
EE8205: Embedded Computer System -- uVision Tutorial Page 1/19

EE8205: Embedded Computer Systems

Electrical, Computer and Biomedical Engineering

Toronto Metropolitan University

Introduction to Keil uVision and ARM Cortex M3

1. Objectives
The purpose of this lab is to introduce students with the installation of uVision on their home computers. They will

also be made known to the Keil uVision IDE along with the ARM Cortex M3 architecture and some of its features.

Specifically, the basic steps of coding and execution with the ARM Cortex M3 (NXP LPC1768) embedded

processor. Students will learn to execute simple Cortex M3 programs using uVision. The lab will allow students to

become familiar with the uVision environment, its simulating capabilities, and the tools needed to assess various

Cortex M3-CPU performance features and factors. As majority of embedded systems use ARM processors for low-

power consumption and competitive performance, students will find the skills obtained from this lab very useful.

2. KEIL uVision 5 Installation

The first step is to download the MDK531.EXE or the latest version available. Follow the link below

https://www.keil.com/demo/eval/arm.htm fill the form and you will see the download screen of Figure 1.

Download the MDK531.EXE file to your machine.

Figure 1: KIEL uVision 5 Download page

https://www.keil.com/demo/eval/arm.htm

EE8205: Embedded Computer System -- uVision Tutorial Page 2/19

Once the file is downloaded, double click and run the setup file (MDK531.EXE). Accept the license agreement,

select installation folder, enter your information, and complete MDK setup as depicted in Figures 2 to 7.

Figure 2: Setup Options

Figure 3: Program Directory

EE8205: Embedded Computer System -- uVision Tutorial Page 3/19

Figure 4: Your Information

Figure 5: Setup Running

EE8205: Embedded Computer System -- uVision Tutorial Page 4/19

All the Cortex M3 based labs are remote and online only and we cannot use the Cortex M3 hardware

boards in Lab ENG408. Therefore, we do not need the ULINK driver. However, if any student wants use

the ENG408 lab board or intend to obtain/buy Cortex M3 (or M4) processor development board, he/she

should install this driver also.

Figure 6: Device Driver

Figure 7: MDK Installation Completed

EE8205: Embedded Computer System -- uVision Tutorial Page 5/19

3. Package Installation:

Select NXP LPC1768 processor from the Devices tab (See Figure 8) as this is the processor used in the Cortex

M3 based MCB1700 boards available in our ENG408 lab. Install all the packages as mentioned in Figure 9.

Figure 8: Package Installation

Figure 9: Device and Supported Package Installation

EE8205: Embedded Computer System -- uVision Tutorial Page 6/19

4. Developing Software for Cortex with Keil uVision5

In this section, you will learn to create a uVision project, import necessary files, compile, and simulate an

application to assess the performance. In particular, the example will demonstrate a simple project called

blinky. The code will read the voltage provided by the microcontroller's ADC channel AIN2 (the

potentiometer available on the MCB1700 board). Based on the value set on the channel, the LEDs will flash

at a certain speed. If enabled, a bar graph and voltage reading will also appear on the LCD display.

4.1. Creating a new uVision Project

We will be working with the NXP LPC1768 (Cortex M3 produced by NXP) processor in these labs. This

processor chip is used in the Keil MCB1700 evaluation board. You will find a lot of online resources and

tutorials for assistance.

To run uVision IDE, double click uVision program on your desktop. Open the application.

1. When uVision has launched and if a project already exists, then first close the project by selecting

Project >> Close Project.

2. Now from the top bar select Pack Installer option in the top bar as shown in Figure 11.

Figure 11: Select Pack installer

3. The Pack Installer Opens up Select the Blinky ULp Project. As shown in Figure 12.

4. Create New Directory for EE8205 Labs and a subfolder for Lab1. Copy to that folder as shown in

Figure 13.

5. Your workspace should now resemble Figure 14.

Figure 10: uVision5 Icon

EE8205: Embedded Computer System -- uVision Tutorial Page 7/19

Figure 12: Copy Blinky Project

Figure 13: Copy Blinky to Lab1 folder

EE8205: Embedded Computer System -- uVision Tutorial Page 8/19

Figure 14: Workspace

6. Double click on startup_LPC17xx.s to open the editor. Click on the "Configuration Wizard" tab

at the bottom of the editor window as shown in Figure 15. The Wizard window converts the "Text

Editor" window so that the programmer may view the configuration options more easily. It is

possible to adjust the stack and heap sizes of the LCP1768 chip here if necessary.

Figure 15: Project Files

EE8205: Embedded Computer System -- uVision Tutorial Page 9/19

7. Similarly by clicking on the "Books" tab at the bottom of the Project workspace window, the

"Complete User Guide Selection" opens up to provide you with FAQs and system help. Once you

have finished inspecting the user guide, switch back to the "Project" tab in the Project window.

8. During this lab, you will be simulating the blinky.c program. Thus we must define certain

preprocessor symbols for the compiler to interpret. In your main menu, select Project >> Options

for Target 'SWO Trace'. Click the tab entitled "C/C++".

9. In the box "Preprocessor Symbols", write "ADC_IRQ" in the textbox Define. Click OK.

 Enabling printf: Project >> Options for Target 'SWO Trace. Select the Debug tab (see Figure 16), select

"Use" on the right side, and then click the Settings box. Under the Trace tab, click "Trace Enable".

Ensure that the Core Clock is set to 96 MHz, and that the SWO Clock has "Autodetect" enabled. In the

ITM Stimulus Ports, set Enable to 0xFFFFFFFF, and ensure that the lower port checkbox, Port 7..0 is

unchecked. Click OK. In the "Options..." window, select "Use Simulator" once again. Click OK. Also

notice the source code necessary in Blinky.c to support the printf function.

10. To compile and link the .c modules, click the build icon . You can alternatively build the
project by pressing F7. Make sure that the project compiles and links without any errors or
warnings. A newline at end of file warning may appear; this is fine.

Figure 16: uVision Debug Window

EE8205: Embedded Computer System -- uVision Tutorial Page 10/19

Blinky.c - main file, initializes the LED, Serial and ADC functions

IRQ.c - Contains the timer interrupt handler routine needed by blinky.c. It is responsible for

keeping track of clock_ms (10 ms timer flag) and the LED blinking rate.

Side Note: Examining the Application

Before we continue to work with the Debug mode, it is important to understand what each part of the

Blinky.c application is responsible for. Take a minute to analyze the code provided to you. In particular,

examine blinky.c, IRQ.c. How do they work together? What are their functionalities?

4.2. Simulation with Debug Mode

Next, we will enter Debug mode. Debug mode is an environment that provides capabilities to assess

your application and its performance characteristics

Enter the Debug mode by clicking on the icon. A window will pop up displaying: "EVALUATION

MODE Running with Code Size Limit:32K", Click OK and uVision will transform into new successive

multiple windows, including the disassembled version of your *.c code. If you have entered the Debug mode

correctly, you will see a number of windows pop up which will allow you to examine and control the

execution of your code. You should observe something similar to that of Figure 16 window. The Debug mode

will connect uVision to a simulation model of your program, downloading the project's image into the

microcontroller's simulated memory.

1. Reset the program using the icon.

2. Execute the program by clicking the RUN icon. STOP (or pause) the program by selecting

the icon.

Congratulations, you've executed your first program Cortex M3 program through uVision. Now, you know

what all these windows in Debug mode actually do and what does this all mean?

4.3. uVision Debug Features and Analysis

uVision possesses many features for assessing the status and performance of your application software

running in Cortex. The following is a list of useful features that can be used to view and control your

applications. Note that they can only be accessed when in Debug mode.

a) Watch Window
A watch window allows you to keep track and view local and global variables, as well as raw memory

values. These values can be observed by running or stepping through your program. It may be beneficial to

watch the window with the use of steps and/or breakpoints in your code for debugging. A note on steps and

breakpoints is given below.

• Steps - (See Figure 16) As opposed to running through the whole code, the step keys allow you to step

through your code line by line, step through a function, etc.

• Breakpoints - Move the mouse cursor into the grey area next to the line numbers in your .c code in the

debugger. Left click the line (with a dark grey area) that you would like to set a breakpoint. A red dot

will appear if you are successful. Click it again to remove the breakpoint.

▪ Note when the code is executed, the dark grey boxes will turn green indicating that the line has

been executed.

1. To open a watch window (in Debug mode), select View >> Watch Window >> Watch 1. Note, a

watch window may open up automatically when entering the Debug mode.

2. Find the column entitled "Name" in the Watch 1 window. The subsequent rows under this column

EE8205: Embedded Computer System -- uVision Tutorial Page 11/19

should read <Enter expression>. Highlight the field and press backspace. Enter "ADC_dbg" in the

first row.

• When you click the RUN icon to execute the program, the value of ADC_dbg will change

depending on the ADC value entered on analog channel 2 (AIN2). (More on entering analog input

in the Peripheral section)

• To automatically input a variable in the watch window, go to the blinky.c code. Right-click on the

variable AD_dbg. A pop-up menu will appear. Select "Add ADC_dbg to..." >> Watch 1.

3. It is also possible to change the value of "ADC_dbg" during execution. If you enter a '0' in the

value field of the watch window, you may modify the variable's value without affecting the CPU

cycles during execution.

b) Register Window
The register window (see Figure 16) displays the contents of the CPU's register file (R0 - R15), the

program status register (xPSR), the main stack pointer (MSP) and the process stack pointer (PSP). This

window will automatically open when transitioning to Debug mode. These registers may be used for

debugging purposes, in conjunction with the watch window, steps, and breakpoints.

c) Disassembly Window
The disassembly window displays the low-level assembly code, where its respective C code is appended

beside it as a comment. This window is useful for viewing compiler optimizations and the .c code's

assembly generation. The left margin of the disassembly window is also useful for keeping track of

execution (green blocks), possible executable blocks (grey), line numbers, and setting breakpoints.

d) Performance Analyzer
The Performance Analyzer (PA) tool is extremely useful for determining the time your program spends

executing a certain task. It presents itself as a horizontal bar graph dynamically changing with respect to the

total execution time of its respective tasks. Separate columns display the exact execution time and the

number of calls for each task. To use this feature (In Debug mode).

1. Select View >> Analysis Windows >> Performance Analyzer. Alternatively you can select the icon's

downward arrow and select Performance Analyzer. A new PA window should appear.

2. Expand some of the tasks in the PA window by pressing the "+" sign located next to the heading.

There should be a list of functions present under this heading tree.

3. Press Reset icon to reset the program (ensure that the program has been stopped). Click RUN.

4. Watch the program execution and how the functions are called. You will see something similar to

that of Figure 17. The analyzer is able to gather various statistics dynamically from the program,

useful for both debugging and performance assessment. Stop the program when you have finished

analyzing with the PA tool.

EE8205: Embedded Computer System -- uVision Tutorial Page 12/19

Figure 17: Performance Analyzer Window

e) Execution Profiling
An alternative to the PA is the Execution Profiling (EP) tool. EP is useful for determining how many times

a function call has occurred and/or the total time spent executing a certain line of code and/or function.

Therefore, the PA tool would technically be the graphical representation of the EP tool. To use this feature:

1. From the menu select Debug >> Execution Profiling >> and either Show Times or Show Calls. A left

column will expand on your source code, indicating either the execution time per task, or the number

of calls respectively.

2. Regardless of the option , if you hover the mouse over a number in the left column, all the

information will be displayed as if you chose both options (i.e., execution time and the number of

calls).

f) Logic Analyzer
The Logic analyzer in debug mode allows you to visualize a logic trace for a variable during its execution.

Thus we could use this as a visualization for the variables we place in the watch window. For this lab, we

will graphically follow the AD_Dbg value in our code:

1. Press the arrow on the icon and select Logic analyzer. A window will appear (if not already
present).

2. In the blinky.c code, right-click on the variable AD_dbg. A pop-up menu will appear. Select "Add

AD_dbg to..." >> Logic Analyzer. The variable will appear in the Logic analyzer window.

3. If you click run, you will see the AD_dbg trace generate as a straight line on the zero mark. It should

correspond to the value you are seeing in the Watch 1 window.

4. Under the Zoom heading in the Logic analyzer, click "All". This will scale your window according to

the execution trace time (horizontally).

5. Under the Min/Max heading, select "Auto" to scale the trace's amplitude (vertically).

This AD_dbg value will keep running with a zero value. Why? The AD_dbg is representative of the value

which we place on the board's potentiometer (AD input channel 2). Since we are not inputting any values

on the channel, it will logically continue to trace at '0'. It is evident how we would go about turning the

potentiometer on the dev board, but how could we simulate the pot for testing in Debug mode?

g) Peripherals (A/D Converter, System Tick Timer, and GPIOs)
uVision debugger allows you to model the microcontroller's peripherals. With peripheral modeling, it is

possible to adjust input states of the peripherals and examine outputs generated from your program. In our

Blinky.c program, the peripherals of interest are the AD converter (since we are inputting AD values from

AIN2 - pot), the systick timer, and the GPIOs (the output to the LEDs). We will not model the LCD in this

lab as it possesses high CPU utilization times and is more for demo purposes. Therefore make sure that

#define _USE_LCD remains commented in the code during debugging.

EE8205: Embedded Computer System -- uVision Tutorial Page 13/19

1. To open the GPIO 2 analyzer (LED simulator), select Peripherals >> GPIO Fast Interface >> Port

2. A window will appear as shown in Figure 18. Also open Port 1, i.e. Peripherals >> GPIO Fast

Interface >> Port 1 (as the first 3 LEDs belong to Port1, last 5 belong to Port 2).

2. To open the System Tick Timer window, in the main menu select Peripherals >> Core Peripherals

>> System Tick Timer. A window will appear resembling Figure 19.

3. To open the AD Converter window, in the main menu select Peripherals >> A/D Converter. A

window will appear similar to that of Figure 20.

4. To open the Debug window and view "printf" statements in the code, select View >> Serial

Windows >> Debug (printf) Viewer.

5. Reset the program and run the blinky application until it has simulated for one second. Watch how

the asserted "Pins" on the GPIO windows transition. This represents the LEDs on the dev board and

how they will transition when the program is executed. Note that in reality, these transitions are

occurring at a much faster speed than they are during this simulation. Why?

• Simulators require long computational runtimes to simulate a short period of hardware

runtime. This is a well-known problem in software.

6. Notice the System Tick Timer and its quick transitions within all the fields of the window.

7. Once, the one second of simulation time has been reached, there are two possible ways to change the

value of the simulated pot.

• Locate the A/D converter window and type 3.3000 in the AIN2 textbox under "Analog Inputs".

This will simulate the value transition for your pot from 0V to 3.3V (notice the Vref voltage of

3.3V, which cannot be exceeded).

• Alternatively in the "Command window" found in the debugger, type "AIN2 = 3.3". This will

execute the same result as the A/D converter window.

8. Now interrupt enable must be asserted to simulate the value inputted on the AIN2 channel. To enable

the interrupt, locate the A/D Interrupt Enable box in the A/D Converter window. Check off the

ADINTEN2 box. Wait for a moment. Uncheck the box.

9. Wait for approximately 0.1sec (simulated time) or so. Your logic analyzer and watch windows will

update the inputted A/D information accordingly (Note this transition may take slightly longer. To

speed up the process, you may also click and unclick the "BURST" checkbox at the top of the A/D

Interrupt window).

10. Note the GPIO windows and how the speed of the LED flashes has also changed (will transition at a

slower pace).

Figure 20:A/D converter Window Figure 19: System Tick Timer Window

Figure 18: GPIO Peripheral Window

EE8205: Embedded Computer System -- uVision Tutorial Page 14/19

11. Keep transitioning to different values using this simulated potentiometer method. Your simulation

should then resemble and close to Figure 21.

Figure 21: Simulating the Port and A/D Conversion using Logic Analyzer

12. While your program continues to execute, watch the application using the Performance Analyzer,

Watch window, execution times in the Disassembly window, and the Execution Profiler. This will

help you analyze the application. Where does your program spend most of its time executing?

13. Once you have finished executing your simulated blinky application, exit Debug mode by clicking

the icon once again.

4. Optional Tutorial Assignment

With the code used in this tutorial, and the joystick files and peripheral notes found in the Appendix of this

lab, edit the Blinky.c program which will read the direction that the joystick is pressed on the MCB1700 dev

board. Based on the direction of the joystick, the following peripherals should function as following.

• Demonstrate how will you add joystick to the project from the Manage Run-time Environment.

• Printf- the direction of joystick. (use-- joystick_initialization() joystick_stats() and printf) **

 **Due to online labs, you cannot physically check it but printing the initial position of the joystick would

be enough for the demo. However, you are welcome to use the MCB1700 hardware board in ENG408 to

fully demo your work.

Hint: Joystick files can be added by clicking button and choosing the Board Support>Joystick (API).

Once the file is added explore the joystick_MCB1700.c and call its functions in Blinky to perform the

assignment task.

Create a pdf file of the source code for your lab, including the main files, and any .h or .c files provided to

you during the tutorial that you may have altered for your application. Add relevant screen shots where

required. submit the pdf file through D2L assignment submission system.

References

1. "The Keil RTX Real Time Operating System and μVision" www.keil.com. Keil an ARM Company.

2. "Keil μVision and Microsemi SmartFusion" - Cortex-M3 Lab by Robert Boys www.keil.com.

Acknowledgement

This tutorial has been adapted from introductory notes by Robert Boys "Cortex-M3 Lab" and

"The Keil RTX Real Time Operating System and μVision" available at www.keil.com.

Keil is an ARM Company

EE8205: Embedded Computer System -- uVision Tutorial Page 15/19

Appendix

Peripheral Programming with the LPC1768

Peripheral pins on the LPC1768 are divided into 5 ports ranging from 0 to 4. Thus during the course of this

lab you may have noticed that pin naming conventions (for GPIOs, etc.) were in the format Pi.j, where i is the

port number and j is the pin number. For instance, if we take a look at the first LED on the MCB1700 dev

board, we will see the label P1.28, signifying that the LED can be found on Port 1, Pin 28. A pin may also

take on any one of four operating modes: GPIO (default), first alternate function, second alternate function,

and third alternate function. It is important to note that only pins on Ports 0 - 2 can generate interrupts.

https://www.keil.com/support/man/docs/mcb1700/mcb1700_to_joystick.htm

The 5-position joystick control on the MCB1700 board grounds one of 5 possible port pins depending on how the

joystick control handle is positioned. The control may be positioned left, right, up, down or pushed toward the

board (select).

• The Left joystick position connects pin C to port pin P1.26 of the LPC17xx device to ground.

• The Right joystick position connects pin B to port pin P1.24 of the LPC17xx device to ground.

• The Up joystick position connects pin A to port pin P1.23 of the LPC17xx device to ground.

• The Down joystick position connects pin D to port pin P1.25 of the LPC17xx device to ground.

• The Select joystick position connects the Cntr pin to port pin P1.20 of the LPC17xx device to ground.

To use the peripherals provided to you on the dev board, ensure that you abide by the following steps. Let us

take joystick.MCB_1700.c as an example which can be found at the end of this Appendix. Note: masking

register bits with |= (...) will turn the specified port pins high, while &= ~(...) will alternatively place them as

low.

1) Power up the Peripheral

Looking at the NXP LPC17XX User Manual provided to you in the course directory, refer to Chapter 4:

Clocking and Power Control (in particular pp. 63). The PCONP register is responsible for powering up

various peripherals on the board, represented as a total of 32 bits.

The joystick is considered as a GPIO and therefore we are concerned with bit 15 for powering up. Note that

the default value is '1' when the chip is reset. Thus GPIOs are powered up by default on reset. When coding

for joystick, Inititialize() we must then include the following code to power up the GPIO:

LPC_SC->PCONP |= (1 << 15);

2) Specify the operating mode

The pins that need to be used by the peripherals must be connected to a Pin Connect Block (LPC_PINCON

macro in LPC17xx.h). The registers which connect the peripheral pins to the LPC_PINCON are referred to

as PINSEL, containing 11 registers in total.

The joystick pins are located on Port 1, pins 20, 23, 24, 25, and 26 (verify on the dev board). Referring to

the manual (i.e. Table 82 on pp. 109) we observe that PINSEL3 is responsible for configuring these pin

functions. Thus we include the following in joystick-MCB1700.c:

/* P1.20, P1.23..26 is GPIO (Joystick) */

LPC_PINCON->PINSEL3 &= ~((3<< 8)|(3<<14)|(3<<16)|(3<<18)|(3<<20));

These pins are automatically selected as GPIOs upon reset according to Table 82. Thus we keep the "00"

value assigned to them (re-declare these values as good practice).

EE8205: Embedded Computer System -- uVision Tutorial Page 16/19

3) Specify the direction of the pin

The I/O direction of the peripheral pins must also be specified (input/output). The FIODIR registers are

used to set pin directions accordingly, where '0' represents input, and '1' is output. By default all registers

are assigned as input. As the joystick is on port 1 in the LPC1768, we can configure specific pins as input

as follows (pins on the LPC_GPIO1 macro):

/* P1.20, P1.23..26 is input */

LPC_GPIO1->FIODIR &= ~((1<<20)|(1<<23)|(1<<24)|(1<<25)|(1<<26));

 *---

 * Copyright (c) 2013 - 2019 Arm Limited (or its affiliates). All

 * rights reserved.

 *

 * SPDX-License-Identifier: BSD-3-Clause

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are met:

 * 1.Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 * 2.Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 * 3.Neither the name of Arm nor the names of its contributors may be used

 * to endorse or promote products derived from this software without

 * specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

 * ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

*---

 * Name: Joystick_MCB1700.c

 * Purpose: Joystick interface for MCB1700 evaluation board

 * Rev.: 1.01

 ---*/

#include "LPC17xx.h"

#include "PIN_LPC17xx.h"

#include "GPIO_LPC17xx.h"

#include "Board_Joystick.h"

#define JOYSTICK_COUNT (5U)

/* Joystick pins:

 - center: P1_20 = GPIO1[20]

 - up: P1_23 = GPIO1[23]

 - down: P1_25 = GPIO1[25]

 - left: P1_26 = GPIO1[26]

 - right: P1_24 = GPIO1[24] */

/* Joystick pin definitions */

EE8205: Embedded Computer System -- uVision Tutorial Page 17/19

static const PIN JOYSTICK_PIN[] = {

 { 1U, 20U},

 { 1U, 23U},

 { 1U, 25U},

 { 1U, 26U},

 { 1U, 24U}

};

/**

 \fn int32_t Joystick_Initialize (void)

 \brief Initialize joystick

 \returns

 - \b 0: function succeeded

 - \b -1: function failed

*/

int32_t Joystick_Initialize (void) {

 uint32_t n;

 /* Enable GPIO clock */

 GPIO_PortClock (1U);

 /* Configure pins */

 for (n = 0U; n < JOYSTICK_COUNT; n++) {

 PIN_Configure (JOYSTICK_PIN[n].Portnum, JOYSTICK_PIN[n].Pinnum, PIN_FUNC_0, 0U, 0U);

 GPIO_SetDir (JOYSTICK_PIN[n].Portnum, JOYSTICK_PIN[n].Pinnum, GPIO_DIR_INPUT);

 }

 return 0;

}

/**

 \fn int32_t Joystick_Uninitialize (void)

 \brief De-initialize joystick

 \returns

 - \b 0: function succeeded

 - \b -1: function failed

*/

int32_t Joystick_Uninitialize (void) {

 uint32_t n;

 /* Unconfigure pins */

 for (n = 0U; n < JOYSTICK_COUNT; n++) {

 PIN_Configure (JOYSTICK_PIN[n].Portnum, JOYSTICK_PIN[n].Pinnum, 0U, 0U, 0U);

 }

 return 0;

}

/**

 \fn uint32_t Joystick_GetState (void)

 \brief Get joystick state

 \returns Joystick state

*/

uint32_t Joystick_GetState (void) {

 uint32_t val;

 val = 0U;

 if (!(GPIO_PinRead (JOYSTICK_PIN[0].Portnum, JOYSTICK_PIN[0].Pinnum))) val |=

JOYSTICK_CENTER;

 if (!(GPIO_PinRead (JOYSTICK_PIN[1].Portnum, JOYSTICK_PIN[1].Pinnum))) val |=

JOYSTICK_UP;

 if (!(GPIO_PinRead (JOYSTICK_PIN[2].Portnum, JOYSTICK_PIN[2].Pinnum))) val |=

JOYSTICK_DOWN;

 if (!(GPIO_PinRead (JOYSTICK_PIN[3].Portnum, JOYSTICK_PIN[3].Pinnum))) val |=

JOYSTICK_LEFT;

EE8205: Embedded Computer System -- uVision Tutorial Page 18/19

 if (!(GPIO_PinRead (JOYSTICK_PIN[4].Portnum, JOYSTICK_PIN[4].Pinnum))) val |=

JOYSTICK_RIGHT;

 return val;

}

/*---

 * Copyright (c) 2013 - 2019 Arm Limited (or its affiliates). All

 * rights reserved.

 *

 * SPDX-License-Identifier: BSD-3-Clause

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions are met:

 * 1.Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 * 2.Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 * 3.Neither the name of Arm nor the names of its contributors may be used

 * to endorse or promote products derived from this software without

 * specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

 * ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE

 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 *---

 * Name: Board_Joystick.h

 * Purpose: Joystick interface header file

 * Rev.: 1.0.0

 --/

#ifndef __BOARD_JOYSTICK_H

#define __BOARD_JOYSTICK_H

#include <stdint.h>

#define JOYSTICK_LEFT (1 << 0) /// Defines the Left-button

EE8205: Embedded Computer System -- uVision Tutorial Page 19/19

#define JOYSTICK_RIGHT (1 << 1) /// Defines the Right-button

#define JOYSTICK_CENTER (1 << 2) /// Defines the Center-button

#define JOYSTICK_UP (1 << 3) /// Defines the Up-button

#define JOYSTICK_DOWN (1 << 4) /// Defines the Down-button

/**

 \fn int32_t Joystick_Initialize (void)

 \brief Initialize joystick

 \returns

 - \b 0: function succeeded

 - \b -1: function failed

*/

/**

 \fn int32_t Joystick_Uninitialize (void)

 \brief De-initialize joystick

 \returns

 - \b 0: function succeeded

 - \b -1: function failed

*/

/**

 \fn uint32_t Joystick_GetState (void)

 \brief Get joystick state

 \returns Joystick state

*/

extern int32_t Joystick_Initialize (void);

extern int32_t Joystick_Uninitialize (void);

extern uint32_t Joystick_GetState (void);

#endif /* __BOARD_JOYSTICK_H */

