
REAL-TIME EMBEDDED SYSTEMS are of-

ten characterized by the need for running

several tasks on a limited set of processing

units. Scheduling these tasks on processors

so that real-time constraints are met is a dif-

ficult problem. However, designers who

have to face a difficult trade-off between ef-

ficiency and safety choices have several

choices available to them.

We review some of these approaches and

present the main techniques and their prop-

erties, depending on the characteristics of

the system and of its environment. In partic-

ular, we provide well-developed preruntime

(static) scheduling that offers very good op-

timization and trade-off possibilities for sys-

tems with regular input and output streams

such as those found in digital signal pro-

cessing applications. Our approach is very

predictable and reliable, and so it can also

be a valid choice for control-dominated ap-

plications with inputs irregularly distributed

in time but with stringent safety require-

ments. The price to be paid in this case is in

terms of processor usage and code size. Run-

time (dynamic) scheduling, on the other

hand, is the preferred (and sometimes the

only) choice for control-dominated systems

with very tight timing constraints.

We also review present research direc-

tions and point out the need for a more for-

mal analysis of heuristically chosen

scheduling techniques commonly imple-

mented in applications.

The problem
The scheduling problem consists of de-

ciding the order and/or the execution time

of a set of tasks with certain known charac-

teristics (periodicity, duration) on a limited

set of processing units. These units have a

given capability (capacity, processing

speed) and are subject to a set of constraints

on the completion time of each task and on

the use of the processing units. The sched-

uling problem is quite general and must be

solved in many domains. In manufacturing,

the tasks may be manufacturing operations

and the processing units may be machines.

In transportation, the tasks may be flights

and the processing units may be airplanes.

We consider a specific subclass of sched-

uling problems: those that arise from sched-

uling software tasks on a single processor (or

onto a limited number of processors for DSP

applications) in reactive, real-time embedded

computing applications. Most reactive em-

bedded systems continuously react to envi-

ronmental stimuli and must follow the speed

of the environment. This is in contrast to in-

teractive systems, such as a word-processing

system that responds to the user (the envi-

ronment) as fast as it can but with no hard-

time constraints and with batch systems for

Scheduling for Embedded
Real-Time Systems

JANUARY–MARCH 1998 0740-7475/98/$10.00 © 1998 IEEE 71

FELICE BALARIN
Cadence Berkeley

Laboratories
LUCIANO LAVAGNO

Politecnico di Torino and
Cadence Berkeley

Laboratories
PRAVEEN MURTHY

Cadence Design Systems
ALBERTO SANGIOVANNI-

VINCENTELLI
University of California at

Berkeley

The authors review
several approaches to
control-oriented and
dataflow-oriented

software scheduling to
determine whether a
given technique can
satisfy deadlines,

throughput, and other
constraints for

embedded real-time
systems.

.

SCHEDULING

72 IEEE DESIGN & TEST OF COMPUTERS

which time is almost irrelevant. “Real time” is slightly more

specific than “reactive” because it generally identifies a sys-

tem composed of several distinct, often cooperating, tasks.

In addition, real-time systems are usually assumed to be

nonterminating; the duration for which they operate is usu-

ally long enough that it is effectively infinite. Scheduling in

this domain consists of finding an execution order for a set

of mutually exclusive, sometimes suspendable tasks. These

tasks are characterized by various parameters such as ex-

pected activation times (maybe periodic, maybe not), max-

imum required execution times, and deadlines by which

they must be completed after activation. Since the programs

are nonterminating, issues such as memory usage and dead-

lock avoidance also become very important. For example,

a task might produce data at a faster rate than it is consumed,

or circular dependencies might arise in which each task is

waiting for another to finish, resulting in early program ter-

mination—an error in most cases.

Reactive systems. Designers of reactive systems must

carefully resolve conflicts between different enabled tasks

at runtime. (Enabled tasks have received enough inputs to

start computing.) Resolving conflicts implies a nondeter-

ministic runtime behavior and can lead to very subtle bugs

that may manifest themselves a long time after system de-

ployment.

DSP systems. Emphasis on throughput and the interde-

pendence among tasks are the main differences between

conventional real-time reactive scheduling problems and

DSP scheduling problems. The throughput goal is to exe-

cute the DSP algorithm at a rate faster than the incoming

sample rate.

Task interdependence in reactive real-time applications

involves specifying task readiness externally by giving their

frequency of occurrence or expected times. This models the

temporal characteristics of the inputs coming from the en-

vironment. There may or may not be explicit information

on the dependence of the task execution on another task.

However in DSP applications the input arrival, or sample,

rate is precise, and the completion of other tasks enables

the tasks that follow. We specify this dependency as a

dataflow graph in which tasks to be executed, called actors,

are nodes and directed edges specify the computation flow

and thus the precedence among tasks. See Figure 1.

There are two broad areas in which scheduling problems

arise in digital signal processing: high-level synthesis and

general-purpose DSPs.

In high-level synthesis, the problem is to synthesize hard-

ware that will perform the operations as specified in the

dataflow graph. The scheduling problem is to map the

dataflow graph, where tasks are atomic in the sense that they

represent very elementary operations, like addition and mul-

tiplication, to a number of processing elements such as

adders and multipliers. The optimization criteria of interest

are the total number of processing elements, the through-

put, and the total amount of memory usage (registers). These

are all conflicting goals because to increase throughput, we

might have to increase pipelining, and this increases the

number of registers being used. Reducing the number of

processing elements will reduce the chip area but might de-

crease the throughput because there is less computational

power available. While this is an important problem and has

been thoroughly investigated in the literature, it is outside

the scope of this article.

With general-purpose DSPs, the sequence of operations

specified by the dataflow graph may be complex, as in an FFT.

These DSPs are quite popular for applications that do not re-

quire very high throughput rates such as audio signal pro-

cessing. Traditionally, to achieve the best throughput and

memory usage in DSPs, programmers used assembly language,

a tedious and error-prone task at best. We could specify DSP

programs in high-level languages (C or Fortran), but compil-

ers for these languages have not been successful at producing

optimized code that compares well with handwritten assem-

bly language. Block-diagram languages have become more

popular as a specification language because they

■ are more intuitive than either assembly or high-level

languages

■ can be based on computation models well-suited for

expressing DSP systems such as dataflow

■ are much easier to parallelize than imperative lan-

guages like C or Fortran

One of the desirable features required of block diagram

languages is efficient code generation. Scheduling plays a

key role in meeting the various optimization criteria of

throughput, code size, and buffer sizes. Because the com-

putation models (for example, synchronous dataflow) im-

pose restrictions on the overall control flow of the program,

compilers for these block diagram languages can perform

optimizations not usually possible for more general models

or for imperative languages.

t(A) = 1
t(B) = 2
t(C) = 3
t(D) = 1

B

D

A

C

D

D

D

D

D

D

Figure 1. A dataflow graph. t = execution times.

.

JANUARY–MARCH 1998 73

Control-dominated systems
We generally classify scheduling policies for real-time sys-

tems as

■ static, or preruntime, when tasks execute in a fixed or-

der determined offline. This order may or may not con-

tain repetitions designed to cope with different

expected activation times and/or deadlines.

■ dynamic, or runtime, when the order of execution is de-

cided online as the tasks present themselves to the pro-

cessing units ready to be executed.

Generally, a dynamic execution policy is based on prior-

ity; that is, one among the set of ready tasks is dynamically

chosen according to a priority order. (Priorities may be seen

as additional information that helps in determining an exe-

cution policy that satisfies all the constraints.) Priority, in-

tuitively, is a measure of the urgency of each task and can

be determined either manually or automatically, in turn sta-

tically at compile time or dynamically at runtime. Moreover,

dynamic scheduling can be preemptive if the currently ex-

ecuting task can be suspended when another task of high-

er priority becomes ready, and nonpreemptive otherwise.

Verifying whether a given scheduling satisfies all the dead-

lines (schedulability analysis) is an extremely hard prob-

lem, even when the execution times of all tasks are precisely

known.

If a schedule satisfies the constraints, its quality often de-

pends on the use of the processing units—the percentage

of time spent by the processor when executing tasks. A pro-

cessing unit may be poorly used either because it spends

time in computing the schedule itself or because the sched-

ule requires an execution overhead.

Static scheduling requires almost no CPU power at run-

time, implying low overhead. (The time required to compute

the schedule before execution may not be negligible but is

required only once in a system’s lifetime.) However, static

scheduling requires that a task be executed whenever it is

expected to be ready or at least tested for readiness cycli-

cally. If enabling times are not predictable, too much CPU

time is wasted in simply polling events that are unlikely to

occur. Thus static scheduling best suits cases in which the

time that tasks become enabled is well-known in advance.

We discuss this later in the section on dataflow systems.

In general, dynamic scheduling may be necessary to bet-

ter use the CPU. In fact, processor use that guarantees

schedulability in the presence of irregular task activations

is much higher for preemptive static priority scheduling1

than for static scheduling. On the other hand, dynamically

scheduled systems are much more difficult to tune and de-

bug than statically scheduled systems. This is because the ex-

ecution times and execution order are largely unpredictable.

These difficulties can be very serious problems for systems

that require a high degree of safety and reliability. Indeed,

the choice of a scheduling technique is often the result of a

hard compromise between conflicting criteria!

Static scheduling. Probably the simplest and most pop-

ular scheduling approach is the round-robin method. Tasks

are checked for readiness in a predetermined order, and

the tasks that are found to be ready are immediately exe-

cuted. Round-robin is easy to implement. It is also easy to

prove at least some timing guarantees. Every task is checked

for readiness once in a cycle, and thus the time between a

request for execution and the corresponding execution can

be easily bounded by the execution time of other tasks.

The problem with round-robin scheduling is that it pro-

vides poor service to urgent tasks. It is possible that even the

most urgent task needs to wait for all other tasks to execute

before it gets its turn. Thus to satisfy the timing constraints,

a very fast processing unit may be necessary, which may not

be available. Then round-robin would not produce a feasi-

ble schedule. In addition, if some tasks are rarely enabled,

the overhead of checking them in every cycle may be sig-

nificant compared with the actual execution time.

A slight improvement on round-robin scheduling is stat-

ic cyclic scheduling. Here again tasks are checked for readi-

ness in a predetermined order, and the tasks that are found

to be ready are immediately executed. Tasks may appear

more than once in the cycle. Hence, more urgent tasks may

appear more often and be serviced more frequently, yield-

ing better schedulability and processor use than with round-

robin. However, unless the cycle is made very long

(incurring a memory penalty), static cyclic scheduling may

still suffer an overhead due to the frequent readiness check-

ing of tasks that are rarely executed.

Designers also use static cyclic scheduling for dataflow

systems. However, since in that case the inputs are regular

data streams, there is no need to check a task for readiness.

A task is (statically) scheduled to run only when its inputs are

known to be present.

Dynamic scheduling. Static priority dynamic schedul-

ing has received significant interest since the pioneering

work of Liu and Layland.1 In their approach, at any point in

time the task with highest priority among the enabled tasks

executes; that is, the scheduling follows a preemptive static

priority scheme. Strong schedulability and processor use re-

sults have been proven. Unfortunately, the theoretical re-

sults are valid only when

■ each task is assigned a fixed and unique priority. Each

task is enabled when its execution is requested and dis-

abled when it completes its execution.

.

SCHEDULING

74 IEEE DESIGN & TEST OF COMPUTERS

■ executions of each task are requested periodically, with

a constant and known interval between requests. We

call this interval a period and use Pi to denote the peri-

od of task i.

■ tasks are independent. That is, requests for execution

of a certain task do not depend on executions of other

tasks.

■ each task must be completed before the next request

for it occurs. If a priority assignment is such that this is

always true for any task, we say the priority assignment

is feasible. A set of tasks is schedulable when a feasible

priority assignment exists.

■ each task has a constant and known runtime; that is,

the processor time it requires for a single execution, as-

suming it is not interrupted. We use Ti to denote the run-

time of task i.

Designers may assign priorities either by hand or let them

be determined by an algorithm. For systems satisfying the

above-mentioned assumptions, Liu and Layland proposed

a particular algorithm for priority assignment, called rate

monotonic scheduling. RMS is a static priority scheduling

scheme that assigns priorities according to periods such that

tasks with shorter periods get higher priorities.

Liu and Layland showed that RMS is optimal in the sense

that if the RMS priority assignment is not feasible, a set of

tasks is not schedulable. They also discovered the least up-

per bound on processor use in a static priority scheme. More

precisely, if, for a set of n tasks, the processor use is less than

n(21/n −1), that set of tasks is schedulable. (In particular, RMS

priority assignment is feasible.)

Liu and Layland have also found an even stronger uti-

lization result for a dynamic priority assignment policy called

earliest deadline first (EDF). The basic assumption of EDF is

that at any point in time the priority of an enabled task is not

fixed; it depends on the time until the next request for that

task. According to the EDF policy, the executing task must

always have the least time remaining until the next request

(or equivalently the earliest deadline) among all the enabled

tasks. An EDF-executed set of tasks is schedulable if, and

only if, its processor use is less than 1. Unfortunately, this ap-

parent improvement over RMS is often offset by the costly

runtime overhead of EDF scheduling. Consequently, EDF is

not widely used in embedded systems, despite its attractive

theoretical properties.

Analysis. Liu and Layland’s seminal work has had a wide

impact on research in real-time computing and embedded

systems. Yet, every assumption of their model is often vio-

lated to some extent in the design of embedded systems.

For many high-volume, low-cost embedded systems, task

preemption is too expensive in time and space. The runtime

penalty is due to the context switching overhead. The mem-

ory penalty is due to the unpredictability of stack require-

ments for storing states of preempted tasks. For these

reasons, designers often use nonpreemptive schemes, even

though elegant theoretical results do not extend easily to

them.

In many systems, requests for task executions do not ar-

rive in regular periods. Still, some constraint on the fre-

quency of requests is usually known. It might be in the form

of minimum and maximum times between two requests or

in terms of a minimum and maximum number of requests

in a given period of time.

Tasks are very rarely independent; much more often they

are reactive. They are enabled by either events in the envi-

ronment (and the same event might enable several tasks)

or the execution of other tasks.

The correctness criteria of a task execution are often not

quite clear. The designer usually has a reasonable set of re-

quirements for the embedded system as a whole but finds

it difficult to relate these overall constraints to requirements

on individual tasks.

A task’s runtime is almost never constant. It may vary with

different input patterns as well as with the state of the task.

Modern processor design techniques make things even

worse. The runtime in a pipelined processor or a processor

with memory caches may vary even for the same inputs and

the same internal task state. Considering this lack of pre-

dictability and the cost pressure, it is not surprising that em-

bedded systems often include simple processors based on

designs that are over a decade old.

Beyond RMS and EDF. Fortunately, the static priority

scheduling scheme is amenable to analysis even in more re-

alistic models in which some of the assumptions of Liu and

Layland have been relaxed. For example, Audsley et al.2 pro-

posed an optimal priority assignment algorithm for static pri-

ority scheduling that is valid for any model for which there

exists a test satisfying the following conditions:

1. Given a priority assignment, it is possible to check

whether some task i satisfies its timing constraints. The

The choice of a scheduling
technique is often the result
of a hard compromise
between conflicting criteria!

.

JANUARY–MARCH 1998 75

pass or fail test results for task i do not change if two

tasks that have a higher priority than i exchange their

priorities. In other words, the test results should only de-

pend on the tasks having higher priority than i and not

on their exact priorities.

2. If some task i fails the test for some priority assignment

in which j has lower priority than i, it also fails in the as-

signment in which i and j switch their priorities. In oth-

er words, if i fails the test, we cannot make it pass by

lowering its priority.

Later we show an example of a such test, but at the mo-

ment let’s just assume that such a test is available and focus

on using it to devise a feasible priority assignment. Audsley’s

algorithm divides a set of tasks into two groups: those that

have and have not already been assigned a priority. Simi-

larly, it divides priorities into those that are already assigned

and those that are still available. The algorithm always as-

signs the lowest available priority to any task that satisfies

its timing constraint when assigned that priority.

The algorithm may terminate in two ways. It either assigns

priorities to all tasks, in which case a feasible assignment

has been found, or at some point the lowest available pri-

ority (say, p) cannot be assigned to any of the remaining

tasks. This last event would occur because every one of the

remaining tasks violates its timing constraints if assigned pri-

ority p. Then we may conclude that the set of tasks is not

schedulable because in every priority assignment at least

one of these tasks must have priority p or lower. The algo-

rithm is thus optimal, in the sense that it finds a feasible pri-

ority assignment, if such an assignment exists. The number

of tests required grows quadratically with the number of

tasks. This is a vast improvement over the naive algorithm

that checks all priority assignments and requires an expo-

nential number of tests.

Schedulability analysis. We analyze schedulability to

determine whether a set of tasks meets its timing constraints.

One approach to this problem is to compute the worst-case

response time (WCRT) of each task.3 A task’s WCRT is the

maximum possible length of an interval that begins with the

task being enabled and ends with the task completing its ex-

ecution. It includes both the task’s runtime and interference

from other tasks.

The WCRT concept is useful regardless of the scheduling

approach. It is well defined both for cyclic and priority (static

and dynamic) approaches as well as for preemptive and non-

preemptive schemas. Once we compute WCRT, checking

whether a task meets its deadline is a trivial comparison. Even

in more complex models in which timing constraints cannot

be expressed simply as deadlines on individual tasks, WCRTs

are often very useful information in schedulability analysis.

As an example, let’s compute WCRTs in a simple case.

This system satisfies the Liu and Layland assumptions of pre-

emptive static priority scheduling, and independent peri-

odic tasks with fixed runtimes. In general, the WCRT of a

task with priority p is bounded by the length of the longest

interval in which the processor is continuously busy, and

no task of priority lower than p executes. Let Bp denote the

maximum length of such an interval. If Bp is shorter than the

period of the task with priority p, the WCRT of that task ex-

actly equals Bp. We can compute Bp as follows:

1. Let initial estimate Bp
0 be the runtime sum of all tasks

with priority p or higher, and set the iteration counter k

to 0.

2. For each task i of priority p or higher, determine the

number of times ni that it can be enabled in the interval

of length Bp
k. Let the new estimate Bp

k+1 be the sum of

niTi over all tasks i of priority p or higher.

3. If Bp
k = Bp

k+1, stop; Bp is Bp
k. Otherwise, increment k by 1,

and go to step 2.

Analyzing a task set’s schedulability in a realistic embed-

ded system is not nearly as easy. The analysis needs to deal

with varying—possibly state-dependent—runtimes, depen-

dency between tasks, and nonperiodic events in the envi-

ronment. In addition to these are nonpreemptable task

sections, scheduling overhead, and other characteristics of

real systems not reflected in the Liu and Layland model.

Balarin and Sangiovanni-Vincentelli4 proposed a conserva-

tive extension of the WCRT analysis that designers can ap-

ply to systems in which

■ scheduling is either preemptive or based on nonpre-

emptive static priority

■ any number of events in the environment as well as the

execution of other tasks can enable tasks

■ events in the environment only need to respect the min-

imum time between two occurrences

However, not even this work addresses the problem of

input- and state-dependent runtimes. Any existing method

We analyze schedulability
to determine whether a set
of tasks meets its
timing constraints.

.

SCHEDULING

76 IEEE DESIGN & TEST OF COMPUTERS

taking those into account suffers from the so-called state ex-

plosion problem: the need to examine a state space that

grows exponentially with the number of tasks.

Synchronous scheduling
The synchronous approach to embedded system pro-

gramming originated in France in the 1980s (Halbwachs5

provides a good overview). Synchronous languages have

unambiguous semantics based on finite-state machines. The

languages come with a complete set of programming aids:

compilers to “standard” programming languages (for ex-

ample, C) and formal verification and simulation analysis

tools.

The basic assumption for synchronous languages is the

so-called synchronous hypothesis.5,6 The hypothesis states

that, given a set of communicating tasks with each repre-

sented by a finite-state machine, computation of next-state

functions and of output functions as well as communica-

tion among the finite-state machines take exactly zero time.

Taken literally, this assumption is obviously false for phys-

ical systems. However, if we sample the system and the task

inputs at discrete instants, the system behavior does not de-

pend on the computation time, as long as this time is bound-

ed by the difference between two consecutive input

sampling instants. We can regard such time as zero without

changing system behavior. In other words, if the reaction

time of the system is much smaller than the time resolution

(the time constants) of the environment, the synchronous

hypothesis is realistic. If task implementation is not homo-

geneous (for example, some tasks are implemented as hard-

ware and some as software), the synchronous hypothesis is

not plausible, and we must use other techniques.

The synchronous hypothesis allows us to abstract away

the internal structure of the embedded control software, re-

placing the user-defined cooperating task model with a sin-

gle, monolithic reactive block. In finite-state machine lingo,

the set of cooperating finite-state machines can be replaced

by a single product machine. The interesting point is that this

replacement is absolutely deterministic and easy to analyze.

In a sense, the “synchronous revolution” in reactive pro-

gramming holds the same promise for boosting designer pro-

ductivity as the introduction of the clock in digital hardware

design. It basically permits a clear separation of concerns

between timing (the analysis of a single, loop-free piece of

code, the next-state function, and the output function eval-

uation code) and functionality (the product of a set of finite-

state machines). The structure of the product machine is

equivalent to a kind of static scheduling of the component

machines. So we can look at the formation of the product

machine as a scheduling technique, the synchronous sched-

uling technique.

There are two points, though, in which the analogy un-

fortunately breaks down. First, synchronous scheduling can

lead to a larger program size or to an increase in the execu-

tion time of a single reaction with respect to traditional asyn-

chronous task-based scheduling. The size and complexity

of the product machine is often larger than the size and com-

plexity of the component machines.

Second, we can only schedule synchronously when the

tasks are represented as extended finite-state machines. This

problem is often not too serious, because most embedded

system design methodologies generally recommend a finite-

state specification style. Moreover, the synchronous skeleton

is generally used as a coordination language for tasks that

are black boxes. It can then be seen as a structured and pow-

erful mechanism to describe functional dependencies be-

tween tasks.

These considerations imply that synchronous languages

cannot be used for all cases but should be used with a clear

understanding of the trade-offs involved in the final imple-

mentation. For example, the synchronous approach may

pay off in the design of safety-critical systems. Then, deter-

ministic response and debugging ease offset the increased

costs and reduced performance.

The most interesting case of synchronous languages for

embedded systems is Esterel, a language for control-domi-

nated applications. Synchronous languages such as Lustre

or Signal can also represent dataflow-dominated applica-

tions, but in this case the advantages over the approaches we

describe in a later section are less clear. In particular, Lustre

and Signal require the designer to statically determine buffer-

ing rather than its being computed as part of the scheduling

task.

Esterel lets us describe reactive tasks as concurrent mod-

ules communicating via signals. The module notion serves

the sole purpose of a structuring mechanism for readability

because the Esterel compiler merges all modules into one

extended finite-state machine.5,6

As mentioned earlier, one of the basic notions common

to all synchronous languages is that time is divided into a

discrete sequence of instants in which something interesting

happens and idle intervals. Time in an Esterel program can

elapse only when executing a Halt statement. Otherwise, as

Esterel lets us describe
reactive tasks as concurrent
modules communicating
via signals.

.

JANUARY–MARCH 1998 77

soon as something happens, the Esterel program is syn-

chronously executed until the next Halt.

An Esterel program communicates with the environment

via a set of signals, which may or may not carry a value. A sig-

nal with a value can be a temperature sample or the fact that

a user has hit a key on a keyboard. Valueless, or pure, signals

can indicate when a period of time (a millisecond, for ex-

ample) has elapsed or when the pressure in a chamber falls

below a threshold.

At any instant, a mechanism that is outside the scope of

Esterel determines the presence of a subset of the input sig-

nals to the program. Note, however, that synchronous pro-

gramming is akin to static scheduling and closely related to

the polling of external inputs at the beginning of each instant.

Esterel includes several constructs to represent useful no-

tions in reactive real-time programming, such as preemption,

watchdogs, exceptions, and so on. For example, the state-

ment “do sub-statement Watching signal” instantaneously

preempts “sub-statement,” without allowing it to do anything

for the current instant. Assume that “msec” is an input signal

present once every millisecond and that the following code

describes concisely and explicitly a time-out mechanism:

...

do halt watching msec; % synchronize

with msec

do

some-long-task % execute unless

preempted

watching msec;

present msec then % check if

preempted

recover-from-timeout

end

...

The mechanism may interrupt a task if it does not com-

plete within one millisecond. (The Present statement is ex-

actly like an If statement in classical programming languages

but is used to detect a signal’s presence in an instant.) Note

that in synchronous programming we don’t need to worry

about an occurrence of “msec” after “some-long-task” has

finished but before “present msec” is checked. The two

events occur exactly in the same instant, that is atomically.

The first use of “do ... watching,” to kill a Halt statement is so

common that it has the shorthand version “await msec.”

There is one possible problem. A synchronous module is

equivalent to a Mealy type of extended finite-state machine

in which outputs depend on the inputs in the same instant.

This obviously can cause problems due to undelayed feed-

back loops, which are at the core of the Esterel compilation

problem.

There is an intrinsic difficulty of statically detecting the

absence of loops that do not permit the generation of an ex-

tended finite-state machine and thus the solution of the

scheduling problem. That is one of the reasons why syn-

chronous scheduling is not generally applicable to all sched-

uling problems.

Dataflow systems
For scheduling purposes, designers often use dataflow

graphs to describe DSP applications. Each actor in a

dataflow graph corresponds to a computation, and each

edge corresponds to a communication channel between

the actors it connects. An edge such as (A, B) imposes a

precedence constraint: Actor B may not execute until actor

A has finished executing. Each time an actor fires (executes),

it produces one token on each of its output edges and con-

sumes one token from each of its input edges. Edges have

buffers that hold data tokens, and the buffers are imple-

mented as FIFO queues. Each graph edge is also annotated

with a number that represents the number of initial tokens

on that edge.

Formally, a dataflow graph G is a directed graph G =

(V, E, d), where V is the set of actors, E is the set of edges, and

d is the function that assigns to each edge the initial number

of tokens called delays. We refer to this dataflow model as ho-

mogenous synchronous dataflow (HSDF). The actors and

edges may have other parameters as well; for example, com-

munication time, number of data items sent, and so on. A

common parameter needed is the execution time of each

actor; this is modeled by a function t that assigns each actor

an execution time.

In a slightly more general dataflow model, each actor con-

sumes and produces a fixed number of tokens (where these

numbers can be greater than one). This model is called syn-

chronous dataflow (SDF). A key SDF strength is its amenabili-

ty to static scheduling; this means that we can construct a

schedule at compile time and not have to make decisions

(about which actor to fire) at runtime. Dataflow models in

which this property does not hold are sometimes referred to as

dynamic dataflow or control dataflow. These models are tech-

nically more powerful than SDF since it is possible to simulate

Turing machines with them. Static scheduling is not usually

possible, and some runtime decision making is required. We

can model most DSP algorithms using SDF graphs since DSP

C

A B

D

Figure 2. APG for graph in Figure 1.

.

SCHEDULING

78 IEEE DESIGN & TEST OF COMPUTERS

algorithms typically do not require much decision making.

A valid schedule for an HSDF graph is a firing order for

the actors, possibly on different processors, so that all prece-

dence constraints are met and the graph returns to the orig-

inal state: the number of tokens residing on each edge. Each

actor in the graph appears once in the schedule. This sched-

ule is repeated in an infinite loop since, as mentioned ear-

lier, DSP programs do not generally terminate and run

indefinitely, at least until the power fails! Hence, the kth

schedule repetition is called the kth iteration.

As an example, consider the dataflow graph shown earlier

in Figure 1. A delay on an edge such as (B, C) imposes an in-

teriteration precedence constraint because the data produced

by B is not needed by C until the next iteration. In contrast, the

absence of a delay on edge (A, B) means that B will consume

the data token produced by A in the same iteration. This idea

is represented by the graph in Figure 2 called the acyclic prece-

dence graph (APG). This graph shows only the intra-iteration

precedences, and we see that in any iteration, actor C can be

executed independently of actors A, D, and B. We obtain the

APG by removing all edges that have one or more delays.

We can unfold the graph in Figure 1 to see the precedence

constraints over multiple iterations. Figure 3 shows the un-

folded graph of blocking factor 2. This 2-unfolded graph

shows the precedence constraints over two iterations. We

use the notation A1, A2, etc. to mean the first execution of

actor A, the second execution of A, and so on. The execu-

tions are now divided conceptually into even- and odd-

numbered iterations. The third iteration of actor A is the

second iteration of actor A1, and the fourth iteration is the

second iteration of A2 in the 2-unfolded graph, and so on.

Since the second iteration of C feeds data to the third itera-

tion of A, we model it by a feedback edge with a delay from

C2 to A1 in the 2-unfolded graph. Similarly, we obtain the

APG for the 2-unfolded graph, as shown in Figure 4a.

Throughput. If the dataflow graph does not have cycles,

and we have an infinite number of processing elements,

there is no theoretical limitation on how fast the graph can

be executed. After all, we could simply execute every itera-

tion of the graph at the same time, thereby achieving a

throughput of infinity. However, the presence of resource

constraints, and of cycles, limits how fast a dataflow graph

can be executed.

Suppose that we have an acyclic graph but a limited num-

ber of processors. Then determining the maximum through-

put we can achieve is an NP-hard (intractable) problem.

Conversely, assume that we have an unlimited number of

processors, but there are cycles in the graph. Then there is a

fundamental upper bound on the throughput achievable that

is given by the inverse of the iteration period bound (IPB):7

(1)

Here, Λ is the set of all cycles in the graph, T(l) is the total

computation time of cycle l, and D(l) is the delay count of

cycle l. A cycle that achieves this maximum is called a crit-

ical cycle. We call a schedule for a dataflow graph rate op-

timal if the iteration period for the schedule equals the IPB.

We can compute quantity λ in polynomial time. For the ex-

ample in Figure 1, λ is equal to 3.5, and the critical cycles

are ABCDA and ADBCA.

In general, we speak of two types of scheduling problems:

■ Fixed throughput, where the required iteration period

is given and the objective is to minimize the number of

processors required.

■ Fixed resources, where the number of processors is

specified and the objective is to devise a schedule with

maximum throughput.

Most forms of these constrained multiprocessor scheduling

λ = []∈∧MAX l T l D l()/ ()

A2C 1 C2P1

P2 A1 D1 B1 D2 B2

A2

C 2C1

A1

D1

B1

D2

B2

70

(a)

(b)

Figure 4. The APG for the 2-unfolded graph (a) and a two-
processor schedule (b).

C1

A1 B1

D1

C 2

A2 B 2

D 2

Figure 3. The 2-unfolded graph.

.

JANUARY–MARCH 1998 79

problems are NP-hard; so we must resort to heuristics in

general.

Scheduling techniques. There are two main ways of

tackling these scheduling problems. The first method is to

design heuristics derived by some insight into the particu-

lar scheduling problem. Well-known heuristics include list

scheduling, force-directed scheduling, cyclo-static sched-

uling, and various forms of software pipelining. A second

approach is to cast the scheduling problem as an integer lin-

ear programming (ILP) problem and use widely available

ILP solvers to obtain a solution. A benefit of this approach

is that it is quite general, gives exact results, and can incor-

porate many different types of constraints easily. On the oth-

er hand, ILP is itself an intractable problem: solvers can

require inordinate amounts of time. Also, the actors may be

large-grained—that is, have execution times of more than

one or two, which is typical for fine-grained actors. Then,

the size of the ILP formulation itself is exponentially bigger,

multiplying the disadvantage of this approach.

Nonoverlapped scheduling techniques. Let’s first con-

sider the problem of scheduling a dataflow graph, possibly

with cycles, onto an unlimited number of processors. As-

sume that interprocessor communication costs are zero. As

we have seen, the throughput bound limits the fastest rate at

which we can execute the graph.

An obvious first strategy would be to use classical multi-

processor scheduling heuristics such as list scheduling (re-

viewed later) on the APG. The schedule that we derive for

the APG can be executed in an infinite loop, giving us a

schedule for the dataflow graph.

The minimum amount of time required to execute all ac-

tors in the APG is clearly given by the critical path: the path

in the graph that has the largest execution time. For exam-

ple, the APG in Figure 2 has a critical path of time

4(A→D→B), and a schedule on two processors with an ex-

ecution rate of 1/4 is depicted in Figure 5. This rate is small-

er than the 1/3.5 bound we calculated in Equation 1 and is

not optimal. Clearly, we won’t get a better schedule if we re-

strict ourselves to the APG because we are ignoring all of

the interiteration parallelism that is present.

One way of exploiting interiteration parallelism is to unfold

the graph. Consider the APG for the 2-unfolded graph in Fig-

ure 4b; its critical path has a time of 7 units

(A1→D1→B1→C2). The two-processor schedule shown in

Figure 4a achieves a 1/3.5 execution rate since there are two

invocations of each actor every 7 time units. We could do this

because we were able to use up the idle time from 3 to 4 in the

schedule of Figure 5. This allowed more efficient resource us-

age. The total schedule length for an APG is called the

makespan of the schedule, and the iteration period of the in-

finitely repeated schedule equals the makespan in this case.

Unfortunately, it isn’t possible to obtain a rate-optimal

schedule by unfolding the graph more and more. We know

of graphs for which the length of the critical path divided by

the unfolding factor approaches the iteration period bound

asymptotically but never equals it.8

The nonoverlapped scheduling approach is so named be-

cause the interiteration parallelism is exploited only within

a finite number of iterations, not all of them simultaneously.

List scheduling. This is one of the earliest scheduling

techniques developed in the operations research commu-

nity for nonoverlapped scheduling when there are resource

constraints. The algorithm maintains a list of nodes that can

be scheduled at each step on a particular type of processing

element. A priority function breaks ties and chooses a task

out of the schedulable tasks at each step. The simplest pri-

ority function is the weight of the longest path from the node

to the sink node; the larger this weight is, the earlier the task

must be scheduled to avoid holding up the succeeding tasks.

If there is only one type of processing element, the graph is

a tree and each task has unit execution time. Then this al-

gorithm yields optimal schedules.

To minimize resource usage under a makespan con-

straint, the list scheduling algorithm uses each actor’s slack

time: this is the difference between the ALAP time (the lat-

est possible time a node can be invoked) and the current

scheduling time step. If the slack time is zero, the actor must

be scheduled immediately or the makespan bound will be

violated. At each time step, the algorithm proceeds by sched-

uling all actors that have a slack time of zero and increasing

the resources as needed to accommodate these actors. Re-

maining schedulable actors at that time step are scheduled

only if they do not need additional resources.

List-scheduling algorithms have a low computational

complexity, and solutions usually do not differ much from

optimum ones. List scheduling can also be modified to take

interprocessor communication cost into account; Liao et

al.9 has done an extensive comparison of various list-sched-

uling heuristics that take interprocessor communication

into account.

Overlapped scheduling techniques. In contrast to

Figure 5. A 2-processor, nonoverlapped schedule.

CP1

P2

40

BDA

.

SCHEDULING

80 IEEE DESIGN & TEST OF COMPUTERS

nonoverlapped scheduling, overlapped scheduling tech-

niques exploit the interiteration parallelism completely and

produce rate-optimal schedules when resource constraints

and communication costs are ignored. Figure 6a shows a

dataflow graph in which each actor has unit execution time.

Figure 6b and 6c show two schedules. The first is derived by

scheduling the APG and is not rate optimal since the criti-

cal path is 3. The other schedule is rate optimal and is over-

lapped because the ith iteration begins before the i − 1th has

finished (Figure 6c). We need to compute the exact starting

times of each node such that the next iteration of that node

can start λ cycles later. We can do this by using a shortest-

paths algorithm in polynomial time. If λ is not an integer,

the graph must be unfolded to achieve a rate-optimal sched-

ule. Or, we can simply take the iteration period to be the

ceiling of λ and get a schedule that has an iteration period

at most one more than the IPB.

Once we add resource constraints to the overlapped

scheduling problem, it too becomes intractable, and we

have to resort to heuristics. One approach is a pseudopoly-

nomial time, a bin-packing-like approach explored in Heem-

stra de Groot et al.10 Even though overlapped techniques are

clearly superior, a major reason why nonoverlapped sched-

uling techniques are still used widely is that resource-con-

strained, nonoverlapped scheduling heuristics have been

around in greater numbers.

Synchronous dataflow models
Recall that in SDF, an actor can produce or consume mul-

tiple tokens per firing. Designers have used SDF in many

block diagram-based rapid-prototyping environments,11,12

and code generation for programmable DSPs is a feature in

many of these environments. Here we concentrate on cer-

tain problems that arise for uniprocessor scheduling.

The code generation strategy used in block diagram en-

vironments is called threading; in this method, the underly-

ing model is scheduled to generate a sequence of actor

invocations. A code generator then steps through this sched-

ule and inserts the machine instructions necessary for the

computation specified by each actor it encounters. These in-

structions are obtained from a predefined library of actor

code blocks. The code generator generates in-line code be-

cause the alternative of using subroutine calls can have un-

acceptable overhead, especially if there are many small tasks.

A key problem in this strategy is the explosion of code size.

If an actor appears 20 times in the schedule, there will be 20

code blocks in the generated code. Generally, the only mech-

anism to combat code size explosion while maintaining in-

line code is the use of loops in the target code. If an actor’s

code block is encapsulated by a loop, multiple invocations

of that actor can be carried out without duplicating code.

Loop scheduling. In an SDF graph, iteration of actors in a

periodic schedule arises whenever the production and con-

sumption parameters along an edge in the graph differ. For

example, the 2-to-1 mismatch on the left edge of Figure 7a

implies that within a periodic schedule, B must be invoked

twice for every invocation of A.

10201020

(1) ABCBCCC (2) A(2 B(2 C))

(3) A(2 B)(4 C) (4) A(2 BC)(2 C)

(a)

(b)

code block for A

for (i=0; i<2; i++) {
code block for B
code block for C

}
for (i=0; i<2; i++) {

code block for C

}

(c)

A B C

Figure 7. An example illustrating the interaction between
scheduling synchronous dataflow graphs and the memory
requirements of the generated code. Graph (a), four possible
periodic schedules (b), and code (c).

A B

D

C

2D

D

0 1 2

D0 A0 B0

C0

D1 A1 B1

C1

P1

P 2

D0 A0

B0C0

D1 A1

B1C1

D2 A2

C2 B2

λ = 2

(a)

(b)

(c)

–

–

Figure 6. A dataflow graph (a); nonoverlapped, nonrate-
optimal schedule (b); possible rate-optimal, overlapped
schedule (c).

.

JANUARY–MARCH 1998 81

The parenthesized terms in schedules 2, 3, and 4 in Fig-

ure 7b are called schedule loops and allow the code gen-

erator to organize loops in the target program, as shown in

Figure 7c. The term (2BC) in schedule 4 represents a loop

whose iteration count is 2 and whose body is the invoca-

tion sequence BC. Thus, (2BC) represents the firing se-

quence BCBC.

If each schedule loop is converted to a loop in the target

code, each appearance of an actor in the schedule corre-

sponds to a code block in the target program. Schedules in

which each actor appears once (schedules 2 and 3 in Figure

7b) are called single-appearance schedules. If we neglect

the code size overhead associated with the loop control,

any single-appearance schedule yields an optimally com-

pact in-line implementation of an SDF graph with regard to

code size. Typically the loop overhead is small, particular-

ly in many programmable DSPs, which usually have provi-

sions to manage loop indices and perform the loop test in

hardware, without explicit software control.

Scheduling can also have a significant impact on the

amount of memory required to implement the buffers on

the edges in an SDF graph. In Figure 7b, the buffering re-

quirements for the four schedules are 50, 40, 60, and 50, as-

suming that one separate buffer is implemented for each

edge. Note that maintaining a separate memory buffer for

each edge is convenient and natural for code generation. It

is the model used in SDF-based code generation described

in the literature.12,13 Bhattacharyya et al. elaborated on more

technical advantages of this buffering model.12

There are two ways of approaching the problem of joint-

ly minimizing code and buffer size requirements. One gives

preference to code size minimization, only considering

schedules with minimal code size. From this class, we

choose the one that minimizes buffer size. Conversely, we

can give preference to buffer size, and choose code size min-

imal schedules from the class of buffer ′size minimal sched-

ules. Or we can trade the two parameters systematically.

The loop-scheduling framework in Bhattacharyya et al.

focuses on the first angle of attack, assigning first priority to

code size minimization and second priority to minimizing

the buffer memory requirement. This approach is preferable

because, for practical SDF graphs, giving first priority to code

size minimization typically yields a significantly more fa-

vorable code size/buffer memory trade-off than giving first

priority to buffer memory minimization. In the future, re-

searchers should explore alternatives in between these two

extremes.

Minimum activation schedules. Heinrich Meyr’s group at

Aachen has studied the problem of constructing single-

appearance schedules that attempt to minimize context-switch

overhead. These minimum activation schedules have been

used in the COSSAP environment, now marketed by Synop-

sys. Each time a new actor is invoked in a schedule, there is a

context switch; this overhead includes saving the contents of

registers and loading state variables and buffer pointers. In the

code generation environment described in Ritz et al.,12 this

overhead includes all the usual ones associated with function

calls since the code generated by their system is not in-line.

The objective in minimum activation scheduling is to min-

imize the number of actor invocations that occur in the

schedule. For example, the schedule [2(2B)(5A)](5C) has

five invocations per schedule period, while the “flat” ver-

sion of the schedule (4B)(10A)(5C) has three invocations

each schedule period. We define the average activation rate

for a periodic schedule as the number of activations divid-

ed by the blocking factor of the schedule. If we increase the

blocking factor to 2, we can easily verify that the average ac-

tivation rates for the two schedules discussed earlier become

4.5 and 1.5.

In general, for any consistent acyclic graph, we can make

the average activation rate arbitrarily close to zero by using

a flat single-appearance schedule (one without nested loops)

of an arbitrarily high blocking factor. Thus, the problem be-

comes more interesting when the synchronous dataflow

graph has cycles. Ritz et al.12 provides algorithms (that in gen-

eral are not polynomial time) in an attempt to find minimum

activation schedules for arbitrary SDF graphs. However, it

turns out that multiple-appearance schedules can have a low-

er average activation. Because the code size is also a prima-

ry constraint in the COSSAP code-generation system, Ritz et

al. considered only single-appearance schedules.

SCHEDULING FOR EMBEDDED real-time systems is very chal-

lenging, and current research (which is unfortunately still

far from current practice) has provided efficient solutions

only for relatively small classes of problems. The situation

is more satisfactory for dataflow systems. There, the regu-

larity of input data streams and control lends itself well to

static scheduling, and a variety of techniques to schedule

on one or several processors exist, trading off execution

time, code, and data memory size.

On the more control-dominated side, on the other hand,

we are still lacking a good model to capture intertask depen-

dencies and verify schedulability with realistic constraints.

We also need better analysis techniques to determine the

worst-case execution time of a task on a complex processor

(with pipelining, caches, and so on) without being overly pes-

simistic. Finally, we are also missing a modeling framework

that allows the designer to specify tasks and constraints, and

decides which scheduling strategy best satisfies the problem

domain, without requiring extensive a priori knowledge and

decisions that may be difficult to reverse later on.

.

SCHEDULING

82 IEEE DESIGN & TEST OF COMPUTERS

References
1. C. Liu and J.W Layland, “Scheduling Algorithms for Multipro-

gramming in a Hard Real-Time Environment,” ACM J., Jan. 1973,

Vol. 20, No. 1, pp. 44-61.

2. N.C. Audsley, K.W. Tindell, and A. Burns, “The End of the Line

for Static Cyclic Scheduling?” Proc. Fifth Euromicro Workshop

on Real-Time Systems, IEEE Computer Society Press, Los Alami-

tos, Calif., 1993, pp. 36-41.

3. N.C. Audsley et al., “Applying New Scheduling Theory to Static

Priority Preemptive Scheduling,” Software Engineering J., Vol.

8, No. 5, Sept. 1993, pp. 284-292.

4. F. Balarin and A. Sangiovanni-Vincentelli, “Schedule Validation

for Embedded Reactive Real-Time Systems,” Proc. 34th

ACM/IEEE Design Automation Conf., IEEE Computer Society

Press, Los Alamitos, Calif., June 1997, pp. 568-571.

5. N. Halbwachs, Synchronous Programming of Reactive Systems,

Kluwer Academic Publishers, Dordrecht, Boston, 1993.

6. G. Berry, P. Couronné, and G. Gonthier, “The Synchronous Ap-

proach to Reactive and Real-Time Systems,” Proc. IEEE, Vol. 79,

No. 9, Sept. 1991, pp. 1270-1282.

7. R. Reiter, “Scheduling Parallel Computations,” ACM J., Vol. 15,

No. 4, Oct. 1968.

8. P.K. Murthy and E.A. Lee, “On the Optimal Blocking Factor for

Blocked, Non-Overlapped Schedules,” Proc. 28th Asilomar Conf.

Signals, Systems, and Computers, IEEE CS Press, Vol. 2, Nov.

1994, pp. 1052-1057.

9. G. Liao et al., “A Comparative Study of Multiprocessor List Sched-

uling Heuristics,” Proc. 27th Hawaii Int’l Conf. System Sciences,

Vol. 1, Jan. 1994, pp. 68-77.

10. S.M. Heemstra de Groot, S.H. Gerez, and O.E. Herrman, “Range-

Chart-Guided Iterative Data-Flow Graph Scheduling,” IEEE Trans.

Circuits and Systems-I Fundamental Theory and Applications, May

1992, Vol. 39, No. 5, pp. 351-64.

11. J.T. Buck et al., “Ptolemy: A Framework for Simulating and Pro-

totyping Heterogeneous Systems,” Int’l J. Computer Simulation,

Vol. 4, Apr. 1994.

12. S. Ritz, M. Pankert, and H. Meyr, “Optimum Vectorization of Scal-

able Synchronous Dataflow Graphs,” Proc. Int’l Conf. Applica-

tion-Specific Array Processors, IEEE CS Press, 1993.

13. S.S. Bhattacharyya, P.K. Murthy, and E.A. Lee, Software Synthe-

sis from Dataflow Graphs, Kluwer Academic Publishers, 1996.

Felice Balarin is a research scientist at the Ca-

dence Berkeley Laboratories. His research is

focused on development and application of

formal methods to design, verification, con-

trol, and timing analysis of systems consisting

of both hardware and software. Balarin re-

ceived his PhD in electrical engineering and

computer science from the University of California at Berkeley. He

is a member of the IEEE.

Luciano Lavagno is an assistant professor at

the Politecnico di Torino, Italy, and a research

scientist at Cadence Berkeley Laboratories.

His research interests include the synthesis of

asynchronous and low-power circuits, the

concurrent design of mixed hardware and

software systems, and the formal verification

of digital systems. Lavagno received his PhD in computer science

from the University of California at Berkeley. He is the author of a

book on asynchronous circuit design and has published over 60

journal and conference papers. He has also been a consultant for

various EDA companies including Synopsys and Cadence. He is a

member of the IEEE.

Praveen Murthy is currently with the Alta

Group of Cadence Design Systems in Sunny-

vale, California. His research interests include

techniques for producing optimized software

and hardware implementations from dataflow

graphs, multiprocessor scheduling tech-

niques, semantics of dataflow networks, mul-

tidimensional dataflow, and software tools for rapid prototyping.

Murthy received his BSEE from the Georgia Institute of Technolo-

gy, and his MS and PhD degrees in electrical engineering and com-

puter science from the University of California at Berkeley. He is a

coauthor of Software Synthesis from Dataflow Graphs and a mem-

ber of the IEEE Signal Processing Society.

Alberto Sangiovanni-Vincentelli is a pro-

fessor of electrical engineering and comput-

er science at the University of California at

Berkeley. His interests include the design and

optimization of digital circuits, the paral-

lelization of complex algorithms in comput-

er-aided design, and design methodologies

and tools for mixed-signal integrated circuits including high-

frequency and low-power circuits, and for embedded controllers.

Sangiovanni-Vincentelli received his Dr.Ing. degree from the Poly-

tecnico di Milano in Italy. He is a cofounder of Cadence and Synop-

sys, and the founder of Cadence Berkeley and Cadence European

Laboratories. He is a fellow of the IEEE.

Address questions or comments about this article to Felice Balar-

in, Cadence Berkeley Laboratories, 2001 Addison Street, Third Floor,

Berkeley, CA 94704; felice@cadence.com.

.

