
Then Replace the contents of main.c with the main.c file provided on D2L, and Threads.c file with the contents of

Threads.c from D2L.

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 7of 17

il Options for Target ‘Target 1

Device 1 Target] Cutput 1 Listing 1 User 1 C-"C*—r] Asm 1 Linker Debug lUtiI'rties]

ulator with restrictions Settings T Use:]LILINI{Z."MECortax Debugger Lj Settings

mit Speed to Feal-Time

W Load Application at Startup W Run to main [v Load Application at Startup ¥ Runto maing
Initizlization File: Initizlization File:
Restore Debug Session Settings Restore Debug Session Settings 1
¥ Breakpoirts ¥ Toolbox [v Breakpoirts v Toolbox
v Watch Windows & Peformance Analyzer W Watch Windows v Tracepoints
v Memory Display ¥ System Viewer v Memory Display v System Viewer
CPU DLL: Parameter: Driver DLL: Parameter:
1SAHMCM3.DLL | -MPU |SHHMCM3.DLL |-MPU

Diglog BT Farmmals . GO Parmmeten

DARMP1.OLL 1-pLF‘C1?ﬁB]TAHMF‘1.DLL 1-pLPC1?EE
if outdated Executable | d El cutable is loaded

Manage Component Viewer Description Files ... |

0K | Cancel | Defaults ‘ Help

Figure 13

RTX must be configured for specifications such as the time slice frequency of the CPU's systick timer and the
arbitration techniques for the multi-threaded applications.

Open the file RTX Conf CM.c, double click from the project directory as shown in Figure 14.
Select Configuration Wizard and click Expand All.

Make sure that the option Use Cortex-M SysTick timer as RTX Kernel Timer is selected, the RTOS Kernel
Timer input clock frequency [Hz] option is set to 10000000 (10 MHz), and the RTX Timer tick interval
value[us] option is set to 10000 (10ms). Make sure that the "User Timers" option is also checked for round-
robin scheduling. Your configuration file should now resemble Figure 15.

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 8 of 17

Project a B osObjects.n |] mainc |] Thread.e |] stat
B “i Project: Multitasking
L T Collapss Al | Help |
¥ Source Group 1 = Valu
j main.c =~ Thread Configuration
1 Thread.c Mumber of concurrent running user threads &
ﬁ cmsis_os.h Default Thread stack size [bytes] 200
] stddefh Main Thread stack size [bytes] 200
[stdint.h Number of threads with user-provided stack s... 0
= ‘@ CMSIS Total stack size [bytes] for threads with user-p... 0
5T RTX_CM3ib (RTOS:Keil RTX) Stack averflow checking Ic3
RTX_Conf_CM.c (RTOS:Keill R Stack usage watermark [
ﬁ cmsis_os.h Processor mode for thread execution Privil
1 RTX_CM_lib.h = RTX Kernel Timer Tick Configuration
] stddef.h Use Cortex-M SysTick timer as RTX Kernel Ti... [v
1 stdint.h RTCS Kernel Timer input clock frequency [Hz] 12000
=4 Device RTX Timer tick interval value [us] 1000
j RTE_Device.h (Startup) = Systemn Configuration
B startup_LPC17ecs (Startup) =-Round-Robin Thread switching IC2
w] system_LPC1Ttc (Startup) ~Round-Robin Timeout [ticks] 5
=l User Timers [
Tirner Thread Priority High
Timer Thread stack size [bytes] 200
~Timer Callback Queue size 4
ISR FIFO Queue size 16 en
Thread Configuration
= | :
=] Project @ Books Text Editar Configuration Wizard
Figure 14

Option Value
= Thread Configuration
Number of concurrent running threads 6
Default Thread stack size [bytes] 200
Main Thread stack size [bytes] 200
Number of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-provided stack size 0
Check for stack overflow ~
Processor mode for thread execution Unprivileged mode
= RTX Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Timer ~”
Timer clock value [Hz] 10000000
Timer tick value [us] 10000
= System Configuration
= Round-Robin Thread switching ~
Round-Robin Timeout [ticks] 10
= User Timers 4
Timer Thread Priority High
Timer Thread stack size [bytes] 200
Timer Callback Queue size 4
ISR FIFO Queue size 16 entries

Text Editor)\Conﬁguration Wizard [

Figure 15

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 90of 17

3. Analyzing the RTX Project
3.1 Watch Windows

Watch windows allow the programmer to keep track of the variables ‘counta’ and ‘countb’.

1. Open the watch window by selecting View > Watch Window > Watch 1.

2. You may hover the mouse over the variable name in the code window, right-click and select Add ‘counta’
or ‘countb' to... >> Watch 1.

3. When you click the RUN icon to execute the program, the values of ‘counta’ and ‘countb’ should
alternatively increment depending on the thread, which is currently executing.

4. It is also possible to change ‘counta’ and ‘countb’ values as its incrementing during execution. If you
enter a '0' in the value field, you may modify the variable's value without affecting the CPU cycles
during executing. This technique can work both in simulation and while executing on the CPU.

3.2 Performance Analyzer

1. Select View >> Analysis Windows >> Performance Analyzer (PA).

2. Expand the "Multitasking" in the PA window by pressing the "+" sign located next to the heading. There
should be a list of functions (like a tree) present under this heading. There should also be another
subheading titled "Thread.c". Press the "+" sign again to collapse the tree further. There you can observe
the execution of thread1 and thread?2.

Reset the program (ensure that the program has been stopped first). Click RUN.
4. Watch the program execute and how the functions are called.

W

3.3 RTX Event Viewer
The Event Viewer is a graphical representation of a program’s thread-based execution timeline. An example

is shown in Figure 16. The Event Viewer runs on the Keil simulator but must be configured properly for
CPU execution using a Serial Wire Viewer (SWV).

Event Viewer

. r\;hn Time M‘_ax_‘_ﬁ_r_';\e G‘rn‘:l. Zoom Update Screen Jump to Tranélhan i Timing Info [~ Cursor
Save... 82.53us | 0.170105s |5ms |[A)[out][Al]|[Stop | Clear | |[Code][Tracs] Next]| [~ Show Cydles

Ml Threads | (3)) Thread2 4 Xﬁhream o X‘E’hreadZ @ ><Tf'hread1 o ><1"nread2 @ Xihream @

osTimerTh.

Thread2 (&) Xmeacn e} threadz @ X‘ihread1 e} ! Thread2
0004ed) d

i | Timing of ‘Thread1' (Thread #3 @

1| Current Slice: Begin End Duration
i | No.5 80.10521 ms 9

main {2) i | All Stices:
ConnEa

o N0 EEEE 0 BN |

26.10521 ms 01011055

Cursars: Reference

Difference
A |

Figure 16

To use this feature of the Serial Wire Viewer (SWYV).

1. Inthe main menu select Debug >> OS Support >> Event Viewer. A window should appear.

2. Click RUN. Click the "All" button under the zoom menu in the Event Viewer window. You may also
select "In" or "Out" to adjust the view of the timeline which dynamically updates as the program
continues to execute. Note the other threads other than threadl and thread? that are also present in the
execution timeline.

3. Let the program execute for approximately 50 msec. Click STOP. Your window should now look

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 10 of 17

similar to that of Figure 16.

4. Hover the mouse over one of the thread time slices (blue blocks indicating execution of the task). You
will see stats of the thread appear. The stats should concur with the round-robin scheduling we set up in
RTX Conf CM.c (i.e. 10ms time slices).

5. Try going back to the RTX Conf CM.c file and changing the time stats of the round-robin scheduler.
Rebuild the project and run it again in Debug mode. See if the Event Viewer reflects the changes you
made to the file.

3.4 RTX Tasks and System Window

This window provides an RTX kernel summary with detailed specifications of RTX Conf CM.c, along
with the execution profiling information of executing tasks. An example window is provided in Figure 17.
The information obtained in this window comes from the Cortex-M3 DAP (Debug Access Port). The DAP
acquires such information by reading and writing to memory locations continuously using the JTAG port.

System and Thread Viewer x|

Property Value

Tick Timer: 100.000 mSec

Round Robin Timeout: 500.000 mSec

Default Thread Stack Size: 200

Thread Stack Overflow Check: Yes

Thread Usage: _

= Threads

D IName oy [Sate Dday —[Event Vol Even sk |Sac Usaod
T ofmeTuead Mg WX
2 oman Nomad Rumng

Figure 17

To use this feature:

o Select Debug >> OS Support >> System and Thread Viewer.

e As you run the program (or Reset and RUN), the state of the "Thread" heading will change
dynamically. However, The "System" information will remain the same as these information values
are specified prior to runtime in RTX Conf CM.c.

4. Programming Multithreaded Application with uVision and RTX
4.1 Understanding the RTX Program

Open the Thread.c file and examine the code. This program presents an example of a multithreaded RTX
application consisting of two simple threads, each executing their own code. The osThreadCreate() and
osThreadDef() functions will create the threads and set their priorities respectively.

Threadl and Thread2 will loop infinitely using a round-robin scheduling technique. This timing specification
was included in the config file (RTX Conf CM.c). osKernellnitialize() and osKernelStart() will setup the
round-robin scheduling definition for the threads and execute the kernel respectively. Compile the application
and enter Debug mode. We will now use the uVision tools to analyze the RTX program.

4.2 Analyzing the RTX Project
As in the previous section, use the Watch Window, Watchpoints, Performance Analyzer, Event Viewer and RTX

System and Thread Window to analyze the application.

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 11 of 17

4.3 Reviewing Thread.c and Main.c

1. Now that we have analyzed a simplistic multi-threaded application and its various performance features
using uVision. Let's take a look at the code once more step-by-step using uVision's analysis tools.

2. Re-execute the code and take a look at the Event Viewer. Which thread executes first? osTimerThread()
thread initializes and executes - this thread is responsible for executing time management functions
specified by ARM's RTOS configuration.

3. The program starts executing from main(), where main() ensures that:

a. The Cortex-M3 system and timers are initialized - Systemlnit()

b. An os kernel is initialized for interfacing software to hardware - osKernellnitialize()
c. Creates the threads to execute threadl and thread2 - Init Thread (),

d. Starts the kernel to begin thread switching - osKernelStart()

4. The Thread1 thread executes for its round-robin time slice since it is created first. After 10msec the timer
thread forces control to the Thread2 thread.

5. The Thread2 thread executes during its time slice for 10msec and is forced to stop again and execute taskl.
This occurs infinitely.

4.4 Processor Idling Time
As an exercise, let us determine the idling time of the code we have been currently working with by using the
idle demon, i.e. open the RTX Conf CM.c file. Under the line #include <cmsis os.h> insert the
definition for the global variable unsigned int countIDLE = 0; and setup.
void os_idle demon (void) (
for (;7) |
countIDLE++;
}

1. Save the file and compile the project. Re-enter Debug mode. Open the Watch window. Add counta, countb,
and countIDLE to the expression list of variables to watch during execution. Click reset, and RUN.

2. Observe the Watch 1 window, and as counta and countb increment, but the countIDLE variable does not.
What does this mean? This The CPU is currently under 100% utilization by the task threads. Note that
Idle Demon is set with the lowest priority in the task list. You can verify this by using the System and
thread viewer tool.

Note on Pre-emptive/Non Pre-emptive Scheduling Versus Round-Robin Scheduling

To implement pre-emptive/ non pre-emptive scheduling techniques, make note that the
RTX_Conf CM.c file must be adjusted. Specifically in the Configuration Wizard, the option System
Configuration >> Round- Robin Thread switching must be disabled. Ensure however that the
systick timers are enabled.

5. Implementing Various Scheduling Algorithms
Exercise 1- Setting Priority: Exit the Debug mode to access the Thread.c file. Change the line:

osThreadDef (Threadl, osPriorityNormal, 1, 0); to
osThreadDef (Threadl, osPriorityAboveNormal, 1, O0);

Compile the program and return to Debug mode. Run the program and open the Event Viewer window.
Question 1: What do you notice?
By setting the priority of Thread2 to a higher priority than that of Threadl, a pre-emptive scheduling technique

was created where the higher priority thread will execute to completion first. Since Threadl was created first, it

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 12 of 17

was expected to run first. However, Threadl will never be executed due to its "Normal" priority (in comparison
to Thread2's "AboveNormal") and the fact that Thread2 executes infinitely. Conversely, if the code was
programmed such that the Thread2 terminates after a finite time (when its workload completes), Thread1l would
thereafter be able to execute. It is recommended that the CMSIS-RTOS API Thread Management and osPriority
enumerations be consulted during coding.

Exercise 2 - Pre-emptive Scheduling: Exit Debug mode to access the Thread.c file again. Change the Threadl
and Thread2 function code to the following:

void Thread2 (void const *argument) {

for (;;){ // Infinite loop - runs while thread2 runs.
countb++; // Increment global variable countb indefinitely
osThreadYield() ;

} // suspend thread

}

void Threadl (void const *argument) {

for (;;){ // Infinite loop - runs while Threadl runs.
counta++; // Increment global variable counta indefinitely
osThreadYield () ;

} // suspend thread

}

Also make sure to change:
osThreadDef (Threadl, osPriorityAboveNormal, 1, 0); backto
osThreadDef (Threadl, osPriorityNormal, 1, 0);

Recompile the files. Enter Debug mode. Open a Watch window to track the counta and countb variables, along
with the Event Viewer. Reset the program and click RUN.

Question 2: How does the execution of the code using osThreadYield () differ from round-robin?

If you were successful, you will observe short execution time slices per thread in the Event Viewer, where it
almost appears as if the threads were running as round-robin (after several msec). With the changes made to the
program, each thread should simply increment their counter by one and pass control to the next thread of equal
or greater priority using osThreadyield (). Specifically, you should observe that on average a single thread runs
for 2.52us before passing control to the next thread (which is the equivalent time spent entering the thread,
incrementing the counter, and passing control).

What is the utilization time of the processor?

Check the Idle Demon variable and task using the performance-based tools.

Exercise 3: Stop the previous program and exit Debug mode to gain access to the Thread.c file. Remove the
osThreadYield () functions you implemented in the last exercise. Change the Threadl and Thread2 function
code to the following:

void Thread2 (void const *argument) {
for(;;) {
countb++;
osDelay (1) ;
}
}
void Threadl (void const *argument) {
for(;;) |
counta++;
osDelay (2);

}

Recompile the files and enter Debug mode. Setup the Watch 1 window with the variables counta, countb, and
countIDLE. RUN the program

Question 3: Assess the Watch window and note the difference between the execution of this code and the previous

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 13 of 17

code. Use the Performance Analyzer and Event Viewer to verify your findings. What is the utilization time of the
CPU?

6. Introduction to Rate Monotonic Scheduling for Real-time Applications
6.1 Virtual Timers

Virtual timers are a type of countdown timer used in the CMSIS RTX API. Each timer possesses a callback
function which is triggered once the timer has counted down. This callback indicates what action the timer is to
perform once triggered. Therefore, the instantiation of multiple timers can countdown various periods of time,

useful for the multiple tasks executed in a real-time system.
Virtual timers are defined after the #include and #define area in the .c code as:

osTimerDef(timer0_handle, callback);

Note its callback function must be declared before defining the timer(s). The virtual timer may then be

instantiated within the main() as an RTX thread.

osTimerld timer_0= osTimerCreate(osTimer(timer0_handle), osTimerPeriodic, (void *)0);

The above statement creates a timer called timer O that specifies information for once its countdown has
triggered. The timer0 handle will call the callback function with the argument (void *)0. In terms of the
frequency of the countdown timer, osTimerPeriodic defines a periodic timer whereas osTimerOnce is used to
declare a single-shot timer. The timer can then be started in the main() at any time using the following

statement.

osTimerStart(timer_0, 3000);

It signifies that the timer timer 0 should start, with a countdown of 3000 milliseconds. The use of multiple

virtual timers can trigger the callback function at various times and/or frequencies. An example application will
be provided to you in the next section after explaining the importance of inter-thread communication in RTX or

any other real-time operating system.

6.2 Inter-thread Communication - Signals and Waits

Up to now we have learned how to create threads, set their priorities, and use timers provided by RTX to create
and schedule applications. In many applications however, there is a need to synchronize and communicate
information among various threads. There are several means to communicate between threads in an RTOS. In
the first part of this lab, we will focus on the use of signal and wait flags to synchronize execution between
application threads. The concept is synonymous to signal and wait flags learned in general operating systems

also.

A single thread in the RTX API may contain up to 8 signal flags stored in its thread control block. Signals are
used to synchronize (signal or halt) the execution of threads. To synchronize threads, a thread usually "waits"
for a "signal" to continue its execution. If a thread's signal flag number matches the wait flag number that was
asserted by another thread, then the waiting thread can be released from the waiting state, and it will transition
to the ready state for execution. Thus, this method is used to synchronize any number of threads - the signal

thread must complete a certain task before the waiting thread can continue.

Like the previous lab, a thread is created and given an ID as given below.

void led_Thread1 (void const *argument);
osThreadDef(led_Threadl, osPriorityNormal, 1, 0);

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 14 of 17

osThreadld T_led_ID1;

int main(void){

T led_ID1 = osThreadCreate(osThread(led_Thread1), NULL);
o}

A wait flag may be set in the code as follows:

osSignalWait (0x03,osWaitForever);

The above statement signifies that the thread is waiting for the signal flag 0x03 to be asserted. The
second parameter indicates the maximum duration (in milliseconds) that the thread should wait to be
signalled. In this case the wait period is osWaitForever.

A signal may be sent to a thread or cleared using:

osSignalSet(T_led _ID2,0x01); or osSignalClear(T_led_ID2, 0x01);

6.3 Example Application

Launch the pVision application. Create a new project "virtual demo" in your "lab3/example" folder. Select the
LPC1768 processor chip. Copy ‘virtual demo.c’ file provided to you on D2L under lab3 folder, to your project
directory. Configure your project workspace with the same settings as you did in the other exercises. Your
project folder should resemble Figure 18.

El-s5 Target1
=45 Source Group 1
B j wirtual_demo.c
x| @ Board Support
=¥ cmsis
ﬁ RTX_Ch3.lib (RTOS:Keil RTX)
=] RTX_Cenf_CM.c (RTOS:Keil RTX)
= ‘@’ Device
|_] RTE_Device.h (Startup)
_1 startup_LPC1 Vs (Startup)
= j systemn_LPC1Teoc (Startup)
[ﬁ GPIO_LPC1 Vae.c (GPIO)
B ﬁ PIN_LPC1Tenc (PIN)

Figure 18

Check the "Options for Target"->C/C++ -> C99 Mode. Make sure that the timers are enabled in
RTX Conf CM.c.

Open the virtual demo.c file and examine the code. Note the following: two virtual timers created and started
with the countdown period of 3000 and 1000 respectively. The callback function is passed with the specified
timer parameters once the timer has triggered. Three threads are created for the signal and wait demonstration
(T led ID1, T led ID2, T led ID3). LEDs will flash according to the signal/wait pair that have been matched,
or virtual timer currently being called back and executed.

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 150f 17

Build the project and analyze the application execution (LEDs), its timing characteristics, and how it correlates
with the sample code given. Use the debugging and analysis tools to trace variables to get an in-depth
understanding. Make sure to comment out the osDelay() while debugging.

7. Optional Lab Assignments (Bonus Marks 3% of the Course Marks)
Submit Lab-3 Report through D2L

7.1 Part 1

The following outlines the specifications for 3 different scheduling applications (Questions 1, 2 and 3 in
section 5). You should create an analysis version for each application. The analysis will be used for debug
mode to analyze performance of your applications for your report.

1. Implement a round-robin scheduling example using 3 different tasks. Each task should be allotted a
time slice of 15msec. Note: Your code must perform a different functionality than the one provided in
this lab. Ensure that the tasks do not run infinitely, and they have a finite workload with respect to time.

TABLE 1: LIST OF PRE-EMPTIVE TASKS

Task Functionality Thread Priority
A A=Y x + (x +2)] 2
B _vi6 2 3
B= Ln=1 i ’
C _vi6 n+l |
c- 2, (%)
5 =2 52 54 55 o)
- D=l4—4—4=4=—4 = -
1234 5l

2. Table I provides a list of pre-emptive threads, with their function and priority listed. Note: The lower the
number in the Priority column, the higher the priority. Write the pre-emptive code for a scheduling
algorithm which invokes the threads and functionalities in Table I based on their priority level (i.e. Task
C should finish computing first). Each task should print their final result to stdout (using printf or the
watch window).

Submit the printout of your .c code, RTX Conf CM.c Configuration Wizard file, and snapshots of your
Event Viewer and Performance Analyzer windows for each application.

7.2 Part I1

Implement an RMS algorithm using the following process set given in Table 2.

Table 2: 3-Process Set

Process Period (T) | Computation Time (C) | Priority (P)
A 40000 20000 3
B 40000 10000 2
C 20000 5000 1

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX

Schedule the above process set using inter-thread communication mechanisms and virtual timers. Since RMS is
a Fixed Priority Scheduling method, ensure that the priorities are followed accordingly (i.e., lower the number,
higher the priority). Note that the periods are much longer than the lecture examples due to debugging purposes.
Use a custom delay() function.

Hand in the .c code for the RMS scheduling technique of this process set. Moreover, include an execution
timeline for the processes (may be drawn). Submit this timeline with your code. Make sure that your program
execution matches your calculated timeline for verifying the correctness.

References

1. "The Keil RTX Real Time Operating System and pVision" www.keil.com. An ARM Company.
2. "Keil uVision and Microsemi SmartFusion" Cortex-M3 Lab by Robert Boys www.keil.com.
3. "Keil RTX RTOS the easy way" by Robert Boys www.keil.com.

EE8205: Embedded Computer Systems - Scheduling Real-time Applications using pVision and RTX 17 of 17

