&

QUARTUS"II

Quartus Il Version 6.0 Handbook

AVO[S RYA\,

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

QlI5V1-6.0

Volume 1: Design & Synthesis

http://www.altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-

plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera mu
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

LS. EN ISO 9001

Altera Corporation

A |:| ==/ Contents

Chapter ReviSion DAtesccocoiiiiiiiiiii e v e n e e e e enenes Xiii

About this HAndBooKcoooimiii e
)5 QAT Co @0 a1 =T A N L <) = NSRS
Third-Party Software Product Information
Typographic CONVENIONScccvviriuiiiiiiciiici s e

Section I. Design Flows

Revision HiSTOIY ..o s Section I-1

Chapter 1. Quartus Il Incremental Compilation for Hierarchical & Team-Based Design
TNEFOAUCHION <.
Quartus IT DeSign FLOWc.cociuiiiiiiiiiciicc s s

Top-Down vs. Bottom-Up Design FIOWSccooieieiiiiriiiiicic e
Using Incremental Synthesis Only Instead of Full Incremental Compilation
Design Partitionscccoovviiiiiiiiiicccc s
Design Partitions Compared to Physical Regionscccooeiiiiiiiiiiiniiiicicccc,
Preparing a Design for Incremental Compilation ...
Compiling a Design Using Incremental Compilationcccooceiniicniiiiiniceeccecnas
What Represents a Source Change for Incremental Compilation?
Creating Design Partitionsc.cooueeieiieiniiiiiiicci et
Creating Design Partitions in the GUI ..o
Methodology for Creating Good Partitions
Guidelines for Creating Good Design Partitions
Partition Statistics RepOItscccooeveivevecieiriininns
Resource BalanCing ...t e
Timing Bud@etingccocevoviiieiiiiccicc e
Setting the Netlist Type for Design Partitions ...
Fitter Preservation Levelcccccccocvivininnnn
Empty Partitions ...
Creating a Design Floorplan With LogicLock Location Assignmentsc.cccooeuevriiireininnnnas
Recommendations for Creating Good Floorplan Location Assignmentsccccocvuvuunneee.
The Importance of Floorplan Location Assignments in Incremental Compilation 1-32
Taking Advantage of the Early Timing ESHMAtOrccccccceiiiiiiiiiiiiiiiiiiciicceccccns 1-34

Altera Corporation iii

Quartus Il Handbook, Volume 1

Criteria for Successful Partition & Floorplan Schemes ...
Exporting & Importing Partitions for Bottom-Up Design Flows
Preparing the Top-Level Design for a Bottom-Up Incremental Compilation

MethOdOLOZY ..o
Exporting a Partition to be Used in a Top-Level Project
Importing a Lower-Level Partition Into the Top-Level Projectccoooevvinieniiciencinnnn, 1-38
Importing Assignments & Advanced Import Settingscccccovvveeiiiviceiicenceece, 1-39
Generating Bottom-Up Design Partition Scripts for Project Managementcccccueuuee. 1-42
User Scenarios—Incremental Compilation Application Examples 148
Top-Down Incremental Design FIOWSccccocoeuviviiiiiiiiininiccn .. 1-48
Bottom-Up Design FIOWScccouiiiiiiiiiiiiiicc s 1-52
Incremental Compilation ReStrictionsccoceeiniiiininiiicie e 1-58
Using Incremental Compilation with Quartus II Archive Files ... 1-58
OpenCore Plus MegaCore Functionscccccececcuvivincnnnee 1-59
Engineering Change Management With the Chip Editor ... ceveeenenenens 1259
SignalProbe FEature ... 1-59
SignalTap II Logic Analyzer & Logic Analyzer Interface in Bottom-Up
Compilation FIOWSccoiiiiiiiiiciciee s s 1-60
Restrictions on Megafunction Partitionsccccevveeiniicniniccececece s ... 1-60
Nodes Created & Changed During Routingcccccco.... ... 1-60
Routing Preservation in Bottom-Up Compilation FIOWScccccecoiiiiiiiiiiniiicicnns 1-61
Bottom-Up Design Partition Script LImitationscccocoeeeiiiiininicccne 1-61
Register Packing & Partition Boundaries
I/0 Register PACKINGcocovueviiiiieiiiiici ettt
SCIIPHNG SUPPOTL .ottt
Generate Incremental Compilation Tcl Script Command .. 1-75
Preparing a Design for Incremental Compilation 1-76
Creating Design Partitionscccccocovviiincnnn 1-76
Setting Properties of Design Partitions ... 1-77
Recommendations for Creating Good Floorplan Location Assignments—Excluding or
Filtering Certain Device Elements (Such as RAM or DSP BIockS)cccccooururininiinininiinnnnns
Generating Bottom-Up Design Partition Scripts
Exporting a Partition to be Used in a Top-Level Project
Importing a Lower-Level Partition into the Top-Level Projectcccccoeiiiviiiiiiiiiiiiinnns
MAKE FILES ... s

User Scenarios—Incremental Compilation Application Examples
CONCIUSION. ..ottt e

Chapter 2. Quartus Il Design Flow for MAX+PLUS Il Users

TNETOAUCHON .vvevvivreeiereiectecreete ettt ettt ettt ea e b e beeveereeteeseereeseesseseessessensensesessenseseseessessersersensensens 2-1

Chapter OVETIVIEWc.oiiiiiiiiiiiii s s 2-1

Typical Design FIOWccccciiiiiiiiiiiiii s 2-2

Device Support

QUATLUS IT GUI OVEIVIEW ...ovevienieieieriesiesiesteseseeetesteseesteeestessessessessassessessassassassassessessesssessessesssessessanse 2-4
Project NaVIZAtOrccoiiii s 2-4
INOAE FINAET ..ottt ettt ettt v et et etsersessetsessensessesesseseesseseeseeseeseenssersensersensenes 2-4

Altera Corporation

Contents

Tcl Console
Messages
S 7= 4§ - SRR TSRS UTUPRUTRRPE
Setting Up MAX+PLUS II Look & Feel in Quartus Iccooeviiiiiniiiiiiicccccinns 2-6
MAX+PLUS II Look & Feel
COMPILET TOOL ..ottt
Analysis & SYNheSisc.ooveeiiiiciei e
Partition Merge
Fitter
Assembler
TiMiNG ANALYZET ...ovviiiiiiiiiec e
EDA INELISE WIIEET ©.uvivietiiieiietieieteetie ettt ettt et e te st e e steste e saestesseesaeseesaesseseessessessensessensensens
Design Assistant ...
MAX+PLUS II Design CONVEISIONccoviviiiiiiiiiiiiccencscscscsescsssesesssssssesssesesesesesssssssssssssesssns
Converting an Existing MAX+PLUS II Design e 2-12
Converting MAX+PLUS II Graphic Design Files ..., 2-13
Importing MAX+PLUS II ASSIgNIMENEScoovvviimiiiiiiiieiiiiiieecnct s 2-14
Quartus II Design FIOWccccoevivviieiniicnnnns
Creating a New Project
Design Entryccc.e....
MakKing ASSIGNIMENESccoiuiiiiiiiiiiiic s
SYNENESIS ...
Functional Simulation ...
Place & ROULE ...vovivieiieiieiieeeeeteee ettt ettt ettt st te st e se e s e e seese e s s e seessessensensanssensarsansansens
TimiNgG ANALYSIS ...cuvueviiiiieiiice e
Timing Closure Floorplan ...
Timing Simulation
Power Estimation
Programimning ..ot
CONCIUSION .vvieiiiiieeieeeee ettt ettt et teete et e s et e s asbessessassasssessaseessassassassassansansansessassessessensensensen
Quick Menu Referenceccceeeeeeieeerievienienieneseseseeeeenenens
Quartus IT Command Reference for MAX+PLUS II Users

Chapter 3. Quartus Il Support of HardCopy Series Devices

) 50090 To R Tal 5 (o) o MU 3-1
HardCopy II Device SUPPOItc.coviuiiiiiiiiiiiiiiiiiicicici s 3-1
HardCopy II Design Benefits ..o 3-1
Quartus II Features for HardCopy II Planningccccooeuvviivinninniniicccccccecees 3-2

HardCopy II Development FIOWcccocviiiiiiiniiiieiiccie it 3-3
Designing the Stratix II FPGA FIrstccccooiiiiiiiiiiiiciiiiciicccescseeesssescne e 3-4
Designing the HardCopy II Device First ... 3-6

HardCopy II Device Resource GUIdecouiiuiiimiiiiiiiiciiiccicsicciss s

HardCopy II Companion Device Selection ...
Migration Compatibility FIltering ...

Altera Corporation v

Quartus Il Handbook, Volume 1

Vi

HardCopy II Recommended Settings in the Quartus II Software
Limit DSP & RAM to HardCopy II Device Resources
Enable Design Assistant to Run During Compile ..o,
TIMING SEHNES .vovovevieieiciee e s
Quartus II Software Version 6.0 Features Supported for HardCopy II Designs
Quartus II Features Not Presently Supported for HardCopy II Designscccccoevueunnn.

Chip Editor for HardCopy II DeViCesccovuiuiiimriiiiiiiiiiiciicc s

Formal Verification of Stratix II & HardCopy II Revisions

HardCopy II Utilities Menu
Companion RevVisionscccceeveevevniiininininininicne
Compiling the HardCopy II Companion RevisSion ...
Comparing HardCopy II & Stratix II Companion Revisionsc..ccceeeeiceievniceneniennnnn,
Generate HardCopy II Handoff Reportccccovviiviiiiiinninnnn.

Archive HardCopy Il Handoff Files
HardCopy II AdVisorccocvuviicnnnen
HardCopy II FIoOrplan VIEW ...

CONCIUSION. ..eiiiittit e sa s et

HardCopy Stratix Device Support ..

Features ...

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix & Stratix Devices

HardCopy Design FIOWccoiiiiiiiiiiiiiii s
The Design Flow Steps of the One Step PTOCESSccoviviiiiiiiiiiniiiiiiiicccns

How to Design HardCopy Stratix Devices
Tcl Support for HardCopy Migration ...t

Design Optimization & Performance ESimation ..o,
Design Optimization ...

Performance Estimation
Buffer Insertionc..c........
Placement CONSIIAINEScccvuiiimiiiiiiiiiiiicc s

Location CONSLIAINESccouiiiiiiieiicee st
LAB Assignments
LogicLock Assignmentsccccoovvvvnnnnnnncncnnns

Checking Designs for HardCopy Design Guidelines
Altera-Recommended HDL Coding Guidelinescccccoviviiiiiiiiiiiiiiniiiiiccccnans
Design ASSIStANEoueuivieiecececicecect s
Reports & Summaryc.cooeeeevevecenernicnnnnns

Generating the HardCopy Design Database

Static Timing Analysis ...

Early Power EStimation ...
HardCopy Stratix Early Power EStimation ...,
HardCopy APEX Early Power Estimation

Tcl Support for HardCopy STratiXccocveviniiniiciiiicccccc s

Targeting Designs to HardCopy APEX DEViICESccceveiiirriiiiniieieiieie e

CONCIUSION ..ot

Related Documents

Altera Corporation

Contents

Chapter 4. Engineering Change Management
INEFOAUCHON ..o e
Impact of Last Minute Design Changes
Performanceccccoocvvinicininiicnninns
Compilation TIMEecccoiiiiiiiiiiiii i e
VETIICATION. .ottt ettt sttt a bttt st b bttt enenn
Documentation
BCO SUPPOTL vttt
ECO Support at the HDL LeVelcocoviiiiiiiiiceeicie e
ECO Support at the Netlist Level
CONCIUSION .ottt sttt sttt ettt st b ettt ekttt e b bt e s b ebe e st st st b et st stebenetenes

Section Il. Design Guidelines

Revision HiStOIY ..o s Section I1-2

Chapter 5. Design Recommendations for Altera Devices

TNETOAUCHON .vvivvivveeieretectecteete ettt ettt et et ea e eb e et e ebeebeeteeseereeseesseseensessensenseseesenseseseeseessersessensensens

Synchronous FPGA Design Practices
Fundamentals of Synchronous Design
Hazards of Asynchronous Design

Design Guidelinescccocovviecerereicnnnnns
Combinational Logic Structures
Clocking Schemesccccccuvuiannnn.

Hierarchical Design Partitioningcccocoevviniiiiinncinnns

Targeting Clock & Register-Control Architectural Featuresccooovviiiiiiniciiiiiiiicnnns 5-16
Clock Network Resources
Reset Resourcescccceeveeveerieeeennnene
Register Control SigNalscoeeieiiiiiiiiii e

CONCIUSION. evivvirierierictieteee ettt ettt et et eteetseseasebeesaeseeseereeseessersessessessensenseseeseessesensensensenseeseeseesas

Chapter 6. Recommended HDL Coding Styles

TNEFOAUCHION <o

Using Altera Megafunctionsccccviiiiiiiiiiiiiccss s e

Instantiating Altera Megafunctions in HDL Codeccccooiiininiiininiiceccec s
Instantiating Megafunctions Using the MegaWizard Plug-In Manager
Instantiating Megafunctions Using the Port & Parameter Definitioncccocceevviiiiicinnnnns

Inferring Altera Megafunctions from HDL Codecccoviiiiiiiiiniiiiiiiicicccccccs
lpm_mult—Inferring Multipliers from HDL Codeccccouiviiiiiiiiiiiiiiiiiiccees
altmult_accum & altmult_add—Inferring Multiply-Accumulators & Multiply-Adders
FromM HDL €Ooiiiiiiiiiic bbb
altsyncram & lpm_ram_dp—Inferring RAM Functions from HDL Code ...
lpm_rom—Inferring ROM from HDL COdecccccoeviviniiiniiiiiiiniccncencscenns
altshift_taps—Inferring Shift Registers from HDL Codeccccoeuviiiiiinninininiiiiniccine,

Altera Corporation vii

Quartus Il Handbook, Volume 1

Device-Specific Coding GUIAELINESccccouviiiiiiiiiiiiiiiii e 6-29
Register Power-Up Values in Altera Devicesccccouviviiciiininiennn. . 629
Secondary Register Control Signals Such as Clear & Clock Enable ..o, 6-32
Tri-State SIZNALS ...c.coviiiiiiiiiiic 6-36
Adder Trees

Coding Guidelines for Other Logic StruCtUIesccocviuviiiiiiiniiiiiiccc s 640
LatChes ...ovviiiii s 640
State MaChinescccciiiiiiiiiiiiiiciiii s . 6-45
MULEPIEXETS ...ooviiiiiiiiiici s 6-52
Cyclic Redundancy Check FUNCHONSccceviiiiiiiiiiiiiiiccce o 661

CONCIUSION. ..viiitii s sa s naaas 6-63

Section Ill. Synthesis
Revision HiSTOIYc.cooioioiiiiiii st Section II1-2
Chapter 7. Quartus Il Integrated Synthesis

TNEFOAUCHION <o 7-1

DESIZN FIOW ...ttt 7-2

Language SUPPOTL ..ottt 7-5

Verilog HDL Support ...
VHDL SUPPOIL «.ovviiiiciiiiccecc e
AHDL SUPPOIt vttt
Schematic Design Entry Support

Incremental Synthesiscccooooueieiiieininnn.

Partitions for Incremental Synthesis

Partitions for Preserving Hierarchical Boundaries ..o, 7-14
Preparing a Design for Incremental Synthesis ..., 7-15
Synthesizing a Design Using Incremental Synthesis 7-15
Forcing Complete Resynthesisccccooviiiiiiiiniciccccn, e 7-16
Considerations & Restrictions When Using Incremental Synthesis ...

Quartus IT Synthesis OPtioNSccceeveiieiiiiiiiine e
Setting Synthesis OPHONScccoueueiiiieiiiiiec e
Specifying Verilog & VHDL Versions for Each Design File
Optimization TeChNIQUEcccoviiiiiiiiiiic e
Speed Optimization Technique for Clock DOmMainscccceeuiriiiiiiniiiiieeen,
PowerPlay Power OptimiZation ..o
State Machine ProCeSSINgcooeueuriiueieiiiiieiniiiiici et sssae s
Manually Specifying State Assignments Using the syn_encoding Attribute
Manually Specifying Enumerated Types Using the enum_encoding Attribute 7-29
Preserve Hierarchical BOUNAATY ..o 7-31
Restructure Multiplexers 7-31
POWET-UP LEVEL ..ot 7-33
Power-Up Don’t Care SRR 7-34
Remove Duplicate LOZICccoovuviiieiiiieieiiiiicitc st 7-34
Remove Duplicate REZISLETSccovviiiiiiiiiiiiiiccc e 7-35
Remove Redundant Logic Cellscccovriiuriiiniiiniciiiicecccn s 7-35

viii Altera Corporation

Contents

Preserve REGISErScccviiiiiiiiiiiiiiicccc s
Noprune Synthesis Attribute/Preserve Fanout Free Node
Keep Combinational Node/Implement as Output of Logic Cellccccccouiiiiiiiiiiinnnns 7-38
Maximum Fan-Out ...
Megafunction Inference Control
RAM Style & ROM Style—for Inferred MemOIYcccoouvuriimriciiiciiniiinicececneenenae 7-42
RAM Initialization File—for Inferred MemMOTYcccccouvirmiicriiniiiniiiicceeneee 7-44
Multiplier Style—for Inferred Multipliers
FUIL CASE .ttt
Paralle] CaSecceueueurueiiiiieiiiiiieierre et
Translate Off & On
Ignore Translate Off ..o s
Read Comments as HDLcoiiiiiiiiieiiic st
Setting Other Quartus II Options in Your HDL Source Code

Use I/0 Flip-Flops
Altera Attribute

ChIp_PIN v
Analyzing Synthesis Results
MESSAZES ...ovvieieieieieieie s

Analysis & Synthesis Section of Compilation Report
Project Navigatorcccccceeeenenne.
VHDL & Verilog HDL Messages
HDL MeSSage TYPESovviiiiiieee ettt
Controlling the Display of HDL MESSAZESccceverriririrriniriireiiicieiicsnie st
Node-Naming Conventions in Quartus II Integrated Synthesis
Hierarchical Node-Naming CONVENtions ..o
Node-Naming Conventions for Registers (DFF or D Flip-Flop Atoms)cccecceuvivirennnne. 7-66
Register Changes During Synthesis
Node-Naming Conventions for Combinational Logic Cellsccooevoimeiormniriniciicncine. 7-69
SCIPHNG SUPPOTE «.ooveceviiciic et e
Quartus II Synthesis Options ...
ASSIZNING @ PIN oo
Preparing a Design for Incremental Synthesisccccooviiiiiniiiiiiiiccc, 7-72
CONCIUSION. .ottt 7-74

Chapter 8. Synplicity Synplify & Synplify Pro Support
TNELOAUCHION ettt ettt bbbttt et e b e et seaeee
DESIZN FLIOW .ottt et
Output Netlist File Name & Result Format
Synplify Optimization Strate@ies ...
Implementations in SYNPLfy Pro ...
Timing-Driven Synthesis Settings
FSM Compilerc.cccoevevvvcenninicnennns
Optimization Attributes & Options
Altera-Specific AtHIDULESc.oveivieiiiic s

Altera Corporation ix

Quartus Il Handbook, Volume 1

Exporting Designs to the Quartus II Software Using NativeLink Integration

Running the Quartus II Software from within the Synplify Software
Using the Quartus II Software to Launch the Synplify Softwareccccccccovinnnininnnnnnn.
Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script 8-18
Passing Constraints to the Quartus Il SOftWarec.coouoeuiiorieiciiic 8-19
Guidelines for Altera Megafunctions & Architecture-Specific Featuresccccocovvvvirriinnnee. 8-29
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager 8-30
Inferring Altera Megafunctions from HDL Codeccccccooviiiiniiiininniiciiicnnen ... 8-35
Incremental Compilation & Block-Based Designccccccvviueiiiines ... 841
Hierarchy & Design Considerations with Multiple VQM Files 843
Creating a Design with Separate Netlist Filescccccooouoiiiiiciiicice 8-43

Creating a Design with Multiple VQM Files Using Synplify Pro MultiPoint Synthesis 8-44
Generating a Design with Multiple VOM Files Using Black Boxes
CONCIUSION. .ottt

Chapter 9. Mentor Graphics Precision RTL Synthesis Support
TNEFOAUCHION <ot 9-1
DESIZIN FIOW ...ttt 9-2
Creating a Project & Compiling the Design...........cocceuiiiririiiiniiiiicscc s 9-5
Creating a Projectcccocooevevevviceieiiccnnn
Compiling the Design
Setting Constraintsc.........
Setting Timing CONSIaINtSccoveveieviiiiiiiec e
Setting Mapping CONSLIAINTS ... s
Assigning Pin Numbers & I/0 Settings ...
Assigning I/O ReGISErScoueviuiiiiiiiieiiicee s
Disabling I/O Pad INSEItioNccoevviiieiiiiiciiictcie et
Controlling Fan-Out on Data INetsccccociiiiiiiiiiiiiiiiiice e
Synthesizing the Design & Evaluating the Results ...
Obtaining Accurate Logic Utilization & Timing Analysis Reports
Exporting Designs to the Quartus II Software Using NativeLink Integrationcccccccco....... 9-12
Running the Quartus II Software from within the Precision RTL Softwareccccc........ 9-12
Running the Quartus II Software Manually Using the Precision RTL
Synthesis-Generated Tcl SCIIPLcccovuiiiriiiiiiiiiiiiiccc e
Using Quartus II Software to Launch the Precision RTL Synthesis Software
Passing Constraints to the Quartus II Softwareccccooviiiiiiiiiiic,
Megafunctions & Architecture-Specific Featuresooooeeiiieiciiiiiiiicccc
Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
Inferring Altera Megafunctions from HDL Code
Incremental Compilation & Block-Based Design
Hierarchy & Design Considerations ...
Creating a Design with Separate Netlist Filescccccoooiiiiiiiiiic,
Creating Quartus II Projects for Multiple EDIF Files ...
CONCIUSION ..ottt ae e

X Altera Corporation

Contents

Chapter 10. Mentor Graphics LeonardoSpectrum Support

INEFOAUCHON oo s

Design Flowcccccoeveuene.

Optimization Strategies
Timing-Driven SYNthesis ...
Other CONSLIAINTSc.cueveiiiiiiiiirrie et e

Timing Analysis with the Leonardo-Spectrum Software

Exporting Designs Using NativeLink Integrationc.c.cccocoevviieiniinniinceeecnns
Generating Netlist FIlesccoiiiiiiiiic e
Including Design Files for Black-Boxed Modules ..o,
Passing Constraints With SCIipts ..o
Integration with the Quartus II Software

Guidelines for Altera Megafunctions & LPM Functions
Inferring Multipliers & DSP FUNCHONScccouiiiiiiiiiiiiiiiicicce e
Controlling DSP Block Inferenceccccccceuruvunnnee

Block-Based Design with the Quartus II Software
Hierarchy & Design Considerationscccc.......

Creating a Design with Multiple EDIF Filesccccccocviiiniiiiiiiiiicecenes
Generating Multiple EDIF Files Using Black BOXeScccccovviiniviiiiiiiicinicccccines
Incremental Synthesis Flow
CONCIUSION. ..ot

Chapter 11. Synopsys Design Compiler FPGA Support

INELOAUCHON 1ottt sttt ettt ettt be s et e st ese s esabesaesessesassesasseseeseseesessesensans

Design Flow Using the DC FPGA Software & the Quartus II Softwarecccocoeviiiiininnnes

Setup of the DC FPGA Software Environment for Altera Device Familiescccccoooeeiiinnnne

Megafunctions & Architecture-Specific Featurescccoooviiiiiiiinincccccne,

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
Clear Box Methodology ..ot
Black Box MethOdOLOZYcccvuiiiuiiiiiiiiiiiiiiiiciiiicc s

Inferring Altera Megafunctions from HDL Codecccccooiiiiiniininiiiiniiiicccccnes

Reading Design Files into the DC FPGA Software

Selecting a Target DEVICEcociiiiiiiiinii e

Timing & Synthesis CONSIIAINTSccccoviiiiiiiiiieic e

Compilation & Synthesis

Reporting Design Information

Saving Synthesis Resultscccooeviviiiiinncnnnnen,

Exporting Designs to the Quartus II SOftware ...
write_fpga Commandc.coveiieiiiiiiiii s
write & write_par_constraint Commands ...

Using Tcl Scripts with Quartus II Software

Place & Route with the Quartus II Software

Formality SOftware SUPPOTtcccvuiiiiiiiiiiiiii e

CONCIUSION ...ttt ettt ettt et et ettt e e ebe st eses b e s e beseese s esesestesessesesseneesesesessesaneesensesansanesan

Altera Corporation Xi

Quartus Il Handbook, Volume 1

Chapter 12. Analyzing Designs with Quartus Il Netlist Viewers
TNELOAUCHION oottt ettt ettt e e et eete e beebeeaeeeabeeseeessenseeaseessesasesersenseesseenseeseens
When to Use Viewers: Analyzing Design Problems
Quartus II Design Flow with the Netlist Viewers
RTL VIEWET OVEIVIEW ..ooeiutiietieeciee et ettt eette et e et e eeaeeeeteeeetveeeseeeeseeeesaeeesseeesseeessessseeesseensssseensseens
State Machine VIEWET OVEIVIEWccueeviiviiiieeeietieeteeeteeeteeeteeeeeeseeesteeseesaeeesseessesseesseenseessesasesssessseens
Technology Map Viewer Overview
Introduction to the User INEITACEcocevveevieriieeececeeee ettt ettt eresreea et eresereeres
SCREIMATIC VIBW vttt ettt et ettt e eveeeteeseeraeeaseetsebeeseenseenseessensssenseenseeses
HIerarchy LIStccciiiiiiiiiiiiiicii e
State MAChINE VIEWEToovviiiieiiciieeceeeeeeeeee ettt ettt ettt et eeaeesteeaeenteeaseeneeessenseenseesreenns
Navigating the Schematic View
Traversing & Viewing the Design Hierarchy ...,
Viewing Contents of Atom Primitives in the Technology Map Viewerccccccocvuvuenee 12-21
Zooming & Magnificationccccevveiiieiiiiiii
Partitioning the Schematic into Pages
GO to Net DIiverccoeeeeveeeieceeneeieenen,
Filtering in the Schematic VIEWcccccoiiiiiiiiiiiiiicc e
Filter Sources COMMANAoouveivieiiiieeiiceee ettt ettt et eae et e et e eteeereeeteeseeseeerseeseenseenneeenne
Filter Destinations Commandc...........
Filter Sources & Destinations COmMmMANAdccoooveevvieieeeiireeereceie ettt eee e e 12-29
Filter between Selected Nodes COMMANcoovviveevieririietierieeieeeeeeee et ere e ereeveereeneens 12-30
Filter Selected Nodes & Nets COMMANGcc.ocvivviiviiiieiieiieiieeeeeeeeererereere ettt ere e e ereens 12-30
Filter Bus Index Command
Filter Command Processing

Filtering Across Hierarchies ...ttt 12-32

Expanding a Filtered Netlistc.cocooeiiiiiiiiiniicc e 12-33

Reducing a Filtered Netlistcccccoiiiiiiiiiiiiiiiicicc e 12-34
Probing to Source Design File & Other Quartus II Windowsccccccvviiiniininiciininnas 12-35
Probing to the Viewers from Other Quartus II Windows

Viewing a Timing Path ...
Other Features in the SChematiC VIEWETccooviiiiiiieeiicieceeeeeeeeetee ettt ereeeve e e

TOOIHPS v

ROILOVET ..o

The Properties Dialog Box

Displaying Net Namescccccoviiiiiiiiiiiiii s

Displaying Node NAmMEScccooiuiiiiiiiiiiiiiiic s

Full Screen View

Find Commandcccoeeveereiiecieiiececcreeenen,

Exporting & Copying a Schematic Image

PIINEING oottt s
Debugging HDL Code with the State Machine VieWercccooviiiiiiniiinicccicnas

Simulation of State Machine Gives Unexpected Results ...
CONCIUSION. 1.eviitieiicie ettt ettt ettt et e te et e e te e e e e eseeeseeaeesseerseesseesseeseeesseseerseeeseesseeaeesseseenseeseensas

xii Altera Corporation

A |:| —Ig 0)/A\ Chapter Revision Dates

®

The chapters in this book, Quartus II Handbook, Volume 1, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Quartus II Incremental Compilation for Hierarchical & Team-Based Design
Revised: May 2006
Part number: QII51015-6.0.0

Chapter 2. Quartus II Design Flow for MAX+PLUS II Users
Revised: May 2006
Part number: QII51002-6.0.0

Chapter 3. Quartus II Support of HardCopy Series Devices
Revised: May 2006
Part number: QII51004-6.0.0

Chapter 4. Engineering Change Management
Revised: May 2006
Part number: QII51005-6.0.0

Chapter 5. Design Recommendations for Altera Devices
Revised: May 2006
Part number: QII51006-6.0.0

Chapter 6. Recommended HDL Coding Styles
Revised: May 2006
Part number: QII51007-6.0.0

Chapter 7. Quartus II Integrated Synthesis
Revised: May 2006
Part number: QII51008-6.0.0

Chapter 8. Synplicity Synplify & Synplify Pro Support
Revised: May 2006
Part number: QII51009-6.0.0

Chapter 9. Mentor Graphics Precision RTL Synthesis Support

Revised: May 2006
Part number: QII51011-6.0.0

Altera Corporation Xiii

Chapter Revision Dates

Quartus Il Handbook, Volume 1

Chapter 10.

Chapter 11.

Chapter 12.

Xiv

Mentor Graphics LeonardoSpectrum Support
Revised: May 2006
Part number: QII51010-6.0.0

Synopsys Design Compiler FPGA Support
Revised: May 2006
Part number: QII51014-6.0.0

Analyzing Designs with Quartus II Netlist Viewers
Revised: May 2006
Part number: QII51013-6.0.0

Altera Corporation

A |:| —Ig D)/A About this Handbook

®

This handbook provides comprehensive information about the Altera®
Quartus® II design software, version 6.0.

How to Contact For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on

Altera this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753) (408) 544-7000 (1)

(7:00 a.m. to 5:00 p.m. Pacific Time) (7:00 a.m. to 5:00 p.m. Pacific Time)
Product literature www.altera.com www.altera.com
Altera literature services literature @altera.com (1) literature @altera.com (1)
Non-technical customer (800) 767-3753 (408) 544-7000
service (7:30 a.m. to 5:30 p.m. Pacific Time)
FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Th | rd -Pa rtv Third-party software products described in this handbook are not Altera
products, are licensed by Altera from third parties, and are subject to change

sonwa re without notice. Updates to these third-party software products may not be
concurrent with Quartus II software releases. Altera has assumed

PI‘O d uct responsibility for the selection of such third-party software products and its use

|l'|f0l'mati0 n in the Quartus II 6.0 software release. To the extent that the software products

described in this handbook are derived from third-party software, no third
party warrants the software, assumes any liability regarding use of the
software, or undertakes to furnish you any support or information relating to
the software. EXCEPT AS EXPRESSLY SET FORTH IN THE APPLICABLE
ALTERA PROGRAM LICENSE SUBSCRIPTION AGREEMENT UNDER
WHICH THIS SOFTWARE WAS PROVDED TO YOU, ALTERA AND
THIRD-PARTY LICENSORS DISCLAIM ALL WARRANTIES WITH RESPECT
TO THE USE OF SUCH THIRD-PARTY SOFTWARE CODE OR
DOCUMENTATION IN THE SOFTWARE, INCLUDING, WITHOUT
LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. For more
information, including the latest available version of specific third-party
software products, refer to the documentation for the software in question.

Altera Corporation XV

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

Typographic Conventions

Quartus Il Handbook, Volume 1

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75: High-
Speed Board Design.

ltalic type

Internal timing parameters and variables are shown in italic type.
Examples: tpja, n+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples: Delete
key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are shown in
quotation marks. Example: “Typographic Conventions.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For example:
c:\gdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such
as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as
well as logic function names (e.g., TRI) are shown in Courier.

1.,2,3., and Numbered steps are used in a list of items when the sequence of the items is important,
a., b, c., etc. such as the steps listed in a procedure.
H e ° Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.
s The hand points to information that requires special attention.
The caution indicates required information that needs special consideration and
(AUAON understanding and should be read prior to starting or continuing with the procedure or
process.
0 The warning indicates information that should be read prior to starting or continuing the
procedure or processes.
“ The angled arrow indicates you should press the Enter key.
e The feet direct you to more information on a particular topic.
xvi Altera Corporation

A |:| E DY/A Section I. Design Flows

®

Revision History

Altera Corporation

The Altera® Quartus®]II, version 6.0 design software provides a complete
multi-platform design environment that easily adapts to your specific
design needs. The Quartus II software also allows you to use the
Quartus II graphical user interface, EDA tool interface, or command-line
interface for each phase of the design flow. This section explains the
Quartus II, version 6.0 software options that are available for each of
these flows.

This section includes the following chapters:

Chapter 1, Quartus II Incremental Compilation for Hierarchical &
Team-Based Design

Chapter 2, Quartus II Design Flow for MAX+PLUS II Users
Chapter 3, Quartus II Support of HardCopy Series Devices
Chapter 4, Engineering Change Management

The chapter, Hierarchical Block-Based & Team-Based Design Flows, was
removed from this handbook. The table below shows the revision history
for Chapters 1 to 4.

Section I-1

Design Flows

Quartus Il Handbook, Volume 1

Chapter(s)

Date / Version

Changes Made (Part1 of 2)

1

May 2006 v6.0.0

Name changed to Quartus Il Incremental Compilation for Hierarchical &
Team-Based Design.

Updated for the Quartus Il software version 6.0.0

e Added new device support information.

Added top-down and bottom-up design flow information.

Added incremental compilation design compiling information.

Added recommendations for creating good floorplan location
assignments.

Added register packing & partition boundary information.

Added engineering management with the Chip Editor.

Added information on how to check and save to reapply SignalProbe™.
Added user scenarios.

December 2005 v5.1.1

Minor typographic update.

October 2005 v5.1.0

Updated for the Quartus Il software version 5.1.

August 2005 v5.0.1

Added documentation on cross-partition register packing.

May 2005 v5.0.0

Initial release.

May 2006 v6.0.0

Minor updates for the Quartus Il software version 6.0.0.

December 2005 v5.1.1

Minor typographic and formatting updates.

October 2005 v5.1.0

Updated for the Quartus Il software version 5.1.

May 2005 v5.0.0

Chapter 2 was formerly Chapter 1 in version 4.2.

Dec. 2004 v2.1

Updated for Quartus Il software version 4.2.

e Chapter 1 was formerly Chapter 2.

General formatting, editing updates, and figure updates.

FLEX® 600 device support added.

Assignment Editor, Timing Assignments, and Synthesis updated.

APEX Il support for balanced optimization technique removed, MAX 1

support added.

Minor updates to Place & Route.

Tcl commands no longer supported for the Quartus Il Simulator Tool.

o Excel-based power calculator replaced by PowerPlay Early Power
Estimation spreadsheet.

e Added support for erase capability for CPLDs.

June 2004 v2.0

e Updates to tables, figures.
o New functionality for Quartus Il software 4.1.

Feb. 2004 v1.0

Initial release.

Section -2

Altera Corporation

Design Flows

Chapter(s)

Date / Version

Changes Made (Part 2 of 2)

3

May 2006 v6.0.0

Minor updates for the Quartus Il software version 6.0.0.

October 2005 v5.1.0

Updated for the Quartus Il software version 5.1.

May 2005 v5.0.0

e Chapter 3 was formerly Chapter 2.

e Updated for consistency with the Quartus Il Support for HardCopy Il
Devices and Quartus Il Support for HardCopy Stratix Devices chapters
in the HardCopy Series Handbook.

Jan. 2005 v2.1

Added HardCopy Il Device Material.

Dec. 2004 v2.1

Chapter 2 was formerly Chapter 3.
Updates to tables, figures.
New functionality for Quartus Il software 4.2

June 2004 v2.0

Updates to tables, figures.
o New functionality for Quartus Il software 4.1.

Feb. 2004 v1.0

Initial release.

May 2006 v6.0.0

Minor updates for the Quartus Il software version 6.0.0.

October 2005 v5.1.0

Updated for the Quartus Il software version 5.1.

May 2005 v5.0.0

Chapter 4 was formerly Chapter 3 in version 4.2.

Dec. 2004 v2.1

Updated for Quartus Il software version 4.2:

Chapter 4 was formerly Chapter 3.

General formatting and editing updates.

Device family support descriptions updated.

Updated HardCopy structured support for performance improvements.

Quartus Il Archive File automatically receives buffer insertion.

Power Calculator now Power Estimator for affected devices.

Updates to tables, figures.

The description of How to Design HardCopy Stratix Devices was

updated.

The description of HardCopy Timing Optimization Wizard was updated.

HardCopy Floorplans & Timing Modules was renamed to Design

Optimization.

The description of Performance Estimation was updated.

Added new section on Buffer Insertion.

Location Constraints was updated.

Targeting Designs to HardCopy APEX 20KC and HardCopy APEX

20KE Devices was removed.

A new section Altera Recommended HDL Coding Guidelines was

added.

e Table 2—5 was added. It lists the HardCopy Stratix design files collected
by the hardCopy Files Wizard.

e The description of the HardCopy APEX Power Estimator was updated.

e® A new section on Targeting Designs to HardCopy APEX Devices was
added.

June 2004 v2.0

e Updates to tables, figures.
o New functionality for Quartus Il software 4.1.

Feb. 2004 v1.0

Initial release.

Altera Corporation

Section -3

Design Flows Quartus Il Handbook, Volume 1

Section -4 Altera Corporation

1. Quartus Il Incremental
/ANOTE 2Ya "

Q1151015-6.0.0

- Compilation for Hierarchical &
Team-Based Design

Introduction

Altera Corporation
May 2006

For today’s high-density, high-performance FPGA designs, the ability to
iterate rapidly during the design and debugging stages is critical. The
Quartus® II software delivers advanced technology to create designs for
high-density FPGAs. Altera® has introduced the FPGA industry’s first
true incremental design and compilation flow, providing the following
benefits:

B Preserves the results and performance for unchanged logic in your
design as you make changes elsewhere.

B Reduces design iteration time by an average of about 60%, allowing

you to perform more design iterations per day and achieve timing

closure more efficiently.

Provides ease of use through the GUI.

Includes Tel scripting, command-line, and makefile support.

Facilitates modular and team-based design flows using top-down or

bottom-up methodologies.

B Supports full incremental compilation for Stratix®, Stratix II,
Cyclone™ , and Cyclone II devices, and incremental synthesis for the
MAX®II device family. Supports full incremental compilation for
native HardCopy® II device development, however, you cannot
migrate a Stratix II design with full incremental compilation enabled
to a HardCopy II device.

Quartus II incremental compilation is an optional compilation flow. This
chapter provides an overview of the Quartus II design flow with and
without incremental compilation. However, for an overview of the
Quartus II design flow and features, refer to the Introduction to Quartus II
Manual.

To take advantage of incremental compilation, organize your design into
logical partitions and physical regions for synthesis and fitting (or place
and route). Incremental compilation preserves the compilation results
and performance of unchanged partitions in your design, dramatically
reducing design iteration time by focusing new compilations only on
changed design partitions. New compilation results are then merged with
the previous compilation results from unchanged design partitions.
Additionally, you can target optimization techniques, such as physical
synthesis, to specific design partitions while leaving other partitions
untouched.

Quartus Il Handbook, Volume 1

In conventional FPGA design, a hierarchical design is flattened into a
single netlist before logic synthesis and fitting, and the entire design is
recompiled every time the design changes. The Quartus II incremental
compilation feature provides the ability to partition a design along any of
its hierarchical boundaries. The Quartus II software separately
synthesizes and fits each individual hierarchical design partition then
merges the partitions into a complete netlist for subsequent stages of the
compilation flow. When recompiling the design, you can choose to use
source code, post-synthesis results, or post-fitting results for each
partition. If you want to preserve the fitter results, you can choose to keep
just the fitter netlist, keep the placement results, or keep both the
placement and routing results.

Incremental compilation supports top-down design methodologies, in
which one designer manages the project for the entire design, as well as
bottom-up design methodologies in which each design block can be
developed independently. Bottom-up methodologies include team-based
design flows in which design partitions are created by team members in
another location or by third-party intellectual property (IP) providers. For
bottom-up flows, you can generate scripts from the top-level design that
pass constraints to lower-level design blocks compiled in separate
Quartus II projects.

The goal of this chapter is to provide the following information:

B Provide an overview of the Quartus II design flow with and without
incremental compilation

B Describe how to use the Quartus II incremental compilation feature

B Provide you the level of understanding required to make good
design decisions to achieve timing closure while speeding up design
iterations

B Present several applications of incremental compilation in the form
of user scenarios, along with the rationale behind them and the steps
required to carry out the tasks

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

This chapter includes the following sections:

Quartus II Design Flow

Design Partitions

Preparing a Design for Incremental Compilation

Compiling a Design Using Incremental Compilation

Creating Design Partitions

Guidelines for Creating Good Design Partitions

Setting the Netlist Type for Design Partitions

Creating a Design Floorplan With LogicLock Location Assignments
Criteria for Successful Partition and Floorplan Schemes
Exporting & Importing Partitions for Bottom-Up Design Flows
User Scenarios—Incremental Compilation Application Examples
Incremental Compilation Restrictions

Scripting Support

Conclusion

Quartu S " Quartus II incremental compilation enhances the standard Quartus I
. design flow by allowing you to reuse satisfactory results from previous
Des'ﬂ n Flow compilations and save compilation time. This section outlines the
standard compilation flow and the incremental flow, highlights the
differences, and explains some of the reasons you might want to use the
incremental flow.

The standard Quartus II compilation flow consists of the following
essential modules:

Altera Corporation
May 2006

Analysis & Synthesis—performs logic synthesis to minimize the
design logic and performs technology mapping to implement the
design logic using device resources such as logic elements. This stage
also generates the project database that integrates the design files
(including netlists from third-party synthesis tools). When you are
using EDIF or VOM netlists created by third-party synthesis tools,
the Analysis & Synthesis stage performs logic synthesis and
technology mapping only for black boxes and Altera megafunctions.
Fitter—places and routes the logic of a design into a device.
Assembler—converts the Fitter’s device, logic, and pin assignments
into programming files for the device.

Timing Analyzer—analyzes and validates the timing performance
of all the logic in a design.

Quartus Il Handbook, Volume 1

Figure 1-1 shows a block diagram of the Quartus II standard design flow.

Figure 1-1. Quartus Il Standard Design Flow

Quartus Il Project & Design Files

’ Block
Vﬁ:‘)‘ig VHDL | | AHDL | | Design ,\'ffﬂ'i'; ,\\l’gﬂ'i\gt <
(.vhd) (.tdf) File (.edf) (vam)
v (baf) | | ¢ va
Settings &
Analysis & Synthesis (1) « Assignr%ents —
Post-Synthesis
Netlist
. Settings &
Fitter <) <
Place-and-Route - Assignments
Post-Fit
Netlist
| Assembler |
| Timing Analyzer |
Requirements No Make Design & Assignment

Satisfied? Modifications

(Program/Configure Device)

Note to Figure 1-1:

(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis
tools, the Analysis & Synthesis stage of the compilation is performed to create the
design database, but logic synthesis and technology mapping are performed only
for black boxes and Altera megafunctions.

In the standard Quartus II compilation flow, you can use smart
compilation to allow the compiler to determine which compiler modules
are required based on the changes made to the design since the last smart
compilation, and then skip any modules that are not required. For
example, when smart compilation is selected, the compiler skips the
Analysis & Synthesis module if the design source files were unchanged.
Smart compilation skips only entire compiler stages. It cannot make

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

incremental changes within a given stage of the compilation flow. On the
Assignments menu, click Settings. In the Category list, select
Compilation Process Settings and click Use Smart Compilation.

In the standard compilation flow, all of the source code is processed with
the Analysis & Synthesis module, and all the logic is placed by the Fitter
module whenever the design is recompiled after any change in any part
of the design. One reason for this behavior is to obtain optimal quality of
results. By processing the entire design, the compiler can perform global
optimizations to improve area and performance.

However, there are situations in which a more incremental compilation
flow is desirable. When the design partitions are well chosen and placed
in the device floorplan, you can speed up your design compilation time
while maintaining or even improving the quality of results. “Creating
Design Partitions” on page 1-17 provides tips for choosing design
partitions.

You may want to use incremental compilation later in the design cycle
when you are not interested in improving the majority of the design any
further, and want to make changes to or optimize one specific block. In
this case, you may want to preserve the performance of modules that are
unmodified and to reduce compilation time on subsequent iterations.
There are also situations in which incremental compilation is useful both
for reducing compilation time and for achieving timing closure. For
example, you may want to specify which partitions should be preserved
in subsequent incremental compilations, and then recompile the other
partitions with advanced optimizations turned on.

You might also have part of your design that is not yet complete, for
which you can create an empty partition while compiling the completed
partitions, and then save results for the complete partitions while you
work on the new part of the design. Alternately, different designers or IP
providers may be working on different blocks of the design using a
team-based methodology, and you want to combine them in a bottom-up
compilation flow.

For more detailed user scenarios, refer to “User Scenarios—Incremental
Compilation Application Examples” on page 1-48.

Quartus Il Handbook, Volume 1

Figure 1-2 shows a block diagram of the Quartus II design flow using
incremental compilation.

Figure 1-2. Quartus Il Design Flow Using Incremental Compilation

Verilog VHDL AHDL B.Iock. EDI_F VQM <
HDL (.vhd) (tdf) Design File Netlist Netlist
(.v) (.bdf) (.edf) (.vgm)

T T T T T T

v

Partition Top
Partition 1
Partition 2

Analysis & Synthesis (1) i
Synthesize Changed Partitions, AS ings & !
gnments
Preserve Others

One Post-Synthesis
Netlist per Partition

Partition Merge
Create Complete Netlist Using Appropriate Source Netlists for Each
Partition (Post-Fit, Post-Synthesis, or Imported Netlist)

Single Netlist for
Complete Design

Fitter
Place-and-Route Changed Partitions,
Preserve Others

Design Partition
Assignments

One Post-Fit
Netlist per
Partition

Floorplan
| Location —
Assignments

Create Individual Netlists and

Complete Netlists Settings & | g
Ej Assignments

Single Post-Fit
Netlist for
Complete Desngn

[Assembler

l Timing Analyzer]

No Make Design &
Assignment Modifications

Satisfied?

(Program/Configure Device)

Note to Figure 1-2:

(1) When you are using EDIF or VQM netlists created by third-party EDA synthesis
tools, the Analysis & Synthesis stage of the compilation is performed to create the
design database, but logic synthesis and technology mapping are performed only
for black boxes and Altera megafunctions.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

In this flow, you partition the design, then perform logic synthesis and
technology mapping for each partition individually with Analysis &
Synthesis.

Analysis & Synthesis reads the project assignments to determine the
partition boundaries. The example in Figure 1-2 shows a top-level
partition and two lower-level partitions. If any part of the design changes,
Analysis & Synthesis processes the changed partitions and keeps the
existing netlist for the unchanged partitions. After completion of Analysis
& Synthesis, there is one post-synthesis netlist for each partition.

The partition merge step creates a single, complete netlist that can be
comprised of post-synthesis and/or post-fitting netlists, or netlists
imported from lower-level projects, depending on the netlist type you
specify for each partition. For more information, refer to “Setting the
Netlist Type for Design Partitions” on page 1-26.

The Fitter then processes the merged netlist, preserving the placement or
placement and routing of unchanged partitions, refitting only those
partitions that have changed. The Fitter generates the complete netlist for
use in further stages of the compilation flow, including timing analysis
and programming file generation. It also generates individual netlists for
each partition so that the partition merge step can use the post-fit netlist
to preserve the placement and routing of a partition if you specify to do
so in future compilations.

If the design does not meet its requirements (functionality, timing, or
area), you can make changes to the design and recompile. The Quartus II
software does not resynthesize or refit unchanged partitions that have a
netlist type assignment that specifies the use of a post-synthesis or post-fit
netlist, respectively.

Top-Down vs. Bottom-Up Design Flows

The Quartus II incremental compilation feature supports both top-down
and bottom-up compilation flows. With top-down compilation, one
designer or project lead compiles the entire design in the software.
Different designers or IP providers can design and verify different parts
of the design, and the project lead can add design entities to the project as
they are completed. However the project lead compiles and optimizes the
top-level project as a whole. Completed parts of the design can have
fitting results and performance fixed as other parts of the design are
changing.

Bottom-up design flows allow individual designers to complete the
optimization of their design in separate projects and then integrate each
lower-level project into one top-level project. Incremental compilation

Quartus Il Handbook, Volume 1

provides export and import features to enable this design methodology.
Designers of lower-level blocks can export the optimized netlist for their
design, along with a set of assignments such as LogicLock regions. Then
the project lead imports each design block as a design partition in a
top-level project. In this case, the project lead must provide guidance to
designers of lower-level blocks to ensure that each partition uses the
appropriate device resources.

It is important to realize that with the full incremental compilation flow,
users who traditionally relied on a bottom-up approach for the sole
reason of performance preservation can now employ a top-down
approach to achieve the same goal. This ability is important for two
reasons. First, a top-down flow is generally simpler to perform than its
bottom-up counterpart. For example, the need to export and import
lower-level designs is eliminated. Second, a top-down approach provides
the design software with information about the entire design so it can
perform global optimizations. In a bottom-up design methodology, you
must perform resource balancing and time-budgeting because the
software does not have any information about the other partitions in the
top-level design when it compiles individual lower-level partitions. For
more information about the export and import operations, and how to
use design partition scripts to help with design planning, refer to
“Exporting & Importing Partitions for Bottom-Up Design Flows” on
page 1-35.

Using Incremental Synthesis Only Instead of Full Incremental
Compilation

You can turn on incremental compilation for only the synthesis stage of
compilation to perform incremental synthesis, with no incremental
place-and-route. In this mode, the Fitter uses a flattened netlist without
partition boundaries and therefore performs cross-boundary
optimizations that help timing performance. The difference between this
flow and the one shown in Figure 1-2 is that the partition merge stage
does not accept post-fit netlists produced by the Fitter, and the Fitter does
not compile partitions separately.

Incremental synthesis only is the default compilation option when using
incremental compilation. This is because, although the potential benefit
offered by Full incremental compilation can be higher than that offered
by incremental synthesis alone, many additional design considerations
and a deeper understanding of the compilation process are required to
use the full incremental compilation flow successfully.

1-8 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Table 1-1 lists the different characteristics between the two compilation

options.

Table 1-1. Characteristics of Using Incremental Synthesis Only, Compared to Full Incremental

Compilation

Characteristic

Incremental Synthesis Only

Full Incremental Compilation

Compilation Roughly 15-40% of total time; savings | Roughly 50-70% of total time; savings in both

Time Savings | limited to Quartus Il integrated Quartus Il integrated synthesis and the Fitter.
synthesis.

Performance None since placement cannot be Excellent when critical paths are contained within a

Preservation

preserved.

partition, because you can preserve post-fitting
information for unchanged partitions.

Node Name
Preservation

Preserves post-synthesis node names
for unchanged partitions.

Preserves post-fitting node names for unchanged
partitions.

Area Changes

Area might increase due to lack of
cross-boundary optimizations. If design
is partitioned appropriately, small or no
change in area.

Area increases by 5% on average in addition to any
synthesis area change, since placement and
register packing are restricted.

fuax Changes

fuax might be reduced due to lack of
cross-boundary optimizations. If the
design is partitioned appropriately, no
negative impact on fyax-

If the design is partitioned and the floorplan location
assignments are created appropriately, no negative
impact on fyyax. You may get a slight performance
increase by employing a good partition and
floorplan scheme.

Ease of Use Simply create partitions. Specify which partitions you want to preserve, and
create floorplan location assignments in most
cases.

Floorplan Not required. Required in most cases for best quality of results.

Creation

When Design is
Resynthesized

Change in source code or synthesis
assignments.

Change in source code (unless you specify to use a
post-fit netlist strictly), or when you specify to use
the source file.

When Design is
Refit

Always

Change in source code (unless you specify to use a
post-fit netlist strictly), when you specify to use the
source or post-synthesis netlist, or when you specify
to use a post-fit netlist with a fitter preservation level
of Netlist Only.

When to Use in
the Design Flow

Can use with equal value throughout the
design process.

Useful mostly when performing placement and
routing, especially during iterative timing closure
and for late design changes, or when part of the
design is incomplete.

User Base

Quartus Il integrated synthesis users
only; limited application for third-party
synthesis tool users.

Potentially all Quartus Il software users; typically
more experienced users who may have previously
used LogicLock™ assignments.

Altera Corporation

May 2006

Quartus Il Handbook, Volume 1

«® Forusage details specific to the Incremental synthesis only option, refer
to the Incremental Synthesis section in the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook.

Desi gn It is common design practice to create modular or hierarchical designs in
g which you develop each design entity separately and then instantiate
Partitions them in a higher-level entity, forming a complete design. The software

does not consider each design entity automatically to be a design
partition for incremental compilation; rather, you must designate one or
more design hierarchies below the top-level project to be a design
partition. Creating partitions prevents the compiler from performing
optimizations across partition boundaries, as discussed in “Creating
Design Partitions” on page 1-17 and illustrated in Figure 1-8. However,
this allows for separate synthesis and placement for each partition,
making incremental compilation possible.

Partitions must have the same boundaries as hierarchical blocks in the
design because partitions cannot be a portion of the logic within a
hierarchical entity. When you declare a partition, every hierarchical entity
within that partition becomes part of the same partition. You can create
new partitions for hierarchical entities within an existing partition, in
which case the entities within the new partition are no longer included
with the higher-level partition, as described in the following example.

In Figure 1-3, hierarchical entities B and F form partitions in the complete
design, which is made up of entities A, B, C, D, E, and F. The shaded
boxes in Representation A indicate design partitions in a “tree”
representation of the hierarchy. In Representation B, the lower-level
entities are represented inside the higher-level entities, and the partitions
are illustrated with different colored shading. The top-level partition,
called Top, automatically contains the top-level entity in the design, and
contains any logic not defined as part of another partition. The design file
for the top-level may be just a wrapper for the hierarchical entities below
it, or it may contain its own logic. In this example, the partition for
top-level entity A also includes the logic in one of its lower-level entities,
C. Because entity F is contained in its own partition, it is not treated as
part of the top-level partition. Another separate partition, B, contains the
logic in entities B, D, and E.

1-10 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Figure 1-3. Partitions in a Hierarchical Design

Representation A
Partition Top
A
B C
l—l—l Iﬁ
D E F
Partition B Partition F
Representation B
A
B C
D B F

Design Partitions Compared to Physical Regions

Design partitions for incremental compilation are logical partitions,
different from physical regions in the device floorplan. Physical regions
specify locations in the device floorplan using LogicLock assignments in
the Quartus II software. Physical regions have a size and location on the
device floorplan, and you can assign multiple design instances and nodes
to a physical region to place them close to each other. A logical design
partition does not refer to a physical section of the device and does not
directly control the placement of instances. A logical design partition sets
up a virtual boundary between design hierarchies so each is compiled
separately, preventing logical optimizations from occurring between
them.

Altera Corporation 1-11
May 2006

Quartus Il Handbook, Volume 1

Preparing a
Design for

Incremental
Compilation

1-12

Altera recommends that you assign each design partition to a physical
region using the LogicLock feature to improve quality of results when
performing a full incremental compilation. Create floorplan location
assignments for design partitions using LogicLock regions as discussed
in “Creating a Design Floorplan With LogicLock Location Assignments”
on page 1-29. Physical location assignments are not required for logical
design partitions if you are using the Incremental Synthesis Only
option.

To set up your design for incremental compilation, use the following
general steps. Detailed descriptions for some of these steps are included
in later sections of this chapter. The flow chart in Figure 1-5 illustrates
these steps in the complete incremental design flow.

1. Elaborate the design. On the Processing menu, point to Start and
click Start Analysis & Elaboration, or run any compilation flow
that includes this step. This allows the Quartus II software to
identify your design’s hierarchy.

2. On the Assignments menu, click Settings. On the Compilation
Process page of the Settings dialog box, select Incremental
compilation and turn on Full incremental compilation, as shown in
Figure 1-4.

3. Create partitions in your design by applying the Set as Design
Partition or PARTITION_ HIERARCHY assignment to the
appropriate instances. Refer to the section “Creating Design
Partitions” on page 1-17 for more details on design partitions and
how to make good assignments.

= When you specify your first partition, a dialog box is shown that
asks whether you wish to enable incremental compilation if you
have not already done so. Selecting Full incremental
compilation in this dialog box also turns on incremental
compilation as in Step 2. You can also turn on incremental
compilation in the Design Partitions Window on the
Assignments menu.

Selecting Off on the Incremental Compilation page of the
Settings dialog box turns off all forms of incremental synthesis
and incremental compilation, but does not remove any partition
assignments. Partition assignments have no effect on the design
if incremental compilation is turned off.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

4. Make location assignments for each partition in the design with the
LogicLock feature to create a design floorplan. Each partition
should be assigned to a physical region on the device. Refer to the
section “Creating a Design Floorplan With LogicLock Location
Assignments” on page 1-29 for details on making these
assignments.

5. On the Processing menu, click Start Compilation to compile the
design. The first compilation after making the partition and
LogicLock assignments is a complete compilation that prepares the
design for subsequent incremental compilations.

To use incremental synthesis only, follow Step 1 through Step 3, but, in
Step 2 select Incremental synthesis only instead of Full incremental
compilation on the Incremental Compilation page in the Settings dialog
box in Figure 1-4.

Figure 1-4. Full Incremental Compilation Enabled in the Settings Dialog Box

Settings - filtref

Categorny:

General

Files

Uszer Libraries [Curent Project]

Dievice

Timing &nalysis Setlings
Timing Analyzer Reporting

EDA Tool Settings
Design EntrySynthesis
Simulation
Timing Analysis
Farmal Werification
Physical Synthesis
Board-Level

Compilation Process Settings
Early Timing E stimate

Timing Analysiz Processing
= Analysiz & Spnthesis Settings

YHOL Input

“erilog HOL Input

Default Parameters

Synthesiz Metlist Optimizations
=1 Fitter Settings

Physical Synthesis Optimizations

Azsembler
Diezign Assistant
SignalT ap Il Logic Analyzer
Logic Analyzer Interface
SignalPrabe Settings
Simulator Settings
PowerPlay Power Analyzer Settings

n

e

Incremental Compilation

S pecify options for incremental compilation.

Incremental compilation
" Off

" Incremental synthesis only [Can reduce compilation time for & design with partition
aszgighments]

& Full incremental compilation [Can achieve performance preservation and significantly
reduce compilation time with partition and LogicLock assignments]

Export project

[Auto expart project as design partition

-]

3

Drezcription

Specifies the cunent mode of incremental compilation

Cancel

=

Altera Corporation
May 2006

1-13

Quartus Il Handbook, Volume 1

Compiling a
Design Using
Incremental
Compilation

1-14

For details specific to using only the incremental synthesis option, refer
to the Incremental Synthesis section in the Quartus II Integrated Synthesis
chapter in volume 1 of the Quartus II Handbook.

After compiling the design once and then making changes, you can take
advantage of incremental compilation to recompile the changed parts of
the design while preserving the results for the unchanged partitions,
saving time on subsequent compilations. To do this, perform the
following general steps:

1.

To preserve previous compilation results for a partition, set the
Netlist Type assignment for that partition to Post-Fit. To save just
the synthesis results, set the Netlist Type assignment for that
partition to Post-Synthesis. If you have imported a partition from
another Quartus II project, choose Imported. For details on setting
this partition property and specifying the fitter preservation level
for post-fit netlists, refer to “Setting the Netlist Type for Design
Partitions” on page 1-26.

Compile the design. When you start a compilation for a partitioned
design with incremental compilation turned on, the Quartus I
software automatically uses the incremental compilation flow,
preserving the results as specified in Step 1.

If you preserve the compilation results using the Post-Fit netlist,
you do not have to back-annotate logic location assignments.
You should not use the incremental compilation and the
back-annotation features in the same Quartus II project.

The flow chart in Figure 1-5 illustrates these steps in the complete
incremental design flow.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

Figure 1-5. Summary of Design Flow Using Incremental Compilation

| Perform Analysis & Elaboration |

v

| Turn on Full Incremental Compilation |

| Create Design Partitions |<7 Repeat until Satsfied
+ with Partitions &
Create Floorplan Location Floorplan

Assignments using LogicLock Regions

v

Perform Complete Compilation
(All Partitions are Compiled)

| Make Changes to Design |<—
* Repeat as Needed
| Set Netlist Type for Each Partition | During Design
* & Debugging Stages
Perform Incremental Compilation

(Partitions are Compiled if Required)

What Represents a Source Change for Incremental Compilation?

The Quartus II software uses an internal checksum to determine whether
the contents of a source file have changed. Source files are the design files
used to create the design, and consist of VHDL files, Verilog HDL files,
AHDL files, Block Design Files (.bdf), EDIF netlists, and VQM netlists.
Changes in other files such as vector waveform files for simulation do not
trigger recompilation.

The project database folder (\db) includes all the netlist information for
previous compilations. To avoid unnecessary recompilations, the
database files must not be altered or deleted.

Synthesis and Fitter assignments, including optimization settings, timing
assignments, or Fitter location assignments such as pin assignments or
LogicLock assignments, do not trigger automatic recompilation in the
incremental compilation flow. To recompile a partition with new
assignments, change the Netlist Type assignment for that partition to
Source File to recompile with all new settings, or to Post-Synthesis to
recompile using existing synthesis results but new fitter settings, or to
Post-Fit with the Fitter preservation Level set to Placement to re-run
routing using existing placement results except for any new routing
settings including delay chain settings. For information about the Netlist
Type and Fitter Preservation Level assignments, refer to “Setting the
Netlist Type for Design Partitions” on page 1-26.

1-15

Quartus Il Handbook, Volume 1

Determining Which Partitions Will be Recompiled

When design files in a partition have dependencies on other files,
changing one file may trigger an automatic recompilation of another file.
The Partition Dependent Files table in the Analysis & Synthesis report
lists the design files that contribute to each design partition, so you can
use this table to determine which files are recompiled when a specific
partition is recompiled.

For example, if a design has files a.v that contains entity a, b.v that
contains entity b, and c.v, that contains entity ¢, then the Partition
Dependent Files table for the partition containing entity a lists file a.v, the
table for the partition containing entity b lists file b.v, and the table for the
partition containing entity c lists file c.v. Any dependencies are transitive,
so if file a depends on b, and b depends on ¢, then the entities in file a
depend on files b and ¢ so entities b an ¢ are listed in the report table.

If a design contains common files, such as a file includes.v thatis
referenced in each entity by the command include includes.v, then
all partitions are dependent on this file, and a change to includes.v
causes the entire design to be recompiled. The VHDL statement use
work.all also typically results in unnecessary recompilations.

To avoid this type of problem, ensure that files common to all entities
such as a common include file contain only the set of information that is
truly common to all entities. Remove use work.all statements in your
VHDL file or replace them by including only the specific packages
needed for each entity.

Forcing Use of the Post-Fitting Netlist When a Source File has Changed

Forcing the use of the post-fitting netlist when the contents of a source file
has changed is recommended only for advanced users who thoroughly
understand when a partition must be recompiled. To force the Fitter to
use a previously generated post-fit netlist when there are changes to the
source files, you can use the Post-Fit (Strict) Netlist Type assignment. For
information about the Post-Fit (Strict) Netlist Type, refer to “Setting the
Netlist Type for Design Partitions” on page 1-26.

Il== Misuse of the Post-Fit (Strict) Netlist Type can result in the
generation of a functionally incorrect netlist when source design
files change. Use caution in applying this assignment.

1-16 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Creating Design

Partitions

Altera Corporation
May 2006

You can make partition assignments to HDL or schematic design
instances, or to VOM or EDIF netlist instances (from third-party synthesis
tools). To take advantage of incremental compilation when source files
change, the top-level design entity of each partition should have a unique
design file. If you define two different entities of separate partitions but
they are in the same design file, you cannot maintain incremental
compilation because the software would have to recompile both
partitions if you changed either entity in the design file.

When you are using a third-party synthesis tool, create a separate netlist
file for each partition to allow each partition to be treated incrementally.
To create separate netlists for each partition, you may have to create a
top-level HDL wrapper file that instantiates the lower-level netlist files
and then create separate projects in your synthesis tool for each of the
lower-level partitions. In this case, the lower-level blocks should be
treated as a black box in the top-level design. Some synthesis tools allow
you to create separate netlist files for different design blocks within a
single project.

For information on using incremental compilation with third-party
synthesis tools, refer to the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

For suggestions on determining which parts of your design should be set
as design partitions, refer to “Guidelines for Creating Good Design
Partitions” on page 1-20.

Creating Design Partitions in the GUI

You can create design partitions in the Quartus II GUI with the Design
Partitions Window or the Project Navigator.

On the Assignments menu, click Design Partitions Window (Figure 1-6)
to create your partitions in one of the following ways:

B Create new partitions for one or more instances by dragging and
dropping them from the Hierarchy tab of the Project Navigator, into
the Design Partitions window. Using this method, you can create
multiple partitions at once.

B Create new partitions by double-clicking the <<new>> cell in the
Partition Name column. In the Create New Partitions dialog box,
select the design instance and click OK.

To delete partitions in the Design Partitions window, right-click a
partition and click Delete, or press the Delete key.

1-17

Quartus Il Handbook, Volume 1

Figure 1-6. Design Partitions Window

Design Partitions =
Partition Mame | Compilation Hierarchy Path | Metlist Type \ Fitter Preservation Level
= Dresign Partitions |
B <<news>
By Top filtref Post-Synthesis

O tapsinst tapsingt Imparted Flacement
B multinsté multinsts Post-Fit Flacement and Fouting
B hvaliesinst2 hvalues:inst2 Post-Synthesis

< b3

Incremental compilation: Fullincremental compilation ﬂ

Alternately, you can use the list of instances under the Hierarchy tab in
the Project Navigator. Right-click on an instance in the Project Navigator
and click Set as Design Partition.

s A design partition icon appears next to each instance that is set
as a partition (Figure 1-7).

To remove an existing partition assignment, right-click the instance in the
Project Navigator and click Set as Design Partition again. (This process
turns off the option.)

Figure 1-7. Project Navigator Showing Design Partitions

Project Mavigator x|
E ntity |

Cyclone |I: EP2CHF256CE

El 2 filel

EDF

tapsiinet S
state_rinst]
hvaluesinst2

accingtd

multinsts Zeg)

A

_Hiararch}'] Fi|BS] & Design Units

Partition Name

When you create a partition, the Quartus II software automatically
generates a name based on the instance name and hierarchy path. Change
the name by double-clicking on the partition name in the Design
Partitions window, or right-click the partition and click Rename.
Alternately, you can right-click the partition in the Design Partitions
window and click Properties to open the Design Partition Properties
dialog box. On the General tab, enter the Name. By renaming your

1-18 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

partitions you can avoid referring to them by their hierarchy path, which
can sometimes be long, especially important when using command-line
commands or assignments. Partition names can be from 1 to 1024
characters in length, and must be unique. The name can only consist of
alphanumeric characters, the pipe (|), the colon (:), and the underscore
(_) characters.

Methodology for Creating Good Partitions

There is an inherent tradeoff between compilation time and quality of
results when you vary the number of partitions in a project. You can
reduce this effect by ensuring that you follow a good methodology
during the partitioning process. In any incremental compilation flow in
which you can compile the source code for each partition during the
partition planning phase, Altera recommends the following iterative
flow:

1. Start with a complete design that is not partitioned and has no
location or LogicLock assignments.

2. On the Processing menu, point to Start and click Start Early Timing
Estimate to perform a placement and timing analysis estimate.

= You must perform Analysis & Synthesis before performing
an Early Timing Estimate. If incremental compilation is
already turned on, you must also perform Partition Merge.

To run a full compilation instead of the Early Timing
Estimate, on the Processing menu, click Start Compilation.

3. Record the quality of results from the Compilation Report (fy 2 x,
area, etc.).

4. Enable incremental compilation as described in “Preparing a Design
for Incremental Compilation” on page 1-12.

5. Create design partitions as described in “Preparing a Design for
Incremental Compilation” on page 1-12 using the guidelines in
“Guidelines for Creating Good Design Partitions” on page 1-20.

6. Perform another Early Timing Estimate or full compilation.

7. Record the quality of results from the Compilation Report. If the
quality of results is significantly worse than that obtained in the
previous compilation in Step 3, repeat Step 5 through this step
(Step 7) to change your partition assignments and use a different
partitioning scheme.

1-19

Quartus Il Handbook, Volume 1

Guidelines for
Creating Good
Design
Partitions

8. Even if the quality of results is acceptable, you can repeat Step 5
through Step 7 by further dividing a large partition into several
smaller partitions. Doing so improves compilation time in future
incremental compilations. You can repeat this step until you achieve
a good tradeoff point (that is, all critical paths are localized within
partitions and the quality of results is not negatively affected, and
the size of each partition is reasonable).

When planning your design, keep in mind the size and scope of each
partition, and the likelihood that different parts of your design might
change as your design develops.

Creating partitions prevents the compiler from performing optimizations
across partition boundaries (Figure 1-8), allowing the software to
synthesize and place each partition separately.

Figure 1-8. Effects of Partition Boundaries During Optimization

Compile without

.) Presence of Cross-Boundary
Hierarchy A || Hierarchy B | "
—p ierarchy U ierarchy Optimizations

= Cannot Obtain Results of an

Hierarchy A

Hierarchy B

Partition Boundaries _/_f\\/ Individual Hierarchy for
Incremental Compilation

Hierarchy A Hierarchy B | ™ Hierarchies Remain Independent

Compile with from One Another
Partition Boundaries

= Possible to Incrementally
L Recompile Each Hierarchy

1-20

Since cross-boundary optimizations cannot occur when using partitions,
the quality of results and performance of the design may decrease as the
number of partitions increases. Having more partitions allows for greater
reduction in compilation time, however, you should limit the number of
partitions to prevent degradation of the quality of results. This effect is
more pronounced when using full incremental compilation than when
using incremental synthesis only, and can have more effect in a
bottom-up methodology than a top-down methodology.

Altera recommends that you also observe the following important
hierarchical design considerations when creating partitions:

B Register all inputs and outputs of each partition. This helps avoid
any delay penalty on signals that cross partition boundaries. At the
very least, either the inputs or the outputs should be registered. The
Statistics reports described in the “Partition Statistics Reports”
section list the ports registered for each partition.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

While this can be difficult in practice, greater adherence to
this principle results in less timing degradation and area
increase when using incremental flows. Registering lessens
the need for the cross-partition optimizations that are
prevented by partitioning.

B Minimize the number of paths that cross partition boundaries. If
there are critical paths crossing between partitions, rework the
partition(s) to avoid these inter-partition paths. The Statistics reports
described in the “Partition Statistics Reports” section list the number
of input and output ports for each partition.

B Ensure that the size of each partition is not too small, (for example,
not less than 1,000 logic elements (LEs) or adaptive logic modules
(ALMSs)). The Statistics reports described in the “Partition Statistics
Reports” section list the logic utilization of each partition.

B Minimize the number of unconnected ports at partition boundaries.
This helps avoid errors in the Fitter during full incremental
compilation where the netlist cannot be split. The Statistics reports
described in the “Partition Statistics Reports” section list the number
of unconnected input and output ports for each partition.

B Do not use tri-state signals or bidirectional ports on hierarchical
boundaries, unless the port is connected directly to a top-level I/O
pin on the device. If you use boundary tri-states in a lower-level
block, synthesis pushes the tri-states through the hierarchy to the
top-level to take advantage of the tri-state drivers on the output pins
of the device.

In an incremental compilation flow, internal tri-states are supported
only when all the destination logic is contained in the same partition,
in which case Analysis & Synthesis implements the internal tri-state
signals using multiplexing logic. For a bidirectional port that feeds a
bidirectional pin at the top-level, all the logic that forms the
bidirectional I/O cell must reside in the same partition.

B Note that logic is not synthesized or optimized across partition
boundaries, which means any constant value (for example, a signal
set to GND) is not propagated across partitions.

B You may have to perform some manual resource balancing across
partitions if device resources are overused in the individual
partitions. Refer to “Resource Balancing” on page 1-23 for details.

B You may have to perform some timing budgeting if paths that cross
partition boundaries require further optimization. Refer to “Timing
Budgeting” on page 1-25 for details.

«® For more guidelines on design hierarchical partitioning, refer to
Hierarchical Design Partitioning in the Design Recommendations for Altera
Devices chapter in volume 1 of the Quartus II Handbook.

Altera Corporation 1-21
May 2006

Quartus Il Handbook, Volume 1

Partition Statistics Reports

You can view statistics about design partitions in the Partition Merge
Partition Statistics compilation report and the Statistics tab in the Design
Partitions Properties dialog box.

The Partition Statistics page under the Partition Merge folder of the
Compilation Report lists statistics about each partition. The statistics for
each partition (each row in the table) include the number of logic cells it
contains, as well as the number of input and output pins it contains and
how many are registered or unconnected. This report is useful when
optimizing your design partitions in a top-down compilation flow, or
when you are compiling the top-level design in a bottom-up compilation
flow, ensuring that the partitions meet the guidelines presented
previously. Figure 1-9 shows the report window.

Figure 1-9. Partition Merge Partition Statistics Report

€ Compilation Report - Partition Merge Partition Statistics

@ Compilation Report Partition Merge Partition Statistics

& B Legal Notice Partitian Logic Input | Dutput | Registered Input | Registered Dutput | Unconnected | Unc:

3 Flow Summary Mame Elements |Ports |Ports | Ports Parts Input Parts Part:

é% Flow Settings 1F Top k] 12 10 1 10 1 /8, [N

&35 Flow Elapsed Time 12] hvaluesingt2) 3 2 3 1] 0 0 0

S FlowLog 3 topeinst |28 17 |8 11 0 0 0
-G dnalysis 8. Synthesis [T e (o non 0 0 0 0
=& Partition Merge —

SR surmary

SHE Netlist Types Used
5B Partition Statistics
@E Resource Usage Sur
f i) Messages
+- &P Fitter
+-&h Assambler
+ é[:l Timing Analyzer

£ > £ >

You can also view statistics about the resource and port connections for a
particular partition on the Statistics tab of the Design Partition
Properties dialog box. On the Assignments menu, click Design
Partitions Window. Right-click on a partition and click Properties to
open the dialog box (Figure 1-10).

1-22 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Figure 1-10. Statistics Tab in the Design Partitions Properties Dialog Box

Design Partition Properties -- Top El
General] Compilation Statistics]

Dizplays the post-compilation statistics for the design partitions selected in the Design Partitions window.

Skatistic [Top [hvalues inst2 [multinstf [tapsinst
= Resources

i Logic eell 7 3 42 32

- 1/0 18 0 0]

=1 Connections

{ Input Connections i 2 48 120
Registered Input Connections |11 1] 1] 96

- Dutput Connections 122 24 1" 24

+-- Reqgistered Output Connections | 0 1] 1] 1]
= Intemal Congestion

i Total Connections 264 26 126 200

+-- Reqgistered Connections Fill 1] a 136

[Inter-partition connections
t-Top 1] 2 11 120
brealugs:inst2 2 0 24 0
o ulltingts " 24 0 24
+e- tapeinst 120 1] 24 1]

BEEREEE

Ok | Cancel | |

Resource Balancing

When using incremental compilation, the software synthesizes each
partition separately, with no data about the resources used in other
partitions. This means that device resources could be overused in the
individual partitions during synthesis, and thus the design may not fit in
the target device when the partitions are merged.

In a bottom-up design flow in which designers optimize their lower-level
designs and export them to a top-level design, the software also places
and routes each partition completely separately. In some cases, partitions
can use conflicting resources when combined at the top level.

To avoid these effects, you may have to perform manual resource
balancing across partitions.

Altera Corporation 1-23
May 2006

Quartus Il Handbook, Volume 1

RAM & DSP Blocks

In the regular synthesis flow, when DSP blocks or RAM blocks are
overused, the Quartus II Compiler can perform resource balancing and
convert some of the logic into regular logic cells (for example, LEs or
ALMs). Without data about resources used in other partitions, it is
possible for the logic in each separate partition to maximize the use of a
particular device resource, such that the design does not fit once all the
partitions are merged. In this case, you may be able to manually balance
the resources by using the Quartus II synthesis options to control
inference of megafunctions that use the DSP or RAM blocks. You can also
use the MegaWizard® Plug-In Manager to customize your RAM or DSP
megafunctions to use regular logic instead of the dedicated hardware
blocks.

«® For more information on resource balancing when using Quartus II
synthesis, refer to the Megafunction Inference Control section in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For more tips on resource balancing and reducing resource
utilization, refer to the appropriate Resource Utilization Optimization
Techniques section in the Area & Timing Optimization chapter in volume 2
of the Quartus II Handbook.

Altera recommends using a LogicLock region for each partition to
minimize the chance that the logic in more than one partition uses the
same logic resource. However, there are situations in which partition
placement may still cause conflicts at the top level. For example, you can
design a partition one way in a lower level design (such as using an
M-RAM memory block) and then instantiate it in two different ways in
the top level (such as one using an M-RAM block and another using an
M4K block). In this case, you can use a post-fit netlist only with no
placement information to allow the software to refit the logic.

Global Routing Signals

Global routing signals can cause conflicts when multiple projects are
imported into a top-level design. The Quartus II software automatically
promotes high fan-out signals to use global routing resources available in
the device. It is possible for lower-level partitions to use the same global
routing resources, causing conflicts at the top level.

In addition, LAB placement depends on whether the inputs to the
LCELLSs within the LAB are using a global clock signal. Therefore,
problems can occur if a design does not use a global signal in the
lower-level design, but does use a global signal in the top-level design.

1-24 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

To avoid these problems, the project lead should determine which
partitions will use particular global routing signals, then each designer of
a lower-level partition can assign the appropriate global signals
manually, and prevent other signals from using global routing resources.
Use the Global Signal assignment set to a value of On or Off in the
Assignment Editor to place a signal on a global routing line, or to prevent
the signal from using a global routing line. If you want to disable the
automatic global promotion performed in the Fitter, turn off the Auto
Global Clock and Auto Global Register Control Signals. On the
Assignments menu, click Settings. On the Fitter Settings page, click
More Settings and change the settings to Off.

Alternately, to avoid problems when importing, direct the Fitter to
discard the placement and routing of the imported netlist by setting the
Fitter preservation level property of the partition to Netlist Only. With
this option, the Fitter re-assigns all the global signals for this particular
partition when compiling the top-level design.

If you are performing a bottom-up flow using the design partition scripts,
then the software can automatically write the commands to pass global
constraints and turn off the automatic options. Refer to “Generating
Bottom-Up Design Partition Scripts for Project Management” on

page 1-42 for details.

Timing Budgeting

If you optimize lower-level partitions and import them to the top level,
any unregistered paths that cross between partitions are not optimized as
an entire path. One way to reduce this effect is to ensure input and output
ports of the partitions are registered whenever possible.

To ensure that the Compiler correctly optimizes the input and output
logic in each partition, you may be required to perform some manual
timing budgeting. For each unregistered timing path that crosses between
partitions, make timing assignments on the corresponding I/O path in
each partition to constrain both ends of the path to the budgeted timing
delay. Timing budgets may be required for these I/O ports because when
the Compiler optimizes each partition, it has no information about the
placement of the logic that connects to that port. If the logic in one
partition is placed far away from logic in another partition, the routing
delay between the logic could lead to problems meeting the timing
requirements. Assigning a timing budget for each part of the connection
ensures that the Compiler optimizes the paths appropriately.

When performing manual timing budgeting, you can also use Virtual Pin

assignments. By assigning location and timing constraints to the Virtual
Pins, you can further improve the quality of the timing budget.

1-25

Quartus Il Handbook, Volume 1

If you are performing a bottom-up flow using the design partition scripts,
then the software can write virtual pin assignments and I/O timing
budget constraints automatically. Refer to “Generating Bottom-Up
Design Partition Scripts for Project Management” on page 142 for

details.
Setti ng the The Netlist Typeisa property of eth design partitiqn that allows you to
. specify the type of netlist or source file that the compiler should use as the
Netlist Tvpe for input for each partition, as described in Table 1-2. This property
i determines which netlist is used by the Partition Merge stage in the next
esign y ge stag
= compilation. To view and modify the Netlist Type, on the Assignments
P tit 1% y yp g
artitions

menu, click Design Partition Window. Double-click the Netlist Type for
an entry. Alternatively, right-click on an entry, click Design Partition
Properties, then modify the Netlist Type on the Compilation tab.

Table 1-2. Netlist Type Settings (Part 1 of 2)

Partition . - . -
Netlist Type Quartus Il Behavior for Partition During Compilation
Source File Always compiles the partition using the associated design source file(s).

You can use this netlist type to recompile a partition from the source code using new synthesis
or fitter settings. If the partition has an associated imported netlist, compiling it with netlist type
set to Source File removes the imported netlist.

Post-Synthesis

Preserves post-synthesis results for the partition and uses the post-synthesis netlist as long as
the following conditions are true:

e A post-synthesis netlist is available from a previous synthesis

e No change has been made to the associated source files since the previous synthesis
Compiles the partition from the source files if there are source changes or if a post-synthesis
netlist is not available. Changes to the assignments do not cause recompilation.

You can use this netlist type to preserve the synthesis results unless source files change, but
refit the partition using any new fitter settings. If a partition has an associated imported netlist,
this setting is not available.

Post-Fit

Preserves post-fit results for the partition and uses the post-fit netlist as long as the following
conditions are true:

e A post-fit netlist is available from a previous fitting

e No change has been made to the associated source files since the previous fitting
Compiles the partition from the source files if there are source changes or if a post-fit netlist is
not available. Changes to assignments do not cause recompilation. The Fitter Preservation
Level specifies what type of information is preserved from the post-fit netlist. You can use this
netlist type to preserve the fitter results unless source files change. You can also use this netlist
type to apply global optimizations, such as Physical Synthesis optimizations, to certain
partitions while preserving the fitting results for other partitions.

If a partition has an associated imported netlist, this setting is not available.

Post-Fit (Strict)

Always preserves post-fit results for the partition. Uses the post-fit netlist even if changes have
been made to the associated source files since the previous fitting. The Fitter Preservation
Level specifies what type of information is preserved from the post-fit netlist. If a partition has
an associated imported netlist, this setting is not available.

1-26

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Table 1-2. Netlist Type Settings (Part 2 of 2)

Partition
Netlist Type

Quartus Il Behavior for Partition During Compilation

Imported

Compiles the design partition using a netlist imported from a Quartus |l Exported Partition File
(-.aqxp). The Fitter Preservation Level specifies what type of information is preserved from the
imported netlist. The software does not modify or overwrite the original imported netlist during
compilation. To preserve changes made to the imported netlist (such as movement of an
imported LogicLock region), use the “Post-Fit (Import-based)” setting following a successful
compilation with the imported netlist. For additional details, refer to “Exporting & Importing
Partitions for Bottom-Up Design Flows” on page 1-35.

If a partition does not have an associated imported netlist, this setting is not available.

Post-Fit
(Import-based)

Preserves post-fit results for the partition and uses the post-fit netlist as long as the following
conditions are true:

e A post-fit netlist is available from a previous fitting

e No change has been made to the associated imported netlist since the previous fitting
Compiles the partition from the imported netlist if the imported netlist changes (which means it
has been reimported) or if a post-fit netlist is not available. Changes to assignments do not
cause recompilation. The Fitter Preservation Level specifies what type of information is
preserved from the post-fit netlist. You can use this netlist type to preserve changes to the
placement and routing of the imported netlist.

If a partition does not have an associated imported netlist, this setting is not available.

Empty

Uses an empty placeholder netlist for the partition and uses virtual pins at the partition
boundaries. You can use this netlist type to skip the compilation of a lower-level partition. For
more details on the Empty setting, refer to “Empty Partitions” on page 1-28.

Fitter Preservation Level

The Fitter Preservation Level property specifies which information the
compiler will use from a post-fit or imported netlist. The property is only
available if the Netlist Type is set to Post-Fit, Post-Fit (Strict), Imported,
or Post-Fit (Import-based).

On the Assignments menu, click Design Partitions Window. You can
view and modify the Fitter Preservation Level by double-clicking an
entry. You can also right-click and click Properties, then edit the Fitter
Preservation Level on the Compilation tab.

Altera Corporation 1-27

May 2006

Quartus Il Handbook, Volume 1

Table 1-3 describes the Fitter preservation level settings.

Table 1-3. Fitter Preservation Level Settings

Fitter Preservation
Level

Quartus Il Behavior for Partition During Compilation

Placement

Preserves the netlist atoms and their placement in the design partition. Re-routes the
design partition. This setting saves significant compilation time because the Fitter does
not need to re-fit the nodes in the partition. Note that the Fitter may need to modify the
placement for timing or legality reasons. This setting might not be available if netlist type
is set to Imported and the imported netlist does not contain placement data.

Placement and
Routing

Preserves the netlist atoms and their placement and routing in the design partition. This
setting minimizes compilation time. Note that the Fitter may need to modify the placement
and routing for timing or legality reasons. This setting may not be available if netlist type
is set to Imported and the imported netlist does not contain routing data.

Netlist Only

Preserves the netlist atoms of the design partition, but replaces and re-routes the design
partition. Unlike a Post-Synthesis netlist, a Post-Fit netlist with the atoms preserved
contains any fitter optimizations, for example, registers duplicated by Physical Synthesis
during a previous Fitting. You can use this setting to preserve Fitter optimizations but allow
the software to perform placement and routing again. You can also use this setting to re-
apply certain fitter optimizations (that is, physical synthesis) that would otherwise be
impossible when the placement is locked down.

1-28

Empty Partitions

To set the Netlist Type to Empty, on the Assignments menu, click Design
Partitions Window, or double-click an entry, or right-click an entry and
click Design Partition Properties and select Empty. This setting specifies
that the Quartus II Compiler should use an empty placeholder netlist for
the partition.

You can use the Empty setting to skip the compilation of a lower-level
partition that is incomplete or missing from the top-level design. You can
also use it if you want to compile only some partitions in the design, such
as during optimization or if the compilation time is large for one partition
and you want to exclude it.

When a partition Netlist Type is defined as Empty, virtual pins are
created at the boundary of the partition. This means that the software
temporarily maps I/O pins in the lower-level design entity to internal
cells and not to pins during compilation.

Any sub-partitions below an empty partition are also considered empty,
regardless of their settings.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Creating a
Design
Floorplan With
LogicLock
Location
Assignments

Altera Corporation
May 2006

You can use a design flow in which some partitions are set to Empty in a
variation of a bottom-up design flow, where you develop pieces of the
design separately and then combine them at the top-level at a later time.
When you implement part of the design without information about the
rest of the project, it is impossible for the Compiler to perform global
placement optimizations. One way to reduce this effect is to ensure input
and output ports of the partitions are registered whenever possible, as
recommended in “Guidelines for Creating Good Design Partitions” on
page 1-20.

When you set a design partition to Empty, a design file is required in
Analysis & Synthesis to specify, at minimum, the port interface
information so that it can connect the partition correctly to other logic and
partitions in the design. If the design file is missing, you must create a
wrapper file (called a black box or hollow-body file) that defines the
design block and specifies the input, output, and/or bidirectional ports.

Once you have partitioned the design, create floorplan location
assignments for the design as discussed in this section when using the full
incremental compilation flow to improve quality of results.

The simplest way to create a floorplan for a partitioned design is to create
one LogicLock region per partition (including the top-level partition).
Initially, leave each region with the default settings of Auto size and
Floating location to allow the Quartus II software to determine the
optimal size and location for the regions. Then, after compilation,
back-annotate the Fitter-determined size and location properties. Check
the quality of results obtained for your floorplan location assignments
and make changes to the regions as needed.

For more information on why creating a design floorplan is important,
refer to “The Importance of Floorplan Location Assignments in
Incremental Compilation” on page 1-32.

To create a LogicLock region for each design partition, use the following
general methodology:

1. On the Assignments menu, click Design Partitions Window and
ensure that all partitions have their Netlist Type set to Source or
Post-Synthesis. If the Netlist Type is set to Post-Fit, floorplan
location assignments are not used when recompiling the design.

1-29

Quartus Il Handbook, Volume 1

8.

1-30

Create a LogicLock region for a partition using one of the following
methods:

e On the Assignments menu, click LogicLock Regions Window.
Drag an individual partition from the Design Partitions
Window and drop it in the <<new>> row of the LogicLock
Regions Window.

e Under Compilation Hierarchy in the Project Navigator,
right-click an instance that is denoted as a partition and click
Create New LogicLock Region.

Repeat Step 2 for each partition, including the top-level entity,
which is automatically considered a partition.

On the Processing menu, point to Start and click Start Early Timing
Estimate to place auto-sized, floating-location LogicLock regions.

& You must perform Analysis & Synthesis and Partition
Merge before performing an Early Timing Estimate.

To run a full compilation instead of the Early Timing
Estimate, on the Processing menu, click Start Compilation.

On the Assignments menu, click LogicLock Regions Window, and
click on each LogicLock region while holding the Ctrl key to select
all regions (including the top-level region).

Right-click on the last selected LogicLock region, and click
Properties.

On the Location tab, click Back-annotate Origin and Lock to
back-annotate the Fitter-determined size and location properties,
then click OK.

= It is important that you use the Fitter-chosen locations only

as a starting point to make the regions of a fixed size and
location. Regions with fixed size and location yield better
fmax than auto-sized regions on average.

Do not back-annotate the contents of the region, just save
the location and size using the Back-annotate Origin and
Lock command. Placement is preserved through the use of
the post-fit netlist instead of back-annotated content
assignments.

If required, modify the size and location via the LogicLock Regions
Window or the Timing Closure Floorplan.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

9. On the Processing menu, point to Start and click Start Early Timing
Estimate to estimate the timing performance of your design with
these LogicLock regions.

10. Repeat steps 8 and 9 until you are satisfied with the quality of
results for your design floorplan. On the Processing menu, click
Start Compilation to run a full compilation.

Recommendations for Creating Good Floorplan Location
Assignments

If your design contains hierarchical partitions (that is, parent-child
relationships between partitions), you can create hierarchical LogicLock
regions to ensure that the logic in the child partition is physically placed
inside the LogicLock region for the parent partition. This can be useful
when the parent partition does not contain registers at the boundary with
the lower-level child partition. To create a hierarchical relationship
between regions in the LogicLock Regions Window, drag and drop the
child region to the parent region.

If resource utilization is low, you may enlarge the Fitter-chosen region.
Doing so usually improves the final results because it gives the Fitter
more freedom to place additional logic added to the partition during
future incremental compilations.

If the quality of results has worsened after creating floorplan location
assignments, try to improve the floorplan by enlarging the area of each
region using the following guidelines:

e Ideally, the entire device should be covered by LogicLock
regions. You may move the region origins to satisfy this
requirement, but Altera recommends preserving the
Fitter-determined relative placement of the regions.

e Regions should not overlap in the device floorplan.

e Give more area to regions that are densely populated.

For more information on making and editing LogicLock regions, consult
the LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Excluding or Filtering Certain Device Elements (Such as RAM or DSP
Blocks)

If your design contains memory or digital signal processing (DSP)
elements, you may want to exclude these elements from the LogicLock
region. You can use a LogicLock resource filter to prevent elements of
certain types from being assigned to a region. Note that the filter does not

1-31

Quartus Il Handbook, Volume 1

1-32

prevent them from being placed inside the region boundaries unless the
region's “Reserved” property is set to on. Defining a resource filter
instructs the Fitter that certain blocks are not required to be inside a
region. Resource filters are useful in cases where it is difficult to place
rectangular regions for design blocks that contain memory and DSP
elements, because of their placement in columns throughout the device
floorplan. Filtering these elements can help to resolve no-fit errors that are
caused by regions spanning too many resources, especially for designs
that are memory and/or DSP-intensive. If desired, you can also create
separate regions for the memory or DSP blocks, which can be shaped to
accommodate the columns in the device to control the placement of those
design elements.

To view any resource filters, right-click in the LogicLock Regions window
and click Properties. In the LogicLock Region Properties dialog box,
View the Excluded Resources column in the Members box. To set up a
resource filter, highlight the appropriate region member and click Edit
Excluded Resources, then turn on the design element types to be
excluded from the region. You can choose to exclude combinational logic
or registers from logic cells, or any of the sizes of TriMatrix™ memory
blocks, or DSP blocks.

For more information on excluding nodes from LogicLock regions,
consult the LogicLock Design Methodology chapter in volume 2 of the
Quartus II Handbook.

The Importance of Floorplan Location Assignments in
Incremental Compilation

Floorplan location planning is very important for a design that uses full
incremental compilation, because it helps to avoid the situation that arises
when the Fitter is directed to place or replace a portion of the design in an
area of the device where most resources have already been claimed. In
this case, the placement of the post-fit netlists of other modules forces the
Fitter to place the new portion of the design in the empty parts of the
device. There are two immediate disadvantages to this situation. First, the
Fitter must work harder because of the higher number of physical
constraints, and therefore compilation time probably increases. Second,
the quality of results often decreases, sometimes dramatically, because
the placement of the target module is now scattered throughout the
device.

Figures 1-11 and 1-12 illustrate the problems associated with refitting
designs that do not have floorplan location assignments. Figure 1-11
shows the initial placement of a four-partition design (P1-P4) without
floorplan location assignments. The second part of the figure shows the

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

situation if a change occurs to P3. After removing the logic for the
changed partition, the Fitter must replace and reroute the new logic for P3
using the white space shown in the figure.

Figure 1-11. Representation of Device Floorplan without Location

Assignments
E
Device Floorplan Device Floorplan
With 4 Partitions After Removing Changed Partition P3

Performing this placement is very difficult. The Fitter may not be able to
find any legal placement for the logic in partition P3, even if it was able to
do so in the initial compilation. If the Fitter does find a legal placement,

the results are probably sub-optimal.

Figure 1-12 shows the initial placement of a four-partition design with
floorplan location assignments made by the user, and the situation after
partition P3 is removed in this case.

Figure 1-12. Representation of Device Floorplan with Location Assignments

- E
Device Floorplan Device Floorplan
With 4 Partitions After Removing Changed Partition P3

This placement presents a much more reasonable task to the Fitter and
yields better results than the previous case that does not have floorplan
location assignments.

Altera Corporation 1-33
May 2006

Quartus Il Handbook, Volume 1

Criteria for
Successful
Partition &
Floorplan
Schemes

1-34

Taking Advantage of the Early Timing Estimator

The general methodology steps described above take advantage of the
Early Timing Estimator to enable quick compilations of the design while
creating assignments. The Early Timing Estimator feature provides a
timing estimate for a design as much as 45 times faster than running a full
compilation, yet estimates are, on average, within 11 percent of final
design timing. You can use the Timing Closure Floorplan editor to view
the “placement estimate” created by this feature, identify critical paths,
and if necessary, add or modify floorplan constraints. You can then rerun
the Early Timing Estimator to quickly assess the impact of any floorplan
location assignments or logic changes, enabling rapid iterations on design
variants to help you find the best solution.

For information on timing analysis and early timing estimation, refer to
the Classic Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

The end results of design partitioning and floorplan creation differ from
design to design. However, it is important to evaluate your results to
ensure that your scheme is successful. Compare the results before
creating your floorplan location assignments to the results after doing so,
and consider using another scheme if any of the following guidelines are
not met:

B No degradation in fy;ax should be observed after the design is
partitioned and floorplan location assignments are created. In many
cases, a slight increase in fy5x is possible.

B The area increase should be no more than 5 percent after the design
is partitioned and floorplan location assignments are created.

B The time spent in the routing stage should not significantly increase.

The amount of compilation time spent in the routing stage is reported in
the Messages window with an Info message indicating the elapsed time
for Fitter routing operations. If you notice a dramatic increase in routing
time, the floorplan location assignments may be creating substantial
routing congestion. In this case, decrease the number of LogicLock
regions. Doing so typically reduces the compilation time in subsequent
incremental compilations, and may also improve design performance.

To help you modify your LogicLock regions, you can identify areas of
congested routing in your design using the Timing Closure Floorplan. On
the Assignments menu, click Timing Closure Floorplan and turn on
Show Routing Congestion. This feature is available only when you click
Field View on the View menu.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Exporting &
Importing
Partitions for
Bottom-Up
Design Flows

Altera Corporation
May 2006

For details on using the Timing Closure Floorplan, refer to the Timing
Closure Floorplan chapter in volume 2 of the Quartus Il Handbook.

The bottom-up flow refers to the design methodology in which a project
is first divided into smaller sub-designs that are implemented as separate
projects, potentially by different designers. The compilation results of
these lower-level projects are then exported and given to the designer (or
the project lead) who is responsible for importing them into the top-level
project to obtain a fully functional design.

There are at least two benefits associated with a bottom-up design flow:

B It facilitates team-based development.

B It permits the reuse of compilation results from another project, with
the ultimate goals of performance preservation and compilation time
reduction.

A bottom-up design flow also has some potential drawbacks that require
careful planning;:

B It may be difficult to achieve timing closure for the full design,
because you compile the lower-level sub-modules independently
without any information about each other. This problem may be
avoided by careful timing budgeting and special design rules such as
always registering the ports at the module boundaries.

B For the same reason, resource budgeting and allocation may be
needed to avoid resource conflicts and overuse. Floorplan creation is
typically very important in a bottom-up flow.

In a bottom-up design flow, the top-level project lead can do much of the
design planning, and then pass constraints on to the designers of
lower-level blocks. The bottom-up design partition scripts generated by
the Quartus II software can make it easier to plan a bottom-up design,
and limit the difficulties that can arise when integrating separate designs.

Preparing the Top-Level Design for a Bottom-Up Incremental
Compilation Methodology

To set up your design for bottom-up incremental compilation, use the
following general steps:

1. Create a top-level project that will be compiled by the project lead
and will eventually incorporate the entire design. The top-level
design file must include the top-level entity that instantiates all the
lower-level subdesign that you plan to compile in separate
Quartus II projects and import as separate design partitions.

1-35

Quartus Il Handbook, Volume 1

2. Inyour top-level project, include a wrapper design file for each
subdesign partition that defines at least the port interface of the
subdesign. Analysis & Elaboration requires this wrapper file (also
known as a “stub” or “black box” file) to connect all the separate
design partitions at the top level. The wrapper file does not have to
contain any logic definition, just the module or entity and
architecture, and the port list for the design block.

3. Create all global assignments, including the device assignment, pin
location assignments, and timing assignments, so that the final
design meets its requirements. Lower-level project designers can
add their own constraints for their partitions as needed, and later
export them to top-level, but the basic constraints can be passed
down from the top-level to avoid any conflicts and ensure that
lower-level projects use the correct assignments.

4. Set up the top-level design with design partitions, turn on
incremental compilation, and create a design floorplan using
LogicLock assignments. Follow the steps in “Preparing a Design for
Incremental Compilation” on page 1-12.

5. Ensure that you allocate device resources appropriately, as
described in “Resource Balancing” on page 1-23.

6. Optionally, you can use the Quartus II software to generate
bottom-up design partition scripts that help with design planning
and project management at the top level of the project. Refer to
“Generating Bottom-Up Design Partition Scripts for Project
Management” on page 1-42 for details.

Exporting a Partition to be Used in a Top-Level Project

Each lower-level subdesign is compiled as a separate Quartus II project.
In each project, use the following guidelines to improve the exporting and
importing process:

B Ensure that the LogicLock region uses only the resources allocated
by the top-level project lead.

B Ensure that you know which clocks should be allocated to global
routing resources so that there are no resource conflicts in the
top-level design.

e Set the Global Signal assignment to On for the high fan-out
signals that should be routed on global routing lines.

e To avoid other signals being placed on global routing lines, on
the Assignments menu, click Settings and turn off Auto Global
Clock and Auto Global Register Controls under More Settings
on the Fitter page of the Settings dialog box.

1-36 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

e Alternately, you can set the Global Signal assignment to Off for
signals that should not be placed on global routing lines.
Placement for LABs depends on whether the inputs to the logic
cells within the LAB use a global clock, so you may encounter
problems if signals do not use global lines in the lower level
design but use global routing in the top level.

Use the Virtual Pin assignment to indicate pins of a subdesign that

do not drive pins in the top-level design. This is critical when a

subdesign has more output ports than the number of pins available

in the target device. Using virtual pins also helps optimize cross-
partition paths for a complete design by enabling you to provide
more information about the subdesign ports, such as location and
timing assignments.

Because subdesigns are compiled independently without any

information about each other, you should provide more information

about the timing paths that may be affected by other partitions in the
top-level design. You can apply location assignments for each pin to
indicate where the port connection will be located after it is
incorporated in the top-level design. You can also apply timing
assignments to the I/O ports of the subdesign to perform timing

budgeting as described in “Timing Budgeting” on page 1-25.

When your subdesign partition has been compiled using these
guidelines, and is ready to be incorporated into the top-level design,
export a subdesign as a partition using the following steps:

1.

In the subdesign project, on the Project menu, click Export Project as
Design Partition. The Export Project as Design Partition dialog box
opens (Figure 1-13).

In the Export file box, type the name of the Quartus II Exported
Partition file (.qxp). By default, the directory path and file name are
the same as the current project.

Under Netlist to export, select either Post-fit netlist or
Post-synthesis netlist. The default is Post-Fit netlist.

To automatically create a new version of the Quartus II Exported
Partition file after each subsequent compilation, turn on Always

perform exportation following compilation.

Click OK. The Quartus II software creates the Quartus II Exported
Partition file in the specified directory.

1-37

Quartus Il Handbook, Volume 1

1-38

Figure 1-13. Export Project as Design Partition Dialog Box

Export Project as Design Partition E|

“Y'ou can export the curent compilation result and import it into the design
paitition of anather project

Expart file:

taps. qHp J

Metlist to export

' Post-fit netlist

" Post-syrthesis netlist

v Always perform exportation following compilation

Cancel

Importing a Lower-Level Partition Into the Top-Level Project

The import process involves importing the design netlist from the
Quartus II Exported Partition file and adding the netlist to the database
for the top-level project. Importing also filters the assignments from the
subdesign and creates the appropriate assignments in the top-level
project.

To import a subdesign partition into a top-level design:

1.

In the top-level project, on the Project menu, click Import Design

Partition. Alternately, right-click on the partition that you want to
import in the Design Partitions window and click Import Design

Partition, this opens the Import Design Partition dialog box.

In the Partition(s) box, click browse to select the desired partition.
To browse for a partition, highlight the partition name in the Select
Partition(s) dialog box and use the appropriate buttons to select or
deselect the desired partition(s).

[~ Notethatyou can select multiple partitions if your top-level
design has multiple instances of the subdesign partition
and you want to use the same imported netlist.

Under Import file, type the name of the Quartus II Exported
Partition file or browse for the file that you want to import into the
selected partition. Note that this file is required only during
importation, but is not used during subsequent compilations.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

=y If you have already imported the Quartus II Exported
Partition file for this partition at least once, you can use the
same location as the previous import instead of specifying
the file name again. To do so, turn on Reimport using the
latest import files at previous locations. This option is
especially useful when you want to import the new
Quartus II Exported Partition files for several partitions
that you have already imported at least once. You can select
all the partitions to be imported in the Partition(s) box and
then use the Reimport using latest import files at previous
locations option to import all partitions using their
previous locations, without specifying individual file
names.

To view the contents of the selected Quartus II Exported Partition
file, click Load Properties. The properties displayed include the
Netlist Type, Entity name, Device and statistics about the partition
size and ports.

Click Advanced Import Settings and make selections, as
appropriate, to control how assignments and regions are integrated
from a subdesign into a top-level design partition. During
importation, some regions may be resized or slightly moved. Click
OK to apply the settings.

= For more information about the advanced settings, refer to
“Importing Assignments & Advanced Import Settings” on
page 1-39.

In the Import Design Partition dialog box, click OK to start
importation. The specified Quartus II Exported Partition file is
imported into the database for the current top-level project.

Importing Assignments & Advanced Import Settings

When you import a subdesign partition into a top-level design, the
software sets certain assignments by default and also imports relevant
assignments from the subdesign into the top-level design.

Design Partition Properties After Importing

When you import a subdesign partition, the import process sets the
partition’s Netlist Type to Imported.

If you compile the design and want to make and preserve changes to the
place-and-route results, use the Post-Fit (Import-based) Netlist Type on
the subsequent compilation. To discard an imported netlist and recompile

1-39

Quartus Il Handbook, Volume 1

1-40

from source code, simply compile the partition with netlist type set to
Source File and be sure to include the relevant source code with the
top-level project.

The import process sets the partition’s Fitter Preservation Level to the
setting with the highest degree of preservation supported by the
imported netlist. For example, if a post-fit netlist is imported with
placement information, the level is set to Placement, but you can change
it to the Netlist Only value.

Refer to “Setting the Netlist Type for Design Partitions” on page 1-26 for
details about the Netlist Type and Fitter Preservation Level setting.

Importing Design Partition Assignments Within the Subdesign

Design partitions defined within the subdesign project are currently not
imported to the top-level.

Importing LogicLock Assignments

LogicLock regions are set to a fixed size when imported. If you instantiate
multiple instances of a subdesign in the top-level design, the imported
LogicLock regions will be set to a Floating location. Otherwise, they are
set to a Fixed location. You can change the location of LogicLock regions
after they are imported, or change them to a Floating location to allow the
software to place each region but keep the relative locations of nodes
within the region wherever possible. If you want to preserve changes
made to a partition after compilation, use the Netlist Type Post-Fit
(Import-Based).

The LogicLock Member State assignment is set to Locked to signify that
it is a preserved region.

LogicLock back-annotation and node location data is not imported
because the Quartus II Exported Partition file contains all the relevant
placement information. Altera strongly recommends that you do not add
to or delete members from an imported LogicLock region.

Importing Other Instance Assignments

All instance assignments are imported, with the exception of design
partition assignment, and LogicLock assignments, as described
previously.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Importing Global Assignments

Global assignments are not imported. The project lead should make
global assignments, such as clock settings in the top-level design.

Advanced Import Settings

The Advanced Import Settings dialog box, shown in Figure 1-15, allows
you to specify the options in this section that control how assignments
and regions are integrated and how to resolve assignment conflicts when
importing a subdesign partition into a top-level design. The following
sub-sections describe each of these options.

Figure 1-14. Advanced Import Settings Dialog Box

Advanced Import Settings E|
Specify how assignments should be imparted from the lowerdevel project to the cunent praject.
IV Allow creation of new assignments
I¥ Promote assignments to all instances of the imported entity
Aggsignment conflict resolution
LogicLock regions: |A|ways teplace regions in the current praject ﬂ
Other azsignments: |Always 1eplace assignments in the cument project j

Allow Creation of New Assignments
Allows the import command to add new assignments from the imported
project to the top-level project.

When this option is turned off, it imports updates to existing
assignments, but no new assignments are allowed.

Promote Assignments to all Instances of the Imported Entity
Converts and promotes entity-level assignments from the subdesign into
instance-level assignments in the top-level design.

Altera Corporation 1-41
May 2006

Quartus Il Handbook, Volume 1

Assignment Conflict Resolution: LogicLock Regions

Choose one of the following options to determine how to handle
conflicting LogicLock assignments (that is, subdesign assignments that
do not match the top-level assignments):

B Always replace regions in the current project (default)—Deletes
existing regions and replaces them with the new subdesign region.
Note that any changes made to the LogicLock region after the
assignments were imported are also deleted.

B Always update regions in the current projects—Overwrites existing
region assignments to reflect any new subdesign assignments, with
the exception of the LogicLock Origin in case the project lead has
made floorplan location assignments in the top-level design.

B Skip conflicting regions—Ignores and does not import subdesign
assignments that conflict with any assignments that exist in the
top-level design.

Assignment Conflict Resolution: Other Assignments

Choose one of the following options to determine how to handle conflicts
with other types of assignments (that is, the subdesign assignments do
not match the top-level assignments):

B Always replace assignments in the current project (default)—
Overwrites or updates existing instance assignments with the new
subdesign assignments.

B Skip conflicting assignments—Ignores and does not import
subdesign assignments that conflict with any assignments that exist
in the top-level design.

Generating Bottom-Up Design Partition Scripts for Project
Management

The bottom-up design partition scripts automate the process of
transferring top-level project information to lower-level modules. The
software provides a project manager interface for managing resource and
timing budgets in the top-level design. This makes it easier for designers
of lower-level modules to implement the instructions from the project
lead, and avoid conflicts between projects when importing and
incorporating the projects into the top-level design. This helps reduce the
need to further optimize the designs after integration, and improves
overall designer productivity and team collaboration.

s Generating bottom-up design partition scripts is optional in any
bottom-up design methodology.

1-42 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

In a typical bottom-up design flow, the project lead must perform some
or all of the following tasks to ensure successful integration of the
sub-projects:

B Manually determine which assignments should be propagated from
the top-level to the bottom-levels. This requires detailed knowledge
of which Quartus II assignments are needed to set up low-level
projects.

B Manually communicate the top-level assignments to the low-level
projects. This requires detailed knowledge of Tcl or other scripting
languages to efficiently communicate project constraints.

B Manually determine appropriate timing and location assignments
that will help overcome the limitations of bottom-up design. This
requires examination of the logic in the lower levels to determine
appropriate timing constraints.

B Perform final timing closure and resource conflict avoidance at the
top level. Because the low-level projects have no information about
each other, meeting constraints at the lower levels does not guarantee
they will be met when integrated at the top-level. It then becomes the
project lead’s responsibility to resolve the issues, even though
information about the low-level implementation may not be
available.

Using the Quartus II feature that generates bottom-up design partition
scripts from the top level of the design makes these tasks much easier and
eliminates the chance of error when communicating between the project
lead and lower-level designers. Partition scripts pass on assignments
made in the top-level design, and create some new assignments that
guide the placement and help the lower-level designers see how their
design connects to other partitions.

Generate design partition scripts after a successful compilation of the
top-level design. On the Project menu, click Generate Bottom-Up Design
Partition Scripts. The design can have empty partitions as placeholders
for lower-level blocks, and you can perform an Early Timing Estimation
instead of a full compilation to reduce compilation times.

The following subsections describe the information that you can choose
to be included in the bottom-up design partition Tcl scripts. Use the
options in the Generate Bottom-Up Design Partition Scripts dialog box
to choose which types of assignments you want to pass down and create
in the lower-level partition projects.

For information about current limitations in the bottom-up partition

scripts, refer to the “Bottom-Up Design Partition Script Limitations” on
page 1-61.

1-43

Quartus Il Handbook, Volume 1

Project Creation

You can use the Create lower-level project if one does not exist option
for the partition scripts to create lower level projects if they are required.
The Quartus II Project File for each lower-level project has the same name
as the entity name of its corresponding design partition.

With this project creation feature, the scripts work by themselves to create
a new project, or can be sourced to make assignments in an existing
project.

Assignments from the Top-Level Design

By default, any assignments made at the top-level (not including default
assignments or project information assignments) are passed down to the
appropriate low-level projects in the scripts. The software uses the
assignment variables and determines the logical partition(s) to which the
assignment pertains (this includes global assignments, instance
assignments, and entity-level assignments). The software then changes
the assignments so that they are syntactically valid in a project with its
target partition’s logic as the top-level entity.

The scripts process wildcard assignments correctly, provided there is only
one wildcard. Assignments with more than one wildcard are ignored and
warning messages are issued.

Use the options described in the following section to specify which of the
following types of assignments you would like passed down to the
lower-level projects:

B Timing assignments—When this option is turned on, all global
timing assignments for the lower-level projects are included in the
script, including tco, tsy, and fyjax constraints. It may also optionally
include timing constraints on internal partition connections.

B Design partition assignments—When this option is turned on,
script assignments related to design partitions in the lower-level
projects are included, as well as assignments associated with
LogicLock regions.

B Pin location assignments—When this option is turned on, all pin
location assignments for lower-level project ports that connect to
pins in the top-level design are included in the script, controlling the
overuse of I/Os at the top-level during the integration phase and
preserving placement.

1-44 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

Virtual Pin Assignments

When Create virtual pins at low-level ports connected to other design
units is turned on, the Quartus II software searches partition netlists and
identifies all ports that have cross-partition dependencies. For each
lower-level project pin associated with an internal port in another
partition or in the top-level project, the script generates a virtual pin
assignment, ensuring more accurate placement, because virtual pins are
not directly connected to I/O ports in the top-level project. These pins are
removed from a lower-level netlist when it is imported into the top-level
design.

Virtual Pin Timing & Location Assignments

One of the main issues in bottom-up design methodologies is that each
individual design block includes no information about how it is
connected to other design blocks. If you turn on the option to write virtual
pin assignments, you can also turn on options to constrain these virtual
pins to achieve better timing performance once the lower-level partitions
are integrated at the top level.

When Place created virtual pins at location of at top-level source/sink is
turned on, the script includes location constraints for each virtual pin
created. Virtual output pins are assigned to the location of the
connection’s destination in the top-level project, and virtual input pins
are assigned to the location of the connection’s source in the top-level
project. Note that if the top-level design uses Empty partitions, the final
location of the connection is not known but the pin is still assigned to the
LogicLock region that contains its source or destination.

As a result, these virtual pins are no longer placed inside the LogicLock
region of the lower-level project, but at their location in the top-level
design, eliminating resource consumption in the lower-level project and
providing more information about lower-level projects and their port
dependencies. These location constraints are not imported into the
top-level project.

When Add maximum delay to/from created virtual pins is turned on, the
script includes a timing constraint for each virtual pin created. The value
you enter in the dialog box is the maximum delay allowed to and from all
paths between virtual pins to help meet the timing requirements for the
complete design. The software uses the OUTPUT_MAX_DELAY
assignment or INPUT_MAX_DELAY assignment to apply the constraint.

This option allows the project lead to specify a general timing budget for
all lower-level internal pin connections. The lower-level designer can
override these constraints by applying individual node-level
assignments on any specific pin as needed.

1-45

Quartus Il Handbook, Volume 1

1-46

LogicLock Region Assignments

When Copy LogicLock region assignments from top-level is turned on,
the script includes assignments identifying the LogicLock assignment for
the partition.

The script can also pass assignments to create the LogicLock regions for
all other partitions. When Include all LogicLock regions in lower-level
projects is turned on, the script for each partition includes all LogicLock
region assignments for the top-level project and each lower-level
partition, revealing the floorplan for the complete design in each
partition. Regions that do not belong to other partitions contain virtual
pins representing the source and destination ports for cross-partition
connections. This allows each designer to more easily view the
connectivity between their partition and other partitions in the top-level
design, and helps ensure that resource conflicts at the top-level are
minimized.

When Remove existing LogicLock regions from lower-level projects is
turned on, the script includes commands to remove LogicLock regions
defined in the lower-level project prior to running the script. This ensures
that LogicLock regions not part of the top-level project do not become
part of the complete design, and avoids any location conflicts by ensuring
lower-level designs use the LogicLock regions specified at the top level.

Global Signal Promotion Assignments

To help prevent conflicts in global signal usage when importing projects
into the top-level design, you can choose to write assignments that
control how signals are promoted to global routing resources in the
lower-level partitions. These options can help resource balancing of
global routing resources.

When Promote top-level global signals in lower-level projects is turned
on, the Quartus II software searches partition netlists and identifies
global resources, including clock signals. For the relevant partitions, the
script then includes a global signal promotion assignment, providing
information to the lower-level projects about global resource allocation.

When Disable automatic global promotion in lower-level projects is
turned on, the script includes assignments that turn off all automatic
global promotion settings in the lower-level projects. These settings
include: the Auto Global Memory Control Signals logic option, output
enable logic options, and clock and register control promotions. If you
select the Disable automatic global promotion in lower-level projects
option in conjunction with the Promote top-level global signals in

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

lower-level projects option, you can ensure that only signals promoted
to global resources in the top-level are promoted in the lower-level
projects.

Makefile Generation

Makefiles allow you to use ‘make’ commands to ensure that a bottom-up
project is up-to-date if you have a make utility installed on your
computer. The Generate makefiles to maintain lower-level and
top-level projects option creates a makefile for each design partition in
the top-level design, as well as a master makefile that can run the
lower-level project makefiles. The Quartus II software places the master
makefiles in the top-level directory, and the partition makefiles in their
corresponding lower-level project directories.

Makefiles use the directory locations generated using the Create
lower-level project if one does not exist option. If you created your
lower-level projects without using this option, you must modify the
variables at the top of the makefile to specify the directory location for
each lower-level project.

To run the makefiles, use a command such as make -£
master_makefile.mak from the script output directory. The master
makefile first runs each lower-level makefile, which sources its Tcl script
and then generates a Quartus II Exported Partition file to export the
project as a design partition. Next, the top-level makefile is run which
specifies these newly generated Quartus II Exported Partition files as the
import files for their respective partitions in the top-level project. The
top-level makefile then imports the lower-level results and performs a
full compilation, producing a final design.

To exclude a certain partition from being compiled, edit the
EXCLUDE_FLAGS section of master_makefile.mak according to the
instructions in the file, and specify the appropriate options. You can also
exclude some partitions from being built, exported, or imported using
make commands. To exclude a partition, run the makefile using a
command such as the one for the GNU make utility shown in the
following example:

gnumake -f master makefile.mak exclude <partition directory>=1 +

Altera Corporation
May 2006

This command instructs that the partition whose output files are in
<partition directory> are not built. Multiple directories can be excluded by
adding multiple exclude_<partition directory> commands.
Command-line options override any options in the makefile.

1-47

Quartus Il Handbook, Volume 1

User
Scenarios—
Incremental
Compilation
Application
Examples

1-48

Another feature of makefiles is the ability to have the master makefile
invoke the low-level makefiles in parallel on systems with multiple
processors. This option can help designers working with multiple CPUs
greatly improve their compilation time. For the GNU make utility, add
the - j<N> flag to the make command. The value <N> is the number of
processors that can be used to run the build.

To better illustrate the applications and behavior of the full incremental
compilation flow, the following section presents several possible user
scenarios. All scenarios assume you have set up the project to use the full
incremental compilation flow, using the steps described in “Preparing a
Design for Incremental Compilation” on page 1-12. These scenarios are
divided into two sections:

B Top-Down Incremental Design Flows
B Bottom-Up Design Flows

Top-Down Incremental Design Flows

There are four top-down incremental design flow examples:

B Scenario 1—Changing a Source File for One of Multiple Partitions in
a Top-Down Compilation Flow

B Scenario 2—Optimizing the Placement for One of Multiple Partitions
in a Top-Down Compilation Flow

B Scenario 3—Preserving One Critical Partition in a Multiple-Partition
Design in a Top-Down Compilation Flow

B Scenario 4—Placing All but One Critical Partition in a
Multiple-Partition Design in a Top-Down Compilation Flow

Scenario 1—Changing a Source File for One of Multiple Partitions in a
Top-Down Compilation Flow

Background: You have just performed a lengthy, complete compilation of
a design that consists of multiple partitions. An error is found in the HDL
source file for one partition and it is being fixed. Because the design is
currently meeting timing requirements and the fix is not expected to
affect timing performance, it makes sense to compile only the affected
partition and preserve the rest of the design.

Perform the following steps to update the single source file:
1. Apply and save the fix to the HDL source file.

2. On the Assignments menu, click Design Partition Window.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

3. For the partitions that should be preserved, change the Netlist Type
to Post-Fit. You can set the Fitter Preservation Level to either
Placement or Placement and Routing. For the partition that
contains the fix, you can change the netlist type to Source File.
Making the Source File setting is optional because the Quartus II
software recompiles partitions if changes are detected in a
source file.

4. Click Start Compilation to incrementally compile the fixed HDL
code. This compilation should take much less time than the initial
full compilation.

5. Run simulation again to ensure that the bug is fixed, and use the
Timing Analyzer report to ensure that timing results have not
degraded.

Scenario 2—0ptimizing the Placement for One of Multiple Partitions in a
Top-Down Compilation Flow

Background: You have just performed a lengthy full compilation of a
design that consists of multiple partitions. The Timing Analyzer reports
that the fy;ox timing requirement is not met. After some analysis, you
believe that timing closure can be achieved if placement can be improved
for one particular partition. You have at least three optimization
techniques in mind: raising the Placement Effort Multiplier, enabling
Physical Synthesis, and running the Design Space Explorer. Because these
techniques all involve significant compilation time, it makes sense to
apply them (or just one of them) to only the partition in question.

Perform the following steps to raise the Placement Effort Multiplier or
enable Physical Synthesis:

1. On the Assignments menu, click Design Partition Window.

2. For the partition in question, set the Netlist Type to Post-Synthesis.
This causes the partition to be placed and routed with the new Fitter
settings (but not resynthesized) during the next compilation.

3. For the remaining partitions (including the top-level entity), set the
Netlist Type to Post-Fit. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing. To reduce
compilation time further, use the Placement and Routing setting.
These partitions are preserved during the next compilation.

4. Apply the desired optimization settings.

1-49

Quartus Il Handbook, Volume 1

1-50

5. Click Start Compilation to incrementally compile the design with

the new settings. During this compilation, the Partition Merge stage
automatically merges the post-synthesis netlist of the critical
partition with the post-fit netlists of the remaining partitions. This
“merged” netlist is fed to the Fitter. The Fitter then refits only one
partition. Since the effort is reduced as compared to the initial full
compilation, the compilation time is also reduced.

To use Design Space Explorer, perform the following steps:
1. Repeat steps 1-3 of the previous set of steps.

2. Save the project and run Design Space Explorer.

Scenario 3—Preserving One Critical Partition in a Multiple-Partition
Design in a Top-Down Compilation Flow

Background: Prior to any compilation, you have some insight into which
partition will be the most critical (in terms of timing) after placement and
routing. To help achieve timing closure, you decide to use the following
compilation flow.

The critical partition is placed and routed by itself, with all optimizations
turned on (manually or through Design Space Explorer). After timing
closure is achieved for this partition, its content and placement are
preserved and the remaining partitions are fit with normal or reduced
optimization levels so that the compilation time can be reduced.

s> This flow generally works only if the critical path is contained
inside the partition in question. This is one reason why both the
inputs and outputs of each partition should be registered.

For this scenario, perform the following steps:

1. Perform partitioning and floorplan location assignment creation.

2. For the partition expected to be critical, on the Assignments menu,
click Design Partition Window and set Netlist Type to Source File.

3. For the remaining partitions (other than any direct or indirect
parents of the critical one), set the Netlist Type to Empty.

4. Click Start Compilation to compile with the desired optimizations
turned on, or use Design Space Explorer.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

5. Check the Timing Analyzer report to ensure that the timing
requirements are met. If so, proceed to step 6. Otherwise, repeat
step 4 and step 5 until the requirements are met.

6. In the Design Partition Window, set the Netlist Type to Post-Fit for
the critical partition. Set the Fitter Preservation Level to Placement
and Routing to preserve the results.

7. Change the Netlist Type from Empty to Source File for the
remaining partitions.

8. Turn off the optimizations set in step 4, and compile the design.
Turning off the optimizations at this point does not affect the fitted
partition, because its Netlist Type is set to Post-Fit.

9. Check the Timing Analyzer report to ensure that the timing
requirements are met. If not, make design or option changes and
repeat step 8 and step 9 until the requirements are met.

[~ This flow is similar to a bottom-up design flow in which a
module is implemented separately and is merged into the
rest of the design afterwards. Refer to “Empty Partitions” on
page 1-28 for more information about potential issues.
Ensure that if there are any partitions representing a design
file that is missing from the project, you create a placeholder
wrapper file that defines the port interface.

Scenario 4—Placing All but One Critical Partition in a Multiple-Partition
Design in a Top-Down Compilation Flow

Background: Prior to any compilation, you have some insight into which
partition will be the most critical (in terms of timing) after placement and
routing. To help achieve timing closure, you decide to use the following
compilation flow.

Only the non-critical partitions are placed and routed initially, using
floorplan location assignments. These non-critical partitions are then
preserved when the critical partition is introduced into the Fitter, with
various optimizations turned on (manually or through Design Space
Explorer).

For this scenario, perform the following steps:
1. Perform partitioning and floorplan creation.

2. For the partition expected to be critical, on the Assignments menu,
click Design Partition Window and set the Netlist Type to Empty.

Altera Corporation 1-51
May 2006

Quartus Il Handbook, Volume 1

For the remaining partitions, set the Netlist Type to Source File.
Click Start Compilation to compile the non-critical partitions.

Check the Timing Analyzer report to ensure that the timing
requirements are met. If so, proceed to step 6. Otherwise, make
design or option changes and repeat steps 4 and 5 until the
requirements are met.

In the Design Partition Window, set the Netlist Type to Post-Fit for
the processed partitions. Set the Fitter Preservation Level to
Placement to allow for the most flexibility during routing.

Change the Netlist Type from Empty to Source File for the partition
expected to be critical.

Click Start Compilation to compile the design with optimizations
turned on, or use Design Space Explorer.

Check the Timing Analyzer report to ensure that the timing
requirements are met. If not, make design or option changes and
repeat steps 8 and 9 until the requirements are met.

This flow is similar to a bottom-up design flow, in which a
module is implemented separately and is merged into the rest of
the design afterwards. Refer to “Empty Partitions” on page 1-28
for more information about potential issues. Ensure if there are
any partitions representing a design file that is missing from the
project, that you create a placeholder wrapper file that defines
the port interface.

Bottom-Up Design Flows

There are two bottom-up design flow examples:

Scenario 5—Team-Based Bottom-Up Design Flow
Scenario 6—Design Iteration in a Bottom-Up Design Flow

Scenario 5—Team-Based Bottom-Up Design Flow

This scenario describes how to use incremental compilation in a
bottom-up design flow.

1-52

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

Background: A project consists of several lower-level subdesigns that are
implemented separately by different designers. The top-level project
instantiates each of these subdesigns exactly once. The subdesign
designers want to optimize their designs independently and pass on the
results to the project lead.

As the project lead in this scenario, perform the following steps to prepare
the design for a successful bottom-up design methodology.

1. Create a new Quartus II project that will ultimately contain the full
implementation of the entire design.

2. To prepare for the bottom-up methodology, create a “skeleton” of
the design that defines the hierarchy for the subdesigns that will be
implemented by separate designers. The top-level design
implements the top-level entity in the design and instantiates
wrapper files that represent each subdesign by defining only the
port interfaces but not the implementation.

3. Make project-wide settings. Select the device, make global
assignments for clocks and device I/O ports, and make any global
signal constraints to specify which signals can use global routing
resources.

4. In the Settings dialog box, expand Compilation Process Settings
and select Incremental Compilation. Turn on Full incremental
compilation, and click OK.

5. Make design partition assignments for each subdesign and set the
Netlist Type for each design partition that will be imported to
Empty in the Design Partitions window.

6. Create LogicLock regions for each of the lower-level partitions to
create a design floorplan. This floorplan should consider the
connectivity between partitions and estimates of the size of each
partition based on any initial implementation numbers and
knowledge of the design specifications.

7. On the Project menu, click Generate Bottom-Up Design Partition
Scripts, or launch the script generator from Tcl or the command
prompt.

8. Make any changes to the default script options as desired. Altera
recommends that you pass all the default constraints, including
LogicLock region, for all partitions and virtual pin location
assignments. Altera further recommends that you add a maximum
delay timing constraint for the virtual I/O connections in each

1-53

Quartus Il Handbook, Volume 1

partition to help timing closure during integration at the top level. If
lower-level projects have not already been created by the other
designers, use the partition script to set up the projects so that you
can easily take advantage of makefiles.

Provide each lower-level designer with the Tcl file to create their
project with the appropriate constraints. If you using makefiles,
provide the makefile for each partition.

As the designer of a lower-level subdesign in this scenario, perform the
appropriate set of steps to successfully export your design, whether your
design team is using makefiles, or exporting and importing the design
manually.

If you are using makefiles, perform the following steps:

1.

Use the make command and the makefile provided by the project
lead to create a Quartus II project with all design constraints, and
compile the project.

The information about which source file should be associated with
which partition is not available to the software automatically, so you
must specify this information in the makefile. You must specify the
dependencies before the software will rebuild the project after the
initial call to the makefile.

When you have achieved the desired compilation results and the
design is ready to be imported into the top-level design, the project
lead can use the master_makefile to export this lower-level
partition and create a Quartus II Exported Partition file, and then
import it into the top-level design.

If you are not using makefiles, perform the following steps:

1.

2.

1-54

Create a new Quartus II project for the subdesign.

Make LogicLock region assignments and global assignments
(including clock settings) as specified by the project lead.

Make Virtual Pin assignments for ports which represent connections
to core logic instead of external device pins in the top-level module.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

4. Make floorplan location assignments to the Virtual Pins so that they
are placed in their corresponding regions as determined by the
top-level module. This provides the Fitter with more information
about the timing constraints between modules. Alternately, you can
apply timing I/O constraints to the paths that connect to virtual
pins.

5. Turn on Full incremental compilation and proceed to compile and
optimize the design as needed.

6. When you have achieved the design compilation results, on the
Project menu, click Export Project as Design Partition.

7. Under Netlist to export, select the netlist type Post-fit netlist to
preserve the placement and performance of the subdesign. You can
export Post-Synthesis netlist instead if placement or performance
preservation is not required.

8. Provide the Quartus II Exported Partition file to the project lead.

Finally, as the project lead in this scenario, perform the appropriate set of
steps to import the files sent in by the designers of each lower-level
subdesign partition.

If you are using makefiles, perform the following steps:

1. Usethemaster makefile to export each lower-level partition
and create Quartus II Exported Partition files, and then import them
into the top-level design.

2. The software does not have information about which source file
should be associated with which partition, so you must specify this
information in the makefile. The software cannot rebuild the project
if source files change unless you specify the dependencies.

If you are not using makefiles, perform the following steps:

1. After you obtain the Quartus II Exported Partition file for each
subdesign from the other designers on the team, on the Project
menu, click Import Design Partition and specify the partition in the
top-level project that is represented by the subdesign Quartus II
Exported Partition file.

Altera Corporation 1-55
May 2006

Quartus Il Handbook, Volume 1

1-56

2. Repeat the import process described in step 1 for each partition in
the design. After you have imported each partition once, you select
all the design partitions and use the Reimport using latest import
files at previous locations option to import all of the files from their
previous locations at one time.

Resolving Assignment Conflicts During Import

When importing the subdesigns, the project lead may become aware of
some assignment conflicts. This can occur, for example, if the subdesign
designers changed their LogicLock regions to account for additional logic
or placement constraints, or if the designers applied I/O port timing
constraints that differ from constraints added to the top-level project by
the project lead. To address these conflicts, the project lead may want to
do one or both of the following:

B Allow new assignments to be imported
B Allow existing assignments to be replaced or updated

When LogicLock region assignment conflicts occur, the project lead may
want to do one of the following:

m Allow the imported region to replace the existing region
B Allow the imported region to update the existing region
B Skip assignment import for regions with conflicts

The project lead can address all of these situations using the Advanced
Import Settings as described in “Importing Assignments & Advanced
Import Settings” on page 1-39.

If the placement of different subdesigns conflict, the project lead can also
set the partition’s Fitter Preservation Level to Netlist Only, which allows
the software to re-perform placement and routing with the imported
netlist.

Importing a Partition to be Instantiated Multiple Times

In this variation of the scenario, one of the subdesigns is instantiated more
than once in the top-level design. The designer of the subdesign may
want to compile and optimize the entity once under a lower-level project,
and then import the results as multiple partitions in the top-level project.

In this case, placement conflict resolution as described in “Resolving
Assignment Conflicts During Import” on page 1-56 is mandatory because
the top-level partitions share the same imported post-fit netlist. If you
import multiple instances of a subdesign in the top-level design, the
imported LogicLock regions are automatically set to Floating status.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

If you choose to resolve conflicts manually, you can use the import
options and manual LogicLock assignments to specify the placement of
each instance in the top-level design.

Scenario 6—Design Iteration in a Bottom-Up Design Flow

Background: A project consists of several lower-level subdesigns that
have been exported from separate Quartus II projects and imported into
the top-level design in a bottom-up compilation flow. In this scenario,
integration at the top-level has failed because the timing requirements are
not met. The timing requirements are met in each individual lower-level
project, but critical inter-partition paths in the top-level are causing
timing requirements to fail.

After trying various optimizations at the top-level, the project lead
determines that they cannot meet the timing requirements given the
current lower-level partition placements that were imported. The project
lead decides to pass additional constraints to the lower-level projects to
improve the placement.

For this scenario, perform the following steps:

1. In the top-level design, on the Project menu, click Generate
Bottom-Up Design Partition Scripts, or launch the script generator
from Tcl or the command line.

2. Because lower-level projects have already been created for each
partition, turn off Create lower-level project if one does not exist.

3. Make any additional changes to the default script options as
desired. Altera recommends that you pass all the default
constraints, including LogicLock regions, for all partitions and
virtual pin location assignments. Altera also recommends that you
add a maximum delay timing constraint for the virtual I/O
connections in each partition.

4. The Quartus II software generates Tcl scripts for all partitions, but in
this scenario, you would focus on the partitions that make up the
cross-partition critical paths. Following are the important
assignments in the script:

e Virtual pin assignments for module pins not connected to device
I/0 ports in the top-level design.

e Location constraints for the virtual pins that reflect the initial
top-level placement of the pin’s source or destination. These
help make the lower-level placement “aware” of its

Altera Corporation 1-57
May 2006

Quartus Il Handbook, Volume 1

Incremental
Compilation
Restrictions

1-58

surroundings in the top-level, leading to a greater chance of
timing closure during integration at the top-level.

e INPUT_MAX_DELAY and OUTPUT_MAX_DELAY timing
constraints on the paths to and from the I/O pins of the
partition. These constrain the pins to optimize the timing paths
to and from the pins.

5. The project lead provides the scripts to the low-level designers who
source the file.

e To source the Tcl script from the Quartus II GUI, on the Tools
menu, click Utility Windows and open the Tcl console. Navigate
to the script’s directory, and type the following command:

source <filename> +

e To source the Tcl script at the command line, type the following
command:

quartus_cdb -t <filename>.tcl ¢

6. The lower-level designers recompile their designs with the new
assignments.

7. The lower-level designers re-export their results.
8. The top-level designer re-imports the results.

9. You can now analyze the design to determine if the timing
requirements have been achieved. Since the lower-level partitions
were compiled with more information about connectivity at the
top-level, it is more likely that the inter-partition paths have
improved placement which helps to meet the timing requirements.

This section documents the restrictions and limitations that you may
encounter when using incremental compilation, including interactions
with other Quartus II features. Some restrictions apply to both top-down
and bottom-up design flows, while some additional restrictions apply
only to bottom-up design flows.

Using Incremental Compilation with Quartus Il Archive Files

The post-synthesis and post-fitting netlist information for each design

partition is stored in the project database. When you archive a project, the
database information is not included in the archive unless you include the
database files in the Quartus II Archive file (.qar). In addition, when you

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

import a design partition into a top-level design, the lower-level design
netlist is stored in the project database for the top-level design (the
top-level project does not use the original source files or the Quartus II
Exported Partition file). If you archive the top-level project, the imported
design information is not included unless the database files are included
in the Quartus II Archive file.

Altera recommends that you select Compilation and simulation
database files in the Archive Project dialog box if any form of
incremental compilation is used so that compilation results are preserved.

OpenCore Plus MegaCore Functions

The circuitry that provides OpenCore® Plus MegaCore® functions is
currently incompatible with incremental compilation.

Engineering Change Management With the Chip Editor

When you use the Resource Property Editor to make changes due to
engineering change orders (ECOs) after performing a full compilation,
recompiling the entire design is not necessary. These changes are made
directly to the netlist without performing a new placement and routing.
The changes are not made again automatically when you recompile the
design.

Because the netlist generated by the Chip Editor is always overwritten by
a recompilation, the changes do not appear in the final netlist after
recompilation unless they are reapplied. There are change management
features to allow you to reapply the changes on subsequent compilations
using the Chip Editor, or you can merge the changes back to the source
files before the recompilation.

This behavior applies in any compilation, whether or not incremental
compilation is turned on.

SignalProbe Feature

SignalProbe® pins are added to the design after compilation so you can
add them incrementally to your design without performing a new
compilation. However, in the Quartus II software version 6.0, these
SignalProbe pins are not part of the netlist after a recompilation of the
design using full incremental compilation. Reapply the SignalProbe pin
assignments on subsequent compilations, then, on the Processing menu,
point to Start and click Start Check & Save All Netlist Changes.

1-59

Quartus Il Handbook, Volume 1

1-60

During the export of a lower-level design in a bottom-up compilation
flow, the software removes SignalProbe logic. You can use SignalProbe in
lower-level projects to debug your design and then export the design
without these debugging ports when it is imported and combined with
other logic at the top level.

SignalTap Il Logic Analyzer & Logic Analyzer Interface in
Bottom-Up Compilation Flows

The SignalTap® II logic analyzer and External Logic Analyzer Interface
are not supported in lower-level projects in a bottom-up incremental
compilation flow. These features are supported for the top-level project
only after lower-level partitions have been imported, and are fully
supported in top-down incremental compilation.

For details about using the SignalTap II logic analyzer in an incremental
design flow, refer to the Design Debugging Using the SignalTap 11 Embedded
Logic Analyzer chapter in volume 3 of the Quartus II Handbook.

Restrictions on Megafunction Partitions

The Quartus II software does not support partitions for megafunction
instantiations. If you use the MegaWizard Plug-In Manager to customize
a megafunction variation, the MegaWizard-generated wrapper file
instantiates the megafunction. You can create a partition for the
MegaWizard-generated megafunction custom variation wrapper file.

The Quartus II software does not support the creation of a partition for
inferred megafunctions (that is, where the software infers a megafunction
to implement logic in your design). If you have a module or entity for the
logic that is inferred, you can create a partition for that hierarchy level in
the design.

The Quartus II software does not support creation of a partition for any
Quartus II internal hierarchy that is dynamically generated during
compilation to implement the contents of a megafunction.

Nodes Created & Changed During Routing

Node names are preserved through synthesis and fitting when using
incremental compilation. Some nodes that the router creates and inserts
may change if the Fitter preservation level is not set to Placement and
Routing. You may also see slightly different numbers of logic cells due to
logic cells being used to achieve better routing. In addition, the fit results

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

may be slightly different due to optimizations performed during routing,
such as rotation of the inputs to the look-up table (LUT) within the
logic cell.

Routing Preservation in Bottom-Up Compilation Flows

The Quartus II software does not export routing information from
lower-level partitions in a bottom-up methodology, so you can not import
routing information into the top-level partition.

For imported netlists, the Post-Fit netlist contains the atoms and the
placement information of the partition. Therefore, when the Quartus II
software uses a Post-Fit netlist for a partition, the placement of the
partition is preserved. Performance preservation can typically be
achieved even though the routing of the partition is not restored, because
the router is generally not as sensitive to small changes in input as the
Fitter. In some designs, you may see variation in performance due to
changed routing. To ensure that you do not experience any problems due
to this effect, you can optimize your design to achieve a margin of 1 or 2%
on your timing requirements.

Delay chain values are not preserved with bottom-up incremental
compilation. Delay chain values are routing-dependent, and because
routing is not preserved, delay chain values may change even if a Post-Fit
netlist is used.

Bottom-Up Design Partition Script Limitations

The Quartus II software version 6.0 has some limitations related to
bottom-up design partition scripts. Many of these limitations will be
removed in future versions of the software.

Wildcard Support in Bottom-Up Design Partition Scripts

When applying constraints with wildcards, wildcards are not analyzed
across hierarchical boundaries. For example, an assignment could be
made to these nodes: Top | A:inst | B:inst | *, where A and B are
lower-level partitions, and hierarchy B is a child of A, that is B is
instantiated in hierarchy A. This assignment is applied to modules A, B
and all children instances of B. However, the assignment

Top | A:inst | B:inst* is applied to hierarchy A, but is not applied to the B
instances because the single level of hierarchy represented by B:inst* is
not expanded into multiple levels of hierarchy. To avoid this issue, ensure
that you apply the wildcard to the hierarchical boundary if it should
represent multiple levels of hierarchy.

1-61

Quartus Il Handbook, Volume 1

1-62

When using the wildcard to represent a level of hierarchy, only single
wildcards are supported. This means assignments such as

Top | A:inst | * | B:inst | * are not supported. The Quartus II software
issues a warning in these cases.

Derived Clocks & PLLs in Bottom-Up Design Partition Scripts

If a clock in the top level is not directly connected to a pin of a lower-level
partition, then the lower-level partition does not receive assignments and
constraints from the top-level pin in the design partition scripts.

This issue is of particular importance for clock pins that require timing
constraints and clock group settings. Problems can occur if your design
uses logic or inversion to derive a new clock from a clock input pin. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained.

In addition, if you use a PLL in your top-level design and connect it to
lower-level partitions, the lower-level partitions do not have information
about the multiplication or phase shift factors in the PLL. Make
appropriate timing assignments in your lower-level Quartus II project to
ensure that clocks are not unconstrained or constrained with the incorrect
frequency.

Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts

The design partition scripts use INPUT_MAX_DELAY and
OUTPUT_MAX_DELAY assignments to specify the inter-partition delays
associated with input and output pins which would not otherwise be
visible to the project. These assignments require that the software specify
the clock domain for the assignment, and the software sets this clock
domain to “*’. This means that there may be some paths constrained and
reported by the timing analysis engine that are not required.

To restrict which clock domains are included in these assignments, edit
the generated scripts or change the assignments in your lower-level
Quartus II project.

Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design
Partition Scripts

When a single top-level I/O port drives multiple pins on a lower-level
module, it unnecessarily restricts the quality of the synthesis and
placement at the lower-level. This occurs because in the lower-level
design, the software must maintain the hierarchical boundary and cannot
use any information about pins being logically equivalent at the top level.
In addition, because I/O constraints are passed from the top-level pin to

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

each of the children, it is possible to have more pins in the lower level than
at the top level, and these pins use the top-level I/O constraints and
placement options that might make them impossible to place at the
lower-level. The software avoids this situation when possible, but it is
best to avoid this design practice to avoid these potential problems.
Restructure your design so that the single I/O port feeds the design
partition boundary, and then the connection is split into multiple signals
within the lower-level partition.

Support for the TimeQuest Timing Analyzer & SDC Constraints

If you use constraints with the TimeQuest Timing Analyzer, the
assignments are not passed to the lower levels. You must use constraints
made for the Classic Timing Analyzer. You can then use the Generate
SDC File from QSF command to convert the Classic Timing Analyzer
constraints in a Quartus II Settings File (.qsf) to a Synopsys Design
Constraints (.sdc) for the TimeQuest analyzer.

For more information about timing constraints and conversion from the
QSF file to the SDC file, refer to Classic Timing Analyzer, TimeQuest Timing
Analyzer, and Switching to the TimeQuest Timing Analyzer chapters in
volume 3 of the Quartus II Handbook.

Register Packing & Partition Boundaries

The Quartus II software automatically performs register packing during
compilation. However, when incremental compilation is enabled, logic in
different partitions cannot be packed together because partition
boundaries prevent cross-boundary optimization. (Refer to “Guidelines
for Creating Good Design Partitions” on page 1-20 for more
information.) This restriction applies for all types of register packing,
including I/0O cells, DSP blocks, sequential logic, and unrelated logic.

1/0 Register Packing

Cross-partition register packing of I/O registers is allowed in certain
cases where your input and output pins exist in the top hierarchy level
(and the Top partition), but the corresponding I/O registers exist in other
partitions.

The following specific circumstances are required for cross-partition
register packing of input pins:

B The input pin feeds exactly one register

B The path between the input pin and the register includes only input
ports of partitions that have one fan-out each

1-63

Quartus Il Handbook, Volume 1

The following specific circumstances are required for cross-partition
register packing of output registers:

B The register feeds exactly one output pin

B The output pin is fed by only one signal

B The path between the register and the output pin includes only
output ports of partitions that have one fan-out each

Output pins with an output enable signal cannot be packed into the
device I/O cell if the output enable logic is part of a different partition
from the output register. To allow register packing for output pins with
an output enable signal, structure your HDL code or design partition
assignments so that the register and the tri-state logic are defined in the
same partition.

Bidirectional pins are handled in the same way as output pins with an
output enable. If the registers that need to be packed are in the same
partition as the tri-state logic, then register packing can be performed.

The restrictions on tri-state logic are due to the fact that the I/O atom
(device primitive) is created as part of the partition that contains the
tri-state logic. If an I/O register and its tri-state logic are contained in the
same partition, the register can always be packed with the tri-state logic
into the I/O atom. The same cross-partition register packing restrictions
also apply to I/O atoms for input and output pins. The I/O atom must
feed theI/O pin directly with exactly one signal and the path between the
I/0O atom and the I/O pin must include only ports of partitions that have
one fan-out each.

Examples of I/0 Register Packing Across Partition Boundaries

The following examples provide detailed explanations for various I/O
and partition configurations. The examples use BDF schematics to
illustrate the design logic.

Example 1—Output Register in Partition Feeding Output Pin

In this example, a subdesign contains a single register, as shown in
Figure 1-15. As shown in Figure 1-16, the top-level design instantiates
the subdesign with a single fanout directly feeding an output pin, and
designates the subdesign as a separate design partition.

1-64 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Figure 1-15. Subdesign with One Register, Designated as a Separate Partition

L IliIiiiiIgETETTTIIILiIiiiiiiiiiiin
: T v Ml
clk 8| & I | P

SRS N [P I S

CoinniniinonmE R

i Lyl
g ol o s L L
clk Ll
et LIl

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment on pin “out.” This type of
cross-partition output register packing is permitted because the port
interface of the subdesign partition does not need to be changed and the
partition port feeds an output pin directly.

Example 2—Output Register in Partition Feeding Multiple Output
Pins

In this example, a subdesign designated as a separate partition contains a
register as in Figure 1-15. The top-level design instantiates the subdesign
as an output register with more than one fanout signal, as shown in
Figure 1-17.

Figure 1-17. Top-level Design Instantiating the Subdesign in Figure 1-15 with Two Output Pins

Altera Corporation
May 2006

1-65

Quartus Il Handbook, Volume 1

In this case, the software does not perform output register packing. If
there is a Fast Output Register assignment on pin “out”, the software
issues a warning that the fitter can't pack the node to an I/O pin because
the node and the I/O cell are connected across a design partition
boundary.

This kind of cross partition register packing is not permitted because it
would require modification to the interface of the subdesign partition. In
order to perform incremental compilation, the interface of design
partitions must be preserved.

To allow the software to pack the register in the subdesign from
Figure 1-15 with the output pin “out” in Figure 1-17, make one of the
following changes:

B Remove the design partition assignment to the subdesign. This
allows the fitter to perform all cross hierarchy optimizations,
however, prevents you from using incremental compilation for this
block of hierarchy. A good design partition should have a
well-defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the partition containing the output pin.
This guarantees that the fitter can optimize the two nodes without
violating any partition boundaries.

B Restructure your HDL code so the register feeds only one output pin.
Turn off the Analysis & Synthesis setting Remove Duplicate
Registers. Duplicate the register in your subdesign HDL as in
Figure 1-18 so that each register feeds only one pin, then connect the
extra output pin to the new port in the top-level design as shown in
Figure 1-19. This converts the cross-partition register packing into
the simplest case where the register has a single fanout.

Figure 1-18. Modified Subdesign from Figure 1-15 with Two Output Registers & Two Output Ports

1-66 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Figure 1-19. Modified Top-Level Design from Figure 1-17 Connecting Two Output Ports to Output Pins

d

a
q

clk extra

Example 3—Output Register, Output Enable Register & Tri-State Logic
in Partition Feeding Output Pin
In this example, a subdesign designated as a separate partition contains
an output register, an output enable register, and the tri-state logic to
drive the output pin, as shown in Figure 1-20. The top-level design
instantiates the subdesign with a single fanout directly feeding an output

pin, as shown in Figure 1-21.

Figure 1-20. Subdesign with Output Register, Output Enable Register & Tri-State Logic, Designated as a

Separate Partition

Altera Corporation
May 2006

1-67

Quartus Il Handbook, Volume 1

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register assignment and / or Fast Output Enable Register
assignment on pin “out.” This kind of cross-partition output register
packing is permitted because the port interface of the subdesign partition
does not need to be changed, no logic needs to be optimized across the
partition boundary, and the partition port feeds an output pin directly.

Example 4—Output Register and/or Output Enable Register in
Partition Feeding Tri-State Output Pin

In this example, a subdesign designated as a separate partition contains
two registers, as shown in Figure 1-22. The top-level design instantiates
the subdesign with the registers driving the output and the output enable
signal for an output pin, as shown in Figure 1-23.

Figure 1-22. Subdesign with Two Registers, Designated as a Separate Partition

1-68

In this case, the software can not perform register packing. If there is a
Fast Output Register or Fast Output Enable Register assignment on pin
“out,” the software issues a warning that the fitter can’t pack the node to
an I/0 pin because the node and the I/O cell are connected across a
design partition boundary.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Altera Corporation
May 2006

The same restrictions apply in the case that the top-level design includes
either the output register or the output enable register as well as the
tri-state logic. The software can not pack the register that is part of the
subdesign partition into the I/O register.

This type of register packing is not permitted because it would require
moving logic across a design partition boundary to place into a single I/O
device atom. To perform register packing, either the register(s) must be
moved out of the subdesign partition or the tri-state logic must be moved
into the subdesign partition. In order to guarantee correctness of the
design with subsequent incremental compilations, the contents of design
partitions must be preserved.

To allow the software to pack the output register and /or output enable
register in the subdesign from Figure 1-22 with the output pin “out” in
Figure 1-23, make one of the following changes:

B Remove the design partition assignment to the subdesign. This
allows the Fitter to perform all cross hierarchy optimizations,
however, prevents you from using incremental compilation for this
block of hierarchy. A good design partition should have a well
defined interface so that the Fitter does not need to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the output pin. The simplest option is to move the register from
the subdesign partition into the top-level partition containing the
output pin. This guarantees that the fitter can optimize the twonodes
without violating any partition boundaries.

B Restructure your HDL code so the register and the tri-state logic are
contained in the same partition. Move the tri-state logic from the top-
level block into the subdesign with both registers as shown in
Figure 1-20. Then connect the subdesign to an output pin in the top-
level design, as shown in Figure 1-21.

Example 5—Bidirectional Logic in Partition Feeding Bidirectional Pin
The behavior for bidirectional pins is similar to that of an output pin with
an output enable. To allow register packing, the registers must be
included in the same partition as the tri-state logic that drives the
bidirectional pin.

In this example, a subdesign designated as a separate partition contains
three registers and the tri-state logic for a bidirectional pin, as shown in
Figure 1-24. The top-level design instantiates the subdesign with ports
feeding bidirectional and output pins, as shown in Figure 1-25.

1-69

Quartus Il Handbook, Volume 1

Figure 1-24. Subdesign with Three Registers & Tri-State Logic, Designated as a Separate Partition

s e

d bidir i -

clk out SUTELT [out

1-70

The Quartus II software performs cross-partition register packing if there
is a Fast Output Register, Fast Output Enable Register, or Fast Input
Register assignment on pin bidir. This type of cross-partition output
register packing is permitted because the port interface of the subdesign
partition does not need to be changed and the partition port feeds a
bidirectional pin directly.

Registers can not be packed in designs that have the registers and tri-state
logic in different partitions. The situations described in “Example 4—
Output Register and/or Output Enable Register in Partition Feeding Tri-
State Output Pin” on page 1-68 apply similarly to bidirectional pins if
you replace the output pin “out” with a bidirectional pin in the top-level
design.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Example 6—Input Register in Partition Fed by Input Pin

In this example, a subdesign contains a single register, as shown in
Figure 1-26. The top-level design instantiates the subdesign with a single
fanin directly fed by an input pin, as shown in Figure 1-27, and
designates the subdesign to be a separate design partition.

Figure 1-26. Subdesign with One Register, Designated as a Separate Partition

;:::::::::::::::::::::'f-'ﬁ"";%""""""
- id C_—=——p Q

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin “in.” This type of
cross-partition output register packing is permitted because the port
interface of the subdesign partition does not have to be changed and the
partition port is fed by an input pin directly.

Example 7—Input Register in Partition Fed by Input with Multiple
Fanout

In this example, a subdesign designated as a separate partition contains a
register as in Figure 1-26. The top-level design instantiates the subdesign
as an input register but the input pin also feeds another destination, as
shown in Figure 1-28.

Altera Corporation 1-71
May 2006

Quartus Il Handbook, Volume 1

Figure 1-28. Top-level Design Instantiating the Subdesign in Figure 1-26 as an Input Register for a Pin with

Two Destinations

1-72

In this case, the software does not perform input register packing. If there
is a Fast Input Register assignment on pin “in,” the software issues a
warning that the fitter can't pack the node to an I/O pin because the node
and the I/O cell are connected across a design partition boundary.

This type of cross-partition register packing is not permitted because it
would require modification to the interface of the subdesign partition. In
order to perform incremental compilation, the interface of design
partitions must be preserved.

To allow the software to pack the register in the subdesign from
Figure 1-26 with the input pin “in” in Figure 1-28, make one of the
following changes:

B Remove the design partition assignment to the subdesign. This
allows the fitter to perform all cross-hierarchy optimizations,
however, it also prevents you from using incremental compilation
for this block of hierarchy. A good design partition should have a
well defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the input pin. The simplest option is to move the register from the
subdesign partition into the partition containing the input pin. This
guarantees that the fitter can optimize the two nodes without
violating any partition boundaries.

Example 8—Inverted Input Register in Partition Fed by Input Pin

In this example, a subdesign designated as a separate partition contains
an inverted register as in Figure 1-29. The top-level design instantiates
the subdesign as an input register, as shown in Figure 1-30.

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Figure 1-29. Subdesign with an Inverted Register, Designated as a Separate Partition

o
Fe]

The Quartus II software performs cross-partition register packing if there
is a Fast Input Register assignment on pin “in.” This kind of
cross-partition input register packing is permitted because the software
can implement the logic for the inversion with the input register inside
the partition, and then the partition port is fed by an input pin directly.

Example 9—Input Register in Partition Fed by Inverted Input Pin, or
Output Register in Partition Feeding Inverted Output Pin

In this example, a subdesign designated as a separate partition contains a
register as in Figure 1-31. The top-level design in Figure 1-32 instantiates
the subdesign as an input register with the input pin inverted. The
top-level design in Figure 1-33 instantiates the subdesign as an output
register with the signal inverted before feeding an output pin.

Figure 1-31. Subdesign with One Register, Designated as a Separate Partition

L lIIgETETTTI LI
: s S M e i e 9
clk | —" I
SRS AREREEE N [P b S SRS SR SRS
SRS SRS SRR AR SRR t:- - F S SRS S SRR

Altera Corporation
May 2006

1-73

Quartus Il Handbook, Volume 1

Figure 1-32. Top-level Design Instantiating the Subdesign in Figure 1-31 as an Input Register with an
Inverted Input Pin

Figure 1-33. Top-level Design Instantiating the Subdesign in Figure 1-32 as an Output Register Feeding an
Inverted Output Pin

d
clk

F=]

In these cases, the software does not perform register packing. If there is
a Fast Input Register assignment on “in” in Figure 1-32 or a Fast Output
Register assignment on pin “out” in Figure 1-33, the software issues a
warning that the fitter can't pack the node to an I/O pin because the node
and the I/O cell are connected across a design partition boundary.

This type of register packing is not permitted because it would require
moving logic across a design partition boundary to place into a single /O
device atom. To perform register packing, either the register must be
moved out of the subdesign partition or the inverter must be moved into
the subdesign partition to be implemented in the register. In order to
guarantee correctness of the design with subsequent incremental
compilations, the contents of design partitions must be preserved.

1-74 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Scripting
Support

Altera Corporation
May 2006

To allow the software to pack the register in the subdesign from
Figure 1-31 with the input pin “in” in Figure 1-32 or the output pin “out”
in Figure 1-33, make one of the following changes:

B Remove the design partition assignment from the subdesign. This
allows the fitter to perform all cross hierarchy optimizations,
however, it prevents you from using incremental compilation for this
block of hierarchy. A good design partition should have a well
defined interface so that the Fitter does not have to perform
cross-boundary optimizations.

B Restructure your HDL code to place the register in the same partition
as the pin. The simplest option is to move the register from the
subdesign partition into the top-level partition containing the pin.
This ensures that the fitter can optimize the two nodes without
violating any partition boundaries.

B Restructure your HDL code so the register and the inverter are
contained in the same partition. Move the inverter from the top-level
block into the subdesign as shown in Figure 1-29 for an input pin.
Then connect the subdesign to a pin in the top-level design, as shown
in Figure 1-30 for an input pin.

You can run procedures and make settings described in this chapter in a
Tel script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --ghelp ¢

The Scripting Reference Manual includes the same information in PDF
form.

For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus II Handbook.

Generate Incremental Compilation Tcl Script Command

To create a template Tcl script for full incremental compilation, use the
Generate Incremental Compilation Tcl Script feature. Right-click in the
Design Partition Window and click Generate Incremental Compilation
Tcl Script.

1-75

Quartus Il Handbook, Volume 1

1-76

If you have made any partition assignments in the user interface, this
script contains the Tcl equivalents of the assignments. The Tcl
assignments are described in the following sections.

Preparing a Design for Incremental Compilation

To set or modify the current mode of incremental compilation, use the
following command:

set _global assignment -name INCREMENTAL COMPILATION \
<value>

The incremental compilation <value> setting must be one of the following
values:

B FULL INCREMENTAL COMPILATION—Full incremental
compilation

B INCREMENTAL_SYNTHESIS—Incremental synthesis only

B OFF—No incremental compilation is performed

Creating Design Partitions

To create a partition, use the following command:

set_instance assignment -name PARTITION HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short
hierarchy path is the full hierarchy path without the top-level name
(including quotation marks), for example:

"ram:ram unit|altsyncram:altsyncram component"

(with quotation marks). For the top-level partition, you can use the
pipe (|) symbol to represent the top-level entity.

For more information on hierarchical naming conventions, refer to
Node-Naming Conventions in Quartus II Integrated Synthesis in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

The <partition name> is the user-designated partition name, which must
be unique and less than 1024 characters. The name can consist only of
alphanumeric characters, and the pipe (|), colon (:), and underscore
(_) characters. Altera recommends enclosing the name in double
quotation marks (").

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

The <file name> is the name used for internally generated netlists files
during incremental compilation. Netlists are named automatically by the
Quartus II software based on the instance name if you create the partition
in the user interface. If you are using Tcl to create your partitions, you
must assign a custom file name that is unique across all partitions. For the
top-level partition, the specified file name is ignored, and you can use any
dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition
uses the file name my file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The software stores all netlists in the \db compilation database directory.

Setting Properties of Design Partitions

After a partition is created, set its Netlist Type with the following
command:

set _global assignment -name PARTITION NETLIST TYPE <value> -section_ id \

<partition name>

The netlist type <value> setting is one of the following values:

SOURCE—Source File

POST SYNTH—Post-Synthesis

POST_FIT—Post-Fit

STRICT POST_FIT—Post-Fit (Strict)
IMPORTED—Imported

IMPORT_ BASED_ POST_FIT—Post-Fit (Import-based)
EMPTY—Empty

Set the Fitter Preservation Level for a post-fit or imported netlist using the
following command:

set _global assignment -name PARTITION FITTER PRESERVATION LEVEL <uvalue>\
-section_id <partition name>

Altera Corporation
May 2006

The fitter preservation level <value> setting should be one of the
following values:

B NETLIST ONLY—Netlist Only
B PLACEMENT—Placement
B PLACEMENT AND ROUTING—Placement and Routing

For details about these partition properties, refer to “Setting Properties of
Design Partitions” on page 1-77.

1-77

Quartus Il Handbook, Volume 1

Recommendations for Creating Good Floorplan Location
Assignments—Excluding or Filtering Certain Device Elements
(Such as RAM or DSP Blocks)

Resource filtering uses the optional Tcl argument
-exclude resourcesinthe set logiclock_ contents function of
the LogicLock Tcl package. If left unspecified, no resource filter is created.

The argument takes a list of resources-to-be-excluded as input. The list is
a colon-delimited string of the following keywords:

Table 1-4. Resources-to-be-Excluded Keywords

Keyword Resource
REGISTER Maps to any registers in the logic cells
COMBINATIONAL Maps to any combinational elements in the logic cells
SMALL_MEM Maps to the M512 memory blocks
MEDIUM_MEM Maps to the M4K memory blocks
LARGE_MEM Maps to the M-RAM memory blocks

DSP

Maps to any DSP blocks

For example, the following command assigns everything under
alu:alu_unit to the ALU region, excluding all the DSP and M512 blocks:

set_logiclock contents -region ALU -to alu:alu unit -exclude resources \

"DSP:SMALL MEM"

In the QSF file, resource filtering uses an extra LogicLock membership
assignment called L, MEMBER_RESOURCE_EXCLUDE. For example, the
following line in the QSF is used to specify a resource filter for the
alu:alu_unit entity assigned to the ALU region. The value of the
assignment takes the same format as the resource listing string taken by
the previous Tcl command.

set_instance assignment -name LL_MEMBER RESOURCE EXCLUDE "DSP:SMALL_MEM" \

-to "alu:alu_ unit" -section_id ALU

1-78

Generating Bottom-Up Design Partition Scripts

To generate scripts, type the following Tcl command at a Tcl prompt:

generate_bottom up_ scripts <options>

Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

The command is part of the database_manager package, which must
be loaded using the following command before the command can be
used:

load package database manager
You must open a project before you can generate scripts.

The Tcl options are the same as those available in the GUI. The exact
format of each option is specified in Table 1-5.

Table 1-5. Options for Generating Bottom-Up Partition Scripts with Tel Commands

Option Default
-include_makefiles <on|off> On
-include_project_creation <on|off> On
-include_virtual pins <on|off> On
-include_virtual pin_ timing <on|off> On
-include virtual pin locations <on|off> On
-include_logiclock_regions <on|off> On
-include_all logiclock regions <on|off> On
-include_global_signal_ promotion <on|off> Off
-include_pin locations <on|off> On
-include_timing assignments <on|off> On
-include_design partitions <on|off> On
-remove_existing regions <on|off> On
-disable_auto_global promotion <on|off> Off
-bottom up_scripts_output_directory <output directory> Current project directory
-virtual pin_delay <delayin ns> (1)

Note to Table 1-5:
(1) No default.

The following example shows how to use the Tcl command:

load package database manager

set project test proj

project open $project

generate bottom up scripts -bottom up scripts output directory test \
-include_virtual pin timing on -virtual pin delay 1.2

project close

Altera Corporation 1-79
May 2006

Quartus Il Handbook, Volume 1

Command Line Support

To generate scripts at the command prompt, type the following

command:

quartus_cdb <project name> --generate_bottom up_ scripts=on <options>

Once again the options map to the same as those in the GUI To add an
option, append “- - <option_name>=<val>" to the command line call.

The command prompt options are the same as those available in the GUI,

and are listed in Table 1-6.

Table 1-6. Options for Generating Bottom-Up Partition Scripts

Option Default
--include makefiles with bottom up scripts=<on|off> On
--include project creation in bottom up scripts=<on|off> On
--include_virtual pins_in bottom_up_ scripts=<on|off> On
--include virtual pin timing in bottom up scripts=<on|off> On
--bottom up scripts_virtual pin_delay=<delay in ns> (1)
--include virtual pin locations in bottom up scripts=<on|off> On
--include logiclock regions_in bottom up scripts=<on|off> On
--include all logiclock regions in bottom up scripts=<on|off> On
--include global signal promotion in bottom up scripts=<on|off> Off
--include_pin locations_in bottom up scripts=<on|off> On
--include timing assignments in bottom up scripts=<on|off> On
--include_design partitions_in bottom up_ scripts=<on|off> On
--remove existing regions in bottom up scripts=<on|off> On
--disable auto _global promotion in bottom up_ scripts=<on|off> Off
--bottom up scripts output directory=<output directory> Current project
directory

Note to Table 1-6:
(1) No default. You must provide this option if you are including virtual pin timing.

Exporting a Partition to be Used in a Top-Level Project

Use the quartus_cdb executable to export a file for a bottom-up
incremental compilation flow with the following command:

quartus_cdb --INCREMENTAL COMPILATION EXPORT=<file> +

1-80

Altera Corporation

May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

The <file> argument is the file path to the exported file.

The command reads the assignment
INCREMENTAL COMPILATION EXPORT NETLIST TYPE to determine
which netlist type to export; the default is post-fit.

You can also use the flow INCREMENTAL COMPILATION EXPORT in the
execute flow Tcl command contained in the £1ow Tcl package.

The following example exports a post-fit netlist for the current project.

load package flow

set global assignment -name INCREMENTAL COMPILATION EXPORT FILE alu.gxp
set global assignment -name INCREMENTAL COMPILATION EXPORT NETLIST TYPE \
POST_FIT

execute flow -INCREMENTAL COMPILATION EXPORT

To specify the name of the Quartus II Exported Partition file, use the
following Tcl command:

set_global assignment -name INCREMENTAL COMPILATION EXPORT FILE \
<filname>.gxp

To turn on the option to always perform exportation following
compilation, use the following Tcl command:

set_global_assignment -name AUTO_EXPORT_ INCREMENTAL_ COMPILATION ON

Importing a Lower-Level Partition into the Top-Level Project

Use the quartus_cdb executable to import a lower-level partition with the
following command:

quartus_cdb -- INCREMENTAL COMPILATION IMPORT ¢

You can also use the flow called INCREMENTAL COMPILATION IMPORT
in the execute_flow Tcl command contained in the £1ow Tcl package.

The following example script shows how to import a partition using a Tcl
script:

load package flow
commands to set the import-related assignments for each partition
execute flow --INCREMENTAL COMPILATION IMPORT

Altera Corporation 1-81
May 2006

Quartus Il Handbook, Volume 1

Specify the location for the imported file with the

PARTITION IMPORT_FILE assignment. Note that the file specified by
this assignment is read only during importation. For example, the project
is completely independent from any files from the lower-level projects
after importing. In the command-line and Tcl flow, any partition that has
this assignment set to a non-empty value will be imported.

The following assignments specify how the partition should be imported:

PARTITION IMPORT PROMOTE ASSIGNMENTS = on | off
PARTITION IMPORT NEW ASSIGNMENTS = on | off
PARTITION_ IMPORT_ EXISTING ASSIGNMENTS = \

replace conflicting | skip conflicting

PARTITION_ IMPORT EXISTING LOGICLOCK REGIONS = \

replace conflicting | update conflicting | skip conflicting

Make Files

For an example of how to use incremental compilation with a

makefile as part of the bottom-up design flow, refer to the read_me.txt file
that accompanies the incr_comp example located in the
/qdesigns/incr_comp_makefile subdirectory. When using a bottom-up
incremental compilation flow, the Generate Bottom-Up Design Partition
Scripts feature can write makefiles that automatically export lower-level
design partitions and import them into the top-level project whenever
design files change.

User Scenarios—Incremental Compilation Application
Examples

This section provides scripting examples that cover some of the topics
discussed in the main section of the chapter.

The script shown in Example 1-1 opens a project called AB_project,
sets up two partitions, entities A and B, for the first time, and performs an
initial complete compilation.

1-82 Altera Corporation
May 2006

Quartus Il Incremental Compilation for Hierarchical & Team-Based Design

Example 1-1. AB_project
set project AB project

package require ::quartus::flow
project open $project

Turn on incremental compilation
set_global assignment -name INCREMENTAL COMPILATION \
FULL_INCREMENTAL COMPILATION

Set up the partitions

set_instance assignment -name PARTITION HIERARCHY \
db/A inst -to A -section_id "Partition A"
set_instance assignment -name PARTITION HIERARCHY \
db/B_inst -to B -section id "Partition B"

Set the netlist types to post-fit for subsequent

compilations (all partitions are compiled during the

initial compilation since there are no post-fit

netlists)

set_global assignment -name PARTITION NETLIST TYPE \
POST FIT -section id "Partition A"

set_global assignment -name PARTITION NETLIST TYPE \
POST_FIT -section_id "Partition B"

Run initial compilation:
export assignments

execute flow -full compile

project_close

Scenario 1—Changing a Source File for One of Multiple Partitions
Background: You have run the initial compilation shown in the example
script under “User Scenarios—Incremental Compilation Application
Examples” on page 1-82. You have modified the HDL source file for
partition A, and would like to recompile it.

Run the standard flow compilation command in your Tel script:
execute_flow -full compile

Or, run the following command at a system command prompt:
quartus_sh --flow compile AB project+

Assuming the source files for partition B do not depend on A, only A is

recompiled. The placement of B and its timing performance is preserved,
which also saves significant compilation time.

Altera Corporation 1-83
May 2006

Quartus Il Handbook, Volume 1

Scenario 2—0ptimizing the Placement for One of Multiple Partitions

Background: You have run the initial compilation shown in the example
script under “User Scenarios—Incremental Compilation Application
Examples” on page 1-82. You would like to apply fitter optimizations,
such as physical synthesis, only to partition A. No changes have been
made to the HDL files.

To ensure the previous compilation result for partition B is preserved, and
to ensure that fitter optimizations are applied to the post-synthesis netlist
of partition A, set the netlist type of B to Post-Fit (which was already done
in the initial compilation, but is repeated here for safety), and the netlist
type of A to Post-Synthesis, as shown in the following script:

set project AB project

package require ::quartus::flow
project open $project

Turn on Physical Synthesis Optimization
set_global assignment -name \
PHYSICAL SYNTHESIS REGISTER RETIMING ON

For A, set the netlist type to post-synthesis
set_global assignment -name PARTITION NETLIST TYPE POST SYNTH \
-section_id "Partition A"

For B, set the netlist type to post-fit
set_global assignment -name PARTITION NETLIST TYPE POST FIT \
-section id "Partition B"

Run incremental compilation:
export assignments
execute_flow -full compile

project close

Conclusion With the Quartus II incremental compilation feature described in this
chapter, you can preserve the results and the performance of unchanged
logic in your design as you make changes elsewhere. The various
applications of incremental compilation enable you to improve your
productivity while designing for high-density FPGAs , using either
top-down or bottom-up design methodologies. Using the techniques and
recommendations presented in this chapter allows you to make good
design decisions to achieve timing closure while reducing design
iteration time by an average of about 60%.

1-84 Altera Corporation
May 2006

Z;\l I:l —E N 2. Quartus Il Design Flow for

MAX+PLUS Il Users

®

Q1160002-6.0.0

Introduction

Chapter
Overview

Altera Corporation

May 2006

The feature-rich Quartus® II software helps you shorten your design
cycles and reduce time-to-market. With FLEX®, ACEX®, APEX™,
Stratix® II, Stratix GX, Stratix, Cyclone™ II, Cyclone™, MAX®, and
MAXII family support, the Quartus II software is the most widely
accepted Altera® design software tool today.

This chapter describes how to convert MAX+PLUS® II designs to
Quartus II projects, as well as the similarities and differences between the
MAX+PLUS II and Quartus II design flows. This discussion includes
supported device families, graphical user interface (GUI) comparisons,
and the advantages of the Quartus II software.

There are many features in the Quartus II software to help MAX+PLUS II
users easily transition to the Quartus II software design environment.
These include a customizable Look & Feel feature, which changes the
GUI to display menus, toolbars, and utility windows as they appear in the
MAX+PLUS 1II software without sacrificing Quartus II software
functionality.

This chapter covers the following topics:

Typical Design Flow

Device Support

Quartus II GUI Overview

Setting Up MAX+PLUS II Look & Feel in Quartus II
Compiler Tool

Quartus II Design Flow

Quick Menu Reference

Quartus Il Handbook, Volume 1

Typical Design

Flow

Figure 2-1 shows a typical design flow with the Quartus II software.

Figure 2-1. Quartus Il Software Design Flow

Functional
Simulation

Gate-Level
Timing
Simulation

Functional
Netlist

Post Place-and-Route
Simulation Files
(.vo/.vho, .sdo)

(Design Files)

\4

Analysis & Elaboration

Constraints
& Settings

Constraints
& Settings

A

A

\ 4
Integrated Analysis & Synthesis [«
\ 4
Fitter <
Timing
and Area No
Requirements
Satisfied?
Configuration/

C Program/Configure Device >

Programming
Files (.sof/.pof)

Altera Corporation

May 2006

Device Support

Device Support

Altera Corporation
May 2006

The Quartus II software supports most of the devices supported in the
MAX+PLUS II software, but it does not support any obsolete devices or

packages. The devices supported by these two software packages are

shown in Table 2-1.

Table 2-1. Device Support Comparison

Device Supported

Quartus Il

MAX+PLUS II

MAX I

v/

Classic™

MAX 3000A

MAX 7000S/AE/B

ANAN

MAX 7000E

MAX 9000

ACEX® 1K

FLEX® 6000

AN

FLEX 8000

FLEX 10K

v (1)

FLEX 10KA

FLEX 10KE

()

NEAYAYAYAYAYAYAYANANAN

Mercury™

APEX™ 20K/ APEX Il

Stratix

Stratix GX

Stratix Il

Cyclone™

Cyclone Il

Hardcopy® Series

NAYAYAYAYA YA NA YA NAN

Notes to Table 2-1:

(1) PGA packages (represented as package type G in the ordering code) are not

supported in the Quartus II software.
(2) Some packages are not supported.

2-3

Quartus Il Handbook, Volume 1

Quartus Il GUI

Overview

2-4

The Quartus II software provides the following utility windows to assist
in the development of your designs:

Project Navigator
Node Finder

Tcl Console
Messages

Status

Change Manager

Project Navigator

The Hierarchy tab of the Project Navigator window is similar to the
MAX+PLUS II Hierarchy Display and provides additional information
such as logic cell, register, and memory bit resource utilization. The Files
and Design Units tabs of the Project Navigator window provide a list of
project files and design units.

Node Finder

The Node Finder window provides the equivalent functionality of the
MAX+PLUS II Search Node Database dialog box and allows you to find
and use any node name stored in the project database.

Tecl Console

The Tcl Console window allows access to the Quartus II Tcl shell from
within the GUI. You can use the Tcl Console window to enter Tcl
commands and source Tcl scripts to make assignments, perform
customized timing analysis, view information about devices, or fully
automate and customize the way you run all components of the
Quartus II software. There is no equivalent functionality in the
MAX+PLUS 1II software.

For more information on using Tcl with the Quartus II software, refer to
the Tcl Scripting chapter in volume 2 of the Quartus IT Handbook.

Messages

The Messages window is similar to the Message Processor window in the
MAX+PLUS II software, providing detailed information, warnings, and
error messages.You also can use it to locate a node from a message to
various windows in the Quartus II software.

Altera Corporation
May 2006

Quartus Il GUI Overview

Status

The Status window displays information similar to the MAX+PLUS II
Compiler window. Progress and elapsed time are shown for each stage of

the compilation.

Change Manager

The Change Manager provides detailed tracking information on all

design changes made with the Chip Editor.

For more information about the Engineering Change Manager and the

Chip Editor, refer to the Design Analysis & Engineering Change
Management with Chip Editor chapter in volume 3 of the Quartus II

Handbook.

Figure 2-2 shows a typical Quartus II software display.

Figure 2-2. Quartus Il Look & Feel

:faltera/chiptrip/chiptrip - chiptrip

Fle Edit View Project Assignments Processing Tools Window Help

IGE=TEIERT

3 ox 1\? ||:mptrip

SR s@OB(0 >R E © B A

abd
3 auto_max 1

3 5
iL speed_ch2

el =zl T2 chiptrip.baf | @ Compisiion Repot - Faw Summary |
ity [

iy Cysione || EPICEF25ECE 7 chiptrip.bdf

22 chene

Tor

El- 252 tick_crt:10

Tor

El- 4 Scount:counter

5
3
4
eSS tims_crt:4 i
8
5
5

2 fBeountsb

at -altera - -
get ticketl-

< | 2

yHierarchy | B Files | & Design Urits
[Modde

Full Compilation

Enalysis & Synthesis
Parition Merge
Fiter

Progress 7 | Time &

- Assembler

-~ Timing Analyzer

- Design Assistart
EDA Netlist Writer

00.00:08

|V 00B0e 58 23RII000 2]

at_altera
oot S0- [Rl

-7 et ticket]
11 jget ticket2 - - -

tiok ont

) uartus Il
Information

@ Documentation

Ix

% Info: Quarius | Design Assistant was successful. 0 eors. 2 wamings
Info:
Info: Running Guartus 1| EDA Netiist Writer

Info: Command: quartus_sda ~read_settings_files=off -wiite_ssttings_filss=off chiptrip < chiptrip
Info: Generated file chiptrp.vo in folder "C:/attera/chiptrip/smulation/modelsim/” for EDA simulatior
Info: Quartus Il EDA Netlist Witer was successful. 0 emors, Dw:

& Info: Quartus Il Full Compilation was successful. 0 emors, 2

=

~

L e

Quartus IT Tcl Console
B

<] ¥ e

&\ System Processing f_Edralrio Info i Waming J_CitcalWaming A Enor J,_Sppressed | 8

5 [Message: 0 287 2| ¥ [recsion =] locae |3
Far Help, press F1 Hhel o | Idie [um | A
Altera Corporation 2-5

May 2006

Quartus Il Handbook, Volume 1

Setting Up
MAX+PLUS II
Look & Feel in
Quartus Il

2-6

You can choose the MAX+PLUS II look and feel by selecting
MAX+PLUS II in the Look & Feel box of the General tab of the
Customize dialog box on the Tools menu.

I~ Any changes to the look and feel do not become effective until
you restart the Quartus II software.

By default, when you select the MAX+PLUS II look and feel, the
MAX+PLUS II quick menu (Figure 2-21 on page 2-35) appears on the
left side of the menu bar. You can turn the Quartus II and MAX+PLUS II
quick menus on or off. You also can change the preferred positions of the
two quick menus. To change these options, perform the following steps:

1. On the Tools menu, click Customize. The Customize dialog box is
shown.

2. Click the General tab.

3. Under Quick menus, select your preferred options.

Altera Corporation
May 2006

MAX+PLUS Il Look & Feel

MAX+PLUS Il The MAX+PLUS II look and feel in the Quartus II software closely
resembles the MAX+PLUS II software. Figures 2-3 and 2—4 compare the

Look & Feel MAX+PLUS II software appearance with the Quartus Il MAX+PLUS II
look and feel.

Figure 2-3. MAX+PLUS Il Software GUI

MAX+plus Il - c:\altera\chiptrip\chiptrip
MAX+plusII File Processng Interfaces Assign Options Window Help

Dz =an o earnbepds @2 g
2 Hierarchy Display - | (x|
chiptripf g —@—time_ hiptrip.gdf - Graphic Editor
gdf
Ebd Eed Ebd bl Ebd
rpt log hst scf fit

{EH Bbd hbd Ebd
sym acf pin jan

SFEED_ToO_FAST|

: at altera
AT_ALTERA|

: get ticket?
GET_TICKET—

time_cnt
enable —JennBLE TIMEL7. . @

= Compiler

T Database Logic
Netlist Builde Synthesizer Partitioner
Extractor

Messages - Compiler
Info: State 'altera’ in state machine '|auto_max:1|street_map' is never exited
Info: Design Doctor has given the project a clean bill of health based on the EPLD Rules set

4 Message p| 0 of 2 I” Locate in Floorplan Editor Help on Message
Dof0 Loeste A

Altera Corporation 2-7
May 2006

Quartus Il Handbook, Volume 1

Figure 2-4. Quartus Il Software with MAX+PLUS Il Look & Feel

Quartus Il - C:/altera/ch

Fle Edit View Project Assignments Processing Tools Window Help

[DwE|= v me oo R[mme e8RS T[Tk 8 B[4
8 chiptip b | B Compiler Tool |
Project Navigator

Enty Logic Cells [LC
_Cyc\nneIIEPZCEFZEECS 5% Y . o % 5% Y . o % Y . o % 5% Y ry 5y 5y ry 5y 5y 5y ry 5y
-3 chiptnp Gad] ML
bbd auto_maxc1 uE

b 2 @
B spesd_chZ 404

Ehd w

< |

yHierarchy | Bl Files | 87 Design Units

3 Compiler Tool

at_altera
qget_ticket1

— Analysic & Synthesis
00:00:00

—— Partiion Merge-
00:00:00

Fitter
00:00:00

00000

— Timing Analyzer—

—— Design Assistant—
o

L0000 L00 3
wlolalall) alel e mlsm e else | wvelel sEelele

Full Compilation
100 %
00:00:00

T stop

Smart recompiation skipped module Ardlysis & Synthesis because 1 is not required
Smatt recompilation skipped module Partition Merge because it is ot required
Smart recompilation skipped module Fitter because f is not required

Smart recompilation skipped module Assembler because i is not required

Smatt recompilation skipped module Timing Anafyzer because t is ot required
Smart recompilation skipped module Design Assistant because t is not required
Smart recompilation siipped madule EDA Netist Writer because i is net required
<& Info: Quartus Il Full Compilation was successful. 0 emors, 0 wamings

System) Processing f_Extalrio J\ Info J, Waming Jy_Cilicsl Warming _Jy_ Evor i Suppessed |
2| ® [Cecaton

uartus Il
Informatien

=l Locate _
[G*E Idle

|Message: 0af &

For Help, pressF1

The standard MAX+PLUS II toolbar is also available in the Quartus II
software with the MAX+PLUS II look and feel in the Quartus II software
(Figure 2-5).

Figure 2-5. Standard MAX+PLUS Il Toolbar

NEE&E | RLARES2DL IEE Baa

2-8 Altera Corporation

May 2006

Compiler Tool

cOmp| ler Tool The Quartus II Compiler Tool provides an intuitive MAX+PLUS II style
interface. You can edit the settings and view result files for the following
modules:

Analysis & Synthesis
Partition Merge
Fitter

Assembler

Timing Analyzer
EDA Netlist Writer
Design Assistant

Each of these modules is described later in this section.

To start a compilation using the Compiler Tool, click Compiler Tool from
either the MAX+PLUS II menu or the Tools menu and click Start in the
Compiler Tool. The Compiler Tool, shown in Figure 2-6, displays all
modules, including optional modules such as Partition Merge,
Assembler, EDA Netlist Writer, and the Design Assistant.

«o For information about using the Quartus II software modules at the
command line, refer to the Command-Line Scripting chapter in volume 2
of the Quartus I Handbook.

Figure 2-6. Running a Full Compilation with the Compiler Tool

s Compiler Tool

Analpsiz & Synthesis Partition kerge Fitter Agzembler Timing Analyzer Design Assistant E D Metlizt wiriter
00:00:34 00:00:06 00:00:42 00:00:09 00:00:05 00:00:04 00:00:05
wlol@lal alel 8wl wslelel wlelel wsslel griele

Full Compilation
100 %
00:01:45

= Start @ Report

Altera Corporation 2-9
May 2006

Quartus Il Handbook, Volume 1

Analysis & Synthesis

The Quartus II Analysis & Synthesis module analyzes your design,
builds the design database, optimizes the design for the targeted
architecture, and maps the technology to the design logic.

In MAX+PLUS II software, these functions are performed by the
Compiler Netlist Extractor, Database Builder, and Logic Synthesizer.
There is no module in the Quartus II software similar to the
MAX+PLUS II Partitioner module.

Partition Merge

The optional Quartus II Partition Merge module merges the partitions to
create a flattened netlist for further stages of the Quartus II compilation
flow. The Partition Merge module is not similar to the MAX+PLUS II
Partitioner. This tool is available only if you turn on incremental
compilation. You can turn on incremental compilation by performing the
following steps:

1. On the Assignment menu, click Settings. The Settings dialog box
appears.

2. Inthe Category list, click the + icon to expand Compilation Process
Settings, and select Incremental Compilation. The Full
Incremental Compilation page appears.

3. Under Incremental compilation, turn on Incremental Compilation.

Fitter

The Quartus II Fitter module uses the PowerFit™ fitter to fit your design
into the available resources of the targeted device. The Fitter places and
routes the design. The Fitter module is similar to the Fitter stage of the
MAX+PLUS 1II software.

2-10 Altera Corporation
May 2006

Compiler Tool

Altera Corporation
May 2006

Assembler

The optional Quartus II Assembler module creates a device
programming image of your design so that you can configure your
device. You can select from the following types of programming images:

Programmer Object File (.pof)

SRAM Output File (.sof)

Hexadecimal (Intel-Format) Output File (.hexout)
Tabular Text File (.ttf)

Raw Binary File (.rbf)

Jam™ STAPL Byte Code 2.0 File (.jbc)

JEDEC STAPL Format File (.jam)

You can turn off the Assembler module during compilation by turning off
Run assembler in the Compilation Process Settings page in the Settings
dialog box. You also can turn off the Assembler by right-clicking in the
Compiler Tool window. The Assembler module is similar to the
Assembler stage of the MAX+PLUS II software.

Timing Analyzer

The Quartus II Timing Analyzer allows you to analyze more complex
clocking schemes than is possible with the MAX+PLUS II Timing
Analyzer. The Quartus II Timing Analyzer analyzes all clock domains in
your design, including paths that cross clock domains, and also reports
both fyjax and slack. Slack is the margin by which the timing requirement
is met or is not met. For more information on the Timing Analyzer, refer
to “Timing Analysis” on page 2-27.

EDA Netlist Writer

The optional Quartus II EDA Netlist Writer module generates a netlist for
simulation with an EDA simulation tool. The EDA Netlist Writer module
is comparable to the VHDL and Verilog Netlist Writer in the
MAX+PLUS II software.

Design Assistant

The optional Quartus II Design Assistant module checks the reliability of
your design based on a set of design rules. The Design Assistant analyzes
and generates messages for a design targeting any Altera device and is
especially useful for checking the reliability of a design to be converted to
HardCopy series devices. The Design Assistant is similar to the Design
Doctor in the MAX+PLUS II software.

2-11

Quartus Il Handbook, Volume 1

MAX+PLUS II
Design
Conversion

2-12

In the Quartus II software, you can reduce subsequent compilation time
significantly by turning Use Smart compilation on before compiling your
design. The Smart Compilation feature skips any compilation stages
which are not required and which may use more disk space. This
Quartus I smart compilation option is similar to the MAX+PLUS II
Smart Recompile command. To turn the Use Smart compilation option
on, perform the following steps:

1. On the Assignments menu, click Settings. The Settings dialog box
appears.

2. In the Category list, select Compilation Process Settings. The
Compilation Process Settings page appears.

3. Turn on Use Smart compilation.

With the Quartus II software, you can open MAX+PLUS II designs and
convert MAX+PLUS II assignments and files.

The Quartus II software is project based. All the files for your design
(HDL input, simulation vectors, assignments, and other relevant files) are
associated with a project file. For more information about creating a new
project, refer to “Creating a New Project” on page 2-16.

Converting an Existing MAX+PLUS Il Design

You can easily convert an existing MAX+PLUS II design for use with the
Quartus II software with the Convert MAX+PLUS II Project command
in the Quartus II software or the Open Project command. You can find
these commands on the File menu

If you use the Convert MAX+PLUS II Project command, browse to the
MAX+PLUS II Assignments and Configuration File (.acf) or top-level
design file (Figure 2-7) and click Open. The Convert MAX+PLUS II
Project command generates a Quartus II Project File (.qpf) and a
Quartus II Settings File (.qsf). The Quartus II software stores project and
design assignments in the Quartus II Settings File, which is equivalent to
the Assignments and Configuration File in the MAX+PLUS II software.

You also can open and convert a MAX+PLUS II design with the Open
Project command. In the Open Project dialog box, browse to the
Assignments and Configuration File or the top-level design file. Click
Open to display the Convert MAX+PLUS II Project dialog box.

Altera Corporation
May 2006

MAX+PLUS Il Design Conversion

Altera Corporation
May 2006

=" TheQuartus I software can import all MAX+PLUS Il-generated
files, but it cannot save files in the MAX+PLUS II format. You
cannot open a Quartus II project in the MAX+PLUS II software,
nor can you convert a Quartus II project to a MAX+PLUS II
project.

Figure 2-7. Convert MAX+PLUS Il Project Dialog Box

Convert MAX+PLUS Il Project 53

Allows pou to convert existing MAX+PLUS | projects and assignments into a
new Quartus || project.

Max+PLUS 1l file name:
|EI:.-"tools.-"maxplus2.-"max2w0rk.-"c:hiptrip.-"c:hiptrip.ac:f

Quartusz || project name:

(] 8 | Cancel |

The conversion process performs the following actions:

B Converts the MAX+PLUS II Assignments and Configuration File
into a Quartus II Settings File (equivalent to importing all
MAX+PLUS II assignments)

B Creates a Quartus II Project File
B Displays all errors and warnings in the Quartus II message window

I The Quartus II software can read MAX+PLUS II generated
Graphic Design Files (.gdf) and Simulation Channel Files (.scf)
without converting them. These files are not modified during a
MAX+PLUS II design conversion.

Converting MAX+PLUS Il Graphic Design Files

The Quartus II Block Editor (similar to the MAX+PLUS II Graphic Editor)
saves files as Block Design Files (.bdf). You can convert your
MAX+PLUS 1II Graphic Design File into a Quartus II Block Design File
using one of the following methods:

1. Open the Graphic Design File and on the File menu, click Save As.
The Save As dialog box is shown.

2. Inthe Save as type list, select Block Diagram/Schematic File
(*.bdf).

2-13

Quartus Il Handbook, Volume 1

3. Run the quartus_g2b.exe command line executable located in the
\<Quartus II installation>\bin directory. For example, to convert the
chiptrip.gdf file to a Block Design File, type the following command
at a command prompt:

quartus_g2b.exe chip trip.gdf ¢

Importing MAX+PLUS Il Assignments

You can import MAX+PLUS II assignments into an existing Quartus II
project. Open the project, and on the Assignments menu, click Import
Assignments. Browse to the Assignments and Configuration File
(Figure 2-8). You can also import Quartus II Settings Files and Entity
Setting Files (.esf).

Figure 2-8. Import Assignments Dialog Box

Import Assignments @

Specify the source and categories of azsignments to import. Click LogicLock Import File Assignments
to zelect LogicLock Import File[z].

Categories. ..
& File name: |EI:.-"t00Is.-"maxplus2.-"max2w0rk.-"c:hiptrin.-"c:hiptrip.ac:f
" Use LogicLock Import File Assignments 4

Aszsignment source

[v Copy existing assignments into chiptrip.gsf.bak before importing

(] 8 | Cancel

The Quartus II software accepts most MAX+PLUS II assignments.
However, some assignments can be imported incorrectly from the
MAX+ PLUS II software into the Quartus Il software due to differences in
node naming conventions and the advanced Quartus II integrated
synthesis algorithms.

The differing node naming conventions in the Quartus II and
MAX+PLUS II software can cause improper mapping when importing
your design from MAX+PLUS II software into the Quartus II software.
Improper node names can interfere with the design logic if you are
unaware of these node name differences and do not take appropriate

2-14 Altera Corporation
May 2006

MAX+PLUS Il Design Conversion

steps to prevent improper node name mapping. Table 2-2 compares the
differences between the naming conventions used by the Quartus II and
MAX+PLUS 1II software.

Table 2-2. Quartus Il & MAX+PLUS Il Node & Pin Naming Conventions

Feature Quartus Il Format MAX+PLUS Il Format
Node name auto_max:auto|qo0 |auto_max:auto|qo
Pin name dfo]l, dl1]l, dl2] do, di, d2

When you import MAX+PLUS II assignments containing node names
that use numbers, such as signalo or signall, the Quartus II software
imports the original assignment and also creates an additional copy of the
assignment. The additional assignment has square brackets inserted
around the number, resulting in signal [0] or signal [1]. The square
bracket format is legal for signals that are part of a bus, but creates illegal
signal names for signals that are not part of a bus in the Quartus II
software. If your MAX+PLUS II design contains node names that end in
a number and are not part of a bus, you can edit the Quartus II Settings
File to remove the square brackets from the node names after importing
them.

=" You can remove obsolete assignments in the Remove
Assignments dialog box. Open this dialog box on the
Assignments menu by clicking Remove Assignments.

The Quartus II software may not recognize valid MAX+PLUS Il node
names, or may split MAX+PLUS Il nodes into two different nodes. As a
result, any assignments made to synthesized nodes are not recognized
during compilation.

e For more information about Quartus II node naming conventions, refer
to the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Altera Corporation 2-15
May 2006

Quartus Il Handbook, Volume 1

Quartus Il
Design Flow

2-16

The following sections include information to help you get started using
the Quartus II software. They describe the similarities and differences
between the Quartus II software and the MAX+PLUS II software. The
following sections highlight improvements and benefits in the Quartus II
software.

Creating a New Project

The Quartus II software provides a wizard to help you create new
projects. On the File menu, click New Project Wizard to start the New
Project Wizard. The New Project Wizard generates the Quartus II Project
File and Quartus II Settings File for your project.

Design Entry

The Quartus II software supports the following design entry methods:

Altera HDL (AHDL) Text Design File (.tdf)
Block Diagram File

EDIF Netlist File (.edf)

Verilog Quartus Mapping Netlist File (.vqm)
VHDL (.vhd)

Verilog HDL (.v)

The Quartus Il software has an advanced integrated synthesis engine that
fully supports the Verilog HDL and VHDL languages and provides
options to control the synthesis process.

For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus IT Handbook.

To create a new design file, perform the following steps:

1. On the File menu, click New. The New dialog box appears.
2. Click the Device Design Files tab.

3. Select a design entry type.

4. Click OK (see Figure 2-9).

Altera Corporation
May 2006

Quartus Il Design Flow

Figure 2-9. New Dialog Box

New

X

Device Design Files l Software Files] Other Files]

AHDL File

Block Diagram/S chematic File
EDIF File

SOPC Builder Spstem

Werilog HOL File

WHOL File

Cancel

e You can create other files from the Software Files tab and Other
Files tab of the New dialog box on the File menu. For example,
the Vector Waveform File (.vwf) is located in the Other Files tab.

To analyze a netlist file created by an EDA tool, perform the following
steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. Inthe Category list, select Design Entry & Synthesis. The Design
Entry & Synthesis page appears.

3. In the Tool name list, select the synthesis tool used to generate the
netlist (Figure 2-10).

Altera Corporation

2-17
May 2006

Quartus Il Handbook, Volume 1

Figure 2-10. Settings Dialog Box Specifying Design Entry Tool

Settings - chiptrip

Category:
Files
User Libraries [Current Project] Specify options for processing input files created by other ED& tools.
Device
b by fjgﬂ[::;”ts Fplions Tool name: | Syrpiity =l
e Farmat: [EDIF =
Timing Analysis ™ Run this tool automatically to spnthesize the current design
Board-Lewvel
Formal Verification S s
Physical Synthesiz
= Compilation Process Settings WL [VCC
Early Timing E stimate
Incremental Compilation GND: |GND
+- Analyziz & Synthesis Settings
- Fitter Setings Library tapping File
Azzembler
Timing Analyzer File name: |synplcty.lmf J

Dresign Assistant
SignalT ap Il Logic Analyzer
Logic Analyzer Interface
SignalProbe Settings r
=I- Simulator Settings
Simulation Power
PowerFlay Power Analyzer Settings
Operating Conditions
Software Build Settings
HardCopy Settings

[Show information messages describing LMF mapping during compilation

£

Reset
()8 | Cancel |

The Quartus II Block Editor has many advantages over the MAX+PLUS II
Graphic Editor. The Block Editor offers an unlimited sheet size, multiple
region selections, an enhanced Symbol Editor, and conduits.

The Symbol Editor allows you to change the positions of the ports in a
symbol (refer to the three images in Figure 2-11). You can reduce wire
congestion around a symbol by changing the positions of the ports.

2-18 Altera Corporation
May 2006

Quartus Il Design Flow

Figure 2-11. Various Port Position for a Symbol

. ’f'///////////////////////// L P
= R

..
- time cnt Z -
E — E
s -
5 . z.
; enable time[7.. é
s A

! g clk ? .
-z 7.
. i‘///////////////////////////.l///////////////////////////

-

. ”///////////////////////////.’///////////////////////////’ .
- o
B R .

E time cnt zZ
o] “.
N Z
% e . Z.
; | enable X time[7. . ﬁ
g U Z .

A

e .
o 4
% 4
L @
Z Z
. ARSI s e IRt s r s rr e e rer el

///////////////////////////.f///////////////////////////’ .

"

enable time[7. .
clk

N B P P i

Rttty SRR
B RO SOOI

To make changes to a symbol in a Block Design File, right-click a symbol
in the Block Editor and select Properties to display the Symbol
Properties dialog box. This dialog box allows you to change the instance
name, add parameters, and specify the line and text color.

You can use conduits to connect blocks (including pins) in the Block
Editor. Conduits contain signals for the connected objects

(see Figure 2-12). You can determine the connections between various
blocks in the Conduit Properties dialog box by right-clicking a conduit
and clicking Properties.

Altera Corporation 2-19
May 2006

Quartus Il Handbook, Volume 1

2-20

Figure 2-12. Blocks & Pins Connected with Conduits

....................... S taps

10 | Type
ik IMPLIT
reset [IMPUT
sel1..0] NPT
newdt IMPUT
d7.0] [MPOT
%[7.0] |CUTPUT

1

....................... S fhvalues
D (e . i | Type
AR | I | I =el[1..0] [MPUIT
AR | I | I h[2.0] |OUTPUT
....................... 1
[R e

....................... i tate_m
SOREEE SN B 10| Type
O ck NPT
A reset [MPUT
N et IMPUT
............................ =el[1..0] [DUTPUT
A next [OUTPLT
A first |OUTPLT
DIDIIIIIIIIIIIII I e

Making Assignments

The Quartus II software stores all project and design assignments in a
Quartus II Settings File, which is a collection of assignments stored as Tcl
commands and organized by the compilation stage and assignment type.
The Quartus II Settings File stores all assignments, regardless of how they
are made, from the Floorplan Editor, the Pin Planner, the Assignment
Editor, with Tcl, or any other method.

Altera Corporation
May 2006

Quartus Il Design Flow

Altera Corporation
May 2006

Assignment Editor

The Assignment Editor is an intuitive spreadsheet interface designed to
allow you to make, change, and manage a large number of assignments
easily. With the Assignment Editor, you can list all available pin numbers
and design pin names for efficiently creating pin assignments. You also
can filter all assignments based on assignment categories and node names
for viewing and creating assignments.

The Assignment Editor is composed of the Category Bar, Node Filter Bar,
Information Bar, Edit Bar, and spreadsheet.

To make an assignment, follow these steps:

1. On the Assignments menu, click Assignment Editor. The
Assignment Editor window appears.

2. Select an assignment category in the Category bar.

3. Select a node name using the Node Finder or type a node name filter
into the Node Filter bar. (This step is optional; it excludes all
assignments unrelated to the node name.)

4. Type the required values into the spreadsheet.

5. On the File menu, click Save.

If you are unsure about the purpose of a cell in the spreadsheet, select the
cell and read the description displayed in the Information bar.

You can use the Edit bar to change the contents of multiple selected cells
simultaneously. Select cells in the spreadsheet and type the value in the
Edit box.

Other advantages of the Assignment Editor include clipboard support in
the spreadsheet and automatic font coloring to identify the status of

assignments.

For more information, refer to the Assignment Editor chapter in volume 1
of the Quartus IT Handbook.

2-21

Quartus Il Handbook, Volume 1

2-22

Timing Assignments

You can use the timing wizard to help you set your timing requirements.
On the Assignments menu, click Timing Wizard to create global clock
and timing settings. The settings include fy;ax, setup times, hold times,
clock to output delay times, and individual absolute or derived clocks.

You also can set timing settings manually by performing the following
steps:

1. On the Assignments menu, click Settings. The Setting dialog box is
shown.

2. In the Category list, select Timing Requirements & Options. The
Timing Requirements & Options page is shown.

3. Set your timing settings.

You can make more complex timing assignments with the Quartus II
software than allowed by the MAX+PLUS II software, including
multicycle and point-to-point assignments using wildcards and time
groups.

=" A time group is a collection of design nodes grouped together
and represented as a single unit for the purpose of making
timing assignments to the collection.

Multicycle timing assignments allow you to identify register-to-register
paths in the design where you expect a delayed latch edge. This
assignment enables accurate timing analysis of your design.

Point-to-point timing assignments allow you to specify the required
delay between two pins, two registers, or a pin and a register. This
assignment helps you optimize and verify your design timing
requirements.

Wildcard characters “?” and “ * “ allow you to apply an assignment to a
large number of nodes with just a few assignments. For example,
Figure 2-13 shows a 4 ns tgy requirement assignment to all paths from
any node to the “d” bus in the Assignment Editor.

Altera Corporation
May 2006

Quartus Il Design Flow

Figure 2-13. Single tgy Timing Assignment Applied to All Nodes of a Bus

¥ Assignment Editor

Al

|

|
=l + Category: |F—\II
|

X|VI[= |

Edit:

EBX

j| ﬁ Al B Pin | (b Timing | # Logic Options |

| From

<<new =

To Assignment Mame Value Enabled

& d[7] tsu Requirement 4ns ‘fes
<<news> <<news>

Altera Corporation

May 2006

For more information, refer to the Classic Timing Analyzer or the
TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II
Handbook.

Synthesis

The Quartus Il advanced integrated synthesis software fully supports the
hardware description languages, Verilog HDL, VHDL, and AHDL,
schematic entry, and also provides options to control the synthesis
process. With this synthesis support, the Quartus II software provides a
complete, easy-to-use, stand-alone solution for today's designs.

You can specify synthesis options in the Analysis & Synthesis Settings
page of the Settings dialog box. Similar to MAX+PLUS II synthesis
options, you select one of these optimization techniques: Speed, Area, or
Balanced.

To achieve higher design performance, you can turn on synthesis netlist
optimizations that are available when targeting certain devices. You can
unmap a netlist created by an EDA tool and remap the components in the
netlist back to Altera primitives by turning on Perform WYSIWYG
primitive resynthesis. Additionally, you can move registers across
combinational logic to balance timing without changing design
functionality by turning on Perform gate-level register retiming. Both of
these options are accessible from the Synthesis Netlist Optimizations
page under Analysis & Synthesis Settings in the Settings dialog box on
the Assignments menu.

For more information, refer to the Quartus II Integrated Synthesis chapter
in volume 1 of the Quartus II Handbook.

2-23

Quartus Il Handbook, Volume 1

2-24

Functional Simulation

Similar to the MAX+PLUS II Simulator, the Quartus II Simulator Tool
performs both functional and timing simulations.

To open the Simulator Tool, on MAX+PLUS II menu, click Simulator or
on the Tools menu, click Simulator Tool. Before you perform a functional
simulation, an internal functional simulation netlist is required. Click
Generate Functional Simulation Netlist in the Simulator Tool window
(Figure 2-14), or on the Processing menu, click Generate Functional
Simulation Netlist.

= Generating a functional simulation netlist creates a separate
database that improves the performance of the simulation
significantly.

Figure 2-14. Simulator Tool Dialog Box

& Simulator Tool E| @| Pz|

Simulation mode: |Functi0nal j Generate Functional Simulation Metlist |

Simulation input: |ChithiD-SCf

Simulation period

" Run simulation until all vectar stimuli are used

t* End simulation at; [200.0 ns -

Simulation options
Iv Automatically add pins to simulation output waveforms

[Check outputs |
-
r po e <

[v Owenwiite simulation input file with simulation results

™ Generate Signal Activity File: |

00:00:00

E‘_L Start | @- Open |

You can view and modify the simulator options on the Simulator page of
the Settings dialog box or in the Simulator Tool window. You can set the
simulation period and turn Check outputs on or off. You can choose to
display the simulation outputs in the simulation report or in the Vector
Waveform File. To display the simulation results in the simulation input
vector waveform file, which is the MAX+PLUS II behavior, turn on
Overwrite simulation input file with simulation results.

Altera Corporation
May 2006

Quartus Il Design Flow

Altera Corporation
May 2006

When using either the MAX+PLUS II or Quartus II software, you may
have to compile additional behavioral models to perform a simulation
with an EDA simulation tool. In the Quartus II software, behavioral
models for library of parameterized modules (LPM) functions and
Altera-specific megafunctions are available in the altera_mf and
220model library files, respectively. The 220model and altera_mf files
can be found in the \<Quartus II Installation>\eda\sim_lib directory.

The Quartus II schematic design files (Block Design File, or .bdf) are not
compatible with EDA simulation tools. To perform a register transfer
level (RTL) functional simulation of a Block Design File using an EDA
tool, convert your schematic designs to a VHDL or Verilog HDL design
file. Open the schematic design file and on the File menu, click
Create/Update > Create HDL Design File for Current File to create an
HDL design file that corresponds to your Block Design File.

You can export a Vector Waveform File or Simulator Channel File as a
Verilog HDL or VHDL test bench file for simulation with an EDA tool.
Open your Vector Waveform File or Simulator Channel File and on the
File menu, click Export. See Figure 2-15. Select Verilog or VHDL Test
Bench File (*.vt) from the Save as type list. Turn on Add self-checking
code to file to add additional self-checking code to the test bench.

Figure 2-15. Export Dialog Box
Export @

Savein: | I chiptrip j I‘j‘ v

|)atom_netlists
IZhdb
I simulation

File name: |c:hiptrip.'v't

Save as type: |"v"eri|og Test Bench File (") j Cancel

Iv Add zelf-checking code to file

2-25

Quartus Il Handbook, Volume 1

2-26

Place & Route

The Quartus II PowerFit is an incremental fitter that performs
place-and-route to fit your design into the targeted device. You can
control the Fitter behavior with options in the Fitter Settings page of the
Settings dialog box on the Assignments menu.

High-density device families supported in the Quartus II software, such
as the Stratix series, sometimes require significant fitter effort to achieve
an optimal fit. The Quartus II software offers several options to reduce
the time required to fit a design. You can control the effort the Quartus II
Fitter expends to achieve your timing requirements with these options:

B Optimize timing performs timing-based placement using the timing
requirements you specify for the design. You can use this option by
itself or with one or more of the options below.

B Optimize hold timing optimizes the hold times within a device to
meet timing requirements and assignments you specify. You can
select this option only if the Optimize timing option is also chosen.

B Optimize fast-corner timing instructs the Fitter, when optimizing
your design, to consider fast-corner delays, in addition to
slow-corner delays, from the fast-corner timing model (fastest
manufactured device, operating in low-temperature and
high-voltage conditions). You can select this option only if the
Optimize timing option is also chosen.

If minimizing compilation time is more important than achieving specific
timing results, you can turn these options off.

Another way to decrease the processing time and effort the Fitter expends
to fit your design is to select either Standard Fit or Fast Fit in the Fitter
Effort box of the Fitter Settings page in the Settings dialog box on the
Assignments menu. The option you select affects the Fitter behavior and
your design as described below.

B Select Standard Fit for the Fitter to use the highest effort and
preserve the performance from previous compilations.

B Select Fast Fit for up to 50% faster compilation times, although this
may reduce design performance.

You can also select Auto Fit to decrease compilation time by directing the
Fitter to reduce Fitter effort after meeting your timing requirements. The
Auto Fit option is available for select devices.

For more information, refer to the Area & Timing Optimization chapter in
volume 2 of the Quartus IT Handbook.

Altera Corporation
May 2006

Quartus Il Design Flow

Altera Corporation
May 2006

To further reduce compilation times, turn on Limit to one fitting attempt
in the Fitter Settings page in the Settings dialog box on the Assignments
menu.

If your design is very close to meeting your timing requirements, you can
control the seed number used in the fitting algorithm by changing the
value in the Seed box of the Fitter Settings page of the Settings dialog
box on the Assignments menu. The default seed value is 1. You can
specify any non-negative integer value. Changing the value of the seed
only repositions the starting location of the Fitter, but does not affect
compilation time or the Fitter effort level. However, if your design is
difficult to fit optimally or takes a long time to fit, sometimes you can
improve results or processing time by changing the seed value.

Timing Analysis

You can use the Quartus II Timing Analyzer to analyze more complex
clocking schemes than is possible with the MAX+PLUS II Timing
Analyzer.

Launch the Timing Analyzer Tool on the MAX+PLUS Il menu by clicking
Timing Analyzer or on the Tools menu by clicking Timing Analyzer
Tool. See Figure 2-16. To start the analysis, click Start in the Timing
Analyzer Tool or on the Processing menu, by pointing to Start, and
clicking Start Timing Analyzer.

Figure 2-16. Registered Performance Tab of the Timing Analyzer Tool

& Timing Analyzer Tool

Registered Perfomance Itpd |tsu Jteo |th | Custom Delays |
Clock: |clock j

Walue [
Fram auto_max: 1 |gdf

Ta speed_ch: 2licket

Clock perniod | 3.061 ne

Frequency |326.69 MHz

100 %
00:00:07

Wiy Start | @ Report | Humber of paths to it |10 List Paths

2-27

Quartus Il Handbook, Volume 1

2-28

The Quartus II Timing Analyzer analyzes all clock domains in your
design, including paths that cross clock domains. You can ignore paths
that cross clock domains by using the following options in the Timing
Requirements & Options page in the Settings dialog box on the
Assignments menu:

B Create a Cut Timing Path assignment
B Turn on Cut paths between unrelated clock domains

To view the results from the Timing Analyzer Tool, you can click on the
Report, or to get specific information, click on any of the following tabs at
the top of the Timing Analyzer window:

Registered Performance
tep

tsu

tco

ty

Custom Delays

The Quartus II Timing Analyzer reports both fy;x and slack. Slack is the
margin by which the timing requirement was met or not met. A positive
slack value, displayed in black, indicates the margin by which a
requirement was met. A negative slack value, displayed in red, indicates
the margin by which a requirement was not met.

To analyze a particular path in more detail, select a path in the Timing
Analyzer Tool and click List Paths. This displays a detailed description of
the path in the System tab of the Messages window (Figure 2-17).

Altera Corporation
May 2006

Quartus Il Design Flow

Figure 2-17. Messages Window Displaying Detailed Timing Information

Messages

®

l,) \nfo tsu for register "speed_ch:Zticket” (data pin = "dir[1]", clock pin = "clock")is 6.000 ns
&) In‘fo + Longeft pln to reglfter delay

s; Loc. = PIN_E14; Fanout = 17; PIN Node = 'dir[1]
s; Loc. N16; Fanout = 4
: Loc. =
: Loc.
Loc.
s Loe
s Loc.
: Loc. =

0; Fanout =
0; Fanout
J‘ Fanout =

Ci

5

Total cell delay = 2.1
Total interconnect dala

s 2407 ns

5; Loe. = F‘IH H2Z; Fanout = 1; CLK Node = ‘clock

/é) Info: Total |mercunnec:l dela,.- =0511ns

COMB Mode = ‘auto_ma:1|_~488

NM Fanout = 1; COMB Mode = ‘auto_max: 1speed_too_fast™~563
; Fanout = 1; COMB MNode = "auto_max: 1lspeed_too_fast~564
COMB Mode = 'auto_max: 1lspeed_too_fast~565
COMB Node = 'speed_ch:Zticket~74

; COMB Mode = 'speed_ch:2ticket~feeder

Fanout = 1; REG MNode = 'speed_ch: 2ticket

Loc. = CLKCTRL_G2; Fanout = 24; COMB Node = ‘clock ~clctd
CFF_X32_Y17_N7. Fanout = 1; REG Node = 'speed_ch Zticket

System /i Processing A_Exhialnfo A Info A Waming A CriticalWarming A Emor A Suppressed [

Message: 0 of 19 J ﬂ |

I-|

e For more information, refer to the Classic Timing Analyzer or the

TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II

Handbook.

Timing Closure Floorplan

The Quartus II Timing Closure Floorplan is similar to the MAX+PLUS II
Floorplan Editor but has many improvements to help you more
effectively view and debug your design. With its ability to display logic
cell usage, routing congestion, critical paths, and LogicLock™ regions,
the Timing Closure Floorplan also makes the task of improving your

design performance much easier.

To view the Timing Closure Floorplan, on the MAX+PLUS Il menu, click

Floorplan Editor or Timing Closure Floorplan.

The Timing Closure Floorplan Editor provides Interior Cell views
equivalent to the MAX+PLUS II logic array block (LAB) views. In
addition to these views, available from the View menu, you also can
select from the Interior MegaLABs (where applicable), Interior LABs, and

Field views.

Altera Corporation
May 2006

2-29

Quartus Il Handbook, Volume 1

=" The Pin Planner is equivalent to the MAX+PLUS II Device view.
The Pin Planner can be launched from the Timing Closure
Floorplan Editor by selecting Package (Top or Bottom) from the
View menu or on the Assignments menu by clicking Pin
Planner.

The Interior LABs view hides cell details for logic cells, Adaptive Logic
Modules (ALM), and macrocells, and shows LAB information

(see Figure 2-18). You can display the number of cells used in each LAB
on the View menu by clicking Show Usage Numbers.

Figure 2-18. Interior LAB View of the Timing Closure Floorplan

H H H H H H H H H H

The Field view is a color-coded, high-level view of your device resources
that hides both cell and LAB details. In the Field view, you can see critical
paths and routing congestion in your design.

The View Critical Paths feature shows a percentage of all critical paths in
your floorplan. You can enable this feature on the View menu by clicking
Show Critical Paths. You can control the number of critical paths shown
by modifying the settings in the Critical Paths Settings dialog box on the
View menu.

The View Congestion feature displays routing congestion by coloring
and shading logic resources. Darker shading shows greater resource
utilization. This feature assists in identifying locations where there is a
lack of routing resources.

= To show lower level details in any view, right-click on a resource
and click Show Details.

«® For more information, refer to the Timing Closure Floorplan chapter in
volume 2 of the Quartus II Handbook.

2-30 Altera Corporation
May 2006

Quartus Il Design Flow

Altera Corporation
May 2006

Timing Simulation

Timing simulation is an important part of the verification process. The
Quartus II software supports native timing simulation and exports
simulation netlists to third-party software for design verification.

Quartus Il Simulator Tool

The Quartus II Simulator tool is an easy-to-use integrated solution that
uses the compiler database to simulate the logical and timing
performance of your design (Figure 2-19). When performing timing
simulation, the simulator uses place-and-route timing information.

Figure 2-19. Quartus Il Simulator Tool

= Simulator Tool

Simulation mode: | Tirning j |

Simulation input: |ChiD“iD sef

Simulation period

" Run simulation unti all vector stimuli are used

% End simulation at; |800.0 ns -

Simulation options
v Automatically add ping to simulation output warvefoms

[Check outputs |

v Setup and hold time violation detection

[~ Glitch detection:

v Owenarite simulation input file with simulation results

™ Generate Signal Activiy File: |

00:00:00

» Start | U} Open |

You can use Vector Table Output Files (.tbl), Vector Waveform Files,
Vector Files (.vec), or an existing Simulator Channel File as the vector
stimuli for your simulation.

The simulation options available are similar to the options available in the
MAX+PLUS II Simulator. You can control the length of the simulation
and the type of checks performed by the Simulator. When the
MAX+PLUS II look and feel is selected, the Overwrite simulation input
file with simulation results option is on by default. If you turn it off, the
simulation results are written to the report file. To view the report file,
click Report in the Simulator Tool window.

2-31

Quartus Il Handbook, Volume 1

2-32

EDA Timing Simulation

The Quartus II software also supports timing simulation with other EDA
simulation software. Performing timing simulation with other EDA
simulation software requires a Quartus II generated timing netlist file in
the form of a Verilog Output File (.vo) or VHDL Output File (.vho), a
Standard Delay Format Output File (.sdo), and a device-specific atom file
(or files), shown in Table 2-3.

Table 2-3. Altera Timing Simulation Library Files

Verilog VHDL

<device_family>_atoms.v <device_family>_atoms_87.vhd

<device_family>_atoms.vhd

<device_family>_components.vhd

Specify your EDA simulation tool by performing the following steps:

1. On the Assignments menu, click EDA Tool Settings. The Settings
dialog box appears.

2. In the Category list, select Simulation. The Simulation page
appears.

3. In the Tool name list, select your EDA Tool.

You can generate a timing netlist for the selected EDA simulator tool by
running a full compile or on the Processing menu, by pointing to Start
and clicking Start EDA Netlist Writer. The generated netlist and SDF file
are placed into the \<project directory>\simulation\<EDA simulator tool>
directory. The device-specific atom files are located in the

\<Quartus II Install>\eda\sim_lib directory.

Power Estimation

To develop an appropriate power budget and to design the power
supplies, voltage regulators, heat sink, and cooling system, you need an
accurate estimate of the power that your design consumes. You can
estimate power by using the PowerPlay Early Power Estimation
spreadsheet available on the Altera Web Site at www.altera.com, or with
the PowerPlay Power Analyzer in the Quartus II software.

You can perform early power estimation with the PowerPlay Early Power
Estimation spreadsheet by entering device resource and performance
information. The Quartus II PowerPlay Analyzer tool performs

Altera Corporation
May 2006

Quartus Il Design Flow

vector-based power analysis by reading either a Signal Activity File (.saf),
generated from a Quartus II simulation, or a Value Change Dump File
(VCD) generated from a third-party simulation.

For more information about how to use the PowerPlay Power Analyzer
tool, refer to the PowerPlay Power Analysis chapter in volume 3 of the
Quartus II Handbook.

Programming

The Quartus II Programmer has the same functionality as the
MAX+PLUS II Programmer, including programming, verifying,
examining, and blank checking operations. Additionally, the Quartus I
Programmer now supports the erase capability for CPLDs. To improve
usability, the Quartus II Programmer displays all programming-related
information in one window (Figure 2-20).

Click Add File or Add Device in the Programmer window to add a file
or device, respectively.

Figure 2-20. Programmer Window

U chiptrip_cdf

., Hardware Setup...| | Mo Hardware

™ Enable real-time ISP to allow backaround programming [for & 1 devices)

Mode: [ITAG | Progress: 0%

¥ Delete

s Add File. .

B8 Change File...
Bhsaerie. |
& Add Device...
Lo |
$oow |

Security

Checksum Usercode Werify Examine Eit

Program/
Confi

Altera Corporation
May 2006

'~ Figure 2-20 shows that the Programmer Window now supports
Erase capability.

You can save the programmer settings as a Chain Description File (.cdf).

The CDF is an ASCII text file that stores device name, device order, and
programming file name information.

2-33

Quartus Il Handbook, Volume 1

Conclusion The Quartus II software is the most comprehensive design environment
available for programmable logic designs. Features such as the
MAX+PLUS II look and feel help you make the transition from Altera’s
MAX+PLUS 1II design software and become more productive with the
Quartus II software. The Quartus II software has all the capabilities and
features of the MAX+PLUS II software and many more to speed up your
design cycle.

2-34 Altera Corporation
May 2006

Quick Menu Reference

Quick Menu

Reference

Altera Corporation

May 2006

The commands displayed in the MAX+PLUS II Quick Menu and the
Quartus II Quick Menu vary based on whichever window is active
(Figures 2-21). In the following figure, the Graphic Editor window is
active.

Figure 2-21. MAX+PLUS Il Quick Menus in MAX+PLUS Il and Quartus Il
Software

MAX+PLUS Il Quick Menu MAX+PLUS Il Quick Menu in Quartus I Software
MAX-+PLUS IT
Hierarchy Display @C MNew Text File
;Eg Graphic Editor @ MNew Block Diagram/Schematic File
H&l Symbol Editor @ New Block Symbol File

% Text Editor w Memory Initialization File

& Waveform Editor @ New Vector Waveform File
Boarplan Editor % Project Mavigator Alt+0
g_ompile" & node Finder Alt+1
£ Smustor \lj Td Console Alt+2
& Timing Analyzer B Messages Alt+3
@B Programmer B Status Alt+4
Al essage Processor e Changes Manager Alt+5

uick Start Guide
* o @ Assignment Editor Ctrl+Shift+A

File 4 @ Pin Planner Ctrl+5hift-+N
Assign 4 @ Timing Closure Floorplan

QOptions 3 @ LogicLock Regions Window Alt+.
Help 3 ﬁ!@ Design Partitions Window Alt+D

! Compilation Report Cirl+R
@ Simulation Report Ctrl+Shift+R

Compiler Tool
£ Simulator Toal
,['9 Timing Analyzer Tool

,r?f PowerPlay Power Analyzer Tool

':é), Resource Optimization Advisor
'@@ Timing Optimization Advisor
& chip Editor

Q RTL Viewer

@ Technology Map Viewer

R State Machine Viewer

= SignalTap II Logic Analyzer

m In-System Memory Content Editor
=] Logic Analyzer Interface Editor
% Programmer

2-35

Quartus Il Handbook, Volume 1

Quartus Il
Command
Reference for
MAX+PLUS II
Users

Table 2—4 lists the commands in the MAX+PLUS II software and gives
their equivalent commands in the Quartus II software.

NA means either Not Applicable or Not Available. If a command is not
listed, then the command is the same in both tools.

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 1 of 10)

MAX+PLUS Il Software

Quartus Il Software

MAX+PLUS Il Menu

Hierarchy Display

3

View menu, Utility Windows, Project Navigator

Graphic Editor %] Block Editor
Symbol Editor Effz] Block Symbol Editor
Text Editor Ebe] Text Editor

Waveform Editor

G

Waveform Editor

Floorplan Editor

5 o] e o]] | [&

&
52

Assignments menu, Timing Closure Floorplan

i R

[z Compiler = Tools menu, Compiler Tool

rEL} Simulator il Tools menu, Simulator Tool
Timing Analyzer L"n Tools menu, Timing Analyzer Tool

:I

Programmer

Tools menu, Programmer

Message Processor

‘13!

View menu, Utility Windows, Messages

P

)
@
=
@
S
=

File menu, Project, Name (Ctrl+J)

i

File menu, Open Project (Ctrl+J)

File menu, Project, Set Project to Current
File (Ctrl+Shift+J)

EE

Project menu, Set as Top-Level Entity (Ctrl+Shift+J)
or
File menu, New Project Wizard

File menu, Project, Save & Check (Ctrl+K)

R =S

Processing menu, Start, Start Analysis & Synthesis
(Ctrl+K)

or

Processing menu, Start, Start Analysis &
Elaboration

File menu, Project, Save & Compile (Ctrl+L)

&

Processing menu, Start Compilation (Ctrl+L)

Altera Corporation
May 2006

Quartus Il Command Reference for MAX+PLUS Il Users

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 2 of 10)

MAX+PLUS Il Software

Quartus Il Software

:ﬂ File menu, Project, Save & Simulate
=1 (Ctrl+Shift+L)

Processing menu, Start Simulation (Ctrl+l)

File menu, Project, Compile & Simulate
(Ctrl+Shift+K)

Processing menu, Start Compilation & Simulation
(Ctrl+Shift+K)

File menu, Project, Archive

Project menu, Archive Project

File menu, Project, <Recent Projects>

File menu, <Recent Projects>

File menu, Delete File

NA

File menu, Retrieve

NA

File menu, Info (Ctrl+1)

File menu, File Properties

File menu, Create Default Symbol

File menu, Create/Update, Create Symbol Files for
Current File

File menu, Edit Symbol

(Block Editor) Edit menu, Edit Selected Symbol

File menu, Create Default Include File

File menu, Create/Update, Create AHDL Include Files for
Current File

F=]| File menu, Hierarchy Project Top (Ctrl+T)

EI Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, Hierarchy, Up (Ctrl+U)

Project menu, Hierarchy, Up (Ctrl+U)

File menu, Hierarchy, Down (Ctrl+D)

Project menu, Hierarchy, Down (Ctrl+D)

File menu, Hierarchy, Top

NA

File menu, Hierarchy, Project Top (Ctrl+T)

El Project menu, Hierarchy, Project Top (Ctrl+T)

File menu, MegaWizard Plug-In Manager

Tools menu, MegaWizard Plug-In Manager

(Graphic Editor) File menu, Size

NA

(Waveform Editor) File menu, End Time

(Waveform Editor) Edit menu, End Time

(Waveform Editor) File menu, Compare

(Waveform Editor) View menu, Compare to
q‘.‘l Waveforms in File

(Waveform Editor) File menu, Import Vector File

File menu, Open (Ctrl+O)

Waveform Editor) File menu, Create Table File

File menu, Save As

Hierarchy Display) File menu, Select Hierarchy | NA
(Project Navigator) Double-click
Hierarchy Display) File menu, Close Editor NA

(
(
(Hierarchy Display) File menu, Open Editor
(
(

Hierarchy Display) File menu, Change File Type

(Project Navigator) Select file in Files tab and select
Properties on right click menu

(Hierarchy Display) File menu, Print Selected
Files

NA

Altera Corporation
May 2006

2-37

Quartus Il Handbook, Volume 1

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 3 of 10)

MAX+PLUS Il Software

Quartus Il Software

(Programmer) File menu, Select Programming
File

File menu, Open

(Programmer) File menu, Save Programming
Data As

File menu, Save

(Programmer) File menu, Inputs/Outputs

NA

(Programmer) File menu, Convert SRAM Object
Files

File menu, Convert Programming Files

(Programmer) File menu, Archive JTAG
Programming Files

NA

(Programmer) File menu, Create Jam or SVF File

File menu, Create/Update, Create JAM, SVF, or ISC File

Message Processor) Select Messages

NA

(Messages) Save Messages on right click menu

(
(Message Processor) Save Messages As
(

Timing Analyzer) Save Analysis As

Processing menu, Compilation Report - Save Current
Report on right click menu in Timing Analyzer sections

(Simulator) Create Table File

(Waveform Editor) File menu, Save As

(Simulator) Execute Command File

NA

(Simulator) Inputs/Outputs

NA

Edit Menu

Waveform Editor) Edit menu, Overwrite

(Waveform Editor) Edit menu, Value

Waveform Editor) Edit menu, Insert

(Waveform Editor) Edit menu, Insert Waveform Interval

Waveform Editor) Edit menu, Align to Grid

NA

Waveform Editor) Edit menu, Repeat

(Waveform Editor) Edit menu, Repeat Paste

Waveform Editor) Edit menu, Grow or Shrink

Edit menu, Grow or Shrink (Ctrl+Alt+G)

(
(
(
(Ctri+Y)
(
(
(

Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Insert Page Break

(Text Editor) Edit menu, Increase Indent
(F2)

(Text Editor) Edit menu, Increase Indent

(Text Editor) Edit menu, Decrease Indent
(F3)

(Text Editor) Edit menu, Decrease Indent

(Graphic Editor) Edit menu, Toggle
Connection Dot (Double-Click)

(Block Editor) Edit menu, Toggle Connection Dot

(Graphic Editor) Edit menu, Flip Horizontal

@ (Block Editor) Edit menu, Flip Horizontal

8 | [[6

(Graphic Editor) Edit menu, Flip Vertical

Ii‘l (Block Editor) Edit menu, Flip Vertical

(Graphic Editor) Edit menu, Rotate

El (Block Editor) Edit menu, Rotate by Degrees

2-38

Altera Corporation
May 2006

Quartus Il Command Reference for MAX+PLUS Il Users

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 4 of 10)

MAX+PLUS Il Software

Quartus Il Software

View Menu

View menu, Fit in Window (Ctrl+W)

View menu, Fit in Window (Ctrl+W)

@ View menu, Zoom In (Ctrl+Space)

View menu, Zoom In (Ctrl+Space)

@ View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Zoom Out (Ctrl+Shift+Space)

View menu, Normal Size (Ctrl+1)

EEE

View menu, Maximum Size (Ctrl+2)

P4
>

(Hierarchy Display) View menu, Auto Fit in
Window

pzd
>

(Waveform Editor) View menu, Time Range

View menu, Zoom

Assign menu, Device

Assignments menu, Device
or
Assignments menu, Settings (Ctrl+Shift+E)

Assign menu, Pin/Location/Chip

Assignments menu, Assignment Editor - Locations
category

Assign menu, Timing Requirements

Assignments menu, Assignment Editor - Timing
category

Assign menu, Clique

Assignments menu, Assignment Editor - Cliques
category

Assign menu, Logic Options

Assignments menu, Assignment Editor - Logic
Options category

Assign menu, Probe

Assign menu, Connected Pins

Assignments menu, Assignment Editor - Simulation
category

Assign menu, Local Routing

Assignments menu, Assignment Editor - Local
Routing category

Assign menu, Global Project Device Options

Assignments menu, Device - Device & Pin Options

Assign menu, Global Project Parameters

Assignments menu, Settings - Analysis & Synthesis
- Default Parameters

Assign menu, Global Project Timing
Requirements

Assignments menu, Timing Settings

Assign menu, Global Project Logic Synthesis

Assignments menu, Settings - Analysis & Synthesis

Assign menu, Ignore Project Assignments

Assignments menu, Assignment Editor - disable

Assign menu, Clear Project Assignments

Assignments menu, Remove Assignments

Assign menu, Back-Annotate Project

Assignments menu, Back-Annotate Assignments

Altera Corporation
May 2006

2-39

Quartus Il Handbook, Volume 1

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 5 of 10)

MAX+PLUS Il Software

Quartus Il Software

Assign menu, Convert Obsolete Assignment
Format

NA

Utilities Menu

Utilities menu, Find Text (Ctrl+F)

Edit menu, Find (Ctrl+F)

Utilities menu, Find Node in Design File
(Ctrl+B)

ﬂ Project menu, Locate, Locate in Design File
L]

L

Project menu, Locate, Locate in Timing Closure

(Ctrl+Shift+D)

Utilities menu, Find Node in Floorplan e
Floorplan
Utilities menu, Find Clique in Floorplan NA
Utilities menu, Find Node Source (Ctrl+Shift+S) | NA
Utilities menu, Find Node Destination NA

Utilities menu, Find Next (Ctrl+N)

Edit menu, Find Next (F3)

Utilities menu, Find Previous (Ctrl+Shift+N)

NA

Utilities menu, Find Last Edit

NA

Utilities menu, Search and Replace (Ctrl+R)

Edit menu, Replace (Ctrl+H)

Utilities menu, Timing Analysis Source
(Ctrl+Alt+S)

Utilities menu, Timing Analysis Destination NA
(Ctrl+Alt+D)
Utilities menu, Timing Analysis Cutoff NA
(Ctrl+Alt+C)
Utilities menu, Analyze Timing NA
Utilities menu, Clear All Timing Analysis Tags NA

(Text Editor) Utilities menu, Go To (Ctrl+G)

Edit menu, Go To (Ctrl+G)

(Text Editor) Utilities menu, Find Matching
Delimiter (Ctrl+M)

(Text Editor) Edit, Find Matching Delimiter (Ctrl+M)

(Waveform Editor) Utilities menu, Find Next
Transition (Right Arrow)

(Waveform Editor) View menu, Next Transition (Right
Arrow)

(Waveform Editor) Utilities menu, Find Previous
Transition (Left Arrow)

(Waveform Editor) View menu, Next Transition (Left
Arrow)

Options Menu

Options menu, User Libraries

g

Assignments menu, Settings (Ctrl+Shift+E)
Tools, Options, Global User Llbraries

Options menu, Color Palette

Tools menu, Options

2-40

Altera Corporation
May 2006

Quartus Il Command Reference for MAX+PLUS Il Users

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 6 of 10)

MAX+PLUS Il Software

Quartus Il Software

Options menu, License Setup

Tools menu, License Setup

Options menu, Preferences

Tools menu, Options

(Hierarchy Display) Options menu, Orientation

NA

(Hierarchy Display) Options menu, Compact
Display

NA

(Hierarchy Display) Options menu, Show All
Hierarchy Branches

(Project Navigator) Expand All on right click menu

(Hierarchy Display) Options menu, Hide All
Hierarchy Branches

NA

(Editors) Options menu, Font

Tools menu, Options

(Editors) Options menu, Text Size

Tools menu, Options

(Graphic Editor) Options menu, Line Style

Edit menu, Line

(Graphic Editor) Options menu,
— Rubberbanding

EI Tools menu, Options

(Graphic Editor) Options menu, Show Parameters e View menu, Show Parameter Assignments
ad
(Graphic Editor) Options menu, Show Probes NA

(Graphic Editor) Options menu, Show
Pins/Locations/Chips

EI View menu, Show Pin and Location Assignments

(Ctrl+Shift+M)

(Graphic Editor) Options menu, Show Clique, NA
Timing & Local Routing Assignments
(Graphic Editor) Options menu, Show Logic NA
Options

(Graphic Editor) Options menu, Show All NA

Graphic Editor) Options menu, Show Guidelines

Tools menu, Options - Block/Symbol Editor page

(
(Ctrl+Shift+G)
(

Graphic Editor) Options menu, Guideline
Spacing

Tools menu, Options - Block/Symbol Editor page

Symbol Editors) Options menu, Snap to Grid

Tools menu, Options - Block/Symbol Editor page

Text Editor) Options menu, Tab Stops

Tools menu, Options - Text Editor page

Tools menu, Options - Text Editor page

Text Editor) Options menu, Syntax Coloring

NA

(
(
(Text Editor) Options menu, Auto-Indent
(
(

Waveform Editor) Options menu, Snap to Grid

View menu, Snap to Grid

(Waveform Editor) Options menu, Show Grid
(Ctrl+Shift+G)

Tools menu, Options - Waveform Editor page

(Waveform Editor) Options menu, Grid Size

Edit menu, Grid Size - Waveform Editor page

Altera Corporation
May 2006

2-41

Quartus Il Handbook, Volume 1

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 7 of 10)

MAX+PLUS Il Software

Quartus Il Software

(Floorplan Editor) Options menu, Routing
Statistics

NA

(Floorplan Editor) Options menu, Show
Node Fan-In

eEl

View menu, Routing, Show Fan-In

(Floorplan Editor) Options menu, Show
Node Fan-Out

"_::I View menu, Routing, Show Fan-Out

E (Floorplan Editor) Options menu, Show Path

View menu, Routing, Show Paths between Nodes

(Floorplan Editor) Options menu, Show Moved
Nodes in Gray

NA

(Simulator) Options menu, Breakpoint

Processing menu, Simulation Debug, Breakpoints

(Simulator) Options menu, Hardware Setup

NA

(Timing Analyzer) Options menu, Time
Restrictions

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, NA
Auto-Recalculate
(Timing Analyzer) Options menu, Cell Width NA

(Timing Analyzer) Options menu, Cut Off I/0 Pin
Feedback

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Clear &
Reset Paths

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, Cut Off Read
During Write Paths

y Assignments menu, Timing Settings

(Timing Analyzer) Options menu, List Only NA
Longest Path
(Programmer) Options menu, Sound NA

(Programmer) Options menu, Programming
Options

Tools menu, Options - Programmer page

(Programmer) Options menu, Select Device

(Programmer) Edit menu, Change Device

(Programmer) Options menu, Hardware Setup

(Programmer) Edit menu, Hardware Setup

Symbol (Graphic Editor)

Symbol menu, Enter Symbol (Double-Click)

(Block Editor) Edit menu, Insert Symbol (Double-

El Click)

Symbol menu, Update Symbol

Edit menu, Update Symbol or Block

Symbol menu, Edit Ports/Parameters

Edit menu, Properties

Element (Symbol Editor)

Element menu, Enter Pinstub

‘ Double-click on edge of symbol

2-42

Altera Corporation
May 2006

Quartus Il Command Reference for MAX+PLUS Il Users

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 8 of 10)

MAX+PLUS Il Software

Quartus Il Software

Element menu, Enter Parameters

NA

Templates (Text Editor)

Templates

E (Text Editor) Edit menu, Insert Template

Node (Waveform Editor)

Node menu, Insert Node (Double-Click)

Edit menu, Insert Node or Bus (Double-Click)

Node menu, Enter Nodes from SNF

Edit menu, Insert Node - click on Node Finder...

Node menu, Edit Node

Double-click on the Node

Node menu, Enter Group

Edit menu, Group

Node menu, Ungroup

Edit menu, Ungroup

Node menu, Sort Names

El Edit menu, Sort

Node menu, Enter Separator

P4

A

Layout (Floorplan Editor)

Layout menu, Full Screen

View menu, Full Screen (Ctrl+Alt+Space)

Layout menu, Report File Equation Viewer

View menu, Equations

Layout menu, Device View (Double-Click)

View menu, Package Top

View menu, Package Bottom

Layout menu, LAB View (Double-Click)

View menu, Interior Labs

Layout menu, Current Assignments
Floorplan

View menu, Assignments, Show User Assignments

ENSHE e R

?_-_EFJ Layout menu, Last Compilation Floorplan

I_I¢I

View menu, Assignments, Show Fitter
Assignments

Processing (Compiler)

Processing menu, Design Doctor

Processing menu, Start, Start Design Assistant

Processing menu, Design Doctor Settings

Assignments menu, Settings - Design Assistant

RNE

Processing menu, Functional SNF Extractor

Processing menu, Generate Functional Simulation
Netlist

Processing menu, Timing SNF Extractor

Processing menu, Start Analysis & Synthesis

Processing menu, Optimize Timing SNF

P4

A

Processing menu, Linked SNF Extractor

Altera Corporation
May 2006

2-43

Quartus Il Handbook, Volume 1

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 9 of 10)

MAX+PLUS Il Software

Quartus Il Software

Processing menu, Fitter Settings

Assignments menu, Settings - Fitter Settings

Processing menu, Report File Settings

EE

Assignments menu, Settings

Processing menu, Generate AHDL TDO File

P4
>

Processing menu, Smart Recompile

Assignments menu, Settings - Compilation Process

Processing menu, Total Recompile

Assignments menu, Settings - Compilation Process

Processing menu, Preserve All Node Name
Synonyms

Assignments menu, Settings - Compilation Process

Interfaces (Compiler)

o

Assignments menu, EDA Tool Settings

Initialize (Simulator)

Initialize menu, Initialize Nodes/Groups NA
Initialize menu, Initialize Memory NA
Initialize menu, Save Initialization As NA
Initialize menu, Restore Initialization NA
Initialize menu, Reset to Initial SNF Values NA
Node (Timing Analyzer)

Node menu, Timing Analysis Source (Ctrl+Alt+S) | NA
Node menu, Timing Analysis Destination NA
(Ctrl+Alt+D)

Node menu, Timing Analysis Cutoff (Ctrl+Alt+C) | NA

Analysis (Timing Analyzer)

Analysis menu, Delay Matrix

(Timing Analyzer Tool) Delay tab

Analysis menu, Setup/Hold Matrix

NA

Analysis menu, Registered Performance

(Timing Analyzer Tool) Registered Performance tab

JTAG (Programmer)

JTAG menu, Multi-Device JTAG Chain

(Programmer) Mode: JTAG

JTAG menu, Multi-Device JTAG Chain Setup

(Programmer) Window

JTAG menu, Save JCF

File menu, Save

JTAG menu, Restore JCF

File menu, Open

JTAG menu, Initiate Configuration from
Configuration Device

Tools menu, Options - Programmer page

2-44

Altera Corporation
May 2006

Quartus Il Command Reference for MAX+PLUS Il Users

Table 2-4. Quartus Il Command Reference for MAX+PLUS Il Users (Part 10 of 10)

MAX+PLUS Il Software Quartus Il Software
FLEX (Programmer)
FLEX menu, Multi-Device FLEX Chain (Programmer) Mode: Passive Serial
FLEX menu, Multi-Device FLEX Chain Setup (Programmer) Window
FLEX menu, Save FCF File menu, Save
FLEX menu, Restore FCF File menu, Open
Altera Corporation 2-45

May 2006

Quartus Il Handbook, Volume 1

2-46 Altera Corporation
May 2006

Z;\l |:| —E D)/A 3. Quartus Il Support of

QI151004-6.0.0

o HardCopy Series Devices

Introduction

HardCopy II
Device Support

Altera Corporation
May 2006

This chapter includes Quartus® II Support for HardCopy® Il and
HardCopy Stratix devices. This chapter is divided into the following
sections:

B Quartus II Support for HardCopy II Devices
B Quartus I Support for HardCopy Stratix® Devices

Altera® HardCopy 1I devices feature 1.2-V, 90 nm process technology,
and provide a structured ASIC alternative to increasingly expensive
multi-million gate ASIC designs. The HardCopy II design methodology
offers a fast time-to-market schedule, providing ASIC designers with a
solution to long ASIC development cycles. Using the Quartus Il software,
you can leverage a Stratix Il FPGA as a prototype and seamlessly migrate
your design to a HardCopy II device for production.

This document discusses the following topics:

HardCopy II design development flow and companion devices
HardCopy II Device Resource Guide

Recommended Quartus II software settings

HardCopy II Utilities menu options and functions

For more information about HardCopy II, HardCopy Stratix, and
HardCopy APEX™ devices, refer to the respective device data sheets in
the HardCopy Series Handbook.

HardCopy Il Design Benefits

Designing with HardCopy II structured ASICs offers substantial benefits
over other structured ASIC offerings:

B Prototyping using a Stratix II FPGA for functional verification and
system development reduces total project development time

B Seamless migration from a Stratix Il FPGA prototype to a
HardCopy II device reduces time to market and risk

B Unified design methodology for Stratix II FPGA design and
HardCopy II design reduces the need for ASIC development
software

B Low up-front development cost of HardCopy II devices reduces the
financial risk to your project

Quartus Il Handbook, Volume 1

Quartus Il Features for HardCopy Il Planning

With the Quartus II software you can design a HardCopy II device using a
Stratix II device as a prototype. The Quartus II software contains the
following expanded features for HardCopy II device planning;:

B HardCopy II Companion Device Assignment—Identifies
compatible HardCopy II devices for migration with the Stratix II
device currently selected.
1= This feature constrains the pins of your Stratix II FPGA

prototype making it compatible with your HardCopy 11
device. It also constrains the correct resources available for
the HardCopy II device making sure that your Stratix II
FPGA design does not become incompatible.

B HardCopy II Utilities—The HardCopy II Utilities functions create or
overwrites HardCopy II companion revisions, change revisions to
use, and compare revisions for equivalency.

B HardCopy II Advisor—The HardCopy II Advisor helps you follow
the necessary steps to successfully submit a HardCopy II design to
Altera’s HardCopy Design Center.
=~ The HardCopy II Advisor is similar to the Resource

Optimization Advisor and Timing Optimization Advisor.
The HardCopy II Advisor provides guidelines you can
follow during development, reporting the tasks completed
as well as the tasks that you still need to complete during
development.

B HardCopy II Floorplan—The Quartus II software can show a
preliminary floorplan view of your HardCopy II design’s Fitter
placement results.

B HardCopy II Design Archiving—The Quartus II software archives
the HardCopy II design project’s files needed to handoff the design
to the HardCopy Design Center.

L=~ This feature is similar to the Quartus II software HardCopy
Files Wizard used for HardCopy Stratix and HardCopy
APEX families.

B HardCopy II Device Preliminary Timing—The Quartus II software
performs a timing analysis of HardCopy II devices based on
preliminary timing models and Fitter placements. Final timing results
for HardCopy II devices are provided by the HardCopy Design
Center.

3-2 Altera Corporation
May 2006

HardCopy Il Development Flow

HardCopy II
Development
Flow

Altera Corporation
May 2006

HardCopy Il Handoff Report-—The Quartus Il software generates a
handoff report containing information about the HardCopy Il design
used by the HardCopy Design Center in the design review process.
Formal Verification—Cadence Encounter Conformal software can
now perform formal verification between the source RTL design files
and post-compile gate level netlist from a HardCopy II design.

In the Quartus II software, you have two methods for designing your
Stratix I FPGA and HardCopy II companion device together in one
Quartus II project.

Design the HardCopy II device first, and create the Stratix II FPGA
companion device second and build your prototype for in-system
verification

Design the Stratix Il FPGA first and create a HardCopy II companion
device second

Both of these flows are illustrated at a high level in Figure 3-1. The added
features in the HardCopy II Utilities menu assist you in completing your
HardCopy II design for submission to Altera’s HardCopy Design Center
for back-end implementation.

3-3

Quartus Il Handbook, Volume 1

3-4

Figure 3-1. HardCopy Il Flow in Quartus Il Software

Prepare Design HDL

Design Stratix Il First Design Stratix Il Second

Design
Stratix Il
First?

Select Stratix Il Device
& HardCopy Il

Select HardCopy Il
Device & Stratix Il
Companion Device Companion Device

v v

Complete Stratix Il Complete HardCopy Il
Device First Flow (7) Device First Flow (2)

In-System Verification
of Stratix Il <
FPGA Design

v

Compare Stratix Il
& HardCopy I
Design Revisions

v

Generate HardCopy Il
Archive

Handoff Design Archive for
Back-End Migration

\/

Notes for Figure 3-1:
(1) Refer to Figure 3-2 for an expanded description of this process.
(2) Refer to Figure 3-3 for an expanded description of this process.

Designing the Stratix Il FPGA First

The HardCopy II development flow beginning with the Stratix II FPGA
prototype is very similar to a traditional Stratix Il FPGA design flow, but
requires a few additional tasks to be performed to migrate the design to
the HardCopy II companion device. To design your HardCopy II device
using the Stratix II FPGA as a prototype, complete the following tasks:

Specify a HardCopy II device for migration

Compile the Stratix II FPGA design

Create and compile the HardCopy II companion revision
Compare the HardCopy II companion revision compilation to the
Stratix II device compilation

Figure 3-2 provides an overview highlighting the development process
for designing with a Stratix II FPGA first and creating a HardCopy II
companion device second.

Altera Corporation
May 2006

HardCopy Il Development Flow

Figure 3-2. Designing Stratix Il Device First Flow

Stratix 1l Prototype Device Development Phase

(Prepare Stratix Il Design)

| Select HardCopy || Companion Device |

v

| Review HardCopy Il Advisor |

v

| Apply Design Constraints |

In-System Verification |<—| Compile Stratix Il Design |<7

Any -
Violations? Fix Violations

A

Create or Overwrite HardCopy Il
Companion Revision

HardCopy Il Companion Device Development Phase

\ 4

| Compile HardCopy Il Companion Revision |

v

| Compare Stratix Il & HardCopy Il Revisions |

Any
Violations?

No

Design Submission & Back-End Implementation Phase

A 4
| Generate Handoff Report |

v

(Archive Project for Handoff >

Altera Corporation 3-5
May 2006

Quartus Il Handbook, Volume 1

3-6

Prototype your HardCopy II design by selecting and then compiling a
Stratix II device in the Quartus II software.

Once you compile the Stratix II design successfully, you can view the
HardCopy II Device Resource Guide in the Quartus II software Fitter
report to evaluate which HardCopy II devices meet your design’s
resource requirements. When you are satisfied with the compilation
results and the choice of Stratix II and HardCopy II devices, on the
Assignments menu, click Settings. In the Category list, select Device. In
the Device page, select a HardCopy II companion device.

After you select your HardCopy II companion device, do the following:

B Review the HardCopy II Advisor for required and recommended

tasks to perform

Enable Design Assistant to run during compilation

Add timing and location assignments

Compile your Stratix II design

Create your HardCopy II companion revision

Compile your design for the HardCopy II companion device

Use the HardCopy II Utilities to compare the HardCopy II

companion device compilation with the Stratix Il FPGA revision

B Generate a HardCopy II Handoff Report using the HardCopy II
Utilities

B Generate a HardCopy Il Handoff Archive using the HardCopy II
Utilities

B Arrange for submission of your HardCopy II handoff archive to
Altera’s HardCopy Design Center for back-end implementation

For more information about the overall design flow using the Quartus II
software, refer to the Introduction to Quartus II manual on the Altera web
site at www.altera.com.

Designing the HardCopy Il Device First

The HardCopy II family presents a new option in designing unavailable
in previous HardCopy families. You can design your HardCopy II device
first and create your Stratix II FPGA prototype second in the Quartus II
software. This allows you to see your potential maximum performance in
the HardCopy II device immediately during development, and you can
create a slower performing FPGA prototype of the design for in-system
verification. This design process is similar to the traditional HardCopy II
design flow where you build the FPGA first, but instead, you merely
change the starting device family. The remaining tasks to complete your
design for both Stratix II and HardCopy II devices roughly follow the

Altera Corporation
May 2006

HardCopy Il Development Flow

same process (Figure 3-3). The HardCopy II Advisor adjusts its list of
tasks based on which device family you start with, Stratix II or
HardCopy II, so that you can complete the process seamlessly.

Figure 3-3. Designing HardCopy Il Device First Flow

HardCopy Il Device Development Phase

(Prepare HardCopy Il Design)

| Select Stratix || Companion Device |

v

| Review HardCopy Il Advisor |

v

| Apply Design Constraints |

| Compile HardCopy Il Design |<7

Any -
Violations? Fix Violations

A

Create or Overwrite Stratix Il
Companion Revision

Stratix Il Companion Device Development Phase

\ 4
In-System Verification |<—| Compile Stratix Il Companion Revision |

v

| Compare HardCopy Il & Stratix || Revisions |

Any
Violations?

No

Design Submission & Back-End Implementation Phase

A 4
| Generate Handoff Report |

v

(Generate HardCopy Il Archive for Handoff)

Altera Corporation 3-7
May 2006

Quartus Il Handbook, Volume 1

HardCopy II
Device Resource

Guide

The HardCopy II Device Resource Guide compares the resources
required to successfully compile a design with the resources available in
the various HardCopy II devices. The report rates each HardCopy II
device and each device resource for how well it fits the design. The
Quartus II software generates the HardCopy II Device Resource Guide
for all designs successfully compiled for Stratix II devices, and is found in
the Fitter folder of the Compilation Report. Figure 3—4 shows an example
of the HardCopy II Device Resource Guide. Refer to Table 3-1 for an
explanation of the color codes in Figure 3—4.

Figure 3-4. HardCopy Il Device Resource Guide

HardCopy II Device Resource Guide

Colar Legend:
-~ Green:
- Package Resource:
target device migration enabled

The HardCopy Il package can be migrated from the Stratis Il FPGA selected package, and the design has been fitted with the

Resource Stratix ||
EP25130

1 M igration Compatibility
27 Primary Migration Constraint Package
3| Package FEGA - 1020 FBGA - 484
L = Logic - 19%
i - Logic cells BET2ALUT: -
E | - DSP elements 0
7 [Pins
B -Tol 515 515 /302
9_ - Differential Input 1] 0/E6
1_D - Differential Output 1] 0/44
1 - PCl/ PCl-= a 07153
12| -oo 0 0720
13| -oos 0 0/8
F = Memony
15| -MRaM 6 670
8] -~ M4K blocks & M512 blocks™ |44
17| B FLLs
18] - Enhanced 2 272
19| - Fast 1] n/z
20 Dls 1] 0
21| = SERDES
22 - R 0 07
S 0 /18
g =] Configuration
| -oAC 0 070
26| -asMi 0 070
? - Remote Update o 0s/0
F 0 0

Package
FEGA - 484
19%

A16 /336
0/
0./ 50
0/ 167
o/20
o/8

E/0

242
/2
01

o/
0./14

/0
/0
o/0
041

Package
FBGA - 672
10%

A15 / 453
07380
0770
07245
0/50
o/18

E/2

2/2
n/2
o/

0/3
0/24

00
00
o/0
o1

Package
FEGA - 780
0%

516 / 495
0./4a0
0/
0/247
0/50
0/18

E/2

2/2
/2
0/1

0/
0/29

0/n
0/n
0/0
01

A15 /R399
n/12a
n/112
0/ 353
0/ 204
o/qz

E/B

2/4
0/4
/2

0/48
0/44

o0
o0
o/0
o1

Package

FEGA - 1020

4z

A15/ 743
0/224
0/ 200
0/ 367
0/204
o/72

E/9

2/4
0/8
n0/2

0/92
0/8e

o/n
o/n
o/0
041

Package
FEGA - 1502
4%

516 / 862
0./272
0/ 256
0/472
0/204
0/72

E/3

2/4
0/8
/2

0/116
0/116

0/n
0/n
0/0
04

* Device is preliminary, Dverall performance iz expected to be degraded.

" Diesign containg one or more M512 blocks, which cannot be migrated to HardCopy || devices.

Use this report to determine which HardCopy II device is a potential
candidate for migration of your Stratix II design. The HardCopy II device
package must be compatible with the Stratix II device package. A logic

Altera Corporation
May 2006

HardCopy Il Device Resource Guide

resource usage greater than 100% or a ratio greater than 1/1 in any
category indicates that the design does not fit in that particular
HardCopy II device.

Table 3-1. HardCopy Il Device Resource Guide Color Legend

Color Package Resource (7) Device Resources
The design can migrate to the Hardcopy I The resource quantity is within the range of the
Green |package and the design has been fit with target | HardCopy Il device and the design can likely
(High) | device migration enabled in the HardCopy II migrate if all other resources also fit.
Companion Device dialog box.
The design can migrate to the Hardcopy Il The resource quantity is within the range of the
package. However, the design has not been fit | HardCopy Il device. However, the resource is at
. with target device migration enabled in the risk of exceeding the range for the HardCopy Il
(Medium) HardCopy Il Companion Device dialog box. package. Consult your Product Field Applications
Engineer for a recommended course of action.
Red The design cannot migrate to the Hardcopy Il The resource quantity exceeds the range of the
(None) package. HardCopy Il device. The design cannot migrate

to this HardCopy Il device.

Note to Table 3-1:
(1) The package resource is constrained by the Stratix II FPGA that the design was compiled for. Only vertical
migration devices within the same package are able to migrate to HardCopy II devices.

The HardCopy II architecture consists of an array of fine-grained HCells,
which are used to build logic equivalent to Stratix II adaptive logic
modules (ALMs) and digital signal processing (DSP) blocks. The DSP
blocks in HardCopy II devices match the functionality of the Stratix II
DSP blocks, though timing of these blocks will be different than the FPGA
since they are constructed of HCell Macros. The M4K and M-RAM
memory blocks in HardCopy II devices are equivalent to the Stratix II
memory blocks. Preliminary timing reports of the HardCopy Il device are
available in the Quartus II software. Final timing results of the
HardCopy II device are provided by the HardCopy Design Center after
back-end migration is complete.

«® For more information about the HardCopy II device resources, refer to
the Introduction to HardCopy II Devices and the Description, Architecture &
Features chapters in the HardCopy II Device Family Data Sheet in the
HardCopy Series Handbook.

The report example in Figure 3—4 shows the resource comparisons for a
design compiled for a Stratix II EP2S130F1020 device. Based on the
report, the HC230F1020 device in the 1,020-pin FineLine BGA® package
is an appropriate HardCopy II device to migrate to. If the HC230F1020
device was not specified as a migration target during the compilation, its
package and migration compatibility would be rated orange or Medium.

Altera Corporation 3-9
May 2006

Quartus Il Handbook, Volume 1

The migration compatibility of the other HardCopy II devices are rated
red, or None, because the package types are incompatible with the
Stratix II device. The 1,020-pin FBGA HC240 device is rated red because
it is only compatible with the Stratix II EP2S180F1020 device.

Figure 3-5 shows the report after the (unchanged) design was recompiled
with the HardCopy I HC230F1020 device specified as a migration target.
Now the HC230F1020 device package and migration compatibility are
rated green or High.

Figure 3-5. HardCopy Il Device Resource Guide with Target Migration Enabled

HardCopy II Device Resource Guide

Colar Legend: -~
-~ Green:
-- Package Resource: The HardCopy Il package can be migrated from the Stralix || FPGA selected package, and the design has been fitted with the
target device migration enabled

Resource Stratix [l
EF25130

1 M igration Compatibility |

27 Primary Migration Constraint Package Package Package Package Package Package

R Package FBGA - 1020 |FEGA - 484 |FEGA - 484 |FEGA - 672 |FBGA - 780 |FEGA - 1020 |FEGA - 1020 |FEGA - 1508
Hard COpv] In the Quartus II software, you can select a HardCopy II companion
c . device to help structure your design for migration from a Stratix II device

ompanion to a HardCopy II device. To make your HardCopy II companion device

Device Selection selection, on the Assignments menu, click Settings. In the Settings dialog
box in the Category list, select Device (Figure 3-6) and select your
companion device from the Available devices list.

Selecting a HardCopy II Companion device to go with your Stratix II
prototype constrains the memory blocks, DSP blocks, and pin
assignments, so that your Stratix I and HardCopy II devices are
migration-compatible. Pin assignments are constrained in the Stratix II
design revision so that the HardCopy II device selected is pin-compatible.
The Quartus II software also constrains the Stratix I design revision so it
does not use M512 memory blocks or exceed the number of M-RAM
blocks in the HardCopy II companion device.

3-10 Altera Corporation
May 2006

HardCopy Il Companion Device Selection

Figure 3-6. Quartus Il Settings Dialog Box

Settings - demo_design

e

Categany:
General

Files
User Libraries [Cunient Project]
Device
Timing Requirsments & Options
ED4 Tool Settings
Design Entrp/Synthesis
Simulation
Timing Analysis
BoardLevel
Formal Verification
Physical Synthesis
Compilation Process Settings
Early Timing Estimate
Incremental Compilation
Analysis & Sprthesis Settings
YHDL Input
Yeriog HDL Input
Default Paramsters
Syrthesis Metlist Oiptimizations
Filter Settings
Physical Synthesis Dptimizations
Assambler
Timing Analyzer
Design Assistart
SignalTap Il Lagic Analyzer
Logic Analyzer Interfacs
SignalProbe Settings
Simulstor Settings
PowerPlay Power Analyzer Settings
Software Build Settings
HardCopy Settings

X
oevie |

Select the family and device wou wart to target for compilation.

EP2550F1

EP2530F102014
EFZ8130F1020C3
EP25130F1020C4
EF25130F1020C%
EP25130F 102014
EP25180F1020C2
<

0 migration devic

Farib: [Stat 2] | Showin hvaisble devies i
Package: [Any =
ool s ‘
Fincount [dnp =
Target devics
" Auto device selected by the Fitter Speed grade: |Any =l
@ Specfic device sslested in vailable devices' it Core voltage, 1.2
& ¥ Show advanced devices
Avallable devices
[Name [aL0Ts [Memor.. [DSP [~
EP2530F1020C3 72768 452044B 48

Migration compatibility

Migration Devices.

4
4520448

72768 48
106032 6747840 63
106032 6747840 B3
106032 B747840 63
106032 B747840 B3
143520 9383040 96 v

Companion device

HardCapy Il |HC230F1020C -

[Limit DSP & RAM to HardCopy Il device resources

es selected

Cancel

You can also specify your HardCopy II companion device using the
following Tcl command:

set_global assignment -name
DEVICE TECHNOLOGY MIGRATION LIST <HardCopy II Device Part Number>

For example, to select the HC230F1020 device as your HardCopy 11
companion device for the EP25130F1020C4 Stratix Il FPGA, the Tcl
command is:

set global assignment -name
DEVICE TECHNOLOGY MIGRATION LIST HC230F1020

Migration Compatibility Filtering

The Migration Devices dialog box displays which devices are vertically
migratable within the same package and family for all Altera devices.
When you are designing for HardCopy II devices with a Stratix II
prototype device, the Migration Devices dialog box filters the compatible
devices between Stratix II devices and HardCopy II devices within the
same package.

Altera Corporation
May 2006

3-11

Quartus Il Handbook, Volume 1

3-12

To view all Stratix II devices that are vertically migratable to a Stratix II
device, on the Assignments menu, click Settings. In the Category list,
select Device and on the Device page, in the Family list select Stratix II.
In the Available devices list, select the desired device. Under Companion
device in the HardCopy 11 list, select <None>, and click Migration
Devices. The Migration Devices dialog box shows the Stratix II devices

that are vertically migratable to the currently selected Stratix II device
(Figure 3-7).

Figure 3-7. Available Migration Devices without Selecting a HardCopy Il
Device

Migration Devices

Select the migration device(s) for the current device. When the Compiler processes your project, it will be
compatible with all of the migration devices you select.

Mole: Specifying migration devices can reduce the likelihood of achieving a successful fi

Cunent device: EP2530F1020C4

Compatible migration devices: Selected migration devices:
EP25G0F1020C4 EP2590F1020C4
el —
&
Settt <]

[&]

[Show all zpeed arades
-

Cancel

Without HardCopy II companion device constraints, all Stratix II devices
in the 1,020-pin FineLine BGA package are available for vertical
migration. Selecting a HardCopy II companion device in the Device
page, as shown in Figure 3-8, filters the list of migration devices to only
those Stratix II devices that are vertically migratable within the same
package and are usable as HardCopy II prototype devices.

Figure 3-8. Setting a HardCopy Il Companion Device

Companion device

HardCopy Il |HC230F1020C =]
[v Limit DSP & RAM to HardCopy || device resources

For example, if you select the HC230F1020 device as the companion
device, the Migration Devices dialog box shows the EP2590F1020C4 and
EP25180F1020C4 devices as possible companion devices to the
EP25130F1020C4 device currently selected (Figure 3-9). However, the

Altera Corporation
May 2006

HardCopy Il Recommended Settings in the Quartus Il Software

HardCopy Il
Recommended
Settings in the
Quartus I
Software

Altera Corporation
May 2006

EP2S60F1020C4 device is not a compatible device to the HC230F1020
device, even though it is in the same package, so it is not listed in the
Migration Devices dialog box.

Figure 3-9. Available Migration Devices after Selecting a HardCopy Il Device

Migration Devices

Select the migration device(s) for the current device. When the Compiler processes your project, it will be
compatible with all of the migration devices you select.

Mate: Specilying migration devices can reduce the lkelihood of achieving a successful fit.

Cument device: EP25180F1020C5
Compatible migration devices: Selected migration devices:

EP2550F1 020C5 EP25180F1020C5
EP25130F1020C5

¥

Bl =]

<

[Show all speed grades
-

Cancel

The HardCopy II development flow involves additional planning and
preparation in the Quartus II software compared to a standard FPGA
design. This is because you are developing your design to be
implemented in two devices: a prototype of your design in a Stratix II
prototype FPGA, and a companion revision in a HardCopy II device for
production. You need additional settings and constraints to make the
Stratix II design compatible with the HardCopy II device and, in some
cases, you must remove certain settings in the design. This section
explains the additional settings and constraints necessary for your design
to be successful in both Stratix I FPGA and HardCopy Il structured ASIC
devices.

Limit DSP & RAM to HardCopy Il Device Resources

On the Assignments menu, click Settings to view the Settings dialog box.
In the Category list, select Device. In the Family list, select Stratix II.
Under Companion device, Limit DSP & RAM to HardCopy II device
resources is turned on by default (Figure 3-10). This maintains
compatibility between the Stratix Il and HardCopy II devices by ensuring
your design does not use resources in the Stratix II device that are not
available in the selected HardCopy II device.

3-13

Quartus Il Handbook, Volume 1

3-14

=" If you require additional memory blocks or DSP blocks for
debugging purposes using SignalTap® II, you can temporarily
turn this setting off to compile and verify your design in your
test environment. However, your final Stratix IT and
HardCopy II designs submitted to Altera for back-end
migration must be compiled with this setting turned on.

Figure 3-10. Limit DSP & RAM to HardCopy Il Device Resources Check Box

Companion device
HardCopy Il |HC230F1020C =]
[v Limit DSP & RAM to HardCopy || device resources

Enable Design Assistant to Run During Compile

You must use the Quartus II Design Assistant to check all HardCopy
series designs for design rule violations before submitting the designs to
the Altera HardCopy Design Center. Additionally, you must fix all critical
and high-level errors.

s Altera recommends turning on the Design Assistant to run
automatically during each compile, so that during development,
you can see the violations you must fix.

For more information about the Design Assistant and the rules it uses,
refer to the Design Guidelines for HardCopy Series Devices chapter of the
HardCopy Series Handbook.

To enable the Design Assistant to run during compilation, on the
Assignment menu, click Settings. In the Category list, select Design
Assistant and turn on Run Design Assistant during compilation
(Figure 3-11) or by entering the following Tcl command in the Tel
Console:

set global assignment -name ENABLE DRC SETTINGS ON

Altera Corporation
May 2006

HardCopy Il Recommended Settings in the Quartus Il Software

Figure 3-11. Enabling Design Assistant

Settings - demo_design @

Categary:

General

Files:

User Libraries [Current Praject)
Device

Timing Requirements & Options
EDA Tool Settings
Campilation Process Settings
Analysis & Synthesis Settings
Fitter Settings

Agsembler

Timing Analyzer

Desiy it

SignalTap |l Logic &nalyzer
Logic Analyzer Interface

e e

Design Assistant

Specify the potential design problems that you want the Design Assistant to check. You can choose
ta check the design for individual problems, or a categary of design problems.

Iv Run Design Assistant during compilation

Select the rules you want the Design Assstant to apply to the project

=] Design Assistant configuration wle names
3 Clock
Reset
Timing closure

SighalProbe Settings Signl race

Simulatar Settings

PawerPlay Power Analyzer Settings
Saftware Build Settings

HardCaopy Settings

Asprchranous clock domains

HardCopy les

=

&
5
& Moresynchionous design stucture
&
=
&

=

=

Cancel

Timing Settings

In the More Timing Settings dialog box, you can specify optional timing
settings, some of which are crucial to HardCopy II development. To
specify these options, on the Assignments menu, click Settings. In the
Category list, select Timing Requirements & Options and click More
Settings. In the More Settings dialog box, set the desired timing settings
(Figure 3-12).

= For Stratix II and HardCopy II co-development, Altera
recommends that you turn on the following settings:

* Enable Clock Latency

e Enable Recovery/Removal analysis
* Enable Timing Constraint Check

e Report Combined Fast/Slow Timing
* Report IO Paths Separately

Altera Corporation 3-15

May 2006

Quartus Il Handbook, Volume 1

3-16

Figure 3-12. More Timing Settings

More Timing Settings fgl

Specify the settings for the timing options used in your project. Individual timing assighments can be
made through the Assignment E ditar.

Optiar P
Narne: Multiple Items Qase
Setting: On ﬂ Fieset Al

Description:

Erizting option settings:

MName: Setting:
Analyze latches as synchronous elem.. OFff
Cutt off feedback from 140 ping On

Cutt off read during write: signal paths On
Cut paths between unrelated clock d.. On
Enable Clock Latency On

Cancel

Enable Clock Latency

Turning on the Enable Clock Latency option enables support for clock
latency in the Timing Analyzer. Latency on a clock is a delay on the clock
path and affects clock skew. This is different from an offset, which instead
alters the setup relationship between two clocks.

When you enable clock latency, the design adjusts for early and late clock
latency assignments. The phase-locked loop (PLL) compensation delay is
analyzed as latency and does not affect the offset. For clock settings where
you have not specified an offset, the design automatically treats computed
offset as latency. By using latency for these automatically calculated clock
offsets, the setup relationship for registers driven by these clocks does not
vary with routing. This can potentially remove the need for multicycle
assignments, as well as improve results by ensuring that timing results are
more consistent for each Fitter iteration.

Once enabled, you might need to add, modify, or remove multicycle
assignments for the PLL output clocks because of the potential change in the
setup relationship for these clocks.

Altera Corporation
May 2006

HardCopy Il Recommended Settings in the Quartus Il Software

Altera Corporation
May 2006

Use the following Tcl command to enable clock latency:

set_global_assignment -name ENABLE_ CLOCK LATENCY ON

Enable Recovery/Removal Analysis

This setting allows the Quartus II Timing Analysis tool to calculate
recovery and removal times on control and reset signals. The recovery
time is the minimum length of time that an asynchronous control input
pin must be stable before the clock active edge. The removal time is the
minimum length of time that an asynchronous control input pin must be
stable after the clock active edge.

Il=" Altera recommends that you turn on register recovery/removal
analysis in the Timing Analysis tool during development for
more complete recovery/removal analysis of all logic paths in
your design. However, if your design does not have a timing
requirement for reset logic this option may be turned off.

Use the following Tcl command to enable recovery and removal analysis:

set_global assignment -name \
ENABLE RECOVERY REMOVAL ANALYSIS ON

Enable Timing Constraint Check

The Enable Timing Constraint Check setting enables the Timing
Analysis tool to review your timing constraints for complete minimum
and maximum timing coverage for all inputs, outputs, and bidirectional
pins, as well as clock settings for all clock sources. Asynchronous pins
such as resets and static control signals are also checked for minimum and
maximum delay constraints. You must perform this check and review the
results before handoff of the design to the HardCopy Design Center.

Use the following Tcl command to enable Timing Constraint Check:

set_global assignment -name \
FLOW_ENABLE TIMING CONSTRAINT CHECK ON

Report Combined Fast/Slow Timing

The Quartus II software can perform a separate timing analysis for
worst-case and best-case conditions as independent reports. The Report
Combined Fast/Slow Timing setting allows the Quartus II software to
report slow corner delay case and fast corner delay case timing in one
combined report. This setting provides a better timing report for your
design by allowing you to see all hold-time issues as well as setup issues
in one report. This report is required for HardCopy II device

3-17

Quartus Il Handbook, Volume 1

3-18

development. Turning on the Report Combined Fast/Slow Timing
setting requires the Quartus II software to run the Timing Analyzer twice,
once for the fast corner delay model and once for the slow corner delay
model.

Use the following Tcl command to enable the Report Combined
Fast/Slow Timing setting:

set_global_assignment -name DO_COMBINED_ ANALYSIS ON

Report 10 Paths Separately

Turn on the Report IO Paths Separately setting to create separate report
panels for I/O paths constrained by the INPUT MAX DELAY,

INPUT MIN DELAY, OUTPUT_MAX DELAY, or OUTPUT MIN DELAY
parameters. To specify these constraints, on the Assignments menu, click
Assignment Editor. By default, I/O paths are reported in the Clock
Setup and Clock Hold sections of the Timing Analyzer compilation
report.

1= Altera recommends that you turn on the Report IO Paths
Separately setting to make it easier to view the I/O timing
analysis reports for each device pin. This is optional in FPGA
designs, but is helpful for HardCopy II development because
the I/O timing requirements you specify must be met in both
Stratix II I/O timing and HardCopy II I/O timing results. This
setting helps to guarantee drop-in compatibility between your
Stratix I FPGA prototype and your HardCopy II structured
ASIC.

Use the following Tcl command to enable the Report IO Paths Separately
setting:

set_global assignment -name \
REPORT_IO_PATHS SEPARATELY ON

Quartus Il Software Version 6.0 Features Supported for
HardCopy Il Designs

The Quartus II software supports optimization features for HardCopy II
prototype development including:

B Physical Synthesis Optimization
B LogicLock Regions
B PowerPlay Power Analyzer

Altera Corporation
May 2006

HardCopy Il Recommended Settings in the Quartus Il Software

Physical Synthesis Optimization

To enable the Physical Synthesis Optimizations for the Stratix I FPGA
revision of the design, on the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Fitter Settings. These
optimizations get migrated into the HardCopy II companion revision for
placement and timing closure. When designing with a HardCopy II
device first, physical synthesis optimizations can be enabled for the
HardCopy II device, and these post-fit optimizations get migrated to the
Stratix I FPGA revision.

LogicLock Regions

The use of LogicLock Regions in the Stratix II FPGA are supported for
designs migrating to HardCopy II. However, the LogicLock Regions

are not passed into the HardCopy II Companion Revision. You can use
LogicLock in the HardCopy II design but you must create new
LogicLock Regions in the HardCopy II companion revision. In addition,
LogicLock Regions in HardCopy II devices can not have their properties
set to Auto Size or Floating Location. HardCopy II LogicLock Regions
must be manually sized and placed in the floorplan. When LogicLock
Regions are created in a HardCopy II device, they start with width and
height dimensions set to (1,1), and the origin coordinates for placement
are at X1_Y1 in the lower left corner of the floorplan. You must adjust the
size and location of your LogicLock Regions created in the HardCopy II
device before compiling the design.

I'=" For information about using LogicLock Regions, refer to the
LogicLock Design Methodology, chapter in volume 2 of the
Quartus II Handbook on the Altera web site at www.altera.com.

PowerPlay Power Analyzer

You can perform power estimation and analysis of your HardCopy Il and
Stratix II devices using the PowerPlay Early Power Estimator and
PowerPlay Power Analyzer for more accurate estimation of your device’s
power consumption. The PowerPlay Early Power Estimation is available
in the Quartus II software version 5.1 and later. The PowerPlay Power
Analyzer supports HardCopy II devices in version 6.0 and later of the
Quartus II software.

= For more information about using the PowerPlay Power
Analyzer, refer to the PowerPlay Power Analysis chapter in
volume 3 of the Quartus II Handbook.

Altera Corporation 3-19
May 2006

Quartus Il Handbook, Volume 1

Chip Editor for
HardCopy Il
Devices

3-20

Quartus Il Features Not Presently Supported for HardCopy Il
Designs

The Quartus II software version 6.0 does not support HardCopy II
devices with all of the advanced design features available for other Altera
devices. Many of these features are scheduled for subsequent releases of
the Quartus II software.

The Quartus II software version 6.0 does not support the following
features for HardCopy II prototype development using the Stratix II
FPGA:

B Incremental compilation (Synthesis and Fitter)
B Maximum fan-out assignments

When using the Quartus II Chip Editor for your HardCopy II design, the
Chip Editor changes are done in the following two ways:

B A Chip Editor change is applied to a compiled Stratix II design
revision and a new HardCopy II Companion Revision is created
afterwards, incorporating the Chip Editor modifications.

B A Chip Editor change is performed separately on compiled, existing
Stratix II and HardCopy II design revisions. No new companion
revisions are created.

If you want to use the Quartus II Chip Editor on a Stratix II design you
want to migrate to a HardCopy II device, it is best if you start with a
compiled Stratix II project and a new HardCopy II Companion Revision
created or overwritten using the HardCopy II Utilities.

Using the Chip Editor on a compiled HardCopy II design revision,
requires that you manually complete the changes in both HardCopy II
and Stratix Il revisions, and then use the HardCopy II Companion
Comparison Utility and third-party formal verification software to
determine if they are equivalent.

The Chip Editor for HardCopy II has the following enabled features:

B Add/Modify /Remove an HCell Macro of a Combinational
Function, Register, or Adder/Subtractor and connect wires to them

B Create new wires in the design

B EditIO Cell properties such as drive strength or programmable delay
values

B Edit PLL settings such as M/N counter settings or phase shift of
derived clocks

Altera Corporation
May 2006

Formal Verification of Stratix Il & HardCopy Il Revisions

Formal
Verification of
Stratix Il &
HardCopy Il
Revisions

Altera Corporation
May 2006

For more information about using the Quartus II Chip Editor, refer to the
Engineering Change Management chapter in volume 1 of the Quartus II
Handbook.

Third party formal verification software is available for your

HardCopy Il design. Cadence Encounter Conformal verification software
is used for Stratix I and HardCopy II families, as well as several other
Altera product families.

In order to use the Conformal software with the Quartus II software
project for your Stratix II and HardCopy II design revisions, you must
enable the EDA Netlist Writer. It is necessary to turn on the EDA Netlist
Writer so it can generate the necessary netlists and command files needed
to run the Conformal software. To automatically run the EDA Netlist
Writer during the compile of your Stratix II and HardCopy II design
revisions, perform the following steps:

1. On the Assignment menu, click EDA Tool Settings. The Settings
dialog box displays.

2. Inthe EDA Tool Settings list, select Formal Verification, and in the
Tool name list, select Conformal LEC.

3. Compile your Stratix II and Hardcopy II design revisions, with both
the EDA Tool Settings and the Conformal LEC turned on so the
EDA Netlist Writer automatically runs.

The Quartus I EDA Netlist Writer produces one netlist for Stratix Il when
it is run on that revision, and generates a second netlist when it runs on
the HardCopy Il revision. You can compare your Stratix II post-compile
netlist to your RTL source code using the scripts generated by the

EDA Netlist Writer. Similarly, you can compare your HardCopy II
post-compile netlist to your RTL source code with scripts provided by
the EDA Netlist Writer.

For more information about using the Cadence Encounter Conformal

verification software, refer to the Cadence Encounter Conformal Support
chapter in volume 3 of the Quartus II Handbook.

3-21

Quartus Il Handbook, Volume 1

HardCopy II
Utilities Menu

3-22

The HardCopy II Utilities menu is shown in the Quartus II software
(Figure 3-13). To access this menu, on the Project menu, click
HardCopy II Utilities. This menu contains the main functions you use to
develop your HardCopy II design and Stratix Il FPGA prototype
companion revision. From the HardCopy II Utilities menu, you can:

Design Center

Create or update HardCopy II companion revisions
Set which HardCopy II companion revision is the current revision
Generate HardCopy II Handoff Report for design reviews
Archive HardCopy Il Handoff Files for submission to the HardCopy

Compare the companion revisions for functional equivalence
Track your design progress using the HardCopy II Advisor

Figure 3-13. HardCopy Il Utilities Menu

Add/Remave Files in Project...

Revisions. ..,

Zopy Project..,

Archive Project...

Restare Archived Project...

Import Database. ..

Expott Database. ..

Import Design Partition. ..

Export Project as Design Partition. ..

Generate Tel File For Project...

Generate PowerPlay Early Power Estimator File

HardCopy Ukilities

HardCopy 1T Utilities

Locate

Hierarchy

#* Create/Overwrite HardCopy II Companion Revision, ..

#* Set Cutrent HardCopy 11 Companion Revision, .
Compare HardCopy II Companion Revisions

Generate HardCopy 11 Handoff Report

Archive HardCopy II Handoff Files. ..

#* HardCopy II Adwisar

Altera Corporation

May 2006

HardCopy Il Utilities Menu

Each of the features within the HardCopy II Utilities is summarized in
Table 3-2. The process for using each of these features is explained in the

following sections.

Table 3-2. HardCopy Il Utilities Menu Options

Applicable Design

Companion Revision

companion revision for your
Stratix Il and HardCopy |
design.

Companion Revision

Menu Description L Restrictions
Revision
Create/Overwrite Create a new companion Stratix Il prototype @ Must disable Auto Device
HardCopy I revision or update an existing | design and HardCopy |l selection

o Must set a Stratix Il device
and a HardCopy Il
companion device

Set Current
HardCopy I
Companion Revision

Specify which companion
revision to associate with
current design revision.

Stratix Il prototype

design and HardCopy |l

Companion Revision

Companion Revision must
already exist

HardCopy |l Handoff
Report

important design information
files and messages generated
by the Quartus Il compile

design and HardCopy |l

Companion Revision

Compare Compares the Stratix |l design | Stratix Il prototype Compilation of both revisions
HardCopy I revision with the HardCopy Il | design and HardCopy Il | must be complete
Companion companion design revision Companion Revision

Revisions and generates a report.

Generate Generate a report containing | Stratix Il prototype e Compilation of both

revisions must be complete
e Compare HardCopy Il

Companion Revisions

must have been executed

Archive HardCopy Il
Handoff Files

Generate a Quartus Il Archive
File specifically for submitting
the design to the HardCopy
Design Center. Similar to the
HardCopy Files Wizard for
HardCopy Stratix and APEX.

HardCopy I
Companion Revision

e Compilation of both
revisions must be
completed

e Compare HardCopy Il
Companion Revisions
must have been executed

e Generate HardCopy
Handoff Report must have
been executed

HardCopy Il Advisor

Open an Advisor, similar to the
Resource Optimization
Advisor, helping you through
the steps of creating a
HardCopy Il project.

Stratix Il prototype

design and HardCopy |l

Companion Revision

None

Altera Corporation
May 2006

Companion Revisions

HardCopy II designs follow a different development flow in the
Quartus I software compared with previous HardCopy families. You can
create multiple revisions of your Stratix II prototype design, but you can
also create separate revisions of your design for a HardCopy II device.

3-23

Quartus Il Handbook, Volume 1

3-24

The Quartus II software creates specific HardCopy II design revisions of

the project in conjunction to the regular project revisions. These parallel

design revisions for HardCopy II devices are called companion revisions.

[l=~ Although you can create multiple project revisions, Altera
recommends that you maintain only one Stratix II FPGA
revision once you have created the HardCopy II companion
revision.

When you have successfully compiled your Stratix II prototype FPGA,
you can create a HardCopy II companion revision of your design and
proceed with compiling the HardCopy II companion revision. To create a
companion revision, on the Project menu, point to HardCopy II Utilities
and click Create/Overwrite HardCopy II Companion Revision. Use the
dialog box to create a new companion revision or overwrite an existing
companion revision (Figure 3-14).

Figure 3-14. Create or Overwrite HardCopy Il Companion Revision

Create/Overwrite HardCopy Il Companion Revision E]

Create a companion HardCopy |l revision to an existing Stratix |l design. The companion
revision must have the same assignments and settings a3 the current revision. Submit both
revisions to the HardCopy || Design Center.
Curent revigion: demo_design
Curent companion revigion: demo_design_hcii

Cieate/overwite companion revisions

% Dverarite current companion revision with assignments fram the curent revision

" Create new companion revision with assignments from the current revision

Cancel

You can associate only one Stratix II revision to one HardCopy II
companion revision. If you created more than one revision or more than
one companion revision, set the current companion for the revision you
are working on. On the Project menu, point to HardCopy II Utilities and
click Set Current HardCopy II Companion Revision (Figure 3-15).

Figure 3-15. Set Current HardCopy Il Companion Revision

Set Current HardCopy |l Companion Revision

Allows you ta change the companion revision associated with the current revision.

Current revision: demo_design

Current companion revision; ‘damuﬁdas\gnﬁhc\iﬁllﬂ j

demo desiEn hil lri2

Altera Corporation
May 2006

HardCopy Il Utilities Menu

Altera Corporation
May 2006

Compiling the HardCopy Il Companion Revision

The Quartus II software enables you to compile your HardCopy II design
with preliminary timing information. The timing constraints for the
HardCopy II companion revision can be the same as the Stratix II design
used to create the revision. The Quartus II software contains preliminary
timing models for HardCopy II devices and you can gauge how much
performance improvement you can achieve in the HardCopy II device
compared to the Stratix I FPGA. Altera verifies that the HardCopy II
Companion Device timing requirements are met in the HardCopy Design
Center.

After you create your HardCopy II companion revision from your
compiled Stratix Il design, select the companion revision in the Quartus II
software design revision drop-down box (Figure 3-16) or from the
Revisions list. Compile the HardCopy II companion revision. After the
Quartus II software compiles your design, you can perform a comparison
check of the HardCopy II companion revision to the Stratix II prototype
revision.

Figure 3-16. Changing Current Revision

File Edit View Project Assignments Processing Tools Window Help

0O = | Y4 |dem07design j
dernn_design

Comparing HardCopy Il & Stratix Il Companion Revisions

Altera uses the companion revisions in a single Quartus II project to
maintain the seamless migration of your design from a Stratix Il FPGA to
a HardCopy II structured ASIC. This methodology allows you to design
with one set of Register Transfer Level (RTL) code to be used in both
Stratix Il FPGA and HardCopy II structured ASIC, guaranteeing
functional equivalency.

When making changes to companion revisions, use the Compare
HardCopy II Companion Revisions feature to ensure that your Stratix II
design matches your HardCopy II design functionality and compilation
settings. To compare companion revisions, on the Project menu, point to
HardCopy II Utilities and click Compare HardCopy II Companion
Revisions.

I'=" You must perform this comparison after both Stratix IT and

HardCopy II designs are compiled in order to hand off the
design to Altera’s HardCopy Design Center.

3-25

Quartus Il Handbook, Volume 1

3-26

The Comparison Revision Summary is found in the Compilation Report
and identifies where assignments were changed between revisions or if

there is a change in the logic resource count due to different compilation
settings.

Generate HardCopy Il Handoff Report

In order to submit a design to the HardCopy Design Center, you must
generate a HardCopy II Handoff Report providing important
information about the design that you want the HardCopy Design Center
to review. To generate the HardCopy II Handoff Report, you must:

B Successfully compile both Stratix II and HardCopy II revisions of
your design

B Successfully run the Compare HardCopy II Companion Revisions
utility

Once you generate the HardCopy II Handoff Report, you can archive the
design using the Archive HardCopy II Handoff Files utility described in
“Archive HardCopy II Handoff Files” on page 3-26.

Archive HardCopy Il Handoff Files

The last step in the HardCopy II design methodology is to archive the
HardCopy II project for submission to the HardCopy Design Center for
back-end migration. The HardCopy II archive utility creates a different
Quartus II Archive File than the standard Quartus II project archive
utility generates. This archive contains only the necessary data from the
Quartus II project needed to implement the design in the HardCopy
Design Center.

In order to use the Archive HardCopy II Handoff Files utility, you must
complete the following;:

B Compile both the Stratix Il and HardCopy Il revisions of your design
B Run the Compare HardCopy II Revisions utility
B Generate the HardCopy Il Handoff Report

To select this option, on the Project menu point to HardCopy II Utilities
and click Archive HardCopy II Handoff File utility.

HardCopy Il Advisor

The HardCopy II Advisor provides the list of tasks you should follow to
develop your Stratix II prototype and your HardCopy II design. To run
the HardCopy II Advisor, on the Project menu, point to HardCopy II
Utilities and click HardCopy II Advisor. The following list highlights the

Altera Corporation
May 2006

HardCopy Il Utilities Menu

Altera Corporation
May 2006

checkpoints that the HardCopy II Advisor reviews. This list includes the
major check points in the design process; it does not show every step in
the process for completing your Stratix Il and HardCopy II designs:

1. Select a Stratix II device.

2. Select a HardCopy II device.

3. Turn on the Design Assistant.

4. Set up timing constraints.

5. Check for incompatible assignments.

6. Compile and check Stratix II design.

7. Create or overwrite companion revision.

8. Compile and check HardCopy II companion results.

9. Compare companion revisions.

10. Generate Handoff Report.

11. Archive Handoff Files and send to Altera.

The HardCopy II Advisor shows the necessary steps that pertain to your
current selected device. The Advisor shows a slightly different view for a
design with Stratix II selected as compared to a design with HardCopy II
selected.

In the Quartus II software, you can start designing with the HardCopy II
device selected first, and build a Stratix I companion revision second.
When you use this approach, the HardCopy II Advisor task list adjusts
automatically to guide you from HardCopy II development through
Stratix I FPGA prototyping, it then completes the comparison archiving
and handoff to Altera.

When your design uses the Stratix Il FPGA as your starting point, Altera
recommends following the Advisor guidelines for your Stratix II FPGA
until you complete the prototype revision.

When the Stratix II FPGA design is complete, create and switch to your
HardCopy II companion revision and follow the Advisor steps shown in

that revision until you are finished with the HardCopy Il revision and are
ready to submit the design to Altera for back-end migration.

3-27

Quartus Il Handbook, Volume 1

Each category in the HardCopy II Advisor list has an explanation of the
recommended settings and constraints, as well as quick links to the
features in the Quartus II software that are needed for each section. The
HardCopy II Advisor displays:

B A green check box when you have successfully completed one of the
steps

B A yellow caution sign for steps that must be completed before
submitting your design to Altera for HardCopy development

B Aninformation callout for items you must verify

Selecting an item within the HardCopy II flow menu provides a
description of the task and recommended action. The view in
the HardCopy II Advisor differs depending on the device you
select.

Figure 3-17 shows the HardCopy II Advisor with the Stratix II device
selected.

Figure 3-17. HardCopy Il Advisor with Stratix Il Selected

® HardCopy Il Advisor
HardCopy IL Advisor

&) Getting more information
wf Choose a Stratix 11 device Frecommendation Compile and check Stratix Il revision
+/ Cheose aHardCapy 11 campanion device Diescrption Compile the design and verfy the speciied comparion
—wd Setup Stratix II revision HardCopy |l device is compatible with the design, Desian
i Turn on the Design Assistant Agsistant pagses with no emmors, iming requirements were
 Turn on th fssembler successiuly met and all paths were fiming constrained, and
10t fully defined for all the 10 pi
f-f Setup timing canstraints ypes a15 Ul Sefined for allhe /L pins.
- Check for Incompatible Assignments Action Press the button below to werify the compilation was
Py Compile and check Stratix IT revision successiul for HardCopy Il development.

«/ Create a HardCopy IT companion revisian Compile sl Check Resuts

£ Verify HardCopy IT revision
Compile and check HardCopy IT companion revision Open Device Resource Guids [Compilation Repart]
Compare companion revisions Open Desion Assistant Summary [Compilation Aepor]
/Y Generate Handoff Report Open Timing Constraint Check Summarny [Compilation
A #rchive Handoff Files and Send to Alkera Fepart)

3-28 Altera Corporation
May 2006

HardCopy Il Utilities Menu

Altera Corporation
May 2006

Figure 3-18 shows the HardCopy II Advisor with the HardCopy II device
selected.

® HardCopy Il Advisor

HardCopy II Advisor
Getting maore information

/' Choose a HardCopy 11 device
/' Choose a Stratix IT companion device
=1+ Setup HardCopy IT revision
wd Turn on the Design Assistant
«/ Turn on the Assembler
#-d Setup timing constrainks

wf Create a Stratix IT COMpanion revision
A \erify Stratix 1T revision

A Compile and check Stratix [T companion revision
A CoMmpare Companion revisions

A Generate Handoff Report

A Archive Handoff Flles and Send ta Altera

+

Description

Action

Figure 3-18. HardCopy Il Advisor with HardCopy Il Device Selected

Frecommendation| Compile and check HardCopy Il rewision

Compile the design and verfy the specified companion
HardCopy Il device is compatible with the design, Design
{issistant passes with no ertors, timing requitements were
successHully met and all paths were timing constrained, and
140 tppes are fully defined for all the /0 pins.

Press the button below to verify the compilation was
successful for HardCopy Il development.

Commpile and Check Results

Open Device Resource Guide [Compilation Feport]
Dpen Design Assistant Summary [Compilation Report]

Dpen Timing Constraint Check Summary [Compilation
Report]

HardCopy Il Floorplan View

The Quartus II software displays the preliminary timing closure
floorplan and placement of your HardCopy II companion revision. This
floorplan shows the preliminary placement and connectivity of all I/O
pins, PLLs, memory blocks, HCell macros, and DSP HCell macros.
Congestion mapping of routing connections can be viewed using the
Bird’s Eye viewer settings. This is useful in analyzing densely packed
areas of your floorplan that could be reducing the peak performance of
your design. The HardCopy Design Center verifies final HCell macro
timing and placement to guarantee timing closure is achieved.

3-29

Quartus Il Handbook, Volume 1

Figure 3-19 shows an example of the HC230F1020 device floorplan.

Figure 3-19. HC230F1020 Device Floorplan

1
CEEEA 1]
|
I
I

£

R R Ay

£

!
T

O T OO, OO T

In this small example design, the logic is placed near the bottom edge.
You can see the placement of a DSP block constructed of HCell Macros,
various logic HCell Macros, and an M4K memory block. A labeled
close-up view of this region is shown in Figure 3-20.

Figure 3-20. Close-Up View of Floorplan

3-30 Altera Corporation
May 2006

Conclusion

Conclusion

Altera Corporation
May 2006

The HardCopy Design Center performs final placement and timing
closure on your HardCopy II design based on the timing constraints
provided in the Stratix I design.

For more information about the HardCopy Design Center’s process,
refer to the Back-End Design Flow for HardCopy Series Devices chapter in
volume 1 of the HardCopy Series Device Handbook.

You can use the Quartus II software to design HardCopy Il devices and to
develop prototypes using Stratix Il FPGAs. This is done using the
standard FPGA development process with the addition of the
HardCopy II Device Resource Guide, HardCopy II Companion Devices
assignment HardCopy II Utilities, and the HardCopy II Advisor.

The addition of the HardCopy II Advisor to the Quartus II software
provides an instrumental development guide for you to complete your
HardCopy II and Stratix II device designs. The HardCopy II Utilities
included in the Quartus II software provide you with the tools necessary
to complete your Stratix II FPGA prototype and HardCopy II structured
ASIC design. The addition of the HardCopy II companion revisions
feature to the process allows for rapid development and verification that
your HardCopy II design is functionally equivalent to your Stratix II
FPGA prototype.

3-31

Quartus Il Handbook, Volume 1

HardCopy Stratix
Device Support

3-32

The Altera HardCopy devices provide a comprehensive alternative to
ASICs. HardCopy structured ASICs offer a complete solution from
prototype to high-volume production, and maintain the powerful
features and high-performance architecture of their equivalent FPGAs
with the programmability removed. You can use the Quartus II design
software to design HardCopy devices in a manner similar to the
traditional ASIC design flow and you can prototype with Altera's high
density Stratix, APEX 20KC, and APEX 20KE FPGAs before seamlessly
migrating to the corresponding HardCopy device for high-volume
production.

HardCopy structured ASICs provide the following key benefits:

B Improves performance, on the average, by 40% over the
corresponding -6 speed grade FPGA device

B Lowers power consumption, on the average, by 40% over the
corresponding FPGA

B DPreserves the FPGA architecture and features, and minimizes risk

B Guarantees first-silicon success through a proven, seamless
migration process from the FPGA to the equivalent HardCopy
device

B Offers a quick turnaround of the FPGA design to a structured ASIC
device—samples are available in about eight weeks

Altera’s Quartus II software has built-in support for HardCopy Stratix
devices. The HardCopy design flow in Quartus II software offers the
following advantages:

B Unified design flow from prototype to production

B Performance estimation of the HardCopy Stratix device allows you
to design systems for maximum throughput

B Easy-to-use and inexpensive design tools from a single vendor

B Anintegrated design methodology that enables system-on-a-chip
designs

This section discusses the following areas:

B How to design HardCopy Stratix and HardCopy APEX structured
ASICs using the Quartus II software

B Anexplanation of what the HARDCOPY_FPGA_PROTOTYPE
devices are and how to target designs to these devices

B Performance and power estimation of HardCopy Stratix devices

B How to generate the HardCopy design database for submitting
HardCopy Stratix and HardCopy APEX designs to the HardCopy
Design Center

Altera Corporation
May 2006

Features

Features

Altera Corporation
May 2006

Beginning with version 4.2, the Quartus II software contains several
powerful features that facilitate design of HardCopy Stratix and
HardCopy APEX devices:

HARDCOPY_FPGA_PROTOTYPE Devices

These are virtual Stratix FPGA devices with features identical to
HardCopy Stratix devices. You must use these FPGA devices to
prototype your designs and verify the functionality in silicon.

HardCopy Timing Optimization Wizard

Using this feature, you can target your design to HardCopy Stratix
devices, providing an estimate of the design’s performance in a
HardCopy Stratix device.

HardCopy Stratix Floorplans and Timing Models

The Quartus II software supports post-migration HardCopy Stratix
device floorplans and timing models and facilitates design
optimization for design performance.

Placement Constraints

Location and LogicLock " constraints are supported at the
HardCopy Stratix floorplan level to improve overall performance.

Improved Timing Estimation

Beginning with version 4.2, the Quartus II software determines
routing and associated buffer insertion for HardCopy Stratix
designs, and provides the Timing Analyzer with more accurate
information about the delays than was possible in previous versions
of the Quartus Il software. The Quartus II Archive File automatically
receives buffer insertion information, which greatly enhances the
timing closure process in the back-end migration of your HardCopy
Stratix device.

Design Assistant

This feature checks your design for compliance with all HardCopy
device design rules and establishes a seamless migration path in the
quickest time.

HardCopy Files Wizard

This wizard enables you to deliver to Altera the design database and
all the deliverables required for migration. This feature is used for
HardCopy Stratix and HardCopy APEX devices.

The HardCopy Stratix and HardCopy APEX PowerPlay Early Power
Estimator is available on the Altera web site at www.altera.com.

3-33

Quartus Il Handbook, Volume 1

HARDCOPY_FPGA
_PROTOTYPE,
HardCopy Stratix
& Stratix Devices

You must use the HARDCOPY_FPGA_PROTOTYPE virtual devices
available in the Quartus II software to target your designs to the actual
resources and package options available in the equivalent post-migration
HardCopy Stratix device. The programming file generated for the
HARDCOPY_FPGA_PROTOTYPE can be used in the corresponding
Stratix FPGA device.

The purpose of the HARDCOPY_FPGA_PROTOTYPE is to guarantee
seamless migration to HardCopy by making sure that your design only
uses resources in the FPGA that can be used in the HardCopy device after
migration. You can use the equivalent Stratix FPGAs to verify the design’s
functionality in-system, then generate the design database necessary to
migrate to a HardCopy device. This process ensures the seamless
migration of the design from a prototyping device to a production device
in high volume. It also minimizes risk, assures samples in about eight
weeks, and guarantees first-silicon success.

s HARDCOPY_FPGA_PROTOTYPE devices are only available
for HardCopy Stratix devices and are not available for the
HardCopy II or HardCopy APEX device families.

Table 3-3 compares HARDCOPY_FPGA_PROTOTYPE devices, Stratix
devices, and HardCopy Stratix devices.

Table 3-3. Qualitative Comparison of HARDCOPY FPGA_PROTOTYPE to Stratix & HardCopy Stratix Devices

Stratix Device HARDCOPY_FPGA_PROTOTYPE Device HardCopy Stratix Device
FPGA Virtual FPGA Structured ASIC
FPGA Architecture identical to Stratix FPGA Architecture identical to Stratix FPGA
FPGA Resources identical to HardCopy Stratix device M-RAM resources different than

Stratix FPGA in some devices

Ordered through Cannot be ordered, use the Altera Stratix FPGA | Ordered by Altera part number
Altera part number | part number

3-34

Altera Corporation
May 2006

HARDCOPY_FPGA_PROTOTYPE, HardCopy Stratix & Stratix Devices

Table 34 lists the resources available in each of the HardCopy Stratix
devices.

Table 3-4. HardCopy Stratix Device Physical Resources

Device | LEs "ol k)71 | micks | Blocks | Biocs | Bos | P45 |use V0 i
HC1S25F672 25,660 250 224 138 2 10 6 473
HC1S30F780 32,470 325 295 171 2(2) 12 6 597
HC1S40F780 41,250 410 384 183 2(2) 14 6 615
HC1S60F1020 | 57,120 570 574 292 6 18 12 773
HC1S80F1020 | 79,040 800 767 364 6 (2) 22 12 773

Notes to Table 3—4:
(1) Combinational and registered logic do not include DSP blocks, on-chip RAM, or PLLs.
(2) The M-RAM resources for these HardCopy devices differ from the corresponding Stratix FPGA.

Altera Corporation

May 2006

For a given device, the number of available M-RAM blocks in
HardCopy Stratix devices is identical with the corresponding
HARDCOPY_FPGA_PROTOTYPE devices, but may be different from
the corresponding Stratix devices. Maintaining the identical resources
between HARDCOPY_FPGA_PROTOTYPE and HardCopy Stratix
devices facilitates seamless migration from the FPGA to the structured
ASIC device.

For more information about HardCopy Stratix devices, refer to the
HardCopy Stratix Device Family Data Sheet section in volume 1 of the
HardCopy Series Handbook.

The three devices, Stratix FPGA, HARDCOPY_FPGA_PROTOTYPE, and
HardCopy device, are distinct devices in the Quartus II software. The
HARDCOPY_FPGA_PROTOTYPE programming files are used in the
Stratix FPGA for your design. The three devices are tied together with the
same netlist, thus a single SRAM Object File (.sof) can be used to achieve
the various goals at each stage. The same SRAM Object File is generated
in the HARDCOPY_FPGA_PROTOTYPE design, and is used to program
the Stratix FPGA device, the same way that it is used to generate the
HardCopy Stratix device, guaranteeing a seamless migration.

For more information about the SRAM Object File and programming

Stratix FPGA devices, refer to the Programming and Configuration chapter
of the Introduction to Quartus II Manual.

3-35

Quartus Il Handbook, Volume 1

HardCopy
Design Flow

Figure 3-21 shows a HardCopy design flow diagram. The design steps
are explained in detail in the following sections of this chapter. The
HardCopy Stratix design flow utilizes the HardCopy Timing
Optimization Wizard to automate the migration process into a one-step
process. The remainder of this section explains the tasks performed by
this automated process.

For a detailed description of the HardCopy Timing Optimization Wizard
and HardCopy Files Wizard, refer to “HardCopy Timing Optimization
Wizard” on page 3-39 and “Generating the HardCopy Design Database”
on page 3-50.

Figure 3-21. HardCopy Stratix & HardCopy APEX Design Flow Diagram

(Slarl Quartus HardCopy Fluw>

v

Stratix APEX

Select FPGA Family

v

Select Stratix

HARDCOPY_FPGA_PROTOTYPE

Device
One Step Process (9)
v v
Compile ‘ Compile ‘
: P Two Step Process (2 f
Mirgrate the Migrate the Migrate the

Compiled Project
Migrate Only (7)

v

Compiled Project

Compiled Project

v

v

Close the Quartus Il
FPGA Project

Close the Quartus I
FPGA Project

Close the Quartus Il
FPGA Project

v

v

v

Open the Quartus Il
HardCopy Project

Open the Quartus Il
HardCopy Project

Open the Quartus Il
HardCopy Project

v

v

v

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Compile to HardCopy
Stratix Device (Actual
HardCopy Floorplan)

Select APEX FPGA

Device Supported by
HardCopy APEX

Compile

4

Placement
\ 4 > Info for

Notes for Figure 3-21:

HardCopy

Run HardCopy Files
Wizard (Quartus Il
| Archive File for
delivery to Altera)

Migrate-Only Process: The displayed flow is completed manually.
Two-Step Process: Migration and Compilation are done automatically (shaded area).
One-Step Process: Full HardCopy Compilation. The entire process is completed automatically (shaded area).

Altera Corporation
May 2006

HardCopy Design Flow

The Design Flow Steps of the One Step Process

The following sections describe each step of the full HardCopy
compilation (the One Step Process), as shown in Figure 3-21.

Compile the Design for an FPGA

This step compiles the design for a HARDCOPY_FPGA_PROTOTYPE
device and gives you the resource utilization and performance of the
FPGA.

Migrate the Compiled Project

This step generates the Quartus II Project File (.qpf) and the other files
required for HardCopy implementation. The Quartus II software also
assigns the appropriate HardCopy Stratix device for the design
migration.

Close the Quartus FPGA Project

Because you must compile the project for a HardCopy Stratix device, you
must close the existing project which you have targeted your design to a
HARDCOPY_FPGA_PROTOTYPE device.

Open the Quartus HardCopy Project

Open the Quartus II project that you created in the “Migrate the
Compiled Project” step. The selected device is one of the devices from the
HardCopy Stratix family that was assigned during that step.

Compile for HardCopy Stratix Device

Compile the design for a HardCopy Stratix device. After successful
compilation, the Timing Analysis section of the compilation report shows
the performance of the design implemented in the HardCopy device.

Altera Corporation 3-37
May 2006

Quartus Il Handbook, Volume 1

How to Design
HardCopy Stratix
Devices

3-38

This section describes the process for designing for a HardCopy Stratix
device using the HARDCOPY_FPGA_PROTOTYPE as your initial
selected device. In order to use the HardCopy Timing Optimization
Wizard, you must first design with the
HARDCOPY_FPGA_PROTOTYPE in order for the design to migrate to a
HardCopy Stratix device.

To target a design to a HardCopy Stratix device in the Quartus II
software, follow these steps:

1. If you have not yet done so, create a new project or open an existing
project.

2. On the Assignments menu, click Settings. In the Category list, select
Device.

3. Onthe Device page, in the Family list, select Stratix. Select the
desired HARDCOPY_FPGA_PROTOTYPE device in the Available
Devices list (Figure 3-22).

Figure 3-22. Selecting a HARDCOPY _FPGA_PROTOTYPE Device

Settings - retiming_small El
Category:
Files
User Libraries [Current Project] Select the family and device you want to target for compilation.
Device
Timing Hequ\rgments & Options Famie [Shatis j Show in ‘Avalable devices' list
#- EDA Tool Settings
Package: Ay h
+- Compilation Pracess Settings Device & Pin Options... ‘
+- dnalysis & Synthesis Settings Pin count: Ary h
#- Fitter Settings Target device
Assembler £ futo device selected by the Fiter S | Gl El

Timing Analyzer & Specific device selectad in vailable devices' list Core woltage: 1.5

Diesign Assistant o~

SignalTap Il Logic Analyzer I Show advanced devices
Logic Analyzer Interface

SignalProbe Setiings R ey

+ Simulator Sellings Name [Les [Memon. [DSPIPLL &
+ PoweiPlay Power &nalyzer Setlings EP1540B95EI6 41250 423744 14 12
- Goftware Buld Setiings EP1540F780C5 1250 M2TM 14 B
HardCopy Settings EP1S40F780CS_ HARDCOPY_FPGA_PROTOTYPE 41250 2244096 14 6
E 4 &
5 [
P &
EP1540F780C7_HARDCOPY_FPRA_PROTOTYPE 41250 2244095 14 6
EP1540F700CE 41250 3423744 14 6

EF1540F780I6 41250 23744 14 6 ~

< | >

Migration compatibility

Migration Devices |

0 migration devices selected V¥

Cancel

Altera Corporation
May 2006

How to Design HardCopy Stratix Devices

Altera Corporation
May 2006

By choosing the HARDCOPY_FPGA_PROTOTYPE device, all the
design information, available resources, package option, and pin
assignments are constrained to guarantee a seamless migration of
your project to the HardCopy Stratix device. The netlist resulting
from the HARDCOPY_FPGA_PROTOTYPE device compilation
contains information about the electrical connectivity, resources
used, I/O placements, and the unused resources in the FPGA device.

4. Onthe Assignments menu, click Settings. In the Category list, select
HardCopy Settings and specify the input transition timing to be
modeled for both clock and data input pins. These transition times
are used in static timing analysis during back-end timing closure of
the HardCopy device.

5. Add constraints to your HARDCOPY_FPGA_PROTOTYPE device,
and on the Processing menu, click Start Compilation to compile the
design.

HardCopy Timing Optimization Wizard

After you have successfully compiled your design in the
HARDCOPY_FPGA_PROTOTYPE, you must migrate the design to the
HardCopy Stratix device to get a performance estimation of the
HardCopy Stratix device. This migration is required before submitting
the design to Altera for the HardCopy Stratix device implementation. To
perform the required migration, on the Project menu, point to HardCopy
Utilities and click HardCopy Timing Optimization Wizard.

At this point, you are presented with the following three choices to target
the designs to HardCopy Stratix devices (Figure 3-23):

B Migration Only: You can select this option after compiling the
HARDCOPY_FPGA_PROTOTYPE project to migrate the project to a
HardCopy Stratix project.

You can now perform the following tasks manually to target the

design to a HardCopy Stratix device. Refer to”Performance

Estimation” on page 3-42 for additional information about how to

perform these tasks.

e Close the existing project

e Open the migrated HardCopy Stratix project

e Compile the HardCopy Stratix project for a HardCopy Stratix
device

3-39

Quartus Il Handbook, Volume 1

B Migration and Compilation: You can select this option after
compiling the project. This option results in the following actions:
e Migrating the project to a HardCopy Stratix project
e Opening the migrated HardCopy Stratix project and compiling
the project for a HardCopy Stratix device

B Full HardCopy Compilation: Selecting this option results in the
following actions:
e Compiling the existing HARDCOPY_FPGA_PROTOTYPE
project
e Migrating the project to a HardCopy Stratix project
e Opening the migrated HardCopy Stratix project and compiling
it for a HardCopy Stratix device

Figure 3-23. HardCopy Timing Optimization Wizard Options

HardCopy Timing Optimization Wizard: New Project [page 1 of 2] g|

‘wihat iz the working directany for the migrated project? This directory will contain the wgrm
deszign file and other related files azzociated with this project. |F you type a directory name
that does niot exist, Quartus || can create it for pou.

C:/fpga_rizcB/he_nizc8_hardcopy_optimatiol -

‘whhich flow do you want this wizard to run?

" Migration Only: migrate the current project ta a HardCopy project

" Migration and Compilation: migrate the current project to a HardCopy project, and
then open and compile the new HardCopy project

&+ Full HardCopy Compilation; compile the current project, migrate the project to a
HardCopy project. and then open and compile the new HardCopy project

| et > | Cancel

The main benefit of the HardCopy Timing Wizard's three options is
flexibility of the conversion process automation. The first time you
migrate your HARDCOPY_FPGA_PROTOTYPE project to a HardCopy
Stratix device, you may want to use Migration Only, and then work on the
HardCopy Stratix project in the Quartus II software. As your prototype
FPGA project and HardCopy Stratix project constraints stabilize and you
have fewer changes, the Full HardCopy Compilation is ideal for one-click
compiling of your HARDCOPY_FPGA_PROTOTYPE and HardCopy
Stratix projects.

3-40 Altera Corporation
May 2006

How to Design HardCopy Stratix Devices

After selecting the wizard you want to run, the “HardCopy Timing
Optimization Wizard: Summary” page shows you details about the
settings you made in the Wizard, as shown in Figure 3-24.

Figure 3-24. HardCopy Timing Optimization Wizard Summary Page

HardCopy Timing Optimization Wizard: Summary [page 2 of 2] El

Wwihen you click Finish, a new project will be created bazed on the curent project with the
fallawing zattings:

Praject name: he_riscB

Project directory: C:/fpga_rizc8/he_nisc8_hardcopy_optimatio/

Device family: HardCopy Stratix

Target device: HC1540F 730

The wizard will corpile the current project, rigrate the current project to a new HardCopy
project, and then apen and compile the new HardCopy praject.

‘whhen the wizard has successfully compiled the HardCopy project. and pou have finished
optimizing the timing of the project, use the HardCopy Files wizard to generate the files
necesszary for a HardCopy device.

< Back Cancel

When either of the second two options in Figure 3-23 are selected
(Migration and Compilation or Full HardCopy Compilation), designs
are targeted to HardCopy Stratix devices and optimized using the
HardCopy Stratix placement and timing analysis to estimate
performance. For details on the performance optimization and estimation
steps, refer to “Performance Estimation” on page 3—42.If the performance
requirement is not met, you can modify your RTL source, optimize the
FPGA design, and estimate timing until you reach timing closure.

Tcl Support for HardCopy Migration

To complement the GUI features for HardCopy migration, the Quartus II
software provides the following command-line executables (which
provide the tool command language (Tcl) shell to run the - -flow Tcl
command) to migrate the HARDCOPY_FPGA_PROTOTYPE project to
HardCopy Stratix devices:

quartus_sh --flow migrate to hardcopy <project_name> [-C <revision>] +

This command migrates the project compiled for the
HARDCOPY_FPGA_PROTOTYPE device to a HardCopy Stratix device.

quartus_sh --flow hardcopy full compile <project_name> [-C <revision>] +

Altera Corporation 3-41
May 2006

Quartus Il Handbook, Volume 1

Design
Optimization &
Performance
Estimation

3-42

This command performs the following tasks:

B Compiles the exsisting project for a
HARDCOPY_FPGA_PROTOTYPE device.

B Migrates the project to a HardCopy Stratix project.

B Opens the migrated HardCopy Stratix project and compiles it for a
HardCopy Stratix device.

The HardCopy Timing Optimization Wizard creates the HardCopy
Stratix project in the Quartus II software, where you can perform design
optimization and performance estimation of your HardCopy Stratix
device.

Design Optimization

Beginning with version 4.2, the Quartus II software supports HardCopy
Stratix design optimization by providing floorplans for placement
optimization and HardCopy Stratix timing models. These features enable
you to refine placement of logic array blocks (LAB) and optimize the
HardCopy design further than the FPGA performance. Customized
routing and buffer insertion done in the Quartus II software are then used
to estimate the design’s performance in the migrated device. The
HardCopy device floorplan, routing, and timing estimates in the
Quartus II software reflect the actual placement of the design in the
HardCopy Stratix device, and can be used to see the available resources,
and the location of the resources in the actual device.

Performance Estimation

Figure 3-25 illustrates the design flow for estimating performance and
optimizing your design. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, migrate the design to the
HardCopy Stratix device, and get placement optimization and timing
estimation of your HardCopy Stratix device.

In the event that the required performance is not met, you can:

B Work to improve LAB placement in the HardCopy Stratix project.
or

B Go back to the HARDCOPY_FPGA_PROTOTYPE project and
optimize that design, modify your RTL source code, repeat the

migration to the HardCopy Stratix device, and perform the
optimization and timing estimation steps.

Altera Corporation
May 2006

Design Optimization & Performance Estimation

=" Onaverage, HardCopy Stratix devices are 40% faster than the
equivalent -6 speed grade Stratix FPGA device. These
performance numbers are highly design dependent, and you
must obtain final performance numbers from Altera.

Figure 3-25. Obtaining a HardCopy Performance Estimation

Proven Netlist & New
Timing & Placement
Constraint

Proven Netlist,
Pin Assignments, & Timing
Constraints

| HardCopy Placement

Stratix FPGA "1 &Timing Analysis

HardCopy Stratix

To perform Timing Analysis for a HardCopy Stratix device, follow these
steps:

1. Open an existing project compiled for a
HARDCOPY_FPGA_PROTOYPE device.

2. On the Project menu, point to HardCopy Utilities and click
HardCopy Timing Optimization Wizard.

3. Select a destination directory for the migrated project and complete
the HardCopy Timing Optimization Wizard process.

On completion of the HardCopy Timing Optimization Wizard, the
destination directory created contains the Quartus II project file, and
all files required for HardCopy Stratix implementation. At this stage,
the design is copied from the HARDCOPY_FPGA_PROTOTYPE
project directory to a new directory to perform the timing analysis.
This two-project directory structure enables you to move back and
forth between the HARDCOPY_FPGA_PROTOTYPE design
database and the HardCopy Stratix design database. The Quartus II
software creates the <project name>_hardcopy_optimization
directory.

You do not have to select the HardCopy Stratix device while
performing performance estimation. When you run the HardCopy
Timing Optimization Wizard, the Quartus II software selects the
HardCopy Stratix device corresponding to the specified
HARDCOPY_FPGA_PROTOTYPE FPGA. Thus, the information
necessary for the HardCopy Stratix device is available from the
earlier HARDCOPY_FPGA_PROTOTYPE device selection.

Altera Corporation 3-43
May 2006

Quartus Il Handbook, Volume 1

CAUTION

All constraints related to the design are also transferred to the new
project directory. You can modify these constraints, if necessary, in
your optimized design environment to achieve the necessary timing
closure. However, if the design is optimized at the
HARDCOPY_FPGA_PROTOTYPE device level by modifying the
RTL code or the device constraints, you must migrate the project
with the HardCopy Timing Optimization Wizard.

If an existing project directory is selected when the HardCopy
Timing Optimization Wizard is run, the existing information is
overwritten with the new compile results.

The project directory is the directory that you chose for the migrated
project. A snapshot of the files inside the

<project name>_hardcopy_optimization directory is shown in

Table 3-5.

Table 3-5. Directory Structure Generated by the HardCopy Timing
Optimization Wizard

<project name>_hardcopy_optimization\

<project name>.qsf

<project name>.qpf

<project name>.sof

<project name>.macr

<project name>.gclk

db\

hardcopy_fpga_prototype\
fpga_<project name>_violations.datasheet
fpga_<project name>_target.datasheet
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_hcpy.vo
fpga_<project name>_cpld.datasheet
fpga_<project name>_cksum.datasheet
fpga_<project name>.tan.rpt
fpga_<project name>.map.rpt
fpga_<project name>.map.atm
fpga_<project name> fit.rpt
fpga_<project name>.db_info
fpga_<project name>.cmp.xml
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.atm
fpga_<project name>.asm.rpt
fpga_<project name>.qarlog
fpga_<project name>.qar
fpga_<project name>.qsf
fpga_<project name>.pin
fpga_<project name>.qpf

db_export\
<project name>.map.atm
<project name>.map.hdbx
<project name>.db_info

4.

3-44

Open the migrated Quartus II project created in Step 3.

Altera Corporation
May 2006

Design Optimization & Performance Estimation

Altera Corporation
May 2006

5. Perform a full compilation.

After successful compilation, the Timing Analysis section of the
Compilation Report shows the performance of the design.

8= Performance estimation is not supported for HardCopy APEX
devices in the Quartus II software. Your design can be optimized
by modifying the RTL code or the FPGA design and the
constraints. You should contact Altera to discuss any desired
performance improvements with HardCopy APEX devices.

Buffer Insertion

Beginning with version 4.2, the Quartus II software provides improved
HardCopy Stratix device timing closure and estimation, to more
accurately reflect the results expected after back-end migration. The
Quartus II software performs the necessary buffer insertion in your
HardCopy Stratix device during the Fitter process, and stores the location
of these buffers and necessary routing information in the Quartus II
Archive File. This buffer insertion improves the estimation of the
Quartus II Timing Analyzer for the HardCopy Stratix device.

Placement Constraints

Beginning with version 4.2, the Quartus II software supports placement
constraints and LogicLock regions for HardCopy Stratix devices.
Figure 3-26 shows an iterative process to modify the placement
constraints until the best placement for the HardCopy Stratix device is
achieved.

3-45

Quartus Il Handbook, Volume 1

Location
Constraints

3-46

Figure 3-26. Placement Constraints Flow for HardCopy Stratix Devices

Compile the Design for
HARDCOPY_FPGA_PROTOTYPE

Migrate to HardCopy Stratix

Device Using the HardCopy

Timing Optimization Wizard
I

- Add/Update »
"| Placement Constraints o
- Add/Update -
"| LogicLock Constraints o
\ 4

Compile for HardCopy
Stratix Device

No

Performance
Met?

(Generate HardCopy Files)

This section provides information about HardCopy Stratix logic location
constraints.

LAB Assignments

Logic placement in HardCopy Stratix is limited to LAB placement and
optimization of the interconnecting signals between them. In a Stratix
FPGA, individual logic elements (LE) are placed by the Quartus II Fitter
into LABs. The HardCopy Stratix migration process requires that LAB
contents cannot change after the Timing Optimization Wizard task is
done. Therefore you can only make LAB-level placement optimization
and location assignments after migrating the
HARDCOPY_FPGA_PROTOTYPE project to the HardCopy Stratix
device.

Altera Corporation
May 2006

Location Constraints

The Quartus II software supports these LAB location constraints for
HardCopy Stratix devices. The entire contents of a LAB is moved to an
empty LAB when using LAB location assignments. If you want to move
the logic contents of LAB A to LAB B, the entire contents of LAB A are
moved to an empty LAB B. For example, the logic contents of
LAB_X33_Y65 can be moved to an empty LAB at LAB_X43_Y56 but
individual logic cell LC_X33_Y65_N1 can not be moved by itself in the
HardCopy Stratix Timing Closure Floorplan.

LogicLock Assignments

The LogicLock feature of the Quartus II software provides a block-based
design approach. Using this technique you can partition your design and
create each block of logic independently, optimize placement and area,
and integrate all blocks into the top level design.

«® Tolearn more about this methodology, refer to the LogicLock Design
Methodology chapter in volume 2 of the Quartus II Handbook.

LogicLock constraints are supported when you migrate the project from
a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as “Size=Fixed” and
“Location=Locked” in the HARDCOPY_FPGA_PROTOTYPE project, itis
converted to have “Size=Auto” and “Location=Floating” as shown in the
following LogicLock examples. This modification is necessary because
the floorplan of a HardCopy Stratix device is different from that of the
Stratix device, and the assigned coordinates in the
HARDCOPY_FPGA_PROTOTYPE do not match the HardCopy Stratix
floorplan. If this modification did not occur, LogicLock assignments
would lead to incorrect placement in the Quartus II Fitter. Making the
regions auto-size and floating, maintains your LogicLock assignments,
allowing you to easily adjust the LogicLock regions as required and lock
their locations again after HardCopy Stratix placement.

Example 3-1 and Example 3-2 show two examples of LogicLock
assignments.

Example 3-1. LogicLock Region Definition in the HARDCOPY_FPGA_PROTOTYPE Quartus Il Settings File
set global assignment -name LL HEIGHT 15 -entity risc8 -section id test
set global assignment -name LL WIDTH 15 -entity risc8 -section_ id test
set _global assignment -name LL_STATE LOCKED -entity risc8 -section_id test
set global assignment -name LL AUTO SIZE OFF -entity risc8 -section id test

Altera Corporation 3-47
May 2006

Quartus Il Handbook, Volume 1

Example 3-2. LogicLock Region Definition in the Migrated HardCopy Stratix Quartus Il Settings File

set global assignment -name LL HEIGHT 15 -entity risc8 -section id test
set _global assignment -name LL _WIDTH 15 -entity risc8 -section_id test
set global assignment -name LL STATE FLOATING -entity risc8 -section id

test

set _global assignment -name LL_AUTO_SIZE ON -entity risc8 -section_id test

Checking
Designs for
HardCopy

Design
Guidelines
3-48

When you develop a design with HardCopy migration in mind, you must
follow Altera recommended design practices that ensure a
straightforward migration process or the design will not be able to be
implemented in a HardCopy device. Prior to starting migration of the
design to a HardCopy device, you must review the design and identify
and address all the design issues. Any design issues that have not been
addressed can jeopardize silicon success.

Altera-Recommended HDL Coding Guidelines

Designing for Altera PLD, FPGA, and HardCopy structured ASIC
devices requires certain specific design guidelines and hardware
description language (HDL) coding style recommendations be followed.

For more information about design recommendations and HDL coding
styles, refer to the Design Guidelines Section in volume 1 of the Quartus II
Handbook.

Design Assistant

The Quartus II software includes the Design Assistant feature to check
your design against the HardCopy design guidelines. Some of the design
rule checks performed by the Design Assistant include the following
rules:

B Design should not contain combinational loops
B Design should not contain delay chains
B Design should not contain latches

To use the Design Assistant, you must have at least run Analysis and
Synthesis on the design in the Quartus II software. Altera recommends
that you run the Design Assistant to check for compliance with the
HardCopy design guidelines early in the design process and after every
compilation.

Altera Corporation
May 2006

Checking Designs for HardCopy Design Guidelines

Design Assistant Settings

You must select the design rules in the Design Assistant page prior to
running the design. On the Assignments menu, click Settings. In the
Settings dialog box, in the Category list, select Design Assistant and turn
on Run Design Assistant during compilation. Altera recommends
enabling this feature to run the Design Assistant automatically during
compilation of your design.

Running Design Assistant

To run Design Assistant independently of other Quartus II features, on
the Processing menu, point to Start and click Start Design Assistant.

The Design Assistant automatically runs in the background of the
Quartus II software when the HardCopy Timing Optimization Wizard is
launched, and does not display the Design Assistant results immediately
to the display. The design is checked before the Quartus II software
migrates the design and creates a new project directory for performing
timing analysis.

Also, the Design Assistant runs automatically whenever you generate the
HardCopy design database with the HardCopy Files Wizard. The Design
Assistant report generated is used by the Altera HardCopy Design Center
to review your design.

Reports & Summary

The results of running the Design Assistant on your design are available
in the Design Assistant Results section of the Compilation Report. The
Design Assistant also generates the summary report in the

<project name>\hardcopy subdirectory of the project directory. This
report file is titled <project name>_violations.datasheet. Reports include
the settings, run summary, results summary, and details of the results and
messages. The Design Assistant report indicates the rule name, severity
of the violation and the circuit path where any violation occurred.

«® Tolearn about the design rules and standard design practices to comply
with HardCopy design rules, refer to the Quartus II Help and the
HardCopy Series Design Guidelines chapter in volume 1 of the HardCopy
Series Handbook.

Altera Corporation 3-49
May 2006

Quartus Il Handbook, Volume 1

Generating the
HardCopy
Design
Database

3-50

You can use the HardCopy Files Wizard to generate the complete set of
deliverables required for migrating the design to a HardCopy device in a
single click. The HardCopy Files Wizard asks questions related to the
design and archives your design, settings, results, and database files for
delivery to Altera. Your responses to the design details are stored in
<project name>_hardcopy_optimization\<project name>.hps.txt.

You can generate the archive of the HardCopy design database only after
compiling the design to a HardCopy Stratix device. The Quartus II
Archive File is generated at the same directory level as the targeted
project, either before or after optimization.

s The Design Assistant automatically runs when the HardCopy
Files Wizard is started.

Altera Corporation
May 2006

Generating the HardCopy Design Database

Altera Corporation
May 2006

Table 3-6 shows the archive directory structure and files collected by the
HardCopy Files Wizard.

Table 3-6. HardCopy Stratix Design Files Collected by the HardCopy Files
Wizard

<project name>_hardcopy_optimization\

<project name>.flow.rpt
<project name>.qpf
<project name>.asm.rpt
<project name>.blf
<project name>.fit.rpt
<project name>.gclk
<project name>.hps.txt
<project name>.macr
<project name>.pin
<project name>.qsf
<project name>.sof
<project name>.tan.rpt

hardcopy\
<project name>.apc
<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo
<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

hardcopy_fpga_prototype\
fpga_<project name>.asm.rpt
fpga_<project name>.cmp.rcf
fpga_<project name>.cmp.xml
fpga_<project name>.db_info
fpga_<project name>.fit.rpt
fpga_<project name>.map.atm
fpga_<project name>.map.rpt
fpga_<project name>.pin
fpga_<project name>.qsf
fpga_<project name>.tan.rpt
fpga_<project name>_cksum.datasheet
fpga_<project name>_cpld.datasheet
fpga_<project name>_hcpy.vo
fpga_<project name>_hcpy_v.sdo
fpga_<project name>_pt_hcpy_v.tcl
fpga_<project name>_rba_pt_hcpy_v.tcl
fpga_<project name>_target.datasheet
fpga_<project name>_violations.datasheet

db_export\
<project name>.db_info
<project name>.map.atm
<project name>.map.hdbx

After creating the migration database with the HardCopy
Timing Optimization Wizard, you must compile the design
before generating the project archive. You will receive an error
if you create the archive before compiling the design.

3-51

Quartus Il Handbook, Volume 1

Static Timing
Analysis

Early Power
Estimation

3-52

In addition to performing timing analysis, the Quartus II software also
provides all of the requisite netlists and Tcl scripts to perform static
timing analysis (STA) using the Synopsys STA tool, PrimeTime. The
following files, necessary for timing analysis with the PrimeTime tool, are
generated by the HardCopy Files Wizard:

B <project name>_hcpy.vo—Verilog HDL output format
B <project name>_hpcy_v.sdo—Standard Delay Format Output File
B <project name>_pt_hcpy_v.tcl—Tcl script

These files are available in the <project name>\hardcopy directory.
PrimeTime libraries for the HardCopy Stratix and Stratix devices are
included with the Quartus II software.

s Use the HardCopy Stratix libraries for PrimeTime to perform
STA during timing analysis of designs targeted to
HARDCOPY_FPGA_PROTOTYPE device.

For more information about static timing analysis, refer to the Classic
Timing Analyzer and the Synopsys PrimeTime Support chapters in
volume 3 of the Quartus II Handbook.

You can use PowerPlay Early Power Estimation to estimate the amount
of power your HardCopy Stratix or HardCopy APEX device will
consume. This tool is available on the Altera web site. Using the Early
Power Estimator requires some knowledge of your design resources and
specifications, including;:

Target device and package

Clock networks used in the design

Resource usage for LEs, DSP blocks, PLL, and RAM blocks
High speed differential interfaces (HSDI), general I/O power
consumption requirements, and pin counts

B Environmental and thermal conditions

HardCopy Stratix Early Power Estimation

The PowerPlay Early Power Estimator provides an initial estimate of I¢
for any HardCopy Stratix device based on typical conditions. This
calculation saves significant time and effort in gaining a quick
understanding of the power requirements for the device. No stimulus
vectors are necessary for power estimation, which is established by the
clock frequency and toggle rate in each clock domain.

Altera Corporation
May 2006

Tcl Support for HardCopy Stratix

Tel Support for
HardCopy Stratix

Altera Corporation
May 2006

This calculation should only be used as an estimation of power, not as a
specification. The actual I should be verified during operation because
this estimate is sensitive to the actual logic in the device and the
environmental operating conditions.

For more information about simulation-based power estimation, refer to
the Power Estimation & Analysis Section in volume 3 of the Quartus II
Handbook.

I'=~ Onaverage, HardCopy Stratix devices are expected to consume
40% less power than the equivalent FPGA.

HardCopy APEX Early Power Estimation

The PowerPlay Early Power Estimator can be run from the Altera web
site in the device support section
(http://www.altera.com/support/devices/dvs-index.html). You cannot
open this feature in the Quartus II software.

With the HardCopy APEX PowerPlay Early Power Estimator, you can
estimate the power consumed by HardCopy APEX devices and design
systems with the appropriate power budget. Refer to the web page for
instructions on using the HardCopy APEX PowerPlay Early Power
Estimator.

== HardCopy APEX devices are generally expected to consume

about 40% less power than the equivalent APEX 20KE or
APEX 20KC FPGA devices.

The Quartus II software also supports the HardCopy Stratix design flow
at the command prompt using Tcl scripts.

For details on Quartus II support for Tcl scripting, refer to the
Tcl Scripting chapter in volume 2 of the Quartus II Handbook.

3-53

Quartus Il Handbook, Volume 1

Targeting
Designs to
HardCopy APEX
Devices

Conclusion

3-54

Beginning with version 4.2, the Quartus II software supports targeting
designs to HardCopy APEX device families. After compiling your design
for one of the APEX 20KC or APEX 20KE FPGA devices supported by a
HardCopy APEX device, run the HardCopy Files Wizard to generate the
necessary set of files for HardCopy migration.

The HardCopy APEX device requires a different set of design files for
migration than HardCopy Stratix. Table 37 shows the files collected for
HardCopy APEX by the HardCopy Files Wizard.

Table 3-7. HardCopy APEX Files Collected by the HardCopy Files Wizard

<project name>.tan.rpt

<project name>.asm.rpt

<project name>.fit.rpt

<project name>.hps.txt

<project name>.map.rpt

<project name>.pin

<project name>.sof

<project name>.qsf

<project name>_cksum.datasheet
<project name>_cpld.datasheet
<project name>_hcpy.vo

<project name>_hcpy_v.sdo
<project name>_pt_hcpy_v.tcl
<project name>_rba_pt_hcpy_v.tcl
<project name>_target.datasheet
<project name>_violations.datasheet

Refer to “Generating the HardCopy Design Database” on page 3-50 for
information about generating the complete set of deliverables required
for migrating the design to a HardCopy APEX device. After you have
successfully run the HardCopy Files Wizard, you can submit your design
archive to Altera to implement of your design in a HardCopy device. You
should contact Altera for more information about this process.

The methodology for designing HardCopy Stratix devices using the
Quartus II software is the same as that for designing the Stratix FPGA
equivalent. You can use the familiar Quartus II software tools and design
flow, target designs to HardCopy Stratix devices, optimize designs for
higher performance and lower power consumption than the Stratix
FPGAs, and deliver the design database for migration to a HardCopy
Stratix device. Compatible APEX FPGA designs can migrate to
HardCopy APEX after compilation using the HardCopy Files Wizard to
archive the design files. Submit the files to the HardCopy Design Center
to complete the back-end migration.

Altera Corporation
May 2006

Related Documents

Related
Documents

Altera Corporation
May 2006

For more information, refer to the following documentation:

The HardCopy Series Design Guidelines chapter in volume 1 of the
HardCopy Series Handbook

The HardCopy Series Back-End Timing Closure chapter in volume 1 of
the HardCopy Series Handbook

3-55

Quartus Il Handbook, Volume 1

3-56 Altera Corporation
May 2006

Z;\l |:| —E D)/A 4. Engineering Change

Q1151005-6.0.0

Management

Introduction

Impact of Last
Minute Design
Changes

Altera Corporation
May 2006

A major benefit of programmable logic is that it accommodates changes
to the system specification late in the design cycle. In a typical
engineering project development cycle, the specification for the
programmable logic portion is likely to change when engineering
development begins or when integrating all system elements.

Last-minute design changes, commonly referred to as engineering
change orders (ECOs), are defined as small changes to the functionality
of a design, after the design has been fully compiled; that is, when
synthesis and place-and-route are completed.

ECOs are usually intended to correct errors found in the programmable
logic design during debugging, or to facilitate changes that are made to
the design specification to compensate for design problems that are
introduced while integrating components of your system design. As a
project nears completion, a significant amount of time has been invested
in maximizing performance and design verification; therefore, it is
important that your ECO changes affect specific parts of your design and
have minimal impact on unrelated parts of your design.

This chapter addresses the impact that ECOs have, and explains how to
resolve these issues using the Quartus® II software.

ECOs have an impact on the following areas of a system design:

B Performance

m Compile time
B Verification

B Documentation
Performance

When making a small change to the design functionality, the result can be
a loss of previous design optimizations. Typical examples of design
optimizations are floorplan optimizations and physical synthesis. Ideally,
there should be a means to preserve previous design optimizations. This
would focus future optimizations only to design areas where ECO
changes occurred.

Quartus Il Handbook, Volume 1

ECO Support

4-2

Compilation Time

In the traditional programmable logic design flow, a small change in the
design necessarily results in a complete recompilation of the design; that
is, synthesis and place-and-route. Making small changes to the design to
reach the final implementation on a board can be a very long process.
Ideally, to reach the desired functionality and to reach timing closure, a
small change in functionality should result in reduced compilation time.
You can achieve this by the incremental compilation feature, which uses
the previous fit information on unchanged areas of the design.

Verification

After a design change, you must verify the impact of the change on your
design. You can verify your design by performing timing analysis and
simulation. You can choose to limit the verification to the area of the
design impacted by the ECOs. To do this, run timing analysis on select
paths and perform the simulation on gate level and timing simulation
netlists.

Documentation

You must track changes to your project files. Tracking changes provides
the ability to reproduce your results. Ideally, you can have multiple
compilation revisions so that others can try the changes without
corrupting the previous results.

You can apply ECOs at two stages in a typical design flow:

B HDL level
B Netlist level

Historically, in programmable logic designs, you would apply ECOs at
the HDL level. The reason for this was the lack of tools for PLDs that
could easily create ECOs and enable design sign-off at the netlist level.

ECO Support at the HDL Level

An ECO at the HDL level is a change to the design’s Verilog HDL or
VHDL source. This change may range from a single line to several lines
of code modified within a module or entity. Typical examples of such
modifications include:

B Changing the state encoding of a finite state machine
B Adding pipeline registers to improve design performance

Altera Corporation
May 2006

ECO Support

B Duplicating the signal to reduce fan-out
B Adding a term to a conditional expression
B Changing the polarity of a register control signal

A few changes to the source code can produce many changes to the netlist
produced by other EDA synthesis or tools such as the Quartus II
software’s integrated synthesis. During the synthesis process, the
synthesis tools generally preserve the names of registers from the HDL
source code, but automatically generate names for the combinational
(look-up tablelevel, or LUT level) nodes. This automatic name generation
is necessary to accommodate the synthesis optimization performed on
the HDL source to use the target device resources more efficiently.

A minor source code change can result in many changes to the names in
the synthesis netlist. The changes in the synthesis netlist can be caused by
the node names in the new netlist implementing a different functionality
than in the previous netlist, or by implementing the same functionality as
in the previous netlist, but have different names.

To leverage previous design optimizations and to reduce compilation
time, there must be a way to perform incremental compilation on the
modules with the new functionality to preserve the previous
optimizations. The incremental compilation feature available in the
Quartus II software provides a solution to this problem.

With Quartus II incremental compilation, you can preserve results and
performance of unchanged logic in your design as you make ECOs
elsewhere. The incremental compilation feature enables you to reduce
design iteration time up to 70%, and reach timing closure more
efficiently. Incremental compilation facilitates block-based design, and
allows you to preserve performance for unchanged blocks of the design.
You can also target optimization techniques, such as physical synthesis,
to specific design blocks while leaving other blocks untouched.

A hierarchical design is flattened into a single netlist before logic
synthesis and fitting; therefore, the entire design is recompiled every time
the design changes. However, the incremental compilation feature allows
you to partition a design along any of its hierarchical boundaries. The
Quartus II software separately synthesizes and fits each individual
hierarchical design partition. The Quartus II software combines or
merges the design partitions to form a netlist for subsequent stages of the
Quartus II compilation flow.

Altera Corporation 4-3
May 2006

Quartus Il Handbook, Volume 1

Figure 4-1 details the recommended design flow to support ECO changes
at the HDL level.

Figure 4-1. Design Flow to Support ECO Changes

Verilog VHDL AHDL Block EDIF vaMm
HDL (.vhd) (.tdf) Design File Netlist Netlist
(.v) (.bdf) (.edf) (.vqm)
Partition Top
Design Partition | | Partition 1
Assignments “| [Partition 2
Analysis &
Analysis & Synthesis ®— Synthesis [
Settings
\ 4
Partition Merge
Create Complete Netlist Using
Appropriate Source Netlists for Each
Partition (Post-Fit or Post-Synthesis)
 / Floorplan
¢ Location ¢
> Fitter Assignments
& Fitter Settings
y
Assembler
\ 4

Timing Analyzer

Make ECO Chip Editor Changes

Y

No “Requirements\ No

Make ECO HDL Changes

Satisfied?

‘Yes

(Program/Configure Device>

4-4

Altera Corporation
May 2006

ECO Support

Altera Corporation
May 2006

ECO Support at the Netlist Level

For some ECO changes, making changes at the netlist level can be faster
than at the HDL level. This happens when you are debugging the design
on silicon and need a very fast turnaround to generate a programming
file for debugging the system.

A typical application occurs when you uncover a problem on the board
and isolate the problem to the appropriate nodes or I/O cells on the PLD.
You then need to be able to quickly correct the functionality of the
offending logic cell or the properties of the I/O cell and generate a new
programming file. In doing this, you can verify the operation of the
change without having to modify the HDL and perform a synthesis and
place-and-route operation. This minimizes the disruption to the board
verification procedure.

If this quick fix works, you do not need to change the HDL source code
and rerun place-and-route. You should have the option to:

Document the change that has been made

Easily recreate the steps taken to produce the changes to the design
Generate EDA simulation netlists for verification of the design
Perform timing analysis on the design

The Chip Editor feature of the Quartus II software provides these
capabilities.

The Quartus II Chip Editor allows you to make functional changes to
individual logic cells and to the I/O cell and phase-locked loop (PLL)
parameters. These changes are stored in the Quartus I Change Manager
log. This allows you to control the application of the changes, and
generate a tool command language (Icl) file.

The Tcl commands file recreates the changes on the original netlist and
documents the project changes. This provides the ability to recreate the
changes on the original design files without having to change the HDL
source. You can regenerate an EDA simulation netlist for the modified
design if it is necessary to perform a gate-level simulation of the modified
design. If you should rerun timing analysis to sign-off the design, you can
rerun timing analysis on the netlist containing the ECO changes.

For more information, refer to the Design Analysis and Engineering Change

Management with Chip Editor chapter in volume 3 of the Quartus II
Handbook.

4-5

Quartus Il Handbook, Volume 1

Figure 4-2 shows the flow for ECO changes at the netlist level.

Figure 4-2. Design Flow for ECO Changes at the Netlist Level

Synthesized, Placed & Routed Design
(Download Programming File into Device)

ECO Required

v

Modify Logic Cells, I/0 Cells,
or PLL in Chip Editor

v

Perform Design Rule Checking
on Changes

v

Generate New Programming File

v

Change Manager
(Stores Netlist
Modification Details)

Verification
Simulation Timing Analysis
Conclusion Support for ECOs requires a combination of a modular design

methodology and the appropriate software design tools.

The Quartus II software provides you with the software tools and the
design methodology to perform successful ECOs at both the HDL and
netlist level for programmable logic designs. This reduces the design
cycle time and provides faster timing closure on designs that require
last-minute changes.

4-6 Altera Corporation
May 2006

A |:| E DY/A Section Il. Design

® Guidelines

Altera Corporation

Today's programmable logic device (PLD) applications have reached the
complexity and performance requirements of ASICs. In the development
of such complex system designs, good design practices have an
enormous impact on your device's timing performance, logic utilization,
and system reliability. Designs coded optimally will behave in a
predictable and reliable manner, even when re-targeted to different
device families or speed grades. This section presents design and coding
style recommendations for Altera® devices.

This section includes the following chapters:
B Chapter 5, Design Recommendations for Altera Devices

B Chapter 6, Recommended HDL Coding Styles
B Chapter 7 moved to Volume 2

Section II-1

Design Guidelines

Quartus Il Handbook, Volume 1

Revision History

The following table shows the revision history for Chapters 5 to 6.

Chapter(s)

Date / Version

Changes Made

5

May 2006 v6.0.0

Minor updates for the Quartus Il version 6.0.

October 2005 v5.1.0

Updated for the Quartus Il software version 5.1.

May 2005 v.5.0.0

Chapter 5 was formerly Chapter 4 in version 4.2.

Dec. 2004 v2.1

Updated for Quartus Il software version 4.2:

Chapter 5 was formerly Chapter 6 in version 4.1.

General formatting and editing updates.

Updated hardware requirements for the Quartus Il Timing Analyzer.
Added timing requirements and analysis details.

Updated Design Guidelines.

Added information about performing timing analysis on asynchronous
ports.

Added inferred latches information.

Updated Delay Chains description.

Updated figures, tables.

Added Clocking Schemes information.

Added details to Multiplexed Clocks details.

Added clock gating details.

Updated Hierarchical Design Partitioning to include synthesis and
incremental synthesis.

Added global routing information.

June 2004 v.2.0

Updates to tables, figures, coding examples.
New functionality for Quartus Il software 4.1.

Feb. 2004 v1.0

Initial release.

6 May 2006 v6.0.0 Updated for the Quartus Il version 6.0:

e Added inferring Altera Megafunctions from HDL code information.
e Added coding guidelines for other logic structures.

October 2005 v5.1.0 Updated for the Quartus Il software version 5.1.

May 2005 v.5.0.0 Chapter 6 was formerly Chapter 5 in version 4.2

Dec. 2004 v2.1 @ Chapter 6 was formerly Chapter 7 in version 4.1.
e Updates to tables, figures.
o New functionality for Quartus Il software 4.2.

June 2004 v2.0 e Updates to tables, figures.
o Added and updated State Machines.
e Update to Verilog HDL for State Machines.
o New functionality for Quartus Il software 4.1.

Feb. 2004 v1.0 Initial release.

Section 11-2 Altera Corporation

Design Guidelines

Chapter(s) Date / Version Changes Made
7 October 2005 v5.1.0 @ Chapter now resides in Volume 2, Section Ill, Chapter 9: Power
Optimization
August 2005 v.5.0.1 e Updates to tables, figures.
o Added Standard Fir-Fitter Effort section.
o Updated information.
May 2005 v.5.0.0 Initial release.

Altera Corporation

4-3

Design Guidelines Quartus Il Handbook, Volume 1

4-4 Altera Corporation

for Altera Devices

. Design R dati
QA l |:| —E D)/A 5. Design Recommendations

®

Q1151006-6.0.0

Introduction

Synchronous
FPGA Design
Practices

Altera Corporation
May 2006

Today’s FPGA applications have reached the complexity and
performance requirements of ASICs. In the development of such complex
system designs, good design practices have an enormous impact on your
device’s timing performance, logic utilization, and system reliability.
Well-coded designs behave in a predictable and reliable manner even
when re-targeted to different families or speed grades. Good design
practices also aid in successful design migration between FPGA and
HardCopy® or ASIC implementations for prototyping and production.

For optimal performance and reliability and faster time-to-market when
designing with Altera® devices, you should:

B Understand the impact of synchronous design practices

B Follow recommended design techniques including hierarchical
design partitioning

B Take advantage of the architectural features in the targeted device

For specific HDL coding examples and recommendations, including
coding guidelines for targeting dedicated device hardware, such as
memory and DSP blocks, refer to the Recommended HDL Coding Styles
chapter in volume 1 of the Quartus II Handbook. For information about
migrating designs to HardCopy devices, refer to the HardCopy Series
Design Guidelines chapter in the HardCopy Series Handbook.

The first step in a good design methodology is to understand the
implications of your design practices and techniques. This section
outlines some of the benefits of optimal synchronous design practices and
the hazards involved in other techniques. Good synchronous design
practices can help you consistently meet your design goals. Problems
with other design techniques can include reliance on propagation delays
in a device, incomplete timing analysis, and possible glitches.

In a synchronous design, a clock signal triggers all events. As long as all
of the registers’ timing requirements are met, a synchronous design
behaves in a predictable and reliable manner for all process, voltage, and
temperature (PVT) conditions. You can easily target synchronous designs
to different device families or speed grades. In addition, if you plan to
migrate your design to a high-volume solution such as Altera HardCopy
devices, or if you are prototyping an ASIC, then synchronous design
practices help ensure successful migration.

Quartus Il Handbook, Volume 1

5-2

Fundamentals of Synchronous Design

In a synchronous design, everything is related to the clock signal. On
every active edge of the clock (usually the rising edge), the data inputs of
registers are sampled and transferred to outputs. Following an active
clock edge, the outputs of combinational logic feeding the data inputs of
registers change values. This change triggers a period of instability due to
propagation delays through the logic as the signals go through a number
of transitions and finally settle to new values. Changes happening on data
inputs of registers do not affect the values of their outputs until the next
active clock edge.

Because the internal circuitry of registers isolates data outputs from
inputs, instability in the combinational logic does not affect the operation
of the design as long as the following timing requirements are met:

B Before an active clock edge, the data input has been stable for at least
the setup time of the register

B After an active clock edge, the data input remains stable for at least
the hold time of the register

When you specify all your clock frequencies and other timing
requirements, the Quartus® Il Timing Analyzer issues actual hardware
requirements for the setup times (tsy) and hold times (t) for every pin of
your design. By meeting these external pin requirements and following
synchronous design techniques, you ensure that you satisfy the setup and
hold times for all registers within the Altera device.

'~ Tomeetsetup and hold time requirements on all input pins, any
inputs to combinational logic that feeds a register should have a
synchronous relationship with the clock of the register. If signals
are asynchronous, you can register the signals at the input of the
Altera device to help prevent a violation of the required setup
and hold times.

When the setup or hold time of a register is violated, the output can be set
to an intermediate voltage level between the high and low levels, called a
metastable state. In this unstable state, small perturbations like noise in
power rails can cause the register to assume either the high or low voltage
level resulting in an unpredictable valid state. Various undesirable effects
can occur, including increased propagation delays and incorrect output
states. In some cases, the output can even oscillate between the two valid
states for a relatively long time.

For details about timing requirements and analysis in the Quartus II
software, refer to the Classic Timing Analysis or the TimeQuest Timing
Analysis chapters in volume 3 of the Quartus II Handbook.

Altera Corporation
May 2006

Synchronous FPGA Design Practices

Altera Corporation
May 2006

Hazards of Asynchronous Design

In the past, designers have often used asynchronous techniques such as
ripple counters or pulse generators in programmable logic device (PLD)
designs, enabling them to take “short cuts” to save device resources.
Asynchronous design techniques have inherent problems such as relying
on propagation delays in a device, which can result in incomplete timing
constraints and possible glitches and spikes. Because today’s FPGAs
provide many high-performance logic gates, registers, and memory,
resource and performance trade-offs have changed. Now it is more
important to focus on design practices that help you meet design goals
consistently than to save device resources using problematic
asynchronous techniques.

Some asynchronous design structures rely on the relative propagation
delays of signals to function correctly. In these cases, race conditions can
arise where the order of signal changes can affect the output of the logic.
PLD designs can have varying timing delays, depending on how the
design is placed and routed in the device with each compilation.
Therefore, it is almost impossible to determine the timing delay
associated with a particular block of logic ahead of time. As devices
become faster because of device process improvements, the delays in an
asynchronous design may decrease, resulting in a design that does not
function as expected. Specific examples are provided in “Design
Guidelines” on page 5—-4. Relying on a particular delay also makes
asynchronous designs very difficult to migrate to different architectures,
devices, or speed grades.

The timing of asynchronous design structures is often difficult or
impossible to model with timing assignments and constraints. If you do
not have complete or accurate timing constraints, the timing-driven
algorithms used by your synthesis and place-and-route tools may not be
able to perform the best optimizations, and reported results may not be
complete.

Some asynchronous design structures can generate harmful glitches,
which are pulses that are very short compared with clock periods. Most
glitches are generated by combinational logic. When the inputs of
combinational logic change, the outputs exhibit a number of glitches
before they settle to their new values. These glitches can propagate
through the combinational logic, leading to incorrect values on the
outputs in asynchronous designs. In a synchronous design, glitches on
the data inputs of registers are normal events that have no negative
consequences because the data is not processed until the clock edge.

5-3

Quartus Il Handbook, Volume 1

Design
Guidelines

5-4

When designing with hardware description language (HDL) code,
understanding how a synthesis tool interprets different HDL design
techniques and what results to expect are important. Your design
techniques can affect logic utilization and timing performance, as well as
the design’s reliability. This section discusses some basic design
techniques that ensure optimal synthesis results for designs targeted to
Altera devices while avoiding several common causes of unreliability
and instability. Design your combinational logic carefully to avoid
potential problems and pay attention to your clocking schemes so you
can maintain synchronous functionality and avoid timing problems.

Combinational Logic Structures

Combinational logic structures consist of logic functions that depend
only on the current state of the inputs. In Altera FPGAs, these functions
are implemented in the look-up tables (LUTs) of the device’s architecture,
using either logic elements (LE) or adaptive logic modules (ALM). In
some cases when combinational logic feeds registers, the register control
signals can also be used to implement part of the logic function to save
LUT resources. By following the recommendations in this section, you
can improve the reliability of your combinational design.

Combinational Loops

Combinational loops are among the most common causes of instability
and unreliability in digital designs, and should be avoided whenever
possible. In a synchronous design, feedback loops should include
registers. Combinational loops generally violate synchronous design
principles by establishing a direct feedback loop that contains no
registers. For example, a combinational loop occurs when the left-hand
side of an arithmetic expression also appears on the right-hand side in
HDL code. A combinational loop also occurs when you feed back the
output of a register to an asynchronous pin of the same register through
combinational logic, as shown in Figure 5-1.

Figure 5-1. Combinational Loop through Asynchronous Control Pin

———Db Q

Ceooe D
CLRN
©

Altera Corporation
May 2006

Design Guidelines

Altera Corporation
May 2006

Il To perform timing analysis in the Quartus II software on
asynchronous ports such as the clear or reset, on the
Assignments menu, click Settings. In the Settings dialog box,
select Timing Requirements & Option and click More Settings.
Turn on Enable Recovery/Removal Analysis.

Combinational loops are inherently high-risk design structures for the
following reasons:

B Combinational loop behavior generally depends on the relative
propagation delays through the logic involved in the loop. As
discussed, propagation delays can change which means the behavior
of the loop is unpredictable.

B Combinational loops can cause endless computation loops in many
design tools. Most tools break open combinational loops to process
the design. The various tools used in the design flow may open a
given loop in a different manner, processing it in a way that is
inconsistent with the original design intent.

Latches

A latch is a small combinational loop that holds the value of a signal until
a new value is assigned. Latches can also be inferred from HDL code
when you did not intend to use a latch. FPGA architectures are based on
registers. In FPGA devices, latches actually use more logic resources and
lead to lower performance than registers. This is different from other
device architectures where latches may add less delay and can be
implemented with less silicon area than registers.

Latches can cause various difficulties in the design. Although latches are
memory elements, they are fundamentally different from registers. When
a latch is in feed-through or transparent mode, there is a direct path
between the data input and the output. Glitches on the data input can
pass through the output. The timing for latches is also inherently
ambiguous. For example, when analyzing a design with a D-latch, the
software cannot determine whether you intended to transfer data to the
output on the leading edge of the clock or on the trailing edge. In many
cases, only the original designer knows the full intent of the design;
therefore, another designer cannot easily modify the design or reuse the
code.

In some cases, your synthesis tool can infer a latch that does not exhibit
problems with glitches. Inferring the Altera 1pm_latch function ensures
that the implementation will be glitch-free in Altera architectures. Some
third-party synthesis tools list the number of 1pm_latch functions that
are inferred. When using Quartus II integrated synthesis, these latches
are reported in a section of the Compilation Report called User-Specified

5-5

Quartus Il Handbook, Volume 1

5-6

and Inferred Latches. If a latch or combinational loop in your design is
not listed in this report, it means that it was not inferred as a “safe” latch
by the software and is not considered glitch-free.

However, even glitch-free latches may not be analyzed completely
during timing analysis. The Quartus II software provides an option
called Analyze latches as synchronous elements that allows you to treat
latches as start and end points for timing analysis (a typical analysis
performed in FPGA design tools). With this option turned on, latches are
analyzed as registers (with an inverted clock). The Quartus II software
does not perform cycle-borrowing analysis, such as that performed by
third-party timing analysis tools like Synopsys PrimeTime.

In addition, latches have a limited support in formal verification tools.
Therefore, it is especially important to ensure that you do not use latches
when using formal verification.

Altera recommends avoiding using latches to ensure that you can
completely analyze and verify the timing performance and reliability of
your design.

Delay Chains

Delay chains occur when two or more consecutive nodes with a single
fan-in and a single fan-out are used to cause delay. Inverters are often
chained together to add delay. Delay chains are sometimes used to
resolve race conditions created by other asynchronous design practices.

As described above, delays in PLD designs can change with each
place-and-route cycle. Effects such as rise/fall time differences and on-
chip variation mean that delay chains, especially those placed on clock
paths, can cause significant problems in your design. See “Hazards of
Asynchronous Design” on page 5-3 for examples of the kinds of
problems that delay chains can cause. Avoid using delay chains to
prevent these kind of problems.

In some ASIC designs, delays are used for buffering signals as they are
routed around the device. This functionality is not needed in FPGA
devices because the routing structure provides buffers throughout the
device.

Pulse Generators & Multivibrators

Delay chains are sometimes used to generate either one pulse (pulse
generators) or a series of pulses (multivibrators). There are two common
methods for pulse generation, as shown in Figure 5-2. These techniques
are purely asynchronous and therefore should be avoided.

Altera Corporation
May 2006

Design Guidelines

Altera Corporation
May 2006

Figure 5-2. Asynchronous Pulse Generators

Using an AND Gate

:

rigger

Using a Register

Trigger Pulse

Clock
CLRN
T

In “Using an AND Gate” (Figure 5-2), a trigger signal feeds both inputs
of a 2-input AND gate, but the design inverts or adds a delay chain to one
of the inputs. The width of the pulse depends on the relative delays of the
path that feeds the gate directly and the one that goes through the delay.
This is the same mechanism responsible for the generation of glitches in
combinational logic following a change of input values. This technique
artificially increases the width of the glitch by using a delay chain.

Ql

In “Using a Register” (Figure 5-2), a register’s output drives the same
register’s asynchronous reset signal through a delay chain. The register
resets itself asynchronously after a certain delay.

The width of pulses generated in this way are difficult for synthesis and
place-and-route software to determine, set, or verify. The actual pulse
width can only be determined after placement and routing, when routing
and propagation delays are known. You cannot reliably determine the
width of the pulse when creating HDL code, and it cannot be set by EDA
tools. The pulse may not be wide enough for the application under all
PVT conditions, and the pulse width changes if you change to a different
device. In addition, static timing analysis cannot be used to verify the
pulse width, so verification is very difficult.

Multivibrators use a “glitch generator” to create pulses, together with a
combinational loop that turns the circuit into an oscillator. This creates
additional problems because of the number of pulses involved. In
addition, when the structures generate multiple pulses, they also create a
new artificial clock in the design that has to be analyzed by the design
tools.

When you need to use a pulse generator, use synchronous techniques, as
shown in Figure 5-3.

5-7

Quartus Il Handbook, Volume 1

5-8

Figure 5-3. Recommended Pulse-Generation Technique

"V‘DM

Trigger Signal —— D Q D Q

_ U

Clock

In this design, the pulse width is always equal to the clock period. This
pulse generator is predictable, can be verified with timing analysis, and
is easily moved to other architectures, devices, or speed grades.

Clocking Schemes

Like combinational logic, clocking schemes have a large effect on your
design’s performance and reliability. Avoid using internally generated
clocks where possible because they can cause functional and timing
problems in the design. Clocks generated with combinational logic can
introduce glitches that create functional problems, and the delay inherent
in combinational logic can lead to timing problems. The following
sections provide some specific examples and recommendations for
avoiding these problems.

Il=" Specify all clock relationships in the Quartus II software to allow
for the best timing-driven optimizations during fitting and to
allow correct timing analysis. Use clock setting assignments on
any derived or internal clocks to specify their relationship to the
base clock.

Altera recommends using global device-wide, low-skew
dedicated routing for all internally-generated clocks, instead of
routing clocks on regular routing lines. See “Clock Network
Resources” on page 5-16 for a detailed explanation.

Avoid data transfers between different clocks wherever
possible. If a data transfer between different clocks is needed,
use FIFO circuitry. You can use the clock uncertainty features in
the Quartus II software to compensate for the variable delays
between clock domains. Consider setting a Clock Setup
Uncertainty and Clock Hold Uncertainty value of 10% to 15% of
the clock delay.

Altera Corporation
May 2006

Design Guidelines

Internally Generated Clocks

If you use the output from combinational logic as a clock signal or as an
asynchronous reset signal, you should expect to see glitches in your
design. In a synchronous design, glitches on data inputs of registers are
normal events that have no consequences. However, a glitch or a spike on
the clock input (or an asynchronous input) to a register can have
significant consequences. Narrow glitches can violate the register’s
minimum pulse width requirements. Setup and hold times may also be
violated if the data input of the register is changing when a glitch reaches
the clock input. Even if the design does not violate timing requirements,
the register output can change value unexpectedly and cause functional
hazards elsewhere in the design.

Because of these problems, always register the output of combinational
logic before you use it as a clock signal. See Figure 5-4.

Figure 5-4. Recommended Clock-Generation Technique

Clock-
Generation
Logic

Internally-Generated Clock
Routed on Global Clock Resource

Altera Corporation
May 2006

Registering the output of combinational logic ensures that the glitches
generated by the combinational logic are blocked at the data input of the
register.

Divided Clocks

Designs often require clocks created by dividing a master clock. Most
Altera FPGAs provide dedicated phase-locked loop (PLL) circuitry for
clock division. Using dedicated PLL circuitry can help you to avoid many
of the problems that can be introduced by asynchronous clock division
logic.

When you need to use logic to divide a master clock, always use

synchronous counters or state machines. In addition, create your design
so that registers always directly generate divided clock signals, as

5-9

Quartus Il Handbook, Volume 1

5-10

described in “Internally Generated Clocks” on page 5-9, and route the
clock on global clock resources. To avoid glitches, you should not decode
the outputs of a counter or a state machine to generate clock signals.

Ripple Counters

Altera recommends avoiding ripple counters in your design to simplify
verification. In the past, FPGA designers implemented ripple counters to
divide clocks by a power of two because the counters are easy to design
and may use fewer gates than their synchronous counterparts. Ripple
counters use cascaded registers, in which the output pin of each register
feeds the clock pin of the register in the next stage. This cascading can
cause problems because the counter creates a ripple clock at each stage.
These ripple clocks have to be handled properly during timing analysis,
which can be difficult and may require you to make complicated timing
assignments in your synthesis and place-and-route tools.

Multiplexed Clocks

Clock multiplexing can be used to operate the same logic function with
different clock sources. In these designs, multiplexing selects a clock
source, as in Figure 5-5. For example, telecommunications applications
that deal with multiple frequency standards often use multiplexed clocks.

Figure 5-5. Multiplexing Logic & Clock Sources

Multiplexed Clock Routed b al—
Clock 1 on Global Clock Resource
Clock 2
Select Signal —|Db Q—
— D Q—

Altera Corporation
May 2006

Design Guidelines

Adding multiplexing logic to the clock signal can create the problems
addressed in the previous sections, but requirements for multiplexed
clocks vary widely depending on the application. Clock multiplexing is
acceptable when the clock signal uses global clock routing resources, if
the following criteria are met:

B The clock multiplexing logic does not change after initial
configuration

B The design uses multiplexing logic to select a clock for testing
purposes

B Registers are always reset when the clock switches

B A temporarily incorrect response following clock switching has no
negative consequences

If the design switches clocks in real time with no reset signal, and your
design cannot tolerate a temporarily incorrect response, then you must
use a synchronous design so that there are no timing violations on the
registers, no glitches on clock signals, and no race conditions or other
logical problems. By default, the Quartus II software optimizes and
analyses all possible paths through the multiplexer and between both
internal clocks that may come from the multiplexer. This may lead to
more restrictive analysis than required if the multiplexer is always
selecting one particular clock. If you do not need the more complete
analysis, you can assign the output of the multiplexer as a base clock in
the Quartus II software, so that all register-register paths are analyzed
using that clock.

Altera recommends using dedicated hardware to perform clock
multiplexing when it is available, instead of using multiplexing logic. For
example, you can use the Clock Switchover feature of the PLL in the
Stratix® series of devices, or the Clock Control Block in Stratix II and
Cyclone™ II devices. These dedicated hardware blocks ensure that you
use global low-skew routing lines and avoid any possible hold time
problems on the device due to logic delay on the clock line.

«® Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

Altera Corporation 5-11
May 2006

Quartus Il Handbook, Volume 1

5-12

Gated Clocks

Gated clocks turn a clock signal on and off using an enable signal that
controls some sort of gating circuitry, as shown in Figure 5-6. When a
clock is turned off, the corresponding clock domain is shut down and
becomes functionally inactive.

Figure 5-6. Gated Clock

Clock

— 4|_/\
Gating Signal Gated Clock

You can use gated clocks to reduce power consumption in some device
architectures. When a clock is gated, both the clock network and the
registers driven by it stop toggling, thereby eliminating their
contributions to power consumption. However, gated clocks are not part
of a synchronous scheme and therefore can significantly increase the
effort required for design implementation and verification. Gated clocks
contribute to clock skew and make device migration difficult. These
clocks are also sensitive to glitches, which can cause design failure.

Altera recommends using dedicated hardware to perform clock gating
rather than using multiplexing logic, if it is available in your target
device. For example, you can use the clock control block in Stratix II and
Cyclone II devices to shut down an entire clock network. Dedicated
hardware blocks ensure that you use global routing with low skew and
avoid any possible hold time problems on the device due to logic delay
on the clock line.

Refer to the appropriate device data sheet or handbook for
device-specific information about clocking structures.

From a functional point of view, you can shut down a clock domain in a
purely synchronous manner using a synchronous clock enable signal.
However, when using a synchronous clock enable scheme, the clock
network continues toggling. This practice does not reduce power
consumption as much as gating the clock at the source does. In most
cases, you should use a synchronous scheme such as those described in
the “Synchronous Clock Enables” section. For improved power reduction
when gating clocks with logic, refer to “Recommended Clock-Gating
Method” on page 5-13.

Altera Corporation
May 2006

Design Guidelines

Synchronous Clock Enables

To turn off a clock domain in a synchronous manner, use a synchronous
clock enable signal. FPGAs efficiently support clock enable signals
because there is a dedicated clock enable signal available on all device
registers. This scheme does not reduce power consumption as much as
gating the clock at the source because the clock network keeps toggling,
but it will perform the same function as a gated clock by disabling a set of
registers. Insert a multiplexer in front of the data input of every register
to either load new data or copy the output of the register (Figure 5-7).

Figure 5-7. Synchronous Clock Enable

Data

Enable

Recommended Clock-Gating Method

Only use gated clocks when your target application requires power
reduction and when gated clocks are able to provide the required
reduction in your device architecture. If you must use clocks gated by
logic, implement these clocks using the robust clock-gating technique
shown in Figure 5-8 and ensure that the gated clock signal uses dedicated
global clock routing.

You can gate a clock signal at the source of the clock network, at each
register, or somewhere in between. Because the clock network
contributes to switching power consumption, gate the clock at the source
whenever possible, so you can shut down the entire clock network
instead of gating it further along the clock network at the registers.

Altera Corporation 5-13
May 2006

Quartus Il Handbook, Volume 1

Figure 5-8. Recommended Clock Gating Technigue

Clock

—D Qr— —D Q—

Gating Signal

AR

D Q Gated Clock Routed on
Enable Global Clock Resources

J

[

5-14

In the technique shown in Figure 5-8, a register generates the enable
signal to ensure that the signal is free of glitches and spikes. The register
that generates the enable signal is triggered on the inactive edge of the
clock to be gated (use the falling edge when gating a clock that is active
on the rising edge, as shown in Figure 5-8). Using this technique, only
one input of the gate that turns the clock on and off changes at a time that
prevents any glitches or spikes on the output. Use an AND gate to gate a
clock that is active on the rising edge. For a clock that is active on the
falling edge, use an OR gate to gate the clock and register the enable
command with a positive edge-triggered register.

When using this technique, pay attention to the duty cycle of the clock
and the delay through the logic that generates the enable signal, because
the enable signal must be generated in half the clock cycle. This situation
might cause problems if the logic that generates the enable command is
particularly complex, or if the duty cycle of the clock is severely
unbalanced. However, careful management of the duty cycle and logic
delay may be an acceptable solution when compared with problems
created by other methods of gating clocks.

Ensure that you apply a clock setting to the gated clock in the Quartus II
software. As shown in Figure 5-8, apply a clock setting to the output of
the AND gate. Otherwise, the Timing Analyzer may analyze the circuit
using the clock path through the register as the longest clock path and the
path that skips the register as the shortest clock path, resulting in artificial
clock skew.

Altera Corporation
May 2006

Hierarchical Design Partitioning

Hierarchical A hierarchical design consists of multiple design blocks linked together
. in a hierarchy. When a design is partitioned hierarchically, you can
Desi gn compile, optimize and simulate the individual design blocks separately.
Partitionin g You can use the incremental compilation or LogicLock™ design flows to

follow a block-based design methodology where each block is placed and
routed independently, then all blocks in the hierarchy are combined at the
top level. Some synthesis tools have features to help you create separate
netlist files or maintain separate parts of a netlist file for different parts of
your design, to support block-based design techniques or incremental
compilation.

e For information about incremental compilation, refer to the Quartus II
Incremental Compilation for Hierarchical & Team-Based Design chapter in
volume 1 of the Quartus II Handbook. For more information about the
LogicLock design methodology, refer to the LogicLock Design
Methodology chapter in volume 2 of the Quartus II Handbook. For more
information about incremental synthesis flows in your synthesis tool,
refer to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II handbook.

When using a hierarchical or incremental design methodology, consider
how the design is partitioned to achieve good results.

Altera recommends the following practices for partitioning designs:

B Partition the design at functional boundaries.

B Minimize the I/O connections between different partitions.

B Register all inputs and outputs of each block. This makes logic
synchronous and avoids glitches and avoids any delay penalty on
signals that cross between partitions. Registering I/Os typically
eliminates the need to specify timing requirements for signals that
connect between different blocks.

B Do not use “glue logic” or connection logic between hierarchical
blocks. When you preserve hierarchy boundaries, glue logic is not
merged with hierarchical blocks. Your synthesis software may
optimize glue logic separately, which can degrade synthesis results
and is not efficient when used with the LogicLock design
methodology.

B Remember that logic is not synthesized or optimized across partition
boundaries, which means any constant values (signals set to GND,
for example) will not be propagated across partitions.

Altera Corporation 5-15
May 2006

Quartus Il Handbook, Volume 1

Targeting

Clock &
Register-Control
Architectural
Features

5-16

B Do not use tri-state signals or bidirectional ports on hierarchical
boundaries. If you use boundary tri-states in a lower-level block,
synthesis pushes the tri-states through the hierarchy to the top-level
to take advantage of the tri-state drivers on the output pins of Altera
device. Because this requires optimizing through hierarchies,
lower-level boundary tri-state signals have restrictions with
block-level design methodologies.

B Limit clocks to one per block. Partitioning the design into clock
domains makes synthesis and timing analysis easier.

B Place state machines in separate blocks to speed optimization and
provide greater encoding control.

B Separate timing-critical functions from non-timing-critical functions.

B Limit the critical timing path to one hierarchical block. You can
group the logic from several design blocks to ensure the critical path
resides in one block.

For more guidelines for creating design partitions for Quartus II
incremental compilation, refer to the Quartus II Incremental Compilation
for Hierarchical & Team-Based Design chapter in volume 1 of the Quartus II
Handbook.

In addition to following general design guidelines, it is important to code
your design with the device architecture in mind. FPGAs provide
device-wide clocks and register control signals that can improve
performance.

Clock Network Resources

Altera FPGAs provide device-wide global clock routing resources and
dedicated inputs. You should use the FPGA's low-skew, high-fan-out,
dedicated routing where available. By assigning a clock input to one of
these dedicated clock pins or using a Quartus II logic option to assign
global routing, you can take advantage of the dedicated routing available
for clock signals.

In ASIC design, balancing the clock delay as it is distributed across the
device can be important. Because Altera FPGAs provides device-wide
global clock routing resources and dedicated inputs, there is no need to
manually balance delays on the clock network.

Altera recommends limiting the number of clocks in your design to the
number of dedicated global clock resources available in your FPGA.
Clocks feeding multiple locations that do not use global routing may
exhibit clock skew across the device that could lead to timing problems.
In addition, when you use combinational logic to generate an internal
clock, it adds delays on the clock line. In some cases, delay on a clock line

Altera Corporation
May 2006

Targeting Clock & Register-Control Architectural Features

Altera Corporation
May 2006

can result in a clock skew greater than the data path length between two
registers. If the clock skew is greater than the data delay, the timing
parameters of the register (such as hold time requirements) are violated
and the design will not function correctly.

Today s FPGAs offer increasing numbers of global clocks to address large
designs with many clock domains. Many large FPGA devices provide
dedicated global clock networks, regional clock networks, and dedicated
fast regional clock networks. These clocks are typically organized into a
hierarchical clock structure that allows many clocks in each device region
with low skew and delay. There are typically a number of dedicated clock
pins to drive either the global or regional clock networks and both PLL
outputs and internal clocks can drive various clock networks.

To reduce the clock skew within a given clock domain and ensure that
hold times are met within that clock domain, assign each clock signal to
one of the global high-fan-out and low-skew clock networks in the FPGA
device. Quartus II automatically uses global routing for high-fanout
control signals, PLL outputs, and signals feeding the global clock pins on
the device. You can make explicit Global Signal logic option settings. To
make explicit Global Signal logic option settings, on the Assignment
menu, click Assignment Editor. Use this option when it is necessary to
force the software to use the global routing for particular signals.

To take full advantage of these routing resources, the sources of clock
signals in a design (input clock pins or internally-generated clocks)
should drive only the clock input ports of registers. In older Altera device
families (such as FLEX® 10K and ACEX® 1K), if a clock signal feeds the
data ports of a register, the signal may not be able to use the dedicated
routing, which can lead to decreased performance and clock skew
problems. In general, allowing clock signals to drive the data ports of
registers is not considered synchronous design, and it can complicate
timing analysis. It is not a recommended practice.

Reset Resources

ASIC designs may use local resets to avoid long routing delays on the
signal. You should take advantage of the device-wide asynchronous reset
pin available on most FPGAs to eliminate these problems. This reset
signal provides low-skew routing across the device.

Register Control Signals

Avoid using an asynchronous load signal if the design's target device
architecture does not include registers with dedicated circuitry for
asynchronous loads. Also, avoid using both asynchronous clear and
preset if the architecture provides only one of those control signals.

5-17

Quartus Il Handbook, Volume 1

Conclusion

5-18

APEX™ devices, for example, directly support an asynchronous clear
function, but not a preset or load function. When the target device does
not directly support the signals, the place-and-route software must use
combinational logic to implement the same functionality. In addition, if
you use signals in a priority other than the inherent priority in the device
architecture, combinational logic may be required to implement the
desired control signals. The combinational logic is less efficient and can
cause glitches and other problems; it is best to avoid these
implementations.

For Verilog HDL and VHDL examples of registers with various control
signals, and information on the inherent priority order of register control
signals in Altera device architecture, refer to the Recommended HDL
Coding Styles chapter in volume 1 of the Quartus II Handbook.

Following the design practices outlined in this chapter can help you meet
your design goals consistently. Asynchronous design techniques may
result in incomplete timing analysis, may clause glitches on data signals,
and may rely on propagation delays in a device leading to race conditions
and unpredictable results. Taking advantage of the architectural features
in your FPGA device can also improve your quality of results.

Altera Corporation
May 2006

A I:l = D A 6. Recommended HDL
— ® Coding Styles

Q1151007-6.0.0

Introduction HDL coding style can have a significant effect on the quality of results
that you achieve for programmable logic designs. Synthesis tools
optimize HDL code for both logic utilization and performance. However,
sometimes the best optimizations require human understanding of the
design, and synthesis tools have no information about the purpose or
intent of the design. You are often in the best position to improve your
quality of results.

This chapter addresses HDL coding style recommendations to ensure
optimal synthesis results when targeting Altera® devices, including the
following sections:

Using Altera Megafunctions

Instantiating Altera Megafunctions in HDL Code
Inferring Altera Megafunctions from HDL Code
Device-Specific Coding Guidelines

Coding Guidelines for Other Logic Structures

«® For additional guidelines on structuring your design, refer to the Design
Recommendations for Altera Devices chapter in volume 1 of the Quartus II
Handbook.

For style recommendations, options, or HDL attributes specific to your
synthesis tool (including Quartus® Il integrated synthesis and other
third-party EDA tools), refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

Altera Corporation 6-1
May 2006

Quartus Il Handbook, Volume 1

Using Altera
Megafunctions

6-2

Altera provides parameterizable megafunctions that are optimized for
Altera device architectures. Using megafunctions instead of coding your
own logic saves valuable design time. Additionally, the Altera-provided
megafunctions may offer more efficient logic synthesis and device
implementation. You can scale the megafunction’s size and set various
options by setting parameters. Megafunctions include the library of
parameterized modules (LPM) and Altera device-specific megafunctions.

= You must use megafunctions to access some Altera
device-specific features, such as memory, DSP blocks, LVDS
drivers, phase-locked loops (PLLs), transceivers, and double
data rate input/output (DDIO) circuitry.

To use megafunctions in your HDL code, you can instantiate them as
described in “Instantiating Altera Megafunctions in HDL Code” on
page 6-3. Sometimes it is preferable to make your code independent of
device family or vendor, and you do not want to instantiate
megafunctions directly. In cases where you do not want to instantiate a
megafunction, follow the guidelines and coding examples in “Inferring
Altera Megafunctions from HDL Code” on page 6-6 to ensure your
generic HDL code infers the appropriate Altera megafunction.

For some designs, generic HDL code can provide better results than
instantiating a megafunction. Refer to the following general guidelines
and examples that describe when to use standard HDL code and when to
use megafunctions:

B For simple addition or subtraction functions, use the + or - symbol
instead of an LPM function. Instantiating an LPM function for simple
arithmetic operations can result in a less efficient result because the
function is hard coded and the synthesis algorithms cannot take
advantage of basic logic optimizations. For more complicated
arithmetic logic such as synchronous loadable counters, LPM
functions give you access to detailed architecture-specific
functionality that is difficult to infer from HDL code.

B For simple multiplexers and decoders, use array notation (such as
out = data[sell)instead of an LPM function. Array notation
works very well and has simple syntax. You can use the LPM_MUX
function to take advantage of architectural features such as cascade
chains in APEX" series devices, but use the LPM function only if you
want to force a specific implementation.

B Avoid division operations where possible. Division is an inherently
slow operation. Many designers use multiplication creatively to
produce division results. If you must divide, the LPM_DIVIDE
function provides the best possible results.

Altera Corporation
May 2006

Recommended HDL Coding Styles

Instantiating
Altera
Megafunctions
in HDL Code

Altera Corporation
May 2006

The following sections describe how to use megafunctions by
instantiating them in your HDL code with the following methods:

B Instantiating Megafunctions Using the MegaWizard® Plug-In
Manager—You can use the MegaWizard Plug-In Manager to
parameterize the function and create a wrapper file.

B Creating a Clear Box Netlist File for Third-Party Synthesis Tools—
You can optionally create a clear box body instead of a wrapper file.

B Instantiating Megafunctions Using the Port & Parameter
Definition—You can instantiate the function directly in your HDL
code.

Instantiating Megafunctions Using the MegaWizard Plug-In
Manager

Use the MegaWizard Plug-In Manager as described in this section to
create megafunctions in the Quartus II GUI that you can instantiate in
your HDL code. The MegaWizard Plug-In Manager provides a graphical
user interface to customize and parameterize megafunctions, and ensures
that you set all megafunction parameters properly. When you finish
setting parameters, you can specify which files you want to be generated.
Depending on which language you choose, the MegaWizard Plug-In
Manager instantiates the megafunction with the correct parameters and
generates one of the following sets of files:

B AHDL Text Design File (.tdf) wrapper file and a sample instantiation
template Text Design File (_inst.tdf).

B Verilog HDL (.v) wrapper file a sample instantiation template
Verilog HDL file (_inst.v), and a black-box Verilog HDL module
declaration.

® VHDL (.vhd) wrapper file and a sample instantiation template
VHDL file (_inst.vhd).

You can instantiate the megafunction wrapper file in your design using
the corresponding sample instantiation file. In addition, the MegaWizard
Plug-In Manager also creates the following default files by default:

B Component Declaration File (.cmp) that can be used in VHDL
Design Files

B ADHL Include File (.inc) that can be used in Text Design Files (.tdf)
and as a reference for Verilog HDL design files

6-3

Quartus Il Handbook, Volume 1

Refer to Table 6-1 for a list and description of files generated by the
MegaWizard Plug-In Manager.

Table 6-1. MegaWizard Plug-In Manager Generated Files

File

Description

<output file>.bsf

Block Symbol File—Used in the Quartus Il Block Design Files (.bdf).

<output file>.cmp

Component Declaration File—Used in VHDL designs.

<output file>.inc

ADHL Include File—Used in AHDL designs.

<output file>.tdf (1)

AHDL Wrapper File—Megafunction wrapper file for instantiation in an AHDL design.

<output file>.vhd (2) (4)

VHDL Wrapper File—Megafunction wrapper file, or clear box netlist file, for
instantiation in a VHDL design.

<output file>.v (3) (4)

Verilog HDL Wrapper File—Megafunction wrapper file, or clear box netlist file, for
instantiation in a Verilog HDL design.

<output file>_bb.v (3)

Black box Verilog HDL Module Declaration—Hollow-body module declaration that
can be used in Verilog HDL designs to specify port directions when creating black
boxes in third-party synthesis tools.

<output file>_inst.tdf (1)

Text Design File Instantiation Template—Sample AHDL instantiation of the
subdesign in the megafunction wrapper file.

<output file>_inst.vhd (2)

VHDL Instantiation Template—Sample VHDL instantiation of the entity in the
megafunction wrapper file.

<output file>_inst.v (3)

Verilog HDL Instantiation Template—Sample Verilog HDL instantiation of the module
in the megafunction wrapper file.

Notes to Table 6-1:
1)
(2
3)
(€]

The MegaWizard Plug-In Manager generates this file only if you select AHDL output files.

The MegaWizard Plug-In Manager generates this file only if you select VHDL output files.

The MegaWizard Plug-In Manager generates this file only if you select Verilog HDL output files.

A megafunction wrapper file is created by default for most megafunctions. To take advantage of the clear box

feature, on the Tools menu, click MegaWizard Plug-In Manager and turn on Generate clear box netlist file instead
of a default wrapper file (for use with supported EDA synthesis tools only). For additional information about
how to use the MegaWizard Plug-In Manager, refer to the Quartus II Help.

6-4

Creating a Clear Box Netlist File for Third-Party Synthesis Tools

When you use certain megafunctions with third-party synthesis tools,
you can optionally create a clear box body instead of a wrapper file. The
clear box body is a fully synthesized megafunction that you can use with
certain third-party EDA synthesis tools. The netlist file that contains the
megafunction clear box body provides your third-party synthesis tool
with information about the architectural details used in the Quartus II
software. This information enables certain synthesis tools to better report
timing and resource utilization estimates. In addition, synthesis tools can
use the timing information to focus timing-driven optimizations and
improve the quality of results.

Altera Corporation
May 2006

Recommended HDL Coding Styles

«® For information about clear box support in your synthesis tool, refer to
the tool vendor’s documentation or the appropriate chapter in the
Synthesis section in volume 1 of the Quartus II Handbook.

To generate a clear box netlist, turn on Generate clear box netlist file
instead of a default wrapper file (for use with supported EDA synthesis
tools only) on the megafunction selection page 2a of the MegaWizard
Plug-In Manager.

Il=~ Note that not all megafunctions support clear box netlists. If you
cannot create a clear box netlist for a particular megafunction,
the option to generate the netlist is not shown on page 2a of the
MegaWizard Plug-In Manager. Some megafunctions always use
a clear box netlist file, in which case the option on page 2a cannot
be turned off.

Instantiating Megafunctions Using the Port & Parameter
Definition

You can instantiate the megafunction directly in your AHDL, Verilog
HDL, or VHDL code by calling the megafunction and setting its
parameters as you would any other subdesign, module, or component.

e« Refer to the specific megafunction in the Quartus II Help for a list of the
megafunction ports and parameters. Quartus II Help also provides a
sample VHDL component declaration and AHDL function prototype for
each megafunction.

[l=~ Altera strongly recommends that you use the MegaWizard
Plug-In Manager for complex megafunctions such as PLLs,
transceivers, and LVDS drivers. For details on using the
MegaWizard Plug-In Manager, refer to “Instantiating
Megafunctions Using the MegaWizard Plug-In Manager” on
page 6-3.

Altera Corporation 6-5
May 2006

Quartus Il Handbook, Volume 1

Inferring Altera
Megafunctions
from HDL Code

6-6

Synthesis tools, including Quartus II integrated synthesis, recognize
certain types of HDL code and automatically infer the appropriate
megafunction. The synthesis tool uses the Altera megafunction code
when compiling your design—even when you do not specifically
instantiate the megafunction. Synthesis tools infer megafunctions to take
advantage of logic that is optimized for Altera devices. The area and
performance of such logic may be better than the results obtained by
inferring generic logic from the same HDL code.

The following sections describe the types of logic that standard synthesis
tools recognize and map to megafunctions. Synthesis software infers only
the specific functions listed here. The software cannot infer other
functions, such as PLLs, LVDS drivers, transceivers, or DDIO circuitry
from HDL code because these functions cannot be fully or efficiently
described in HDL code. In some cases, you can use synthesis tool options
to turn off inference of certain megafunctions. The following sections
describe how to infer the following megafunctions from generic HDL
code:

B 1lpm_mult—Inferring Multipliers from HDL Code

B altmult accum& altmult add—Inferring
Multiply-Accumulators & Multiply-Adders from HDL Code

B altsyncramé& lpm_ram dp—Inferring RAM Functions from
HDL Code

B 1lpm_rom—Inferring ROM from HDL Code

B altshift_taps—Inferring Shift Registers from HDL Code

For synthesis tool features and options, refer to your synthesis tool
documentation or the appropriate chapter in the Synthesis section in
volume 1 of the Quartus II Handbook.

Ipm_mult—Inferring Multipliers from HDL Code

To infer multiplier functions, synthesis tools look for multipliers and
convert them to 1pm_mult or altmult_add megafunctions, or may
map them directly to multiplier device atoms. For devices with DSP
blocks, the software can implement the function in a DSP block instead of
logic, depending on device utilization. The Quartus II Fitter can also
place input and output registers in DSP blocks (that is, perform register
packing) to improve performance and area utilization.

For additional information about the DSP block and which functions it
can implement, refer to the appropriate Altera device family handbook
and The DSP Solution Center of the Altera web site at www.altera.com.

Altera Corporation
May 2006

Recommended HDL Coding Styles

The following four code samples show Verilog HDL and VHDL examples
for unsigned and signed multipliers that synthesis tools can infer as an
lpm mult or altmult_add megafunction. Each example fits into one
DSP block 9-bit element. In addition, when register packing occurs, no
extra logic cells for registers are required.

[l=" The signed declaration in Verilog HDL is a feature of the
Verilog 2001 Standard.

Example 6-1. Verilog HDL Unsigned Multiplier

module unsigned mult (out, a, b);

output [15:0] out;

input [7:0] a;

input [7:0] b;

assign out = a * b;
endmodule

Example 6-2. Verilog HDL Signed Multiplier with Input & Output Registers (Pipelining = 2)

module signed mult (out,

output [15:0] out;
input clk;
input signed [7:0]

input signed [7:0] b;

clk, a, b);

reg signed [7:0] a_reg;
reg signed [7:0] b_reg;
reg signed [15:0] out;
wire signed [15:0] mult_out;

assign mult_out = a_reg * b_reg;

always @ (posedge clk)

begin
a_reg <= aj
b reg <= b;
out <= mult_out;
end
endmodule

Altera Corporation
May 2006

6-7

Quartus Il Handbook, Volume 1

Example 6-3. VHDL Unsigned Multiplier with Input & Output Registers (Pipelining = 2)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.all;

ENTITY unsigned mult IS
PORT (
a: IN UNSIGNED (7 DOWNTO O0) ;
b: IN UNSIGNED (7 DOWNTO O0) ;
clk: IN STD LOGIC;
aclr: IN STD LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)
)
END unsigned mult;

ARCHITECTURE rtl OF unsigned mult IS
SIGNAL a_reg, b_reg: UNSIGNED (7 DOWNTO O0) ;
BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr ='1l') THEN
a_reg <= (OTHERS => '0');
b_reg <= (OTHERS => '0');
result <= (OTHERS => '0');

ELSIF (clk'event AND clk = 'l') THEN
a_reg <= a;
b_reg <= b;
result <= a_reg * b_reg;
END IF;
END PROCESS;
END rtl;

Example 6-4. VHDL Signed Multiplier
LIBRARY ieee;

USE ieee.std logic_ 1164 .ALL;
USE ieee.numeric_std.all;

ENTITY signed mult IS
PORT (
a: IN SIGNED (7 DOWNTO O0) ;
b: IN SIGNED (7 DOWNTO O0) ;
result: OUT SIGNED (15 DOWNTO 0)
)
END signed mult;

ARCHITECTURE rtl OF signed mult IS
SIGNAL a_int, b_int: SIGNED (7 downto 0);
SIGNAL pdt_int: SIGNED (15 downto 0);
BEGIN
a_int <= (a);
b _int <= (b);
pdt_int <= a_int * b_int;
result <= pdt_int;
END rtl;

6-8

Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

altmult_accum & altmult_add—Inferring Multiply-Accumulators
& Multiply-Adders from HDL Code

Synthesis tools detect multiply-accumulators or multiply-adders and
convert them to altmult accumor altmult add megafunctions,
respectively. The Quartus II software then places these functions in DSP
blocks during placement and routing.

= Synthesis tools infer multiply-accumulator and multiply-adder
functions only if the Altera device family has dedicated DSP
blocks.

A multiply-accumulator consists of a multiplier feeding an addition
operator. The addition operator feeds a set of registers that then feeds the
second input to the addition operator. A multiply-adder consists of two
to four multipliers feeding one or two levels of addition, subtraction, or
addition/subtraction operators. Addition is always the second-level
operator, if it is used. In addition to the multiply-accumulator and
multiply-adder, the Quartus II Fitter also places input and output
registers into the DSP blocks to pack registers and improve performance
and area utilization.

The Verilog HDL and VHDL code samples shown in Examples 6-5
through 6-8 infer specific multiply-accumulators and multiply-adders.

6-9

Quartus Il Handbook, Volume 1

Example 6-5. Verilog HDL Unsigned Multiply-Accumulator with Input, Output & Pipeline Registers
(Latency = 3)

module unsig altmult accum (dataout,

input [7:0] dataa;
input [7:0] datab;
input clk;

input aclr;
input clken;

dataa,

output [31:0] dataout;
reg [31:0] dataout;
reg [7:0] dataa_reg;
reg [7:0] datab_reg;
reg [15:0] multa reg;
wire [15:0] multa;
wire [31:0] adder out;
assign multa = dataa_reg * datab_reg;
assign adder out = multa reg + dataout;
always @ (posedge clk or posedge aclr)
begin
if (aclr)
begin
dataa_reg <= 0;
datab_reg <= 0;
multa reg <= 0;
dataout <= 0;
end
else if (clken)
begin
dataa_reg <= dataa;
datab_reg <= datab;
multa_reg <= multa;
dataout <= adder_ out;
end
end
endmodule

datab,

clk,

aclr,

clken) ;

Example 6-6. Verilog HDL Signed Multiply-Adder (Latency = 0)

module sig_altmult_add (dataa, datab, datac, datad, result);

input
input
input
input
output

signed [15:0] dataa;
signed [15:0] datab;
signed [15:0] datac;
signed [15:0] datad;
[32:0] result;

wire signed
wire signed

[31:0] multO_result;
[31:0] multl_result;

assign multO_result = dataa * datab;

assign multl_result = datac * datad;

assign result = (multO_result + multl_result);
endmodule
6-10

Altera Corporation
May 2006

Recommended HDL Coding Styles

Example 6-7. VHDL Unsigned Multiply-Adder with Input, Output & Pipeline Registers (Latency = 3)
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.all;

ENTITY unsignedmult_add IS
PORT (
a: IN UNSIGNED (7 DOWNTO O0) ;
b: IN UNSIGNED (7 DOWNTO 0) ;
(0)
0)

i

c: IN UNSIGNED (7 DOWNTO
d: IN UNSIGNED (7 DOWNTO
clk: IN STD LOGIC;
aclr: IN STD LOGIC;
result: OUT UNSIGNED (15 DOWNTO 0)
)i
END unsignedmult_add;

i

ARCHITECTURE rtl OF unsignedmult_add IS
SIGNAL a_int, b_int, c_int, d_int: UNSIGNED (7 DOWNTO O0) ;
SIGNAL pdt_int, pdt2_int: UNSIGNED (15 DOWNTO O0) ;
SIGNAL result_int: UNSIGNED (15 DOWNTO O0) ;

BEGIN
PROCESS (clk, aclr)
BEGIN
IF (aclr = '1l') THEN
a_int <= (OTHERS => '0');
b_int <= (OTHERS => '0');
c_int <= (OTHERS => '0');
d_int <= (OTHERS => '0');
pdt_int <= (OTHERS => '0'
\

)i
pdt2_int <= (OTHERS => '0');
result_int <= (OTHERS => '0');

ELSIF (clk'event AND clk = '1l') THEN
a_int <= a;
b_int <= b;
c_int <= c;
d_int <= d;

pdt_int <= a_int * b_int;
pdt2_int <= c_int * d_int;
result_int <= pdt_int + pdt2_int;
END IF;
END PROCESS;
result <= result_int;
END rtl;

Altera Corporation 6-11
May 2006

Quartus Il Handbook, Volume 1

Example 6-8. VHDL Signed Multiply-Accumulator with Input, Output & Pipeline Registers (Latency = 3)
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.all;

ENTITY sig_altmult_accum IS
PORT (

)

a: IN SIGNED (7 DOWNTO 0) ;

b: IN SIGNED (7 DOWNTO O0) ;

clk: IN STD LOGIC;

accum_out: OUT SIGNED (15 DOWNTO 0)

END sig_altmult_accum;

ARCHITECTURE rtl OF sig_altmult_accum IS
SIGNAL a_reg, b _reg: SIGNED (7 DOWNTO 0) ;
SIGNAL pdt_reg: SIGNED (15 DOWNTO 0) ;
SIGNAL adder_out: SIGNED (15 DOWNTO 0) ;

BEGIN

PROCESS (clk)
BEGIN

IF (clk'event and clk = 'l1') THEN
a_reg <= (a);
b_reg <= (b);
pdt_reg <= a_reg * b_reg;
adder_out <= adder_out + pdt_reg;
END IF;

END process;

accum_out <= (adder_out) ;
END rtl;

6-12

altsyncram & Ipm_ram_dp—Inferring RAM Functions from
HDL Code

To infer RAM functions, synthesis tools detect sets of registers and logic
that can be replaced with the altsyncramor 1pm_ram dp
megafunctions for device families that have dedicated RAM blocks.

Synthesis tools recognize single-port and simple dual-port (one read port
and one write port) RAM blocks. Tools usually do not infer small RAM
blocks because small RAM blocks typically can be implemented more
efficiently by using the registers in regular logic.

Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

=" If you are using Quartus II integrated synthesis, you can direct
the software to infer RAM blocks for all sizes. On the
Assignments menu, click Settings. In the Category list, click
Analysis & Synthesis Settings. Click More Settings. Under
Existing Options Settings, select the option Allow Any RAM
Size for Recognition. Click the Setting arrow and select ON.

If your design contains a RAM block that your synthesis tool
does not recognize and infer, the design might require a large
amount of system memory that potentially can cause
compilation problems.

Some synthesis tools provide options to control the implementation of
inferred RAM blocks for Altera devices with TriMatrix™ memory blocks.
For example, Quartus II integrated synthesis provides the ramstyle
synthesis attribute to specify the type of memory block using the value
“M512,” “M4K,” or “M-RAM,” or to specify the use of regular logic
instead of a dedicated memory block using the value “logic.”

For information on synthesis attributes, refer to the appropriate chapter
in the Synthesis section in volume 1 of the Quartus II Handbook.

When you are using a formal verification flow, Altera recommends that
you create RAM blocks in separate entities or modules that only contain
the RAM logic. In certain formal verification flows, for example, when
using Quartus Il integrated synthesis, the entity or module containing the
inferred RAM is put into a black box automatically because formal
verification tools do not support RAM blocks. The Quartus II software
issues a warning message when this occurs. If the entity or module
contains any additional logic outside the RAM block, this logic also must
be treated as a black box for formal verification and therefore cannot be
verified.

Dual-Clock Synchronous RAM

Altera’s TriMatrix memory blocks are synchronous, so RAM designs that
target architectures that contain these dedicated memory blocks must be
synchronous to be mapped directly into the device architecture.
Synchronous memories are supported in all Altera device families.

When simultaneous reading and writing to the same RAM address
occurs, the TriMatrix memory blocks in Altera devices return undefined
data values. This usually differs from the functionality of the original
HDL design. If your design requires a given output when reading and
writing to the same RAM address, direct your synthesis tool not to infer
RAM blocks for dual-clock memories by disabling RAM inference for
these memories.

6-13

Quartus Il Handbook, Volume 1

«® For specific options to disable RAM inference in your synthesis tool,

refer to your synthesis tool documentation or the appropriate chapter in
the Synthesis section in volume 1 of the Quartus II Handbook.

The code samples shown in Examples 6-9 and 6-10 show Verilog HDL
and VHDL code that infers dual-clock synchronous RAM.

Example 6-9. Verilog HDL Dual-Clock Synchronous RAM

module ram dual (g, addr_in, addr out, d, we, clkl, clk2);

output [7:0] q;

input [7:0] d;

input [6:0] addr_in;
input [6:0] addr_out;
input we, clkl, clk2;

reg [6:0] addr_out_reg;
reg [7:0] q;
reg [7:0] mem [127:0];

always @ (posedge clkl)
begin
if (we)
mem[addr_in] <= d;
end

always @ (posedge clk2) begin

g <= mem[addr_out_reg];
addr_out_reg <= addr_out;
end
endmodule

6-14

Altera Corporation
May 2006

Recommended HDL Coding Styles

Example 6-10. VHDL Dual-Clock Synchronous RAM
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY ram_dual IS
PORT (
clockl, clock2: IN STD_LOGIC;
data: IN STD_LOGIC_VECTOR (3 DOWNTO 0) ;
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD LOGIC;
q: OUT STD_LOGIC_VECTOR (3 DOWNTO 0)
)i
END ram dual;
ARCHITECTURE rtl OF ram _dual IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (3 DOWNTO O0) ;
SIGNAL ram_block: MEM;
SIGNAL read_address_reg : INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clockl)
BEGIN
IF (clockl'event AND clockl = 'l') THEN
IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
END IF;

END PROCESS;
PROCESS (clock2)
BEGIN
IF (clock2'event AND clock2 = 'l') THEN
q <= ram block(read address_req) ;
read_address_reg <= read_address;
END IF;
END PROCESS;
END rtl;

Single-Clock Synchronous RAM without Read-Through-Write Behavior

The code examples in this section show Verilog HDL and VHDL code that
infers single-clock synchronous RAM. Altera’s TriMatrix memory blocks
are synchronous, so RAM designs targeting to architectures that contain
these dedicated memory blocks must be synchronous to be mapped
directly into the device architecture.

These examples also avoid read-through-write behavior, which is not
directly supported in TriMatrix memory blocks. Altera recommends that
you use this coding style as long as your design does not require RAM
with read-through-write behavior, meaning your design does not require
that a simultaneous read and write to the same RAM location read the
new value that is currently being written to that RAM location.

Altera Corporation 6-15
May 2006

Quartus Il Handbook, Volume 1

=" In TriMatrix memory blocks, if you attempt to read and write
from the same address in the same clock cycle, the read returns
either the old data at the address or unknown data, depending
on the memory mode and block type.

If you require RAM with read-through-write behavior, refer to the section
“Single-Clock Synchronous RAM with Read-Through-Write Behavior”
on page 6-17.

«® For additional information about the dedicated memory blocks in your
specific device, refer to the appropriate Altera device family data sheet
on the Altera web site at www.altera.com.

The RAM code samples shown in Examples 6-11 and 612 map directly
into Altera TriMatrix memory.

Example 6-11. Verilog HDL Single-Clock Synchronous RAM Without Read-Through-Write Behavior
module ram_infer (g, a, d, we, clk);

output reg [7:0] g;

input [7:0] 4;

input [6:0] a;

input we, clk;

reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)
mem[a] <= 4d;
q <= mem[al; // g doesn't get d in this clock cycle
end
endmodule

6-16 Altera Corporation
May 2006

Recommended HDL Coding Styles

Example 6-12. VHDL Single-Clock Synchronous RAM Without Read-Through-Write Behavior

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ram IS
PORT (
clock: IN STD_LOGIC;
data: IN STD LOGIC_VECTOR (2 DOWNTO O0) ;
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD LOGIC;
g: OUT STD_LOGIC VECTOR (2 DOWNTO 0)
)i
END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR(2 DOWNTO 0) ;
SIGNAL ram_block: MEM;
BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = 'l') THEN
IF (we = 'l') THEN
ram_block (write_address) <= data;
END IF;
g <= ram block(read_address) ;
-- VHDL semantics imply that g doesn't get data
-- in this clock cycle
END IF;
END PROCESS;
END rtl;

Single-Clock Synchronous RAM with Read-Through-Write Behavior

TriMatrix memory blocks do not support mixed-port read-through-write
behavior. This means if you attempt to read and write from the same
address in the same clock cycle, the read returns either the old data at the
address or unknown data, depending on the memory mode and block
type. However, you can describe a RAM block in HDL code in which a
simultaneous read and write to the same location reads the new value
that is currently being written to that RAM location. The following
examples show code that infers this type of RAM logic. To implement this
behavior in the target device, synthesis software adds bypass logic
around the RAM block. This bypass logic increases the area utilization of
the design and decreases the performance if the RAM block is part of the
design’s critical path.

Altera Corporation 6-17
May 2006

Quartus Il Handbook, Volume 1

The RAM examples shown in Examples 6-13 and 6-14 require bypass

logic around the RAM block.

Example 6-13. Verilog HDL Single-Clock Synchronous RAM with Read-Through-Write Behavior
module ram_infer (g, a, d, we, clk);
output [7:0] qg;
input [7:0] 4;
input [6:0] a;
input we, clk;
reg [6:0] read_add;
reg [7:0] mem [127:0];
always @ (posedge clk) begin
if (we)
mem[a] <= d;
read_add <= a;
end
assign g = mem[read_add];
endmodule

Example 6-14. VHDL Single-Clock Synchronous RAM with Read-Through-Write Behavior
LIBRARY ieee;
USE ieee.std logic 1164 .ALL;

ENTITY ram IS
PORT (
clock: IN STD LOGIC;
data: IN STD LOGIC_VECTOR (2 DOWNTO O0) ;
write address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
we: IN STD_LOGIC;
g: OUT STD_LOGIC_VECTOR (2 DOWNTO 0)
)i
END ram;

ARCHITECTURE rtl OF ram IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC VECTOR (2 DOWNTO O0) ;
SIGNAL ram block: MEM;
SIGNAL read_address_reg: INTEGER RANGE 0 to 31;

BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = '1') THEN
IF (we = '1l') THEN
ram_block (write address) <= data;
END IF;
read_address_reg <= read_address;
END IF;

END PROCESS;
g <= ram_block (read address_reg) ;
END rtl;

6-18 Altera Corporation

May 2006

Recommended HDL Coding Styles

Synchronous RAM with Two Read Addresses

Quartus II integrated synthesis can infer RAM blocks from RAM
descriptions that have two read addresses and one write address. This
type of RAM blocks can be implemented by duplicating the RAM block
as shown in Figure 6-1. All inputs are duplicated for both RAM blocks
except for the read address, which is individual for each block.

Figure 6-1. Block Diagram Showing Synchronous RAM with Two Read Addresses

—> q2[7..0]

f——i> q[7..0]

mem_dual
we > WE
clk > CLKO
CLKA1
d[7.0] DATAIN [7..0] DATAOUT [7..0]
write_address [6..0] > WADDR [6..]0
read_address2 [6..0] > RADDR [6..0]
SYNC_RAM
mem_dual
WE
CLKO
CLK1 DATAOUT [7..0]
DATAIN [7..0]
WADDR [6..]0
ra[6..0] > RADDR [6..0]
SYNC_RAM

Altera Corporation
May 2006

The RAM code samples with two read addresses shown in
Examples 615 and 6-16 are inferred by duplicating the RAM block.

6-19

Quartus Il Handbook, Volume 1

Example 6-15. Verilog HDL Single-Clock Synchronous RAM with Two Read Addresses

module dual_ram_infer (g, g2, write address, read address, read address2, d, we, clk);

output reg [7:0] qg;

output reg [7:0] q2;

input [7:0] 4;

input [6:0] write address;

input [6:0] read_ address;

input [6:0] read_ address2;

input we, clk;

reg [7:0] mem [127:0];

always @ (posedge clk) begin
if (we)
mem[write_address] <= d;
g <= mem[read address];
g2 <= mem[read_address2];
end
endmodule

Example 6-16. VHDL Single-Clock Synchronous RAM with Two Read Addresses

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY dual_ram_infer IS
PORT (

clock: IN STD LOGIC;
data: IN STD_LOGIC_VECTOR (2 DOWNTO O0) ;
write_address: IN INTEGER RANGE 0 to 31;
read_address: IN INTEGER RANGE 0 to 31;
read_address2: IN INTEGER RANGE 0 to 31;
we: IN STD LOGIC;
g: OUT STD_LOGIC_VECTOR (2 DOWNTO 0) ;
g2: OUT STD LOGIC_VECTOR (2 DOWNTO 0)
)i

END dual ram infer;

ARCHITECTURE rtl OF dual ram infer IS
TYPE MEM IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (2 DOWNTO O0) ;
SIGNAL ram block: MEM;

BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = 'l') THEN
IF (we = '1l') THEN
ram _block (write address) <= data;
END IF;

g <= ram block(read address) ;
g2 <= ram_block (read address2) ;
END IF;
END PROCESS;
END rtl;

6-20 Altera Corporation
May 2006

Recommended HDL Coding Styles

Single-Clock Synchronous RAM with Asynchronous Read Address

The code samples shown in Examples 6-17 and 6-18 show Verilog HDL
and VHDL code for RAM with asynchronous read addresses and
registered outputs.

The implementation of the RAM code in the following examples varies
depending on the dedicated RAM architecture of the device family. For
example, implementing asynchronous read addresses in the APEX device
series is straightforward because the RAM architecture in the APEX series
supports asynchronous read addresses. However, read addresses in
Stratix® devices and most newer device families must be registered.
Therefore, you cannot directly implement the asynchronous RAM code in
the following examples. To implement the asynchronous RAM in the
Stratix series devices, for example, synthesis tools may move the output
registers to the inputs of the RAM block so that the logic can be
implemented using an altsyncram megafunction. If the read and write
clocks are not the same, moving the output registers to the inputs of the
RAM block can slightly change the functionality. Under these
circumstances, the synthesis software issues a warning. If you are using
Quartus Il integrated synthesis, Quartus II Help explains the differences.
These RAM examples may not map directly to the RAM block, depending
on the device architecture.

Example 6-17. Verilog HDL Single-Clock Synchronous RAM with Asynchronous Read Address
module ram (clock, data, write address, read address, we, q);

parameter ADDRESS WIDTH 4;

parameter DATA WIDTH 8;

input clock;

input [DATA WIDTH-1:0] data;

input [ADDRESS_WIDTH-1:0] write_address;

input [ADDRESS WIDTH-1:0] read address;

input we;

output [DATA WIDTH-1:0] g;

reg [DATA WIDTH-1:0] q;
reg [DATA WIDTH-1:0] ram block [2**ADDRESS WIDTH-1:0];
always @ (posedge clock)

begin
if (we)
ram_block [write address] <= data;
g <= ram block[read_ address];
end
endmodule

Altera Corporation 6-21
May 2006

Quartus Il Handbook, Volume 1

Example 6-18. VHDL Single-Clock Synchronous RAM with Asynchronous Read Address

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ram IS

GENERIC (
ADDRESS WIDTH: integer := 4;
DATA_WIDTH: integer := 8

)i

PORT (

clock: IN std logic;
data: IN STD_LOGIC_VECTOR (DATA_WIDTH - 1 DOWNTO 0) ;
write_address IN STD_LOGIC VECTOR (ADDRESS_WIDTH - 1 DOWNTO O0) ;
read_address IN STD LOGIC_ VECTOR (ADDRESS WIDTH - 1 DOWNTO O0) ;
we: IN STD LOGIC;
g: OUT STD_LOGIC_VECTOR (DATA WIDTH - 1 DOWNTO 0)
)i
END ram;

ARCHITECTURE rtl OF ram IS
TYPE RAM IS ARRAY (0 TO 2 ** ADDRESS WIDTH - 1) OF std_logic_vector (DATA WIDTH - 1
DOWNTO 0) ;
SIGNAL ram_block: RAM;
BEGIN
PROCESS (clock)
BEGIN
IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
ram_block (TO_INTEGER (UNSIGNED (write_address))) <= data;
END IF;
q <= ram block (TO_INTEGER (UNSIGNED (read_address))) ;
END IF;
END PROCESS;
END rtl;

Specifying Initial Memory Contents

Your synthesis tool may offer a way to specify the initial contents of an
inferred memory. For example, Quartus II integrated synthesis supports
a synthesis attribute called ram_init_file thatallows you to specify a
Memory Initialization File (.mif) for an inferred RAM block. In VHDL,
you can also initialize the contents of an inferred memory by specifying a
default value for the corresponding signal. Quartus II integrated
synthesis automatically converts the default value into a MIF for the
inferred RAM.

«o Forinformation about the ram init file attribute, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook. For information about synthesis attributes in other synthesis
tools, refer to the tool vendor’s documentation.

6—22 Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

Ipm_rom—Inferring ROM from HDL Code

To infer ROM functions, synthesis tools detect sets of registers and logic

that can be replaced with the altsyncramor 1lpm rom megafunctions,

depending on the target device family, only for device families that have

dedicated memory blocks.

I'=~ Because formal verification tools do not support ROM
megafunctions, Quartus II integrated synthesis does not infer
ROM megafunctions when a third-party formal verification tool
is selected.

ROMs are inferred when a case statement exists in which a value is set
to a constant for every choice in the case statement. Because small ROMs
typically achieve the best performance when they are implemented using
the registers in regular logic, each ROM function must meet a minimum
size requirement to be inferred and placed into memory.

=" If you are using the Quartus Il integrated synthesis, you can
direct the software to infer ROM blocks for all sizes. On the
Assignments menu, click Settings. In the Category list, click
Analysis & Synthesis Settings. Click More Settings. Under
Existing Options Settings, select the option Allow Any ROM
Size for Recognition. Click the Setting arrow and select ON.

Some synthesis tools provide options to control the implementation of
inferred ROM blocks for Altera devices with TriMatrix memory blocks.
For example, Quartus II integrated synthesis provides the romstyle
synthesis attribute to specify the type of memory block using the value
“M512,” “M4K,” or “M-RAM,” or to specify the use of regular logic
instead of a dedicated memory block using the value “logic.”

For information about synthesis attributes, refer to the appropriate
chapter in the Synthesis section in volume 1 of the Quartus II Handbook.
When you are using a formal verification flow, Altera recommends that
you create ROM blocks in separate entities or modules that contain only
the ROM logic because you may need to treat the entity and module as a
black box during formal verification.

The Verilog HDL and VHDL code samples shown in Examples 6-19
and 6-20 infer synchronous ROM blocks. Depending on the device
family’s dedicated RAM architecture, the ROM logic may have to be
synchronous; consult the device family handbook for details.

6-23

Quartus Il Handbook, Volume 1

For device architectures with synchronous RAM blocks, such as the
Stratix series devices and newer device families, either the address or the
output has to be registered for ROM code to be inferred. When output
registers are used, the registers are implemented using the input registers
of the Stratix RAM block, but the functionality of the ROM is not changed.
If you register the address, the power-up state of the inferred ROM can be
different from the HDL design. In this scenario, the synthesis software
generally issues a warning. The Quartus II Help explains the condition
under which the functionality changes when you are using Quartus II
integrated synthesis. These ROM code samples map directly to the Altera
TriMatrix memory architecture.

Example 6-19. Verilog HDL Synchronous ROM

module sync_rom (clock, address, data_ out);
input clock;
input [7:0] address;
output [5:0] data_out;

reg [5:0] data_out;

always @ (posedge clock)
begin
case (address)
8'b00000000: data out = 6'b101111;
8'b00000001: data_out = 6'b110110;

8'b11111110: data_out = 6'b000001;
8'b11111111: data out = 6'b101010;
endcase
end
endmodule

6—24 Altera Corporation
May 2006

Recommended HDL Coding Styles

Example 6-20. VHDL Synchronous ROM

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY sync_rom IS
PORT (
clock: IN STD_LOGIC;
address: IN STD_LOGIC_VECTOR (7 downto 0) ;
data_out: OUT STD_LOGIC_VECTOR (5 downto 0)
)i

END sync_rom;

ARCHITECTURE rtl OF sync_rom IS
BEGIN
PROCESS (clock)
BEGIN
IF rising_edge (clock) THEN
CASE address IS
WHEN "00000000" => data_out <= "101111";
WHEN "00000001" => data out <= "110110";

WHEN "11111110" => data_out <= "000001";
WHEN "11111111" => data_out <= "101010";
WHEN OTHERS => data_out <= "101111";

END CASE;
END IF;
END PROCESS;
END rtl;
altshift_taps—Inferring Shift Registers from HDL Code
To infer shift registers, synthesis tools detect a group of shift registers of
the same length and convert them to an altshift taps megafunction.
To be detected, all the shift registers must have the following
characteristics:
B Use the same clock and clock enable
B Do not have any other secondary signals
B Have equally spaced taps that are at least three registers apart
s Because formal verification tools do not support shift register
megafunctions, the Quartus II integrated synthesis does not
infer the altshift_taps megafunction when a third-party
formal verification tool is selected. You can select EDA tools for
use with your Quartus II project on the EDA Tool Settings page
of the Settings dialog box.
Altera Corporation 6-25

May 2006

Quartus Il Handbook, Volume 1

When you are using a formal verification flow, Altera recommends that
you create shift register blocks in separate entities or modules containing
only the shift register logic, because you may need to treat the entity or
module as a black box during formal verification.

Synthesis software recognizes shift registers only for device families that
have dedicated RAM blocks and the software uses certain guidelines to
determine the best implementation. The following guidelines are
followed in Quartus II integrated synthesis and also are generally
followed by third-party EDA tools:

B For FLEX® 10K and ACEX® 1K devices, the software does not infer
altshift taps megafunctions because FLEX 10K and ACEX 1K
devices have a relatively small amount of dedicated memory.

B For APEX 20K and APEX II devices, the software infers the
altshift_ taps megafunction only if the shift register has more
than a total of 128 bits. Smaller shift registers typically do not benefit
from implementation in dedicated memory.

B For Stratix and Cyclone™ series devices, the software determines
whether to infer the altshift_taps megafunction based on the
width of the registered bus (W), the length between each tap (L), and
the number of taps (N).

e If the registered bus width is one (W = 1), the software infers
altshift_taps if the number of taps times the length
between each tap is greater than or equal to 64 (N x L > 64).

e If the registered bus width is greater than one (W > 1), the
software infers altshift_taps if the registered bus width
times the number of taps times the length between each tap is
greater than or equal to 32 (W x N x L > 32).

If the length between each tap (L) is not a power of two, the software uses
more logic to decode the read and write counters. This situation occurs
because for different sizes of shift registers, external decode logic that
uses logic elements (LEs) or Adaptive Logic Modules (ALMs) is required
to implement the function. This decode logic eliminates the performance
and utilization advantages of implementing shift registers in memory.

The registers that the software maps to the altshift_ taps
megafunction and places in RAM are not available in a Verilog HDL or
VHDL output file for simulation tools because their node names do not
exist after synthesis.

6-26 Altera Corporation
May 2006

Recommended HDL Coding Styles

The following examples infer shift registers:

B Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

B Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly
Spaced Taps

® VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced
Taps

Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

The Verilog HDL code sample shown in Example 6-21 shows a simple,
single-bit wide, 64-bit long shift register. The synthesis software
implements the register (W=1and M = 64)inanaltshift_taps
megafunction for supported devices. If the length of the register is less
than 64 bits, the software implements the shift register in logic.

Example 6-21. Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register

module shift 1x64

input sr_in;
output sr_out;

reg [63:0] sr;

(clk, shift, sr_in, sr_out);
input clk, shift;

always @ (posedge clk)

begin
if (shift
begin
sr[63:
sr[0]
end
end
assign sr_out
endmodule

== 1'bl)

1] <= sr[62:0];
<= sr_in;

sr[63];

Altera Corporation
May 2006

Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly
Spaced Taps

The code samples shown in Examples 6-22 and 6-23 show Verilog HDL
and VHDL 8-bit wide, 64-bit long shift register (W > 1 and M = 64) with
evenly spaced taps at 15, 31, and 47. The synthesis software implements
this function in a single altshift_taps megafunction and maps it to
RAM in supported devices.

6-27

Quartus Il Handbook, Volume 1

Example 6-22. Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

module shift 8x64 taps (clk, shift, sr_in, sr out, sr_tap one, sr_tap_ two, sr_tap three);
input clk, shift;
input [7:0] sr_in;
output [7:0] sr_tap_one, sr_tap_two, sr_tap_three, sr_out;

reg [7:0] sr [63:0];
integer n;

always @ (posedge clk)

begin
if (shift == 1'bl)
begin
for (n = 63; n>0; n = n-1)
begin
sr[n] <= sr[n-1];
end
sr[0] <= sr_in;
end
end
assign sr_tap_one = sr([l15];
assign sr_tap_two = sr[31];
assign sr_tap_three = sr[47];
assign sr_out = sr[63];
endmodule
6-28 Altera Corporation

May 2006

Recommended HDL Coding Styles

Example 6-23. VHDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

LIBRARY IEEE;

USE IEEE.STD LOGIC_1164.ALL;
ENTITY shift 8x64_ taps IS

PORT (

clk: IN STD LOGIC;

shift: IN STD_ LOGIC;

sr_in: IN STD LOGIC_VECTOR (7 DOWNTO 0) ;
sr_tap_one: OUT STD_LOGIC_VECTOR (7 DOWNTO O0) ;

sr_tap_two :

OUT STD_LOGIC_VECTOR (7 DOWNTO 0) ;

sr_tap_three: OUT STD_LOGIC_VECTOR (7 DOWNTO O0) ;
sr_out: OUT STD_LOGIC_VECTOR (7 DOWNTO O0)

)

END shift_ 8x64_taps;

ARCHITECTURE arch OF shift 8x64_ taps IS
SUBTYPE Sr_width Is STD_LOGIC_VECTOR(7 DOWNTO 0) ;
TYPE sr_length IS ARRAY (63 DOWNTO 0) OF sr_ width;
SIGNAL sr: sr_length;

BEGIN
PROCESS (clk)
BEGIN
IF (clk'EVENT and clk = '1l') THEN
IF (shift '1l') THEN

sr (63 DOWNTO 1) <= sr (62 DOWNTO O0) ;

sr(0)

END IF;
END IF;
END PROCESS;

<= sr_in;

sr_tap_one <= sr(15);
sr_tap_two <= sr(31);
sr_tap_ three <= sr(47);

sr_out <= sr(63);

END arch;

Device-Specific
Coding
Guidelines

Altera Corporation
May 2006

This section provides device-specific coding recommendations for Altera
device architectures. It is important to understand how synthesis tools
map your HDL code into the target Altera device. Designing registers and
specific logic structures to match the appropriate Altera device
architecture can provide significant quality improvements in your design
results.

Register Power-Up Values in Altera Devices

Registers in the device core always power up to a low (0) logic level on all
Altera devices. However, there are ways to implement logic such that
registers behave as if they were powering up to a high (1) logic level.

If you use a preset signal on a device that does not support presets in the

register architecture, then your synthesis tool may convert the preset
signal to a clear signal, which requires synthesis to perform an

6-29

Quartus Il Handbook, Volume 1

6-30

optimization referred to as NOT gate push-back. NOT gate push-back
adds an inverter to the input and the output of the register so that the
reset and power-up conditions will appear to be high but the device
operates as expected. In this case, your synthesis tool may issue a
message informing you about the power-up condition. The register itself
powers up low, but the register output is inverted so the signal that
arrives at all destinations is high.

Due to these effects, if you specify a particular reset value (other than 0),
you may cause your synthesis tool to use the asynchronous clear (aclr)
signals available on the registers to implement the high bits with NOT gate
push-back. In that case, the registers will look as though they power up
to the specified reset value. You will see this behavior, for example, if your
design targets FLEX 10KE or ACEX devices.

When a load signal is available in the device, your synthesis tools can
implement a reset of 1 or 0 value by using an asynchronous load of 1 or 0.
When the synthesis tool uses an asynchronous load signal, it is not
performing NOT gate push-back, so the registers will power up to a 0 logic
level.

For additional details, refer to the appropriate device family handbook
or the appropriate handbook of the Altera web site at www.altera.com.

Designers typically use an explicit reset signal for the design, which
forces all registers into their appropriate values after reset but not
necessarily at power-up. You can create your design such that the
asynchronous reset allows the board to operate in a safe condition and
then you can bring up the design with the reset active. This is a good
practice so you do not depend on the power-up conditions of the device.

You can make the your design more stable and avoid potential glitches by
synchronizing external or combinational logic of the device architecture
before you drive the asynchronous control ports of registers.

For additional information about good synchronous design practices,
refer to the Design Recommendations for Altera Devices chapter in volume 1
of the Quartus IT Handbook.

If you want to force a particular power-up condition for your design, use
the synthesis options available in your synthesis tool. With Quartus II
integrated synthesis, you can apply the Power-Up Level logic option. You
can also apply the option with an altera_attribute assignment in
your source code. Using this option forces synthesis to perform NOT gate
push-back because synthesis tools cannot actually change the power-up
states of core registers.

Altera Corporation
May 2006

Recommended HDL Coding Styles

You can apply the Quartus II integrated synthesis Power-Up Level
assignment to a specific register or to a design entity, module or
subdesign. If you do so, every register in that block receives the value.
Registers power up to 0 by default; therefore you can use this assignment
to force all registers to power up to 1 using NOT gate push-back.

I Be aware that using NOT gate push-back as a global assignment
could slightly degrade the quality of results due to the number
of inverters that are needed. In some situations, issues are
caused by enable or secondary control logic inference. It may
also be more difficult to migrate such a design to an ASIC or a
HardCopy® device. You can simulate the power-up behavior in
a functional simulation if you use initialization.

e The Power-Up Level option and the altera_attribute are described
in the Quartus II Integrated Synthesis chapter in volume 1 of the Quartus IT
Handbook.

In VHDL, some synthesis tools can also read the default values for
registered signals and implement this behavior in the device. For
example, Quartus II integrated synthesis converts VHDL default values
for registered signals into Power-Up Level settings. That way, the
synthesized behavior matches the power-up state of the HDL code
during a functional simulation.

For example, the following code infers a register for g and sets its
power-up level to high (while the reset value is 0):

SIGNAL g : STD_LOGIC := 'l'; -- g has a default value of '1'

PROCESS (clk, reset)

BEGIN
IF (reset = 'l') THEN
q <= "'0";
ELSIF (rising edge(clk)) THEN
q <= d;
END IF;

END PROCESS;

= Note that the Quartus II software, like most synthesis tools, does
not synthesize Verilog HDL initial blocks. Therefore, the tool
does not synthesize variables that are assigned values in initial
blocks into power-up conditions.

Altera Corporation 6-31
May 2006

Quartus Il Handbook, Volume 1

Secondary Register Control Signals Such as Clear & Clock
Enable

FPGA device architectures are based on registers also known as flipflops.
The registers in Altera FPGAs provide a number of secondary control
signals (such as clear and enable signals) that you can use to implement
control logic for each register without using extra logic cells. Device
families vary in their support for secondary signals, so consult the device
family data sheet to verify which signals are available in your target
device.

To make the most efficient use of the signals in the device, your HDL code
should match the device architecture as closely as possible. The control
signals have a certain priority due to the nature of the architecture, so
your HDL code should follow that priority where possible.

Your synthesis tool can emulate any control signals using regular logic, so
getting functionally correct results is always possible. However, if your
design requirements are flexible in terms of which control signals are
used and in what priority, match your design to the target device
architecture to achieve the most efficient results. If the priority of the
signals in your design is not the same as that of the target architecture,
then extra logic may be required to implement the control signals. This
extra logic uses additional device resources, and can cause additional
delays for the control signals.

In addition, there are certain cases where using logic other than the
dedicated control logic in the device architecture can have a larger
impact. For example, the clock enable signal has priority over the
synchronous reset or clear signal in the device architecture. The clock
enable turns off the clock line in the logic array block (LAB), and the clear
signal is synchronous. So in the device architecture, the synchronous clear
takes effect only when a clock edge occurs. If you code a register with a
synchronous clear signal that has priority over the clock enable signal, the
software must emulate the clock enable functionality using data inputs to
the registers. Because the signal does not use the clock enable port of a
register, you cannot apply a Clock Enable Multicycle constraint. In this
case, following the priority of signals available in the device is clearly the
best choice for the priority of these control signals, and using a different
priority causes unexpected results with an assignment to the clock enable
signal.

6-32 Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

The priority order for secondary control signals in Altera
devices differs from the order for other vendors’ devices. If your
design requirements are flexible regarding priority, verify that
the secondary control signals meet design performance
requirements when migrating designs between FPGA vendors
and try to match your target device architecture to achieve the
best results.

The signal order is the same for all Altera device families, although as
noted previously, not all device families provide every signal. The
following priority order is observed:

NG @

Asynchronous Clear, aclr—highest priority
Preset, pre

Asynchronous Load, aload

Enable, ena

Synchronous Clear, sclr

Synchronous Load, s1oad

Data In, data—lowest priority

The following examples provide Verilog HDL and VHDL code that create
a register with the aclr, aload, and ena control signals listed
previously.

Il

The dff_all.v does not have adata on the sensitivity list, but
dff_all.vhd does. This is a limitation of the Verilog HDL
language—there is no way to describe an asynchronous load
signal (in which g toggles if adata toggles while aload is high).
All synthesis tools should infer an aload signal from this
construct despite this limitation. When they perform such
inference, you may see information or warning messages from
the synthesis tool.

6-33

Quartus Il Handbook, Volume 1

Example 6-24. Verilog HDL D-Type Flipflop (Register) with ena, aclr & aload Control Signals
module dff control (clk, aclr, aload, ena, data, adata, q);

input clk, aclr, aload, ena, data, adata;

output qg;

reg q;

always @ (posedge clk or posedge aclr or posedge aload)
begin
if (aclr)
g <= 1'b0;
else if (aload)
g <= adata;
else
if (ena)
q <= data;
end
endmodule

Example 6-25. VHDL D-Type Flipflop (Register) with ena, aclr & aload Control Signals
LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY dff control IS
PORT (
clk: IN STD_LOGIC;
aclr: IN STD LOGIC;
aload: IN STD LOGIC;
adata: IN STD_LOGIC;
ena: IN STD LOGIC;
data: IN STD LOGIC;
g: OUT STD_LOGIC
)
END dff control;

ARCHITECTURE rtl OF dff control IS

BEGIN
PROCESS (clk, aclr, aload, adata)
BEGIN
IF (aclr = '1l') THEN
q <= "'0";
ELSIF (aload = 'l') THEN
g <= adata;
ELSE
IF (clk = '1l' AND clk'event) THEN
IF (ena ='1') THEN
ag <= data;
END IF;
END IF;
END IF;
END PROCESS;
END rtl;
6-34 Altera Corporation

May 2006

Recommended HDL Coding Styles

The preset signal is not available in many device families, because it is
replaced with the more flexible aload signal, so the preset signal is not
included in the examples.

Creating many registers with different sload and sc1r signals can make
packing the registers into LABs difficult for the Quartus II Fitter because
the sclr and sload signals are LAB-wide signals. In addition, using the
LAB-wide sload signal prevents the Fitter from packing registers using
the quick feedback path in the device architecture, which means that
some registers can not be packed with other logic.

Therefore, synthesis tools typically avoid using the sload or sclear
signal if there is space in the look-up table (LUT). Using the LUT to
implement the signals is always more flexible if it is available. Synthesis
tools also typically restrict use of sload and sclr signals to certain
functions such as arithmetic chains (counters), or wide multiplexers in
which there are enough registers with common signals to allow good
LAB packing. Because different device families offer different numbers of
control signals, inference of these signals is also device-specific. For
example, Stratix I devices have more flexibility than Stratix devices with
respect to secondary control signals, so synthesis tools might infer more
sload and sclr signals for Stratix II devices.

If you use these additional control signals, use them in the priority order
that matches the device architecture. To achieve the most efficient results,
ensure the sclr signal has a higher priority than the sload signal in the
same way that aclr has higher priority than aload in the previous
examples. Remember that the register signals are not inferred unless the
design meets the conditions described previously. However, if your HDL
described the desired behavior, the software will always implement logic
with the correct functionality.

In Verilog HDL, the following code for s1oad and sclr could replace the
g <= data statement in the Verilog HDL example shown in

Example 6-24 (after adding the control signals to the module
declaration).

Example 6-26. Verilog HDL sload & scir

if (sclr)

g <= 1'b0;
else if (sload)

g <= sdata;
else

g <= data;

Altera Corporation
May 2006

6-35

Quartus Il Handbook, Volume 1

In VHDL, the following code for sload and sclr could replace the
g <= data; statement in the VHDL example shown in Example 6-25
(after adding the control signals to the entity declaration).

Example 6-27. VHDL sload & sclr

IF (sclr = '1l') THEN
q <= '0';

ELSIF (sload = '1l') THEN
q <= sdata;

ELSE
q <= data;

Tri-State Signals

When you are targeting Altera devices, you should use tri-state signals
only when they are attached to top-level bidirectional or output pins.
Avoid lower level bidirectional pins, and avoid using the Z logic value
unless it is driving an output or bidirectional pin.

Synthesis tools implement designs with internal tri-state signals correctly
in Altera devices using multiplexer logic, but Altera does not recommend
this coding practice.

I'=" Inhierarchical block-based or incremental design flows, a
hierarchical boundary cannot contain any bidirectional ports,
unless the lower level bidirectional port is connected directly
through the hierarchy to a top-level output pin without
connecting to any other design logic. If you use boundary
tri-states in a lower level block, synthesis software must push
the tri-states through the hierarchy to the top-level to make use
of the tri-state drivers on output pins of Altera devices. Because
pushing tri-states requires optimizing through hierarchies,
lower level tri-states are restricted with block-based design
methodologies.

The code examples shown in Examples 6-28 and 629 show Verilog HDL
and VHDL code that creates tri-state bidirectional signals.

Example 6-28. Verilog HDL Tri-State Signal

module tristate (myinput, myenable, mybidir) ;
input myinput, myenable;
inout mybidir;
assign mybidir = (myenable ? myinput : 1'bZ);
endmodule

6-36 Altera Corporation
May 2006

Recommended HDL Coding Styles

Example 6-29. VHDL Tri-State Signal
LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std logic_arith.ALL;

ENTITY tristate IS
PORT (
mybidir : INOUT STD_ LOGIC;
myinput : IN STD_LOGIC;
myenable : IN STD_LOGIC
)
END tristate;

ARCHITECTURE rtl OF tristate IS
BEGIN

mybidir <= 'Z' WHEN (myenable = '0')

END rtl;

ELSE myinput;

Altera Corporation

Adder Trees

Structuring adder trees appropriately to match your targeted Altera
device architecture can result in significant performance and density
improvements. A good example of an application using a large adder tree
is a finite impulse response (FIR) correlator. Using a pipelined binary or
ternary adder tree appropriately can greatly improve the quality of your
results.

This section explains why coding recommendations are different for
Altera 4-input LUT devices, and the 6-input LUT logic structures
currently available only in Stratix II devices.

Architectures with 4-Input LUTs in Logic Elements

Architectures such as the Stratix series, Cyclone series, APEX series, and
FLEX series devices contain 4-input LUTs as the standard combinational
structure in the LE.

If your design can tolerate pipelining, the fastest way to add three
numbers A, B, and C in devices that use 4-input lookup tables is to add
A + B, register the output, and then add the registered output to C.
Adding A + B takes one level of logic (one bit is added in one LE), so this
runs at full clock speed. This can be extended to as many numbers as
desired.

6-37

Quartus Il Handbook, Volume 1

In the code sample shown in Example 6-30, five numbers &, B, C, D, and E
are added. Adding five numbers in devices that use 4-input lookup tables
requires four adders and three levels of registers for a total of 64 LEs
(for 16-bit numbers).

Example 6-30. Verilog HDL Pipelined Binary Tree

module binary adder tree (A, B, C, D, E, CLK, OUT);

parameter WIDTH = 16;

input [WIDTH-1:0] A, B, C, D, E;
input CLK;

output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] suml, sum2, sum3, sum4;
reg [WIDTH-1:0] sumregl, sumreg2, sumreg3, sumreg4;
// Registers

always @ (posedge CLK)
begin
sumregl <= suml;
sumreg2 <= sumz2;
sumreg3 <= sum3;
sumreg4 <= sum4;
end

// 2-bit additions

assign suml = A + B;

assign sum2 = C + D;

assign sum3 sumregl + sumreg2;
assign sum4 sumreg3 + E;
assign OUT = sumreg4;

endmodule

6-38

Architectures with 6-Input LUTs in Adaptive Logic Modules

Because the Stratix II architecture uses a 6-input LUT in its basic logic
structure, Stratix II devices benefit from a different coding style from the
previous example presented for 4-input LUTs. Specifically, Stratix II
device ALMs can simultaneously add three bits. Therefore, the tree in the
previous example must be two levels deep and contain just two
add-by-three inputs instead of four add-by-two inputs.

Although the code in the previous example compiles successfully for
Stratix II devices, the code is inefficient and does not take advantage of
the 6-input adaptive look-up table (ALUT). By restructuring the tree as a
ternary tree, the design becomes much more efficient, significantly
improving density utilization. Therefore, when you are targeting

Stratix II devices, large pipelined binary adder trees designed for 4-input
LUT architectures should be rewritten to take advantage of the Stratix II
device architecture.

Altera Corporation
May 2006

Recommended HDL Coding Styles

Example 6-31 uses just 32 ALUTs in a Stratix II device—more than a 4:1

advantage over the number of LUTs in the prior example implemented in

a Stratix device.

s You cannot pack a Stratix II LAB full when using this type of
coding style because of the number of LAB inputs. However, in
a typical design, the Quartus II Fitter can pack other logic into
each LAB to take advantage of the unused ALMs.

Example 6-31. Verilog HDL Pipelined Ternary Tree
module ternary adder_ tree (A, B, C, D, E, CLK, OUT);
parameter WIDTH = 16;
input [WIDTH-1:0] A, B, C, D, E;
input CLK;
output [WIDTH-1:0] OUT;

wire [WIDTH-1:0] suml, sum2;
reg [WIDTH-1:0] sumregl, sumreg2;
// Registers

always @ (posedge CLK)
begin
sumregl <= suml;
sumreg2 <= sumz2;
end

// 3-bit additions
assign suml = A + B + C;

assign sum2 = sumregl + D + E;
assign OUT = sumreg2;
endmodule

These examples show pipelined adders, but partitioning your addition
operations can help you achieve better results in nonpipelined adders as
well. If your design is not pipelined, a ternary tree provides much better
performance than a binary tree. For example, depending on your
synthesis tool, the HDL code sum = (A + B + C) + (D + E)is
more likely to create the optimal implementation of a 3-input adder for
A + B + Cfollowed by a 3-input adder for suml + D + E than the
code without the parenthesis. If you do not add the parenthesis, the
synthesis tool may partition the addition in a way that is not optimal for
the architecture.

Altera Corporation 6-39
May 2006

Quartus Il Handbook, Volume 1

Coding
Guidelines for
Other Logic
Structures

6-40

This section provides coding guidelines for the following logic structures.

B Latches—Altera recommends that you not use latches if possible, but
this section also includes guidelines for using latches successfully if
they are required.

B State Machines—This section helps you ensure the best results when
you use state machines.

B Multiplexers—This section addresses common problems and
provides design guidelines to achieve optimal resource utilization
for multiplexer designs.

B Cyclic Redundancy Check Functions—This section provides
guidelines for getting good results when designing CRC functions.

Latches

A latch is a small combinational loop that holds the value of a signal until
a new value is assigned.

'~ Altera recommends that you design without the use of latches
whenever possible.

For additional information about the issues involved in designing with
latches and all combinational loops, refer to the Design Recommendations
for Altera Devices chapter in volume 1 of the Quartus II Handbook.

Latches can be inferred from HDL code when you did not intend to use a
latch as detailed in “Unintentional Latch Generation”. If you do intend to
infer a latch, it is important to infer it correctly to guarantee correct device
operation as detailed in “Inferring Latches Correctly” on page 6—42.

Unintentional Latch Generation

When you are designing combinational logic, certain coding styles can
create an unintentional latch. For example, when CASE or IF statements
do not cover all possible input conditions, latches may be required to hold
the output if a new output value is not assigned. Check your synthesis
tool messages for references to inferred latches. If your code
unintentionally creates a latch, make code changes to remove the latch.
L=~ Latches have limited support in formal verification tools.
Therefore, ensure that you do not infer latches unintentionally,
for example, through an incomplete CASE statement, when you
are using formal verification in your design flow.

Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

The full_case attribute can be used in Verilog HDL designs to treat
unspecified cases as don’t care values (X). However, using the

full case attribute can cause simulation mismatches because this
attribute is a synthesis-only attribute, so simulation tools still treat the
unspecified cases as latches.

Refer to the appropriate chapter in the Synthesis section in volume 1 of
the Quartus II Handbook for more information about using attributes in
your synthesis tool. The Quartus II Integrated Synthesis chapter provides
an example explaining possible simulation mismatches.

Omitting the final ELSE or WHEN OTHERS clause in an IF or CASE
statement can also generate a latch. Don't care (X) assignments on the
default conditions are useful in preventing latch generation. For the best
logic optimization, assign the default CASE or final ELSE value to don’t
care (X) instead of a logic value.

The VHDL sample code shown in Example 6-32 prevents unintentional
latches. Without the final ELSE clause, this code creates unintentional
latches to cover the remaining combinations of the sel inputs. When you
are targeting a Stratix device with this code, omitting the final ELSE
condition can cause the synthesis software to use up to six LEs instead of
the three it uses with the ELSE statement. Additionally, assigning the final
ELSE value to 1 instead of assigning the ELSE statement to the value of X
can result in slightly more LEs because the synthesis software cannot
perform as much optimization when you specify a constant value
compared to a don’t care value.

6-41

Quartus Il Handbook, Volume 1

Example 6-32. VHDL Code Preventing Unintentional Latch Creation

LIBRARY ieee;

USE IEEE.std logic 1164.all;

ENTITY nolatch IS

PORT (a,b,c: IN STD_LOGIC;
sel: IN STD LOGIC VECTOR (4 DOWNTO O0) ;
oput: OUT STD_LOGIC) ;

END nolatch;

ARCHITECTURE rtl OF nolatch IS

BEGIN

PROCESS (a,b,c,sel)
IF sel = "00000"
oput <= a;
"00001" THEN

ELSIF sel
oput <
ELSIF sel
oput <
ELSE
oput <=
END IF;
END PROCESS;
END rtl;

BEGIN
THEN

"00010" THEN

--- Prevents latch inference

I|Xl; __/

6-42

Inferring Latches Correctly

Synthesis tools can infer a latch that does not exhibit the problems
typically associated with combinational loops.

When using Quartus II integrated synthesis, latches that are inferred by
the software are reported in the User-Specified and Inferred Latches
section of the Compilation Report. This report indicates whether the latch
is safe and free of timing hazards.

If a latch or combinational loop in your design is not listed in the
User-Specified and Inferred Latches report, it means that it was not
inferred as a safe latch by the software and is not considered glitch-free.

All combinational loops listed in the Analysis & Synthesis Logic Cells
Representing Combinational Loops table in the Compilation Report are
at risk of timing hazards. These entries indicate possible problems with
your design that you should investigate. However, it is possible to have a
correct design that includes combinational loops. For example, it is
possible that the combinational loop cannot be sensitized. This can occur
in cases where there is an electrical path in the hardware, but either the
designer knows that the circuit will never encounter data that causes that
path to be activated, or the surrounding logic is set up in a mutually
exclusive manner that prevents that path from ever being sensitized,
independent of the data input.

Altera Corporation
May 2006

Recommended HDL Coding Styles

For macrocell-based devices such as MAX® 7000AE and MAX 30004, all
data (D-type) latches and set-reset (S-R) latches listed in the Analysis &
Synthesis User-Specified and Inferred Latches table have an
implementation free of timing hazards such as glitches. The
implementation includes a cover term to ensure there is no glitching, and
includes a single macrocell in the feedback loop.

For 4-input LUT-based devices such as Stratix devices, the Cyclone series,
and MAX II devices, all latches in the User-Specified and Inferred
Latches table with a single LUT in the feedback loop are free of timing
hazards when a single input changes. Because of the hardware behavior
of the LUT, the output does not glitch when a single input toggles
between two values that are supposed to produce the same output value.
For example, a D-type input toggling when the enable input is inactive,
or a set input toggling when a reset input with higher priority is active.
This hardware behavior of the LUT means that no cover term is needed
for aloop around a single LUT. The Quartus II software uses a single LUT
in the feedback loop whenever possible. A latch that has data, enable, set,
and reset inputs in addition to the output fed back to the input cannot be
implemented in a single 4-input LUT. If the Quartus II software cannot
implement the latch with a single-LUT loop because there are too many
inputs, then the User-Specified and Inferred Latches table indicates that
the latch is not free of timing hazards.

For 6-input LUT-based devices such as Stratix II, the software can
implement all latch inputs with a single adaptive look-up table (ALUT) in
the combinational loop. Therefore, all latches in the User-Specified and
Inferred Latches table are free of timing hazards when a single input
changes.

To ensure hazard-free behavior, only one control input may change
simultaneously. Changing two inputs simultaneously, such as
deasserting set and reset at the same time, or changing data and enable at
the same time, can produce incorrect behavior in any latch.

Quartus II integrated synthesis infers latches from always blocks in
Verilog HDL and process statements in VHDL, but not from continuous
assignments in Verilog HDL or concurrent signal assignments in VHDL.
These rules are the same as for register inference. The software infers
registers or flipflops only from always blocks and process statements. The
following examples infer latches.

Altera Corporation 6-43
May 2006

Quartus Il Handbook, Volume 1

Verilog HDL Set-Reset Latch Example

The Verilog HDL code sample shown in Example 6-33 infers a S-R latch
correctly in the Quartus II software.

Example 6-33. Verilog HDL Set-Reset Latch

module simple_latch (
input SetTerm,
input ResetTerm,
output reg LatchOut
)i

always @ (SetTerm or ResetTerm) begin
if (SetTerm)
LatchOut = 1'bl;
else if (ResetTerm)
LatchOut = 1'b0;
end
endmodule

HDL Data Type Latch Example

The VHDL code sample shown in Example 6-34 infers a D-type latch
correctly in the Quartus II software.

Example 6-34. HDL Data Type Latch
LIBRARY IEEE;
USE IEEE.std logic 1164.all;

ENTITY simple latch IS

PORT (
enable, data : IN STD LOGIC;
q : OUT STD_LOGIC

)i
END simple_latch;

ARCHITECTURE rtl OF simple_latch IS
BEGIN

latch : PROCESS (enable, data)
BEGIN
IF (enable = 'l') THEN
g <= data;
END IF;
END PROCESS latch;
END rtl;

6-44 Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

The following example shows a Verilog HDL continuous assignment that
does not infer a latch in the Quartus II software. The behavior is similar
to a latch, but it may not function correctly as a latch and its timing is not
analyzed as a latch.

assign latch out = en ? data : latch_out;

The Quartus II integrated synthesis also creates safe latches when
possible for instantiations of the 1pm_latch megafunction. Use this
megafunction to create a latch with any combination of data, enable, set,
and reset inputs. The same limitations apply for creating safe latches as
for inferring latches from HDL code.

Inferring the Altera 1pm_latch function in another synthesis tool
ensures that the implementation will also be recognized as a latch in the
Quartus II software. If a third-party synthesis tool implements a latch
using the 1pm_latch megafunction, then the Quartus II integrated
synthesis lists the latch in the User-Specified and Inferred Latches table
in the same way as it lists latches created in HDL source code. The coding
style necessary to produce an 1pm_latch implementation may depend
on your synthesis tool. Some third-party synthesis tools list the number
of 1pm_latch functions that are inferred.

If a latch is listed by the Quartus II integrated synthesis in the
User-Specified and Inferred Latches table, and is implemented by
Analysis & Synthesis as a safe latch, then physical synthesis netlist
optimizations in the Fitter maintain the hazard-free performance.

For LUT-based families, the Fitter uses global routing for control signals
including signals that Analysis & Synthesis identifies as latch enables. In
some cases the global insertion delay may decrease the timing
performance. If necessary, you can turn off the Quartus II Global Signal
logic option to manually prevent the use of global signals. Global latch
enables are listed in the Global & Other Fast Signals table in the
Compilation Report.

State Machines

Synthesis tools can recognize and encode Verilog HDL and VHDL state
machines during synthesis. This section presents guidelines to ensure the
best results when you use state machines. Ensuring that your synthesis
tool recognizes a piece of code as a state machine allows the tool to recode
the state variables to improve the quality of results, and allows the tool to
use the known properties of state machines to optimize other parts of the
design. When synthesis recognizes a state machine it is often able to
improve the design area and performance.

6-45

Quartus Il Handbook, Volume 1

6-46

To achieve the best results, synthesis tools often use one-hot encoding for
FPGA devices and minimal-bit encoding for CPLD devices, although the
choice of implementation can vary for different state machines and
different devices. Refer to your synthesis tool documentation for specific
ways to control the manner in which state machines are encoded.

For information about state machine encoding in Quartus II integrated
synthesis, refer to the State Machine Processing section in the Quartus 11
Integrated Synthesis chapter in volume 1 of the Quartus II Handbook.

To ensure proper recognition and inference of state machines and to
improve the quality of results, Altera recommends that you observe the
following guidelines, which apply to both Verilog HDL and VHDL:

B Assign default values to outputs derived from the state machine so
that synthesis does not generate unwanted latches.

B Separate the state machine logic from all arithmetic functions and
data paths, including assigning output values.

B If your design contains an operation that is used by more than one
state, define the operation outside the state machine and cause the
output logic of the state machine use this value.

B Useasimple asynchronous or synchronous reset to ensure a defined
power-up state. If your state machine design contains more elaborate
reset logic, such as both an asynchronous reset and an asynchronous
load, the Quartus II software generates regular logic rather than
inferring a state machine.

If a state machine enters an illegal state due to a problem with the device,
the design will likely cease to function correctly until the next reset of the
state machine. Synthesis tools do not provide for this situation by default.
The same issue applies to any other registers if there is some kind of fault
in the system. A default or when others clause does not affect this
operation, assuming that your design never deliberately enters this state.
Synthesis tools remove any logic generated by a default state if it is not
reachable by normal state machine operation.

Some synthesis tools have an option to implement a safe state machine
that inserts the default case if it does not exist and preserves the logic in
the design to handle illegal states. If a state machine gets into an illegal
state for any reason, it returns to the reset state on the next clock edge. Of
course this option protects only state machines, and all other registers in
the design are not protected this way:.

For additional information about tool-specific options for implementing
state machines, refer to the tool vendor’s documentation or the
appropriate chapter in the Synthesis section in volume 1 of the Quartus II
Handbook.

Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

The following two sections “Verilog HDL State Machines” and “VHDL
State Machines” describe additional language-specific guidelines and
coding examples.

Verilog HDL State Machines

To ensure proper recognition and inference of Verilog HDL state
machines, observe the following additional Verilog HDL guidelines.
Some of these guidelines may be specific to Quartus II integrated
synthesis. Refer to your synthesis tool documentation for specific coding
recommendations.

B If you are using the SystemVerilog standard, use enumerated types
to describe state machines (as shown in the “SystemVerilog State
Machine Coding Example” on page 6—49).

B Represent the states in a state machine with the parameter data
types in Verilog-1995 and -2001 and use the parameters to make state
assignments (as shown below in the “Verilog HDL State Machine
Coding Example”). This implementation makes the state machine
easier to read and reduces the risk of errors during coding.

Il=" Altera recommends against the direct use of integer values
for state variables such as next_state < = 0. However,
using an integer does not prevent inference in the
Quartus II software.

B No state machine is inferred in the Quartus II software if the state
transition logic uses arithmetic similar to that shown in the following
example:

case (state)
0: begin
if (ena) next_state <= state + 2;
else next_state <= state + 1;
end
1: begin

endcase
B No state machine is inferred in the Quartus II software if the state
variable is an output.

Verilog HDL State Machine Coding Example

The following module verilog fsmis an example of a typical Verilog
HDL state machine implementation.

This state machine has five states. The asynchronous reset sets the
variable state to state_0. The sum of inl and in2 is an output of the
state machine in state_1 and state_2. The difference (inl - in2) is

6-47

Quartus Il Handbook, Volume 1

also used in state 1 and state_2. The temporary variables
tmp_out_Oand tmp_out 1 store the sum and the difference of in1 and
in2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive

states.

Example 6-35. Verilog-2001 State Machine

module verilog fsm (clk, reset, in 1, in 2, out);

input clk;

input reset;
input [3:0] in_1;
input [3:0] in_2;

parameter
parameter
parameter
parameter
parameter

reg [4:0]
reg [2:0]

state_0
state 1
state_2
state_3
state_4

tmp_out
state,

output [4:0] out;

= 3'b000;
= 3'b001;
= 3'b010;
= 3'b011;
= 3'b100;

0, tmp out_ 1,
next_ state;

tmp_out_2;

always @ (posedge clk or posedge reset)

begin

if (reset)
state <= state_0;

else

state <= next_state;

end

always @ (state or in 1 or in_2)

begin

tmp_out_0 = i
tmp_out_1 = i
case (state)
state_0: begin
tmp_out_2 <= in 1 + 5'b00001;
next_state <= state_1;

end

state_1: begin

if (in_1 < in_2) begin
next_state <= state_2;
tmp_out_2 <= tmp_out_0;

end
else

n 1 + in_2;
nl - in 2;

begin

next_state <= state_3;
tmp_out_2 <= tmp_out_1;

end

end
state_2: begin

tmp_out_2 <= tmp_out_0 - 5'b00001;

next_state <= state_3;

end
state_3: begin

tmp_out_2 <= tmp out_1 + 5'b00001;

next_state <= state_0;

end
state 4:begin

6-48

Altera Corporation
May 2006

Recommended HDL Coding Styles

tmp out 2 <= in 2 + 5'b00001;
next_state <= state_0;
end
default:begin
tmp_out_2 <= 5'b00000;
next_state <= state_0;
end
endcase
end
assign out = tmp_out_2;
endmodule

An equivalent implementation of this state machine can be achieved by
using ‘define instead of the parameter data type, as follows:

‘define state_0 3'b000
‘define state_ 1 3'b001
‘define state_2 3'b010
‘define state 3 3'b011
‘define state_4 3'b100

In this case, the state and next_state assignments are assigned a
‘state_xinstead of a state_x, as shown in the following example:

next_state <= ‘state_3;

Ils~ Although the ‘define construct is supported, Altera strongly
recommends the use of the parameter data type because doing
so preserves the state names throughout synthesis.

SystemVerilog State Machine Coding Example

The module enum_fsm shown in Example 6-36 is an example of a
SystemVerilog state machine implementation that makes use of
enumerated types. Altera recommends using this coding style to describe
state machines in SystemVerilog.

=" InQuartus IT integrated synthesis, the enumerated type that
defines the states for the state machine must be of an unsigned
integer type as shown in Example 6-36. If you do not specify the
enumerated type as int unsigned, a signed int type is used
by default. In this case, the Quartus II integrated synthesis
synthesizes the design, but does not recognize or infer a state
machine.

Altera Corporation 6-49
May 2006

Quartus Il Handbook, Volume 1

Example 6-36. SystemVerilog State Machine Using Enumerated Types

module enum_fsm (input clk, reset, input int datal[3:0], output int o);
enum int unsigned { S0 = 0, S1 = 2, S2 = 4, S3 = 8 } state, next_ state;

always_comb begin : next_ state_logic
next_state = S0;
case (state)
S0: next_state = S1;
S1: next_state = S2;
S2: next_state = S3;
S3: next_state = S3;
endcase
end

always_comb begin
case (state)
S0: o = datal3];

S1: o = datal2];

S2: o = datalll;

S3: o = datalo0];
endcase

end

always_ffe@(posedge clk or negedge reset) begin
if (~reset)
state <= S0;
else
state <= next_state;
end
endmodule

VHDL State Machines

To ensure proper recognition and inference of VHDL state machines,
represent the states in a state machine with enumerated types and use the
corresponding types to make state assignments. This implementation
makes the state machine easier to read and reduces the risk of errors
during coding. If the state is not represented by an enumerated type,
synthesis software (such as Quartus II integrated synthesis) does not
recognize the state machine. Instead, the state machine is implemented as
regular logic gates and registers and the state machine is not listed as a
state machine in the Analysis & Synthesis section of the Compilation

Report.

VHDL State Machine Coding Example

The following entity, vhd1l_fsm, is an example of a typical VHDL state

machine implementation.

6-50 Altera Corporation

Recommended HDL Coding Styles

This state machine has five states. The asynchronous reset sets the
variable state to state_ 0. The sum of inl and in2 is an output of the
state machine in state_1 and state_2. The difference (inl - in2)is
also used in state_1 and state_2. The temporary variables

tmp out Oandtmp_ out 1 store the sum and the difference of inl and
in2. Using these temporary variables in the various states of the state
machine ensures proper resource sharing between the mutually exclusive
states.

Example 6-37. VHDL State Machine
LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY vhdl fsm IS
PORT (

clk: IN STD LOGIC;
reset: IN STD_LOGIC;
inl: IN UNSIGNED (4 downto 0) ;
in2: IN UNSIGNED (4 downto 0) ;
out_1: OUT UNSIGNED (4 downto 0)
)

END vhdl_fsm;

ARCHITECTURE rtl OF vhdl_ fsm IS
TYPE Tstate IS (state 0, state_1, state_ 2, state_ 3, state 4);
SIGNAL state: Tstate;
SIGNAL next_state: Tstate;
BEGIN
PROCESS (clk, reset)
BEGIN
IF reset = 'l' THEN
state <=state_0;
ELSIF rising edge(clk) THEN
state <= next_state;
END IF;
END PROCESS;
PROCESS (state, inl, in2)
VARIABLE tmp_out_0: UNSIGNED (4 downto 0);
VARIABLE tmp_out_1: UNSIGNED (4 downto 0);

BEGIN
tmp out 0 := inl + in2;
tmp_out_1 := inl - in2;

CASE state IS
WHEN state_0 =>
out_1 <= inl;
next_ state <= state_1;
WHEN state_1 =>
IF (inl < in2) then
next_state <= state_2;
out_1 <= tmp_out_0;
ELSE
next_state <= state_3;
out_1 <= tmp_out_ 1;
END IF;

Altera Corporation 6-51
May 2006

Quartus Il Handbook, Volume 1

WHEN state 2 =>
IF (inl < "0100") then
out_1 <= tmp_out_ 0;
ELSE
out_1 <= tmp_out_1;
END IF;
next state <= state_3;
WHEN state_3 =>
out_1 <= "11111";
next_state <= state_4;
WHEN state_4 =>
out_1 <= in2;
next state <= state_0;
WHEN OTHERS =>
out_1 <= "00000";
next_state <= state_0;

END CASE;
END PROCESS;
END rtl;

6-52

Multiplexers

Multiplexers form a large portion of the logic utilization in many FPGA
designs. By optimizing your multiplexer logic, you ensure the most
efficient implementation in your Altera device. This section addresses
common problems and provides design guidelines to achieve optimal
resource utilization for multiplexer designs. The section also describes
various types of multiplexers, and how they are implemented in the
4-input LUT found in many FPGA architectures, such as Altera’s Stratix
devices.

[l=" Stratix IT devices have 6-input LUTs and are not specifically
addressed here. Although many of the principles and
techniques for optimization are similar, device utilization differs
in the Stratix II 6-input LUT devices, for example, Stratix II
devices can implement wider multiplexers in one ALM than can
be implemented in the 4-input LUT of an LE.

Multiplexer Types

This first subsection addresses how multiplexers are created from various
types of HDL code. CASE statements, IF statements, and state machines
are all common sources of multiplexer logic in designs. These HDL
structures create different types of multiplexers including binary
multiplexers, selector multiplexers, and priority multiplexers.
Understanding how multiplexers are created from HDL code and how
they might be implemented during synthesis is the first step towards
optimizing multiplexer structures for best results.

Altera Corporation
May 2006

Recommended HDL Coding Styles

Binary Multiplexers

Binary multiplexers select inputs based on binary-encoded selection bits.
The following “Verilog HDL Binary-Encoded Case Statement” example
shows Verilog HDL code describing a simple 4:1 binary multiplexer.

Example 6-38. Verilog HDL Binary-Encoded Case Statement

case (sel)
2'b00:
2'b01:
2'b10:
2'bl1:

endcase

N N N N

a;
b;
c;
d;

A 4:1 binary multiplexer is efficiently implemented by using two 4-input
LUTs. Larger binary multiplexers can be constructed that use the 4:1
multiplexer; constructing an N-input multiplexer (N:1 multiplexer) from
a tree of 4:1 multiplexers can result in a structure using as few as
0.66*(N - 1) LUTs.

Selector Multiplexers

Selector multiplexers have a separate select line for each data input. The
select lines for the multiplexer are one-hot encoded. The following
“Verilog HDL One-Hot-Encoded Case Statement” example shows a
simple Verilog HDL code example describing a one-hot selector
multiplexer.

Example 6-39. Verilog HDL One-Hot-Encoded Case Statement

case (sel)

4'b0001:
4'b0010:
4'b0100:
4'b1000:
default:

endcase

N N N N N

aj
b;
Ccj
a;
1'bx;

Altera Corporation

May 2006

Selector multiplexers are commonly built as a tree of AND and OR gates.
Using this scheme, two inputs can be selected using two select lines in a
single 4-input LUT that uses two AND gates and an OR gate. The outputs
of these LUTs can be combined with a wide OR gate. An N-input selector
multiplexer of this structure requires at least 0.66*(N-0.5) LUTs, which is
just slightly worse than the best binary multiplexer.

Priority Multiplexers

In priority multiplexers, the select logic implies a priority. The options to
select the correct item must be checked in a specific order based on signal
priority. These structures commonly are created from IF, ELSE, WHEN,

6-53

Quartus Il Handbook, Volume 1

SELECT, or ? : statements in VHDL or Verilog HDL. The example VHDL
code in the “VHDL IF Statement Implying Priority” section will probably
result in the schematic implementation illustrated in Figure 6-2.

Example 6-40. VHDL IF Statement Implying Priority
IF condl THEN z <= a;

ELSIF cond2 THEN z <= b;

ELSIF cond3 THEN z <= C;

ELSE z <= d;

END IF;

The multiplexers shown in Figure 6-2 form a chain, evaluating each
condition or select bit, one at a time.

Figure 6-2. Priority Multiplexer Implementation of an IF Statement

An N-input priority multiplexer uses a LUT for every 2:1 multiplexer in
the chain, requiring N-1 LUTs. This chain of multiplexers generally
increases delay because the critical path through the logic traverses every
multiplexer in the chain.

To improve the timing delay through the multiplexer, avoid priority
multiplexers if priority is not required. If the order of the choices is not
important to the design, use a CASE statement to implement a binary or
selector multiplexer instead of a priority multiplexer. If delay through the
structure is important in a multiplexed design requiring priority, consider
recoding the design to reduce the number of logic levels to minimize
delay, especially along your critical paths.

6-54 Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

Default or Others Case Assignment

To fully specify the cases in a CASE statement, include a DEFAULT (Verilog
HDL) or OTHERS (VHDL) assignment. This assignment is especially
important in one-hot encoding schemes where many combinations of the
select lines are unused. Specifying a case for the unused select line
combinations gives the synthesis tool information about how to
synthesize these cases, and is required by the Verilog HDL and VHDL
language specifications.

Some designs do not require that the outcome in the unused cases be
considered, often because designers assume these cases will not occur.
For these types of designs, you can choose any value for the DEFAULT or
OTHERS assignment. However, be aware that the assignment value you
choose can have a large effect on the logic utilization required to
implement the design due to the different ways synthesis tools treat
different values for the assignment, and how the synthesis tools use
different speed and area optimizations.

In general, to obtain best results, explicitly define invalid CASE selections
with a separate DEFAULT or OTHERS statement instead of combining the
invalid cases with one of the defined cases.

If the value in the invalid cases is not important, specify those cases
explicitly by assigning the X (don’t care) logic value instead of choosing
another value. This assignment allows your synthesis tool to perform the
best area optimizations.

You can experiment with different DEFAULT or OTHERS assignments for
your HDL design and your synthesis tool to test the effect they have on
logic utilization in your design.

Implicit Defaults

The IF statements in Verilog HDL and VHDL can be a convenient way to
specify conditions that do not easily lend themselves to a CASE-type
approach. However, using IF statements can result in complicated
multiplexer trees that are not easy for synthesis tools to optimize.

In particular, every IF statement has an implicit ELSE condition, even
when it is not specified. These implicit defaults can cause additional
complexity in a multiplexed design.

The following code in the “VHDL IF Statement with Implicit Defaults”

example represents a multiplexer with four inputs (a, b, ¢, d) and one
output (z).

6-55

Quartus Il Handbook, Volume 1

Example 6-41. VHDL IF Statement with Implicit Defaults

IF condl THEN
IF cond2 THEN
zZ <= a;
END IF;
ELSIF cond3 THEN
IF cond4 THEN
zZ <= b;
ELSIF cond5 THEN
zZ <= C;
END IF;
ELSIF condé6é THEN
z <= d;
END IF;

Although the code appears to implement a 4:1 multiplexer, each of the
three separate IF statements in the code has an implicit ELSE condition
that is not specified. Because the output values for the ELSE cases are not
specified, the synthesis tool assumes the intent is to maintain the same

output value for these cases.

The code sample shown in Example 6-42 shows code with the same
functionality as the code shown in Example 6-41, but specifies the ELSE

cases explicitly.

Example 6-42. VHDL IF Statement with Default Conditions Explicitly Specified

IF condl THEN
IF cond2 THEN

Z <= aj;
ELSE

Z <= Z;
END IF;

ELSIF cond3 THEN
IF cond4 THEN

zZ <= b;
ELSIF cond5 THEN
zZ <= C;
ELSE
Z <= Z;
END IF;
ELSIF condé THEN
z <= d;
ELSE
Z <= Z;
END IF;
Figure 6-3 is a schematic representing the code in Example 642, which
illustrates that the multiplexer logic is significantly more complicated
than a basic 4:1 multiplexer, although there are only four inputs.
6-56 Altera Corporation

May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

Figure 6-3. Multiplexer Implementation of an IF Statement with Implicit
Defaults

There are several ways you can simplify the multiplexed logic and
remove the unneeded defaults. The optimal method may be to recode the
design so the logic takes the structure of a 4:1 CASE statement.
Alternatively, if priority is important, you can restructure the code to
deduce default cases and flatten the multiplexer. In this example, instead
of IF condl THEN IF cond2, use IF (condl AND cond2) which
performs the same function. In addition, examine whether the defaults
are don’t care cases. In this example, you can promote the last ELSIF
condé statement to an ELSE statement if no other valid cases can occur.

Avoid unnecessary default conditions in your multiplexer logic to reduce
the complexity and logic utilization required to implement your design.

Degenerate Multiplexers

A degenerate multiplexer is a multiplexer in which not all of the possible
cases are used for unique data inputs. The unneeded cases tend to
contribute to inefficiency in the logic utilization for these multiplexers.
You can recode degenerate multiplexers so they take advantage of the
efficient logic utilization possible with full binary multiplexers.

The number of select lines in a binary multiplexer normally dictates the
size of a multiplexer needed to implement the desired function. For
example, the multiplexer structure represented in Figure 64 has four
select lines capable of implementing a binary multiplexer with 16 inputs.
However, the design does not use all 16 inputs, which makes this
multiplexer a degenerate 16:1 multiplexer.

6-57

Quartus Il Handbook, Volume 1

Example 6-43. VHDL CASE Statement Describing a Degenerate Multiplexer

CASE sel[3:0] IS

WHEN "0101"

WHEN "0111"

WHEN "1010"

WHEN OTHERS
END CASE;

\%

\%

\2

N N N N

AN NN

Q0 oo

A

6-58

Figure 6-4. Binary Degenerate Multiplexer
&) [o] 4]

[T LT LT
11 LT 1]

sel[1:0] —

sel[3:2]
\—l—/ Binary mux

In the example in Figure 64, the first and fourth multiplexers in the top
level can easily be eliminated because all four inputs to each multiplexer
are the same value, and the number of inputs to the other multiplexers
can be reduced, as shown in Figure 6-5.

Figure 6-5. Optimized Version of the Degenerate Binary Multiplexer

sel[1:0]

"00xx" "1xx"
sel[3:2

Implementing this version of the multiplexer still requires at least five
4-input LUTs, two for each of the remaining 3:1 multiplexers and one for
the 2:1 multiplexer. This design selects an output from only four inputs, a
4:1 binary multiplexer can be implemented optimally in two LUTs, so this
degenerate multiplexer tree reduces the efficiency of the logic.

Altera Corporation
May 2006

Recommended HDL Coding Styles

You can improve logic utilization of this_structure by recoding the select
lines to implement a full 4:1 binary multiplexer. The code sample shown
in Example 6-44 shows a recoder design that translates the original select
lines into a signal z_sel with binary encoding.

Example 6-44. VHDL Recoder Design for Degenerate Binary Multiplexer
CASE sel[3:0] IS

WHEN "0101" => z_sel <= "00";

WHEN "0111" => z_sel <= "01";

WHEN "1010" => z_sel <= "10";

WHEN OTHERS => z_sel <= "11";
END CASE;

The code sample shown in Example 6-45 shows you how to implement
the full binary multiplexer.

Example 6-45. VHDL 4:1 Binary Multiplexer Design

CASE z_sel[1:0] IS

WHEN "00" => z <= a;

WHEN "01" => z <= b;

WHEN "10" => z <= C;

WHEN "11" => z <= d;

END CASE;
Use the new z_sel control signal from the recoder design to control the
4:1 binary multiplexer that chooses between the four inputs a, b, ¢,and d,
as illustrated in Figure 6-6. The complexity of the select lines is handled
in the recoder design, and the data multiplexing is performed with simple
binary select lines enabling the most efficient implementation.
Figure 6-6. Binary Multiplexer with Recorder
sel[3:0]
Recoder I—?——!i 7}
4:1
z_sel[1:0]
The design for the recoder can be implemented in two LUTs and the
efficient 4:1 binary multiplexer uses two LUTs, for a total of four LUTs.
The original degenerate multiplexer required five LUTS, so the recoded
version uses 20% less logic than the original.
Altera Corporation 6-59

May 2006

Quartus Il Handbook, Volume 1

6-60

You can often improve the logic utilization of multiplexers by recoding
the select lines into full binary cases. Although logic is required to
perform the encoding, the overall logic utilization is often improved.

Buses of Multiplexers

The inputs to multiplexers are often data input buses in which the same
multiplexer function is performed on a set of data input buses. In these
cases, any inefficiency in the multiplexer is multiplied by the number of
bits in the bus. The issues described in the previous sections become even
more important for wide multiplexer buses.

For example, the recoding of select lines into full binary cases detailed in
the previous section can often be used in multiplexed buses. Recoding the
select lines may need to be completed only once for all the multiplexers
in the bus. By sharing the recoder logic among all the bits in the bus, you
can greatly improve the logic efficiency of a bus of multiplexers.

The degenerate multiplexer in the previous section requires five LUTs to
implement. If the inputs and output are 32 bits wide, the function could
require 32 x 5 or 160 LUTs for the whole bus. The recoder design uses only
two LUTs, and the select lines only need to be recoded once for the entire
bus. The binary 4:1 multiplexer requires two LEs per bit of the bus. The
total logic utilization for the recoded version could be 2 + (2 x 32) or 66
LUTs for the whole bus, compared to 160 LUTs for the original version.
The logic savings become more important with wide multiplexer buses.

Using techniques to optimize degenerate multiplexers, removing
unneeded implicit defaults, and choosing the optimal DEFAULT or
OTHERS case can play an important role when optimizing buses of
multiplexers.

Quartus Il Software Option for Multiplexer Restructuring

Quartus II integrated synthesis provides the Restructure Multiplexers
logic option that extracts and optimizes buses of multiplexers during
synthesis. In certain situations, this option automatically performs some
of the recoding functions described without changing the HDL code in
your design. This option is on by default, when the Optimization
technique is set to Balanced (the default for most device families) or set
to Area.

For details, refer to the Restructure Multiplexers subsection in the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

Altera Corporation
May 2006

Recommended HDL Coding Styles

Altera Corporation
May 2006

Cyclic Redundancy Check Functions

Cyclic redundancy check (CRC) computations are used heavily by
communications protocols and storage devices to detect any corruption
of the data. These functions are highly effective; there is a very low
probability that corrupted data can pass a 32-bit CRC check.

CRC functions typically use wide XOR gates to compare the data. The way
that synthesis tools flatten and factor these XOR gates to implement the
logic in FPGA LUTs can greatly impact the area and performance results
for the design. XOR gates have a cancellation property which creates an
exceptionally large number of reasonable factoring combinations, so
synthesis tools can not always choose the best result by default.

The 6-input ALUT in Stratix II devices has a significant advantage over
4-input LUTs for these designs. When properly synthesized, CRC
processing designs can run at high speeds in Stratix II devices.

The following guidelines will help you improve the quality of results for
CRC designs in Altera devices.

If Performance is Important, Optimize for Speed

Synthesis tools flatten XOR gates to minimize area and depth of levels of
logic. Synthesis tools such as Quartus II integrated synthesis target area
optimization by default for these logic structures. Therefore, for more
focus on depth reduction, set the synthesis optimization technique to
speed.

=" Note that flattening for depth sometimes causes a significant
increase in area.

Use Separate CRC Blocks Instead of Cascaded Stages

Some designers optimize their CRC designs to use cascaded stages, for
example 4 stages of 8 bits. In such designs, intermediate calculations are
used as needed (such as the calculations after 8, 24, or 32 bits) depending
on the data width. This design is not optimal in FPGA devices. The XOR
cancellations that can be performed in CRC designs mean that the
function does not require all the intermediate calculations to determine
the final result. Therefore forcing the use of intermediate calculations
increases the area required to implement the function, as well as
increasing the logic depth because of the cascading. It is typically better
to create full separate CRC blocks for each data width that you need in the
design, then multiplex them together to choose the appropriate mode at
a given time.

6-61

Quartus Il Handbook, Volume 1

6-62

Use Separate CRC Blocks Instead of Allowing Blocks to Merge

Synthesis tools often attempt to optimize CRC designs by sharing
resources and extracting duplicates in usually two different CRC blocks
because of the factoring options in the XOR logic. As addressed
previously, the CRC logic allows significant reductions but this works
best when each CRC function is optimized separately. Check for
duplicate extraction behavior if you have different CRC functions that are
driven by common data signals or that feed the same destination signals.

If you are having problems with quality of results and you see that two
CRC functions are sharing logic, ensure that the blocks are synthesized
independently using one of the following methodologies:

B Synthesize each CRC block as a separate project and then write a
separate VQM or EDIF netlist file for each.
e To create a VQM file using Quartus II integrated synthesis, on
the Processing menu click Start, then click Start VQM Wrriter.
B Define each CRC block as a separate design partition in an
incremental compilation design flow.
e For details, refer to the Quartus II Incremental Compilation for
Hierarchical & Team-Based Design chapter in volume 1 of the
Quartus Il Handbook.
B Use synthesis options to preserve the hierarchical boundary of the
CRC block.
e On the Assignments menu, click Assignment Editor. Set
Preserve Hierarchical Boundary to Firm.

Take Advantage of Latency if Available

If your design can use more than one cycle to implement the CRC
functionality, adding registers and retiming the design can help reduce
area, improve performance and reduce power utilization. If your
synthesis tool offers a retiming feature (such as the Quartus II software
Perform gate-level register retiming option), you can insert an extra
bank of registers at the input and allow the retiming feature to move the
registers for better results. You can also build the CRC unit half as wide
and alternate between halves of the data in each clock cycle.

Save Power by Disabling CRC Blocks When Not in Use

CRC designs are heavy consumers of dynamic power because the logic
toggles whenever there is a change in the design. To save power, use clock
enables to disable the CRC function for every clock cycle that the logic is
not needed. Some designs don't check the CRC results for a few clock
cycles while other logic is performed. It is valuable to disable the CRC
function even for this short amount of time.

Altera Corporation
May 2006

Recommended HDL Coding Styles

Conclusion

Altera Corporation
May 2006

Use the Device Synchronous Load (sload) Signal to Initialize

The data in many CRC designs must be initialized to 1’s before operation.
If your target device supports the use of the s1oad signal, you should use
it to set all the registers in your design to 1’s before operation. To enable
use of the s1oad signal, follow the coding guidelines presented in the
“Secondary Register Control Signals Such as Clear & Clock Enable” on
page 6-32 section. You can check the register equations in the Timing
Closure Floorplan or the Chip Editor to ensure that the signal was used
as expected.

If you must force a register implementation using an sload signal, you
can use low-level device primitives as described in the Introduction to
Low-Level Primitives Design User Guide.

Because coding style and megafunction implementation can have such
large effects on your design performance, it is important to match the
coding style to the device architecture from the very beginning of the
design process. To improve design performance and area utilization, take
advantage of advanced device features, such as memory and DSP blocks,
as well as the logic architecture of the targeted Altera device by following
the coding recommendations presented in this chapter.

For additional optimization recommendations, refer to the Area & Timing
Optimization chapter in volume 2 of the Quartus II Handbook.

6-63

Quartus Il Handbook, Volume 1

6-64 Altera Corporation
May 2006

A |:| E DY/A Section lll. Synthesis

®

Altera Corporation

As programmable logic devices (PLDs) become more complex and
require increased performance, advanced design synthesis has become an
important part of the design flow. In the Quartus® Il software you can use
the Analysis & Synthesis module of the Compiler to analyze your design
files and create the project database. You can also use other EDA synthesis
tools to synthesize your designs, and then generate EDIF netlist files or
VQM files that can be used with the Quartus II software. This section
explains the options that are available for each of these flows, and how
they are supported in the Quartus II, version 6.0 software.

This section includes the following chapters:

Chapter 7, Quartus II Integrated Synthesis

Chapter 8, Synplicity Synplify & Synplify Pro Support

Chapter 9, Mentor Graphics Precision RTL Synthesis Support
Chapter 10, Mentor Graphics LeonardoSpectrum Support
Chapter 11, Synopsys Design Compiler FPGA Support
Chapter 12, Analyzing Designs with Quartus II Netlist Viewers

The previously documented chapter, Synopsys FPGA Compiler II BLIS &
Quartus II LogicLock™ Design Flow, has been removed from the Quartus II
Handbook version 5.1.

Section IlI-1

Synthesis Quartus Il Handbook, Volume 1

Revision H istorv The table below shows the revision history for Chapter 7 to 12.

Chapter(s) Date / Version Changes Made

7 May 2006 v6.0.0 Updated for the Quartus Il software version 6.0.0:

e Added language support.

e Added Quartus Il Synthesis options.

® Added information on setting other Quartus Il options in HDL source
code.

December 2005 v5.1.1 | Minor typographic update.

October 2005 v5.1.0 Updated for the Quartus Il software version 5.1.

Chapter 7 was formerly Chapter 8 in version 5.0.

May 2005 v5.0.0 Chapter 8 was formerly Chapter 6 in version 4.2.
Updated information.

Updated figures.

Restructured information.

Renamed sections.

New functionality for Quartus Il software 5.0.

Chapter 7 was formerly Chapter 8 in version 4.1.
Added documentation of incremental synthesis feature
New functionality for Quartus Il software version 4.2

Dec. 2004 v3.0

Updates to tables, figures.
New functionality for Quartus Il software version 4.1.

June 2004 v2.0

Feb. 2004 v1.0 Initial release.

8 May 2006 v6.0.0 Updated for the Quartus Il software version 6.0.0:

e Updated cross probling information.

e Added NativeLink® integration information.

e Added Synplify design flow support.

e Added Altera megafunction guidelines and architecture-specific
features.

December 2005 v5.1.1 | Minor typographic update.

October 2005 v5.1.0 e Updated for the Quartus Il software version 5.1.
e Chapter 8 was formerly chapter 9 in version 5.0.

May 2005 v5.0.0 Chapter 9 was formerly chapter 7 in version 4.2.
Dec. 2004 v2.1 e Chapter 8 was formerly Chapter 9 in version 4.1.
@ Updated information.
o New functionality for Quartus Il software version 4.2.
e Updated figure 8-1.
June 2004 v2.0 e Updates to tables, figures.
e New functionality for Quartus Il software version 4.1.
Feb. 2004 v1.0 Initial release.

Section I1I-2 Altera Corporation

Synthesis

Chapter(s)

Date / Version

Changes Made

9

May 2006 v6.0.0

Minor updates for the Quartus Il software version 6.0.0.

October 2005 v5.1.0

o Updated for the Quartus Il software version 5.1.
e Chapter 9 was formerly Chapter 10 in version 5.0.

May 2005 v5.0.0

Chapter 10 was formerly chapter 8 in version 4.2.

Dec. 2004 v2.1 e Chapter 9 was formerly Chapter 10 in version 4.1.

e Updates to tables and figures.

e New functionality for Quartus Il software version 4.2.
June 2004 v2.0 e Updates to tables and figures.

o New functionality for Quartus Il software version 4.1.
Feb. 2004 v1.0 Initial release.

10

May 2006 v6.0.0

Minor updates for the Quartus Il software version 6.0.0.

October 2005 v5.1.0

e Updated for the Quartus Il software version 5.1.
e Chapter 10 was formerly chapter 11 in version 5.0.

May 2005 v5.0.0

Chapter 11 was formerly chapter 9 in version 4.2.

Dec. 2004 v2.1

Chapter 10 was formerly Chapter 11 in version 4.1.
Updated information.

New functionality in Quartus Il software version 4.2.
Updated tables and figures.

June 2004 v2.0

Updates to tables, and figures.

New functionality for Quartus Il software version 4.1.

Feb. 2004 v1.0

Initial release.

11

May 2006 v6.0.0

Minor updates for the Quartus Il software version 6.0.0.

October 2005 v5.1.0

o Updated for the Quartus Il software version 5.1.
e Chapter 11 was formerly chapter 13 in version 5.0.

May 2005 v5.0.0

Chapter 13 was formerly chapter 11 in version 4.2.

Dec. 2004 v1.1 e Chapter 12 was formerly Chapter 13 in version 4.1.
e Updated information.
e New functionary for Quartus Il software version 4.2.
e Moved figure 12-3 within the chapter.

June 2004 v1.0 Initial release.

Altera Corporation

Section I1I-3

Synthesis

Quartus Il Handbook, Volume 1

Chapter(s)

Date / Version

Changes Made

12

May 2006 v6.0.0

Name changed to Analyzing Designs with the Quartus Il Netlist Viewers.
Updated for the Quartus Il software version 6.0.0:
e Updated GUI information.

December 2005, v5.1.1

Updated for version 5.1, including viewing inside device atoms, filter on
bus index, display timing path in the RTL Viewer, state machine access
from Tools menu, locate from state machines, and state encoding table.

October 2005 v5.1.0

o Updated for the Quartus Il software version 5.1.
e Chapter 12 was formerly chapter 14 in version 5.0.

May 2005 v5.0.0

Chapter 14 was formerly chapter 12 in version 4.2.

Dec. 2004 v2.1

Chapter 13 was formerly Chapter 14 in version 4.1.
Updates to tables and figures.
New functionality for Quartus Il software version 4.2.

June 2004 v 2.0

Updates to tables, and figures.
New functionality for Quartus Il software version 4.1.

Feb. 2004 v1.0

Initial release.

Section llI-4

Altera Corporation

Z;\l |:| —E N 7. Quartus Il Integrated

Synthesis

®

Q1151008-6.0.0

Introduction

Altera Corporation
May 2006

As programmable logic designs become more complex and require
increased performance, advanced synthesis has become an important
part of the design flow. The Quartus® II software includes advanced
integrated synthesis that fully supports VHDL and Verilog HDL, as well
as Altera®-speciﬁc design entry languages, and provides options to
control the synthesis process. With this synthesis support, the Quartus II
software provides a complete, easy-to-use solution.

This chapter documents the design flow and language support in the
Quartus II software. It explains how to improve and control your
Quartus II synthesis results with incremental synthesis. Additionally, you
can improve synthesis results with Quartus II synthesis options and by
controlling the inference of architecture-specific megafunctions. This
chapter also explains some of the node-naming conventions used during
synthesis to help you better understand your synthesized design, and the
messages issued during synthesis to improve your HDL code. Scripting
techniques for applying all the options and settings described are also
provided.

This chapter contains the following sections:

Design Flow

Language Support

Incremental Synthesis

Quartus II Synthesis Options

Setting Other Quartus II Options in Your HDL Source Code
Analyzing Synthesis Results

VHDL & Verilog HDL Messages

Node-Naming Conventions in Quartus II Integrated Synthesis
Scripting Support

Quartus Il Handbook, Volume 1

Design Flow

7-2

The Quartus II Analysis & Synthesis process includes Quartus II
integrated synthesis, which fully supports the Verilog HDL and VHDL
languages as well as Altera-specific languages (refer to “Language
Support” on page 7-5 for details), and supports a subset of the
SystemVerilog language. This stage of the compilation flow performs
logic synthesis to optimize design logic, and performs technology
mapping to implement the design logic using device resources such as
logic elements (LEs) or adaptive logic modules (ALMs). This stage also
generates the single project database that integrates all the design files in
a project (including any netlists from third-party synthesis tools).

You can use the Analysis & Synthesis stage of the Quartus II compilation
to perform any of the following levels of analysis and synthesis:

B Analyze Current File—Parse the current design source file to check
for syntax errors. This command does not report on many semantic
errors that require further design synthesis. On the Processing menu,
click Analyze Current File.

B Analysis & Elaboration—Check a design for syntax and semantic
errors and perform elaboration. On the Processing menu, click Start,
and then click Start Analysis & Elaboration.

B Analysis & Synthesis—Perform complete analysis and synthesis on
a design, including technology mapping. On the Processing menu,
point to Start, and then click Start Analysis & Synthesis. This is the
most commonly used command and is part of the full compilation
flow.

The Quartus II design and compilation flow using Quartus II integrated
synthesis is made up of the following steps:

1. Create a project in the Quartus II software, and specify the general
project information, including the top-level design entity name.

2. Create design files in the Quartus II software or with a text editor.

3. Add all design files to your Quartus II project using the Files page
of the Settings dialog box.

4. Specify compiler settings that control the compilation and
optimization of the design during synthesis and fitting. For
synthesis settings, refer to “Quartus II Synthesis Options” on
page 7-20.

5. Compile the design in the Quartus II software. To synthesize the
design, on the Processing menu, point to Start, and click Start
Analysis & Synthesis.

Altera Corporation
May 2006

Design Flow

Altera Corporation
May 2006

On the Processing menu, click Start Compilation to run a
complete compilation flow including placement, routing,
creation of a programming file, and timing analysis.

6. After obtaining synthesis and place-and-route results that meet
your needs, program the Altera device.

The software provides netlists that allow you to perform functional
simulation and gate-level timing simulation in the Quartus II simulator
or a third-party simulator, perform timing analysis in a third-party timing
analysis tool in addition to the TimeQuest or Classic Timing Analyzer,
and/or perform formal verification in a third-party formal verification
tool. The Quartus II software also provides many additional analysis and
debugging features.

For more information about creating a project, compilation flow, and
other features in the Quartus II software, refer to the Quartus II Help.
For an overall summary of Quartus II features, refer to the Introduction to
Quartus II Manual.

7-3

Quartus Il Handbook, Volume 1

Figure 7-1 shows the basic design flow using Quartus II integrated
synthesis.

Figure 7-1. Quartus Il Design Flow Using Quartus Il Integrated Synthesis

Formal Verification

Verilog HDL VHDL ~ AHDL BDF p> Using Source Code
r A f_‘ r]_‘ as Golden Netlist
| | | | Functional/RTL

Simulation

| -
\ 4
Constraints . . Gate-Level
> & Settings P Analysis & Synthesis > > Functional

Simulation
Post Synthesis
Simulation File
Internal (-vho/.vo)
Synthesis
Netlist
Constraints) Timing | Gate-Level Timing
7| & Settings P Fitter Assembler Analyzer Simulation
Post
Place-and-Route
Simulation File
(.vho/.vo)
Formal Verification
-~ Using VO as
No Timing & Area o Revised Netlist
Requirements
Satisfied? Post
Place-and-Route
Formal Verification File
(.vo)
Configuration/
Programming
Files (.sof/.pof)
C Configure/Program Device >
7-4 Altera Corporation

May 2006

Language Support

Language
Support

Altera Corporation
May 2006

This section explains the Quartus II software’s integrated synthesis
support for HDL and schematic design entry. You can mix all supported
languages, and netlists generated by third-party synthesis tools, in a
single Quartus II project.

Verilog HDL Support

The Quartus II Compiler’s analysis and synthesis module supports the
following Verilog HDL standards:

B Verilog-1995 (IEEE Standard 1364-1995)

B Verilog-2001 (IEEE Standard 1364-2001)

B SystemVerilog-2005 (IEEE Standard 1800-2005) (only certain
constructs are supported)

Refer to the subsections that follow for more info about language support.

For complete information about specific syntax features and language
constructs, refer to the Quartus II Help.

To specify a default Verilog HDL version for all files, perform the
following steps:

1. On the Assignments menu, click Settings.

2. In the Settings dialog box, under Category, expand Analysis &
Synthesis Settings, and select Verilog HDL Input, then click OK.

3. On the Verilog HDL Input page, under Verilog version, select the
appropriate Verilog version, then click OK.

You can also specify the Verilog HDL version for each design file using a
synthesis directive. For details, refer to “Specifying Verilog & VHDL
Versions for Each Design File” on page 7-24.

The Quartus II Compiler uses the Verilog-2001 standard by default.

I~ The Verilog HDL code samples provided in this document
follow the Verilog-2001 standard unless otherwise specified.

The Quartus II software support for Verilog HDL is case-sensitive in
accordance with the Verilog HDL standard.

The Quartus II software supports the include compiler directive to

include files with absolute paths (with either “/” or “\ ” as the separator),
or relative paths (relative to project root or current file location). When

7-5

Quartus Il Handbook, Volume 1

7-6

searching for a relative path, the Quartus II software first searches relative
to the project directory. If the software cannot find the file, it then searches
relative to the directory location of the file.

Verilog-2001 Support

The Quartus II software does not support Verilog-2001 libraries and
configurations.

SystemVerilog Support

The Quartus II software supports the following SystemVerilog
constructs:

Built-in data types 1ogic, bit, byte, shortint, longint, int

Enumeration data types using enum (no support for enum methods)

Structure data types using struct

Unpacked and packed arrays (no support for packed arrays with

more than one dimension)

B User-defined types using typedef (no support for global typedefs

or forward type declarations)

Coding constructs always_comb, always_latch, always_ ff

Assignment operators +=, -=, *=, /=, %=, &=, |=, =, <<=, >>=,

<<<=,and >>>=

B Increment ++ and decrement --

B Assignment patterns (no support for patterns that specify default,
member name, or type)

B Keywords unique and priority in case statements

B Default values for function/task arguments

Il Designs written to comply with the Verilog-2001 standard may
not compile successfully using the System Verilog setting
because the SystemVerilog standard adds a number of new
reserved keywords. For a list of reserved words in each
language standard, refer to the Quartus II Help.

Verilog HDL Macros

The Quartus II software supports the compiler directive “define, in
accordance with the Verilog HDL standard. The Quartus II software also
provides an equivalent Verilog HDL macro that you can turn on or off via
the GUI or from the command line.

Altera Corporation
May 2006

Language Support

Specifying a Verilog Macro in the GUI

To specify a macro in the GUI, on the Assignments menu, click Settings.
Under Category, expand Analysis & Synthesis Settings and click
Verilog HDL Input. Under Verilog HDL macro, type the macro name in
the Setting box, and click Add.

Specifying a Verilog Macro on the Command Line
Type the command shown in Example 7-1 at the command prompt to
specify a Verilog macro.

Example 7-1. Command Syntax for Specifying a Verilog Macro
quartus_map <Design name> --verilog macro= "<Macro Name>=<Macro Setting>" «

For example, the command in Example 7-2 has the same effect as
specifying “define a=2 in the Verilog HDL source code:

Example 7-2. Specifying a Verilog Macro a = 2

quartus_map my design --verilog macro="a=2" ¢

To specify multiple macros, you can repeat the option more than once, as
in Example 7-3:

Example 7-3. Specifying Verilog Macrosa=2& a=3

quartus_map my design --verilog macro="a=2" --verilog macro="b=3" ¢

Altera Corporation
May 2006

VHDL Support

The Quartus II Compiler’s analysis and synthesis module supports the
following VHDL standards:

®m VHDL 1987 (IEEE Standard 1076-1987)
B VHDL 1993 (IEEE Standard 1076-1993)

For information about specific syntax features and language constructs,
refer to the Quartus II Help.

To specify a default VHDL version for all files, perform the following
steps:

1. On the Assignments menu, click Settings.

-7

Quartus Il Handbook, Volume 1

2. In the Settings dialog box, under Category, expand Analysis &
Synthesis Settings, and select VHDL Input, then click OK.

3. Onthe VHDL Input page, under VHDL version, select the
appropriate version, then click OK.

4. You can also specify the VHDL version for each design file using a
synthesis directive.

For details, refer to “Specifying Verilog & VHDL Versions for Each Design
File” on page 7-24. The Quartus II Compiler uses the VHDL 1993
standard by default.

=" The VHDL code samples provided in this document follow the
VHDL 1993 standard.

VHDL Libraries

The Quartus II software includes the standard IEEE libraries and a
number of vendor-specific VHDL libraries. You can also create custom
VHDL libraries to store your own VHDL design units.

The IEEE library includes the standard VHDL packages

std logic 1164,numeric_std, numeric bit,and math real.
The STD library is part of the VHDL language standard and includes
packages standard (included in every project by default) and textio.
For compatibility with older designs, the Quartus II software also
supports the following vendor-specific packages and libraries:

B Synopsys packages such as std_logic_arith and
std_logic_unsigned in the IEEE library

B Mentor Graphics® packages such as std_logic arith in the
ARITHMETIC library

B Altera primitive packages altera_primitives_components
(for primitives such as GLOBAL and DFFE) and maxplus2 (for legacy
support of MAX+PLUS® II primitives) in the ALTERA library

B Altera megafunction packages altera_mf_components and
stratixgx_mf components in the ALTERA_MF library (for
Altera-specific megafunctions including LCELL), and
lpm_components in the LPM library for library of parameterized
modules (LPM) functions.

«® For a complete listing of library and package support, refer to the
Quartus II Help.

7-8 Altera Corporation
May 2006

Language Support

Altera Corporation
May 2006

=" Beginning with the Quartus I software version 5.1, you should
import component declarations for Altera primitives such as
GLOBAL and DFFE from the

altera primitives_ components package and not the
altera_mf_components package.

To ensure that the software reads all associated project files, add each
VHDL file to your Quartus II project. To add files to your project, on the
Project menu, click Add/Remove Files In Project.

s Beginning in the Quartus II software version 5.1, VHDL design
files can be added to the project in any order.

By default, the Quartus II software compiles all VHDL files into the work
library. If a VHDL file refers to a library that does not exist, or if the library
does not contain a referenced design unit, then the software searches the
work library. This default behavior allows the Quartus II software to
compile most VHDL designs with minimal setup.

To compile your VHDL design files into specific libraries, you can specify
a destination library for each design file in one of the following ways:

In the Settings dialog box

In the Quartus II Settings File (.qsf)

With a Tcl command

In the VHDL file itself, with a synthesis directive

When the Quartus II Compiler analyzes the file, it stores the analyzed
design units in the file’s destination library.

I A VHDL design cannot contain two or more entities with the

same name, even if they are compiled into separate custom
libraries.

Specifying a Destination Library Name in the Settings Dialog Box
To specify a library name for one of your VHDL files:

1. From the Assignments menu, choose Settings.

2. On the Files page of the Settings dialog box, specify the library
name in the File Name list.

3. Click Properties.

4. In the File Properties dialog box, from the Type list, select VHDL
File.

7-9

Quartus Il Handbook, Volume 1

5. Type the desired library name in the Library field.

6. Click OK.

Specifying a Destination Library Name in the Quartus II Settings File
or Using Tcl

You can specify the VHDL library name with the - 1ibrary option to the
VHDL_FILE assignment in the Quartus II Setting File or with Tcl
commands.

For example, the following Quartus II Settings File or Tcl assignment
specifies that the Quartus II software analyze my_file.vhd and store its
contents (design units) in the VHDL library my_lib.

Example 7-4. Specifying a Destination Library Name
set global assignment VHDL FILE my file.vhd -library my lib

For more information about Tcl scripting, refer to “Scripting Support” on
page 7-70.

Specifying a Destination Library Name in Your VHDL File

You can use the 1ibrary synthesis directive to specify a library name in
your VHDL source file. This directive takes a single string argument: the
name of the destination library. Specify the 1ibrary directive ina VHDL
comment prior to the context clause for a primary design unit (that is, a
package declaration, an entity declaration, or a configuration), using one
of the supported keywords for synthesis directives, thatis, altera,
synthesis, pragma, synopsys, or exemplar.

For more information about specifying synthesis directives, refer to
“Synthesis Directives” on page 7-24.

The 1ibrary directive overrides the default library destination work,
the library setting specified for the current file through the Settings
dialog box, an existing Quartus II Settings File setting, setting made
through the Tcl interface, or any prior 1ibrary directive in the current
file. The directive remains effective until the end of the file or the next
library synthesis directive.

7-10 Altera Corporation
May 2006

Language Support

Example 7-5 uses the 1ibrary synthesis directive to create a library
called my_lib that contains the design unitmy entity.

Example 7-5. Using the library Synthesis Directive
-- synthesis library my 1lib

library ieee;

use ieee.std_logic_1164.all;
entity my entity(...)
end entity my entity;

Altera Corporation
May 2006

= You can specify a single destination library for all the design
units in a given source file by specifying the library name in the
the Settings dialog box, editing the Quartus II Settings File, or
using the Tcl interface. Using the 1ibrary directive to change
the destination VHDL library within a source file gives you the
option to organizing the design units in a single file into
different libraries, rather than just a single library.

The Quartus II software gives an error if you use the library directive
within a design unit.

AHDL Support

The Quartus II Compiler’s analysis and synthesis module fully supports
the Altera Hardware Description Language (AHDL).

AHDL designs use Text Design Files (.tdf). You can import AHDL
Include Files (.inc) into a Text Design File with an AHDL include
statement. Altera provides AHDL Include Files for all megafunctions
shipped with the Quartus II software.

For information about specific syntax features and language constructs,
refer to the Quartus II Help.

=" The AHDL language does not support the synthesis directives
or attributes described in this chapter.

Schematic Design Entry Support

The Quartus II Compiler’s analysis and synthesis module fully supports
Block Design Files (.bdf) for schematic design entry.

Use the Quartus II software’s Block Editor to create and edit Block Design
Files and open Graphic Design Files (.gdf) imported from the
MAX+PLUS II software. Use the Symbol Editor to create and edit Block
Symbol Files (.bsf) and open MAX+PLUS II Symbol Files (.sym). You can

7-11

Quartus Il Handbook, Volume 1

read and edit these legacy MAX+PLUS II formats with the Quartus II
Block and Symbol Editors; however, the Quartus II software saves them
as BDF or BSF files.

«® For information about creating and editing schematic designs, refer to
the Quartus II Help.

s Schematic entry methods do not support the synthesis directives
or attributes described in this chapter.

Incremental The incremental synthesis feature in the Quartus II software manages a
. design hierarchy for incremental design by allowing you to divide the

Svnth esis design into multiple partitions. Incremental synthesis ensures that when
a design is compiled, only those partitions of the design that have been
updated will be resynthesized, reducing synthesis time and runtime
memory usage. You can change and resynthesize a design partition
without affecting other design partitions, which means that node names
are maintained during synthesis for all registered and combinational
nodes in unchanged partitions.

Conventionally, a hierarchical design is flattened into a single netlist of
logic gates before logic synthesis and technology mapping. However,
incremental synthesis allows you to partition a hierarchical design along
any of its hierarchical boundaries. The individual hierarchical partitions
are synthesized and mapped separately by the Quartus II software. The
hierarchical partitions are then combined—or merged—to form a
flattened netlist for further stages of the Quartus II compilation flow,
including fitting. The mapped netlist for each partition is stored by the
Quartus II software. Therefore, if the source code for one partition
changes during the design cycle, only the partition that changed is
resynthesized during the next compilation of the design.

You can use incremental synthesis by itself, or use a full incremental
compilation flow in which you also preserve the placement and
potentially routing information for unchanged partitions.

g This chapter describes incremental synthesis only. For information about
the full incremental compilation flow, refer to the Quartus II Incremental
Compilation for Hierarchical & Team-Based Design chapter in volume 1 of

the Quartus Il Handbook.
The flow chart in Figure 7-2 shows the steps in the incremental synthesis
flow.

7-12 Altera Corporation

May 2006

Incremental Synthesis

Altera Corporation
May 2006

Figure 7-2. Summary of Design Flow Using Quartus Il Incremental Synthesis
Flow

| Perform Analysis & Elaboration |

v

Turn on Integrated Synthesis |

|<—‘ Repeat until Satisfied

| Create Design Partitions with Partitions

v

Perform Complete Compilation
(All Partitions are Compiled)

v

| Make Changes to Design

+ Repeat as Needed
During Design
Perform Incremental Compilation & Debugging Stages

(Partitions are Compiled if Required)

Partitions for Incremental Synthesis

A partition represents a portion of the design that you want to synthesize
incrementally. Partitions must be bounded by hierarchical boundaries,
and therefore, cannot be a portion of the logic within a hierarchical block.
When a partition is declared, every hierarchical block within that
partition becomes part of the same partition. You can create new
partitions for hierarchical blocks within an existing partition, in which
case the blocks designates as a new partition are no longer part of the
higher-level partition.

In Figure 7-3, hierarchical entities B and F form partitions in the complete
design, which is made up of entities A, B, C, D, E, and F. The shaded boxes
in Representation A indicate design partitions in a “tree” representation
of the hierarchy. In Representation B, the lower-level entities are
represented inside of higher-level entities, and the partitions are
illustrated with different colored shading. The top-level partition Top
automatically contains the top-level entity in the design, and any logic
that is not defined as part of another partition. The design file for the
top-level may be just a wrapper for the hierarchical entities below it, or it
may contain its own logic. In this example, the partition for top-level
entity A also includes the logic in one of its lower-level entities, C.
Because entity F is contained in its own partition, it is not treated as part
of the top-level partition. Another separate partition, B, contains the logic
in entities B, D, and E.

7-13

Quartus Il Handbook, Volume 1

Figure 7-3. Partitions in a Hierarchical Design

Representation A
Partition Top
A
B C
l—l—l Iﬁ
D E F
Partition B Partition F
Representation B
A
B C
D B F

Partitions for Preserving Hierarchical Boundaries

Use partitions if you need to preserve hierarchical boundaries through
the synthesis process. For example, if you are performing formal
verification, you must use partitions to ensure that no optimizations
occur across specific design hierarchies.

Follow the steps described in the next section, “Preparing a Design for
Incremental Synthesis” on page 7-15, if you need to set up your design to
preserve hierarchical boundaries during Quartus II synthesis. If desired,
you can use partitions with full incremental compilation (instead of
incremental synthesis only) to preserve boundaries throughout the entire
compilation process.

[l=" Beginning with the Quartus II software version 6.0, Altera
recommends using Design Partition assignments instead of the
Preserve Hierarchical Boundary logic option, which may be
removed in future versions of the Quartus II software.

7-14 Altera Corporation
May 2006

Incremental Synthesis

Altera Corporation
May 2006

Preparing a Design for Incremental Synthesis

To set up your design with partitions for incremental synthesis, identify
the design partitions and turn on incremental synthesis using the
following steps:

1. On the Processing menu, point to Start and click Start Analysis &
Elaboration to elaborate the design, or perform any compilation
flow that includes this step. This allows the Quartus II software to
identify your design’s hierarchy.

2. Identify the partitions in your design by applying the
PARTITION HIERARCHY assignment to the appropriate instances.
You can do this using the list of instances under Compilation
Hierarchy in the Project Navigator. Right-click on an instance in the
Project Navigator and click Set as Design Partition.

= An incremental compilation icon appears next to each
instance that is set as a partition.

3. On Assignments menu, click Settings. The Settings dialog box
appears.

4. On the Compilation Process Settings page of the Settings dialog
box, select Incremental synthesis only in the Incremental
compilation section.

I: y‘;"v

When you specify your first partition, a dialog box appears
asking whether you wish to enable incremental
compilation. Click Incremental synthesis only to turn on
incremental synthesis.

To remove an existing PARTITION HIERARCHY assignment with the
GUIJ, right-click the instance in the Project Navigator and select Set as
Design Partition to turn off the option.

Synthesizing a Design Using Incremental Synthesis

Once incremental synthesis is enabled, it becomes the default compilation
procedure under normal circumstances, that is, when you click Start
Compilation from the Processing menu, or when you select Start
Compilation in the toolbar.

During compilation, the software synthesizes each partition separately,

and then merges the partitions to create a flattened netlist for further
stages of the Quartus II compilation flow, including fitting.

7-15

Quartus Il Handbook, Volume 1

7-16

For subsequent iterations of analysis and synthesis, the Quartus II
software uses an internal checksum calculation to determine whether the
file should be resynthesized. The software checks the contents of the
source file, as well as the values of the synthesis and netlist optimization
settings.

When you are using the full incremental compilation flow, changes in
settings do not trigger automatic resynthesis of the design when you
specify that you want to use an existing netlist. For more information
about the differences between full incremental compilation and
incremental synthesis, refer to the Quartus II Incremental Compilation for
Hierarchical & Team-Based Design chapter in volume 1 of the Quartus 11
Handbook.

The Quartus II software resynthesizes only those partitions that contain
changed source code, or changes to synthesis or netlist optimization
settings. If you modify a file in the top-level partition, but none of the
lower-level partitions are affected, the Quartus II software only
resynthesizes the top-level partition.

The software always maintains the synthesis results for unchanged
partitions, and merges newly synthesized partitions with unchanged
partitions.

Synthesizing Using the Synthesis & Merge Commands

If you compile your design using the individual compilation steps
available from the Start submenu of the Processing menu or by selecting
Compilation Tool from the Tools menu, use the separate synthesis and
merge commands.

Once incremental synthesis is enabled, on the Processing menu, point to
Start and click Start Analysis & Synthesis to separately synthesize each
partition. You must then merge the partitions to create a flattened netlist
for further stages of the Quartus II compilation flow, including fitting. On
the Processing menu, point to Start and click Start Partition Merge. After
each incremental iteration of analysis and synthesis, merge the newly
synthesized partitions with the unchanged partitions.

Forcing Complete Resynthesis

Because the incremental synthesis flow identifies changes to source code
and assignments and resynthesizes only the partitions that have changed,
you usually do not have to completely resynthesize all of your source
files.

Altera Corporation
May 2006

Incremental Synthesis

Altera Corporation
May 2006

If you want to force complete resynthesis, from the Incremental
compilation section of the Compilation Process page of the Settings
dialog box, select Off. Then resynthesize your entire design, and turn on
Incremental synthesis only again (if desired). Alternately, to save the
extra synthesis run, you can make a small change and save at least one file
in each design partition, so that the Quartus II software detects the
changes and resynthesizes each partition on the next analysis and
synthesis.

Considerations & Restrictions When Using Incremental
Synthesis

To use incremental synthesis effectively, there are some issues to consider
when planning your design’s structure. Additionally, there are
restrictions when using incremental synthesis with other Quartus I
features. This section provides information about the following
considerations and restrictions:

Hierarchical considerations

Restrictions on megafunction partitions

Resource balancing

Back-annotating node locations using the Altera LogicLock™ design
methodology

B SignalTap® II logic analyzer

Hierarchical Considerations

When planning a design, keep in mind the size and scope of each
partition, and how likely it is that different parts of your design will
change as your design develops.

For guidelines about design hierarchical partitioning, refer to the
Hierarchical Design Partitioning section of the Design Recommendations for
Altera Devices chapter in volume 1 of the Quartus II Handbook.

Observe the following important hierarchical design considerations:

B Register all inputs and outputs of each block. This helps avoid any
delay penalty on signals that cross partition boundaries.

I'=~ While this can be difficult in practice, greater adherence to this
principle results in less timing degradation and area increase
when using incremental flows. Registering lessens the need for
the cross-partition optimizations that are prevented by
partitioning.

7-17

Quartus Il Handbook, Volume 1

7-18

B Do not use tri-state signals or bidirectional ports on hierarchical
boundaries unless they are directly connected to top-level pins. If
you use boundary tri-states in a lower-level block, synthesis pushes
the tri-states through the hierarchy to the top-level to take advantage
of the tri-state drivers on the output pins of the device. Because this
requires optimizing through hierarchies, lower-level boundary
tri-state signals are restricted with a block-level or incremental
design methodology.

Using incremental synthesis, internal tri-states are supported only
when all the destination logic is contained in the same partition, in
which case analysis and synthesis implements the internal tri-state
signals using multiplexing logic. For bidirectional ports that feed a
bidirectional pin at the top level, all the logic that forms the
bidirectional I/O cell must reside in the same partition.

B Remember that logic is not synthesized, or optimized, across
partition boundaries, which means any constant value (e.g., signals
set to GND) will not be propagated across partitions.

Restrictions on Megafunction Partitions

The Quartus II software does not support partitions for megafunction
instantiations. If you use the MegaWizard® Plug-In Manager to
customize a megafunction variation, the MegaWizard-generated
wrapper file instantiates the megafunction. You can create a partition for
the MegaWizard-generated megafunction custom variation wrapper file.

The Quartus II software does not support the creation of a partition for
inferred megafunctions (that is, in which the software uses a
megafunction to implement logic in your design). If you have a module
or entity for the logic that is inferred, you can create a partition for that
hierarchy level in the design.

The Quartus II software does not support creation of a partition for any
Quartus II internal hierarchy that is dynamically-generated during
compilation to implement the contents of a megafunction.

Resource Balancing

You may have to do some manual resource balancing across partitions.
When using incremental synthesis, each partition is synthesized
separately, with no data about the resources used in other partitions. This
means device resources could be overused in the individual partitions
during synthesis, and thus the design may not fit in the target device
when the partitions are merged.

Altera Corporation
May 2006

Incremental Synthesis

For example, in the regular synthesis flow, when DSP blocks or RAM
blocks are overused, the Quartus I Compiler can perform resource
balancing and convert some of the logic into regular logic cells, for
example, LEs or adaptive logic modules (ALMs). Without data about
resources used in other partitions, it is possible for the logic in each
separate partition to maximize the use of a particular device resource
such that the design does not fit once all the partitions are merged. In this
case, you may be able to manually balance the resources by using the
Quartus II synthesis options to control inference of megafunctions that
use the DSP or RAM blocks.

Refer to “Megafunction Inference Control” on page 7—40 for more
information about resource balancing. You can also use the MegaWizard
Plug-In Manager to customize your RAM or DSP megafunctions to use
regular logic instead of the dedicated hardware blocks.

«® For more tips on resource balancing and reducing resource utilization,
refer to the appropriate section of the Area & Timing Optimization chapter
in volume 2 of the Quartus IT Handbook.

Preserving Compilation Results

Altera recommends using full incremental compilation for top-down and
bottom-up compilation flows where you wish to preserve placement and
routing information and the performance of unchanged parts of your
design. The full incremental compilation feature also allows you to export
and import lower-level design files to enable team-based design flows or
design flows where you need to optimize different blocks separately.

P For more information about preserving results and exporting or
importing design blocks using full incremental compilation, refer to the
Quartus II Incremental Compilation for Hierarchical & Team-Based Design
chapter in volume 1 of the Quartus II Handbook.

OpenCore Plus MegaCore Functions

The circuitry involved in providing OpenCore® Plus MegaCore®
functions is currently incompatible with incremental synthesis and full
incremental compilation.

Altera Corporation 7-19
May 2006

Quartus Il Handbook, Volume 1

Quartus I
Synthesis
Options

7-20

The Quartus II software offers a number of options to help you control the
synthesis process and achieve the optimal results for your design. The
“Setting Synthesis Options” on page 7-21 section describes the synthesis
settings dialog box where you can set the most common global settings
and options, and defines three types of synthesis options: Quartus Il logic
options, synthesis attributes, and synthesis directives. The other
subsections describe the following common synthesis options in the
Quartus II software, and provide HDL examples of how to use each
option where applicable:

B Specifying Verilog & VHDL Versions for Each Design File

B Optimization Technique

B Speed Optimization Technique for Clock Domains

B PowerPlay Power Optimization

B State Machine Processing

B Manually Specifying State Assignments Using the syn_encoding
Attribute

B Manually Specifying Enumerated Types Using the enum_encoding
Attribute

B Preserve Hierarchical Boundary

B Restructure Multiplexers

B Power-Up Level

B Power-Up Don’t Care

B Remove Duplicate Logic

B Remove Duplicate Registers

B Remove Redundant Logic Cells

B Preserve Registers

B Noprune Synthesis Attribute/Preserve Fanout Free Node

B Keep Combinational Node/Implement as Output of Logic Cell

B Maximum Fan-Out

B Megafunction Inference Control

B RAM Style & ROM Style—for Inferred Memory

B RAM Initialization File—for Inferred Memory

B Multiplier Style—for Inferred Multipliers

B Full Case

B Parallel Case

B Translate Off & On

B Ignore Translate Off

B Read Comments as HDL

For information about using other Quartus II synthesis attributes to make
pin-related assignments and set other entity options (available only as
logic options) in your Verilog HDL or VHDL code, refer to “Setting Other
Quartus II Options in Your HDL Source Code” on page 7-52.

Altera Corporation
May 2006

Quartus Il Synthesis Options

Setting Synthesis Options

You can set synthesis options in the Settings dialog box, or with logic
options in the Quartus Il software, or you can use synthesis attributes and
directives within the HDL source code.

Analysis & Synthesis Page of the Settings Dialog Box

On the Assignments menu, click Settings to open the Settings dialog box.
The Analysis & Synthesis Settings page allows you to set global
synthesis options that apply to the entire project. These options are
described in later subsections.

Quartus Il Logic Options

Quartus II logic options control many aspects of the synthesis and
place-and-route process. To set logic options in the Quartus II graphical
user interface, on the Tools menu, click Assignment Editor. You can also
use a corresponding Tcl command. Quartus II logic options allow you to
set instance or node-specific assignments without editing the source HDL
code. Logic options can be used with all design entry languages
supported by the Quartus II software.

Synthesis Attributes

The Quartus II software supports synthesis attributes for Verilog HDL
and VHDL, also commonly called pragmas. These attributes are not
standard Verilog HDL or VHDL commands. They are used only by
synthesis tools to control the synthesis process in a particular manner.
Attributes always apply to a specific design element, and are applied in
the HDL source code. Some synthesis attributes are also available as
Quartus ITlogic options via the Quartus II user interface or with Tcl. Each
attribute description in this chapter indicates whether there is a
corresponding setting or logic option that can be set in the user interface;
some attributes can be specified only with HDL synthesis attributes.
Attributes specified in your HDL code are not visible in the user interface
or in the Quartus II Settings File. Assignments or settings made through
the Quartus II user interface, the Quartus II Settings File, or the Tcl
interface take precedence over assignments or settings made with
synthesis attributes in your HDL code.

Altera Corporation 7-21
May 2006

Quartus Il Handbook, Volume 1

The Verilog-2001, SystemVerilog, and VHDL language definitions
provide specific syntax for specifying attributes. However in Verilog-1995
HDL, you must embed attribute assignments in comments. You can enter
attributes in your code using the syntax in Examples 7-6, 7-7, and 7-8,
where <attribute>, <attribute type>, <value>, <object>, and <object type> are
variables, and the entry in brackets is optional. The examples in this
chapter demonstrate each syntax form.

I'= Verilog HDL is case-sensitive, therefore, synthesis attributes are
also case sensitive.

Example 7-6. Synthesis Attributes in Verilog-1995 HDL
// synthesis <attribute> [= <value>]

or

/* synthesis <attribute> [= <value> 1 */

7-22

Verilog-1995 comment-embedded attributes as shown in Example 7-6
must be used as a suffix to (that is, placed after) the declaration of an item
and must appear before the semicolon when one is required.

I You cannot use the open one-line comment in Verilog HDL
when a semicolon is required at the end of the line because it is
not clear to which HDL element the attribute applies. For
example, you cannot make an attribute assignment such as
reg r; // synthesis <attribute> because the attribute could
be read as part of the next line.

To apply multiple attributes to the same instance, separate the attributes
with spaces, as follows:

//synthesis <attributel> [= <value> | <attribute2> [= <value> |

For example, to set the maxfan attribute to 16 (Refer to “Maximum Fan-
Out” on page 7-39 for details) and set the preserve attribute (Refer to
“Preserve Registers” on page 7-36 for details) on a register called
my_reg, use the following syntax:

reg my _reg /* synthesis maxfan = 16 preserve */;

In addition to the synthesis keyword as shown above, the keywords
pragma, synopsys,and exemplar are supported for compatibility with
other synthesis tools. The keyword altera is also supported, which
allows you to add synthesis attributes that will be recognized only by
Quartus II integrated synthesis and not by other tools that recognize the
same synthesis attribute.

Altera Corporation
May 2006

Quartus Il Synthesis Options

[l=~ Because formal verification tools do not recognize the
exemplar, pragma, and altera keywords, avoid using these
attribute keywords when using formal verification.

Example 7-7. Synthesis Atiributes in Verilog-2001 & SystemVerilog

(* <attribute>

<value>] *)

Verilog-2001 attributes as shown in Example 7-7 must be used as a prefix
to (that is, placed before) a declaration, module item, statement, or port
connection, and used as a suffix to (that is, placed after) an operator or a
Verilog HDL function name in an expression.

s Because formal verification tools do not recognize the syntax,
the Verilog-2001 attribute syntax is not supported when using
formal verification.

To apply multiple attributes to the same instance, separate the attributes
with commas, as shown in the following example:

(* <attributel> [= <valuel>), <attribute2> [= <value2>1%)

For example, to set the maxfan attribute to 16 (Refer to“Maximum Fan-
Out” on page 7-39 for details) and set the preserve attribute (Refer to
“Preserve Registers” on page 7-36 for details) on a register called

my_reg, use the following syntax:

(* preserve, maxfan = 16 *) reg my reg;

Example 7-8. Synthesis Aftributes in VHDL

attribute <attributes

<attribute type> ;

attribute <attribute> of <object> : <object type> is <value>;

Altera Corporation
May 2006

VHDL attributes, as shown in Example 7-8, declare the attribute type and
then apply it to a specific object. For VHDL designs, all supported
synthesis attributes are declared in the altera_syn attributes
package in the Altera library. You can call this library from your VHDL
code to declare the synthesis attributes, as follows:

LIBRARY altera;
USE altera.altera syn attributes.all;

7-23

Quartus Il Handbook, Volume 1

Synthesis Directives

The Quartus II software supports synthesis directives, also commonly
called compiler directives or pragmas. You can include synthesis
directives in Verilog HDL or VHDL code as comments. These directives
are not standard Verilog HDL or VHDL commands; however, synthesis
tools use them to control the synthesis process in a particular manner.
Other tools such as simulators ignore these directives and treat them as
comments.

You can enter synthesis directives in your code using the following syntax
shown in Examples 7-9 and 7-10, where <directive> and <value> are
variables, and the entry in brackets is optional. The examples in this
chapter demonstrate each syntax form.

s Verilog HDL is case-sensitive, therefore, all synthesis directives
are also case sensitive.

Example 7-9. Synthesis Directives in Verilog HDL
// synthesis <directive> [=<value>]

or

/* synthesis <directive> [=<value> 1 */

Example 7-10. Synthesis Directives in VHDL
-- synthesis <directive> [=<value>]

7-24

In addition to the synthesis keyword shown above, the pragma,
synopsys, and exemplar keywords are supported in both Verilog HDL
and VHDL for compatibility with other synthesis tools. The keyword
altera is also supported, which allows you to add synthesis directives
that will be recognized only by Quartus Il integrated synthesis and not by
other tools that recognize the same synthesis directive.

Il=" Because formal verification tools ignore keywords exemplar,
pragma, and altera, avoid using these directive keywords
when you are using formal verification to prevent mismatches
with the Quartus II results.

Specifying Verilog & VHDL Versions for Each Design File

Your design may require you to override the default Verilog HDL or
VHDL input versions (specified in the Settings dialog box) for some
design files. This situation can occur when you want to take advantage of
the features in a newer standard. If your Quartus II project contains older

Altera Corporation
May 2006

Quartus Il Synthesis Options

design files that declare objects with these new keywords, you must use
the VERILOG INPUT VERSION or VHDL,_ INPUT VERSION synthesis
directive in these files to override the default language version.

To control the language version used to process a specific file, use the
following synthesis directives.

Example 7-11. Verilog HDL Design Files
// synthesis VERILOG_INPUT_VERSION <language version>

The variable <language version> takes one of the following values:

B VERILOG 1995
B VERILOG 2001
M SYSTEMVERILOG 2005

Example 7-12. VHDL Design Files
--synthesis VHDL INPUT VERSION <language versions

The variable <language version> takes one of the following values:

B VHDL87
B VHDLO93

When the software reads a VERILOG INPUT VERSION or
VHDL_INPUT VERSION synthesis directive, it changes the current
language version as specified until the end of the file, or until it reaches
the next VERI LOG_INPUT VERSION or VHDL INPUT VERSION
directive.

I'=~ You cannot change the language version in the middle of a
Verilog module or VHDL design unit.

Altera Corporation 7-25
May 2006

Quartus Il Handbook, Volume 1

Optimization Technique

The Optimization Technique logic option specifies the goal for logic
optimization during compilation, that is, whether to attempt to achieve
maximum speed performance or minimum area usage, or a balance
between the two. Table 7-1 lists the settings for this logic option, which
you can apply only to a design entity. You can also set this logic option for
your whole project on the Analysis & Synthesis Settings page in the
Settings dialog box.

Table 7-1. Optimization Technique Settings

Setting Description
Area The Compiler makes the design as small as possible to minimize resource usage
Speed The Compiler chooses a design implementation that has the fastest fyax

Balanced (7)

The Compiler maps part of the design for area and part for speed, providing better area
utilization than optimizing for speed, with only a slightly slower fyyax than optimizing for speed

Note to Table 7-1:
(1) Balanced optimization technique is not supported for all device families.

7-26

The default setting varies by device family, and is generally optimized for
the best area/speed trade-off. Results are design-dependent and vary
depending on which device family you use.

Speed Optimization Technique for Clock Domains

The Speed Optimization Technique for Clock Domains logic option
specifies that all combinational logic in or between the specified clock
domain(s) is optimized for speed.

When this option is set on a particular clock signal, all the logic in this
clock domain is optimized for speed during synthesis. The remainder of
the design in other clock domains is synthesized with the project-wide
Optimization Technique thatis set in the Analysis & Synthesis Settings.
The option can also be set from one clock to another clock signal, in which
case the logic in paths from registers the first clock domain to registers in
the second clock domain are synthesized for speed. The advantage of
using this option over the project-wide setting to optimize for speed is
that there is less penalty to the area of the design, because a smaller part
of the circuit is optimized for speed. This may also have a positive effect
on the clock speed. This option also has an advantage over setting the
Optimization Technique on a design entity, because that option forces
the hierarchical blocks to be synthesized separately. Doing so may
increase area and decrease performance due to the lack of optimizations
across hierarchies. The Speed Optimization Technique for Clock

Altera Corporation
May 2006

Quartus Il Synthesis Options

Domains option does not treat hierarchical entities separately, and can
optimize across hierarchical boundaries for logic within the same clock
domain.

This option is useful if you have one or more clock domains that do not
meet your timing requirements. When there are failing paths within a
clock domain, the option can be set on the clock of that clock domain.
When there are failing paths between clock domains, the option can be set
from one clock domain to the other one.

This option is available for the following device families:

Stratix® II

Stratix II GX
Stratix

Stratix GX
Cyclone™ II
Cyclone
HardCopy® Il
HardCopy Stratix
MAX®II

PowerPlay Power Optimization

This logic option controls the power-driven compilation setting of
Analysis & Synthesis and determines how aggressively Analysis &
Synthesis optimizes the design for power. On the Assignments menu,
click Settings, under Category, click Analysis & Synthesis Settings, this
displays the Analysis & Synthesis Settings page. The following three
settings are available for the PowerPlay power optimization option:

B Off—Analysis & Synthesis does not perform any power
optimizations.

B Normal Compilation—Analysis & Synthesis performs power
optimizations, without reducing design performance.

B Extra Effort—Analysis & Synthesis performs additional power
optimizations which may reduce design performance.

Altera Corporation 7-27
May 2006

Quartus Il Handbook, Volume 1

7-28

State Machine Processing

This logic option specifies the processing style used to compile a state
machine. Table 7-2 lists the settings for this logic option, which you can
apply to a state machine name or to a design entity containing a state
machine. You can also set this option for your whole project on the
Analysis & Synthesis Settings page in the Settings dialog box.

Table 7-2. State Machine Processing Settings

Setting Description

Auto (Default) | Allows the Compiler to choose what it determines to be the best
encoding for the state machine

Minimal Bits Uses the least number of bits to encode the state machine

One-Hot Encodes the state machine in the one-hot style

User-Encoded | Encodes the state machine in the manner specified by the user

The default state machine encoding, which is Auto, uses one-hot
encoding for FPGA devices and minimal-bits encoding for CPLDs. These
settings achieve the best results on average, but another encoding style
might be more appropriate for your design, so this option allows you to
control the state machine encoding.

= Refer to the Recommended HDL Coding Styles chapter in the
Quartus II Handbook for guidelines to ensure that your state
machine is inferred and encoded correctly.

If the State Machine Processing logic option is set to User-Encoded in a
Verilog HDL design, then the software uses the original design values for
the state constants. For example, a Verilog HDL design can contain a
declaration such as the following:

parameter SO = 4'b1010, S1 = 4'b0101,

If the software infers states SO, S1, ... ituses theencoding4'b1010,
4'b0101, ...

To assign your own state encoding with the User-Encoded State Machine
Processing option in a VHDL design, you must apply specific binary
encoding to the elements of an enumerated type because enumeration
literals have no numeric values in VHDL. Use the syn encoding
synthesis attribute to apply your encoding values. Refer to “Manually
Specifying State Assignments Using the syn_encoding Attribute” on
page 7-29.

Altera Corporation
May 2006

Quartus Il Synthesis Options

Manually Specifying State Assignments Using the syn_encoding
Attribute

The Quartus Il software infers state machines from enumerated types and
automatically assigns state encoding based on “State Machine
Processing” on page 7-28. However, in standard VHDL code, you cannot
specify user encoding in the state machine description because
enumeration literals have no numeric values in VHDL.

To assign your own state encoding for the User-Encoded State Machine
Processing setting, you must use the syn encoding synthesis attribute
to apply specific binary encodings to the elements of an enumerated type.

In Example 7-13, the syn_encoding attribute associates a binary
encoding with the states in the enumerated type count_state. In this
example, the states are encoded with the following values: zero = “11”,
one = “01”, two = “10”, three = “00”.

Example 7-13. Example of the syn_encoding VHDL Attribute

ARCHITECTURE rtl OF my fsm IS

TYPE count_ state is (zero, one, two, three);

ATTRIBUTE syn encoding : STRING;

ATTRIBUTE syn encoding OF count_ state : TYPE IS "11 01 10 00";
SIGNAL present state, next state : count_state;

BEGIN

Manually Specifying Enumerated Types Using the
enum_encoding Attribute

By default, the Quartus II software one-hot encodes all user-defined
Enumerated Types. With the enum_encoding attribute, you can specify
the logic encoding for an Enumerated Type and override the default one -
hot encoding to improve the logic efficiency.

I~ If an Enumerated Type represents the states of a state machine,
using the enum_encoding attribute to specify a manual state
encoding prevents the Compiler from recognizing state
machines based on the Enumerated Type. Instead, the Compiler
processes these state machines as “regular” logic using the
encoding specified by the attribute, and they are not listed as
state machines in the Report window for the project. If you wish
to control the encoding for a recognized state machine, use the
State Machine Processing logic option and the syn_encoding
synthesis attribute.

Altera Corporation 7-29
May 2006

Quartus Il Handbook, Volume 1

To use the enum_encoding attribute ina VHDL design file, associate the
attribute with the Enumeration Type whose encoding you want to
control. The enum_encoding attribute must follow the Enumeration
Type Definition but precede its use. In addition, the attribute value must
be a string literal that specifies either an arbitrary user encoding or an
encoding style of "default", "sequential", "gray",or "one-hot".

An arbitrary user encoding consists of a space-delimited list of encodings.
The list must contain as many encodings as there are enumeration literals
in your Enumeration Type. In addition, the encodings must all have the
same length, and each encoding must consist solely of values from the
std_ulogic type declared by the std_logic_1164 package in the
IEEE library. In the code fragment of Example 7-14, the
enum_encoding attribute specifies an arbitrary user encoding for the
Enumeration Type fruit.

Example 7-14. Specifying an Arbitrary User Encoding for Enumerated Type

type fruit is (apple, orange, pear, mango) ;

attribute enum encoding : string;

attribute enum encoding of fruit : type is "11 01 10 00";

In this example, the enumeration literals are encoded as:

apple = "11"
orange = "01"
pear = "10"
mango = "oO"

Sometimes you may wish to specify an encoding style, rather than a
manual user encoding, especially when the Enumeration Type has a large
number of enumeration literals. The Quartus II software can implement
Enumeration Types with four different encoding styles:

B 'default'"—Use an encoding based on the number of enumeration
literals in the Enumeration Type. If there are fewer than 5 literals, use
the "sequential" encoding. If there are more than five but fewer
than 50 literals, use a "one-hot" encoding. Otherwise, use a
"gray" encoding.

B ‘"sequential"—Use a binary encoding in which the first
enumeration literal in the Enumeration Type has encoding 0, the
second 1, and so on.

B ‘"gray'"—Use an encoding in which the encodings for adjacent
enumeration literals differ by exactly one bit.

B ‘"one-hot"—The default encoding style requiring N bits, where N is
the number of enumeration literals in the Enumeration Type.

7-30 Altera Corporation
May 2006

Quartus Il Synthesis Options

Observe that in Example 7-14, the enum encoding attribute manually
specified a gray encoding for the Enumeration Type £ruit. This example
could be written more concisely by specifying the "gray" encoding style
instead of a manual encoding, as shown in Example 7-15.

Example 7-15. Specifying the “gray” Encoding Style or Enumeration Type

type fruit is

(apple, orange, pear, mango) ;

attribute enum encoding : string;
attribute enum encoding of fruit : type is "gray";

Altera Corporation
May 2006

Preserve Hierarchical Boundary

This logic option allows you to preserve the hierarchical boundaries
between design entities. Beginning with the Quartus II software version
6.0, Altera recommends using design partitions with incremental
synthesis or full incremental compilation instead of using the Preserve
Hierarchical Boundary logic option.

L=~ The Preserve Hierarchical Boundary logic option may be
removed in future versions of the Quartus II software.

Refer to “Partitions for Preserving Hierarchical Boundaries” on page 7-14
for details about using design partitions.

Restructure Multiplexers

This option specifies whether the Quartus II software should extract and
optimize buses of multiplexers during synthesis.

This option is useful if your design contains buses of fragmented
multiplexers. This option restructures multiplexers more efficiently for
area, allowing the design to implement multiplexers with a reduced
number of LEs or ALMs. This option is available for Stratix II, Stratix,
Stratix GX, Cyclone II, Cyclone, and MAX II devices.

The Restructure Multiplexers option works on entire trees of
multiplexers. Multiplexers may arise in different parts of the design
through Verilog HDL or VHDL constructs such as the “if,” “case, ” or
“?:” statements. When multiplexers from one part of the design feed
multiplexers in another part of the design, trees of multiplexers are
formed. Multiplexer buses occur most often as a result of multiplexing
together vectors in Verilog HDL, or STD_LOGIC VECTOR signals in
VHDL. The Restructure Multiplexers option identifies buses of
multiplexer trees that have a similar structure. When it is turned on, the

7-31

Quartus Il Handbook, Volume 1

Restructure Multiplexers option optimizes the structure of each
multiplexer bus for the target device to reduce the overall amount of logic
used in the design.

Results of the multiplexer optimizations are design dependent, but area
reductions as high as 20% are possible. The option may negatively affect
your design’s fyax-

Table 7-3 lists the settings for the logic option, which you can apply only
to a design entity. You can also specify this option on the Analysis &
Synthesis Settings page in the Settings dialog box for your whole
project.

Table 7-3. Restructure Multiplexers Settings

Setting Description
On Enables multiplexer restructuring to minimize your design area. This setting may reduce the
fmax-
Off Disables multiplexer restructuring to avoid possible reductions in fyyax-

Auto (Default) | Allows the Compiler to determine whether to enable the option based on your other Quartus |
synthesis settings. The option is On when the Optimization Technique option is set to Area
or Balanced, and Off when the Optimization Technique option is Speed. (Note that since the
default Optimization Technique is Balanced for many device families including Stratix and
Stratix |l devices, this option is turned on by default for those families.)

After you have compiled your design, you can view multiplexer
restructuring information in the Multiplexer Restructuring Statistics
report in the Multiplexer Statistics folder under Analysis & Synthesis
Optimization Results in the Analysis & Synthesis section of the
Compilation Report. Table 7—4 describes the information that is listed in
the Multiplexer Restructuring Statistics report table for each bus of
multiplexers.

Table 7-4. Multiplexer Information in the Multiplexer Restructuring Statistics Report (Part 1 of 2)

Heading Description
Multiplexer Inputs The number of different choices that are multiplexed together.
Bus Width The width of the bus in bits.
Baseline Area An estimate of how many logic cells are needed to implement the bus of

multiplexers (before any multiplexer restructuring takes place). This estimate can
be used to identify any large multiplexers in the design.

Area if Restructured An estimate of how many logic cells are needed to implement the bus of
multiplexers if Multiplexer Restructuring is applied.

7-32 Altera Corporation
May 2006

Quartus Il Synthesis Options

Table 7-4. Multiplexer Information in the Multiplexer Restructuring Statistics Report (Part 2 of 2)

Heading

Description

Saving if Restructured

An estimate of how many logic cells are saved if Multiplexer Restructuring is
applied.

Registered

An indication of whether registers are present on the multiplexer outputs.
Multiplexer Restructuring uses the secondary control signals of a register (such
as synchronous clear and synchronous-load) to further reduce the amount of
logic needed to implement the bus of multiplexers.

Example Multiplexer
Output

The name of one of the multiplexers’ outputs. This name can help determine
where in the design the multiplexer bus originated.

Altera Corporation
May 2006

For more information about optimizing for multiplexers, refer to the
Multiplexers section of the Design Recommendations for Altera Devices
chapter in volume 1 of the Quartus II Handbook.

Power-Up Level

This logic option causes a register (flip-flop) to power up with the
specified logic level, either High (1) or Low (0). Registers in the device
core hardware power up to 0 in all Altera devices. For the register to
power up with a logic level High specified using this option, the
Compiler performs an optimization referred to as NOT-gate push back on
the register. NOT-gate push back adds an inverter to the input and the
output of the register so that the reset and power-up conditions will
appear to be high and the device operates as expected. The register itself
actually still powers up low, but the register output is inverted so the
signal arriving at all destinations is high.

This option supports wildcard characters, and you can apply this option
to any register or to a pin with the logic configurations described in the
following list:

W If this option is turned on for an input pin, the option is transferred
automatically to the register that is driven by the pin if the following
conditions are present:

e There is no logic, other than inversion, between the pin and the
register

e The input pin drives the data input of the register

e The input pin does not fan out to any other logic

7-33

Quartus Il Handbook, Volume 1

7-34

B If this option is turned on for an output or bidirectional pin, it is
transferred automatically to the register that feeds the pin, if the
following conditions are present:

e Thereis nologic, other than inversion, between the register and
the pin
e The register does not fan out to any other logic

For VHDL, Quartus II integrated synthesis also reads default values for
registered signals defined in the VHDL code and converts the default
values into Power-Up Level settings. That way, the synthesized behavior
matches the power-up state of the VHDL code during a functional
simulation. The Quartus II software, like most synthesis tools, does not
synthesize variables that are assigned values in Verilog HDL initial blocks
into power-up conditions. Initial blocks are generally not synthesized.

For more information about NOT gate push-back, the power-up states for
Altera devices, and how power-up level is affected by set and reset
control signals, refer to Recommended HDL Coding Styles in volume 1 of
the Quartus II Handbook.

Power-Up Don’t Care

This logic option causes registers to power up with the logic level most
appropriate for the design. This option allows the Compiler to change the
power-up condition of a register to, for example, minimize your design’s
area usage. This option is turned on by default.

For example, a register may have its D input tied to VCC. If you turn this
option off, the register powers up low even though it goes high at the first
clock signal. If you turn this option on, the Compiler sets the power-up
value of the register to high and, therefore, can eliminate the register and
connect the output of the register to vCC. If the Compiler performs this
type of optimization, it issues a message indicating it is doing so.

This project-wide option does not apply to registers that have the
Power-Up Level logic option set to either High or Low.

Remove Duplicate Logic

If you turn on this logic option, the Compiler removes logic that is
identical to other logic in the design. If two functions generate the same
logic, the Compiler removes the second one, and the first one fans out to
the second one’s destinations. Additionally, if the deleted logic function
has different logic option assignments, the Compiler ignores them. This
option is turned on by default.

Altera Corporation
May 2006

Quartus Il Synthesis Options

When turned on, this option also removes all duplicate registers in the
same way as does the Remove Duplicate Registers option. If you do not
want the Compiler to remove certain registers when this option is turned
on, turn off the Remove Duplicate Registers option for those registers.
For more details, refer to Table 7-5.

Even if you turn this option on, the Compiler does not remove duplicate
logic that you inserted deliberately. If a function’s output feeds an LCELL
buffer, the Compiler always treats it as a unique signal and the Remove
Duplicate Logic option does not apply (that is, the Compiler does not
remove an LCELL buffer if you turn on this option).

Remove Duplicate Registers

If you turn on this logic option, the Compiler removes registers that are
identical to another register. If two registers generate the same logic, the
Compiler removes the second one, and the first one fans out to the second
one's destinations. Also, if the deleted register has different logic option
assignments, the Compiler ignores them. This option is turned on by
default.

The Compiler recognizes this option only if you turned on the Remove
Duplicate Logic option. When turned on, the Remove Duplicate Logic
option also removes duplicate registers. Therefore, you should use this
option only if you want to prevent the Compiler from removing duplicate
registers that you have used deliberately. That is, you should use this
option only with the Off setting. Refer to Table 7-5. You can apply this
option to an individual register or a design entity that contains registers.

Table 7-5. Settings for Remove Duplicate Logic & Remove Duplicate Registers

Remove Duplicate

Remove Duplicate

. .) . Description
Logic Setting Registers Setting escriptio

On (Default) On (Default) Removes logic (including registers) if it is identical to other logic in
the design.

On Preserves all registers for which the Remove Duplicate Registers
option is turned off. Removes logic (including any other registers) if
it is identical to other logic in the design.

Off On or Off Preserves duplicate logic and registers.

Altera Corporation
May 2006

Remove Redundant Logic Cells

This logic option removes redundant LCELL primitives or WYSIWYG
cells. If you turn on this option, the Compiler optimizes a circuit for area
and speed. The project-wide option is turned off by default.

7-35

Quartus Il Handbook, Volume 1

Preserve Registers

This attribute and logic option direct the Compiler not to minimize or
remove a specified register during synthesis optimizations or register
netlist optimizations.Optimizations can eliminate redundant registers
and registers with constant drivers; this option prevents a register from
being reduced to a constant or merged with a duplicate register. This
option can preserve a register so you can observe it during simulation or
with the SignalTap IIlogic analyzer. Additionally, it can preserve registers
if you are creating a preliminary version of the design in which secondary
signals are not specified. You can also use the attribute to preserve a
duplicate of an I/O register so that one copy can be placed in an I/O cell
and the second can be placed in the core. By default, the software may
remove one of the two duplicate registers in this case; the preserve
attribute can be added to both registers to prevent this.

=" This option cannot preserve registers that have no fan-out. To
prevent the removal of registers with no fanout, refer to
“Noprune Synthesis Attribute/Preserve Fanout Free Node” on
page 7-37.

s The Preserve Registers attribute prevents a register from
being inferred as a state machine.

You can set the Preserve Registers logic option in the Quartus II GUI or
you can set the preserve attribute in your HDL code as shown in
Example 7-16, 7-17, and 7-18. In the examples, the my_reg register is
preserved.

I In addition to preserve, the Quartus II software supports the
syn_preserve attribute name for compatibility with other
synthesis tools.

Example 7-16. Verilog HDL Example of a preserve Attribute
reg my reg /* synthesis preserve = 1 */;

Example 7-17. Verilog-2001 Example of a syn_preserve Attribute
(* syn preserve = 1 *) reg my_ reg;

I The " = 1" after the "preserve" in Example 7-16 and
Example 7-17 is optional, because the assignment uses a default
value of 1 when it is specified.

7-36 Altera Corporation
May 2006

Quartus Il Synthesis Options

Example 7-18. VHDL Example of a preserve Attribute

signal my reg : stdlogic;

attribute preserve : boolean;

attribute preserve of my reg : signal is true;

Noprune Synthesis Attribute/Preserve Fanout Free Node

This synthesis attribute and corresponding logic option direct the
Compiler to preserve a fanout free register through the entire compilation
flow. This is different from the Preserve Registers option, which prevents
a register from being reduced to a constant or merged with a duplicate
register. Standard synthesis optimizations remove nodes that do not
directly or indirectly feed a top-level output pin. This option can retain a
register so you can observe it in the Simulator or the SignalTap II logic
analyzer. Additionally, it can retain registers if you are creating a
preliminary version of the design in which the registers’ fanout logic is
not specified.

You can set the Preserve Fanout Free Node logic option in the Quartus II
GUI, or you can set the noprune attribute in your HDL code as shown in
Example 7-19, Example 7-20, and Example 7-21. In these examples, the
my_reg register is preserved.

1= You must use the noprune attribute instead of the logic option
if the register has no immediate fanout in its module or entity. If
you do not use the synthesis attribute, registers with no fanout
are removed (or “pruned”) during analysis and elaboration
before the logic synthesis stage applies any logic options. If the
register has no fanout in the full design, but has fanout within its
module or entity, then you can use the logic option to retain the
register through compilation.

Il=" The attribute name syn_noprune is supported for
compatibility with other synthesis tools.

Example 7-19. Verilog HDL Example of a noprune Attribute

reg my reg /* synthesis noprune = 1 */;

Example 7-20. Verilog-2001 Example of a noprune Attribute

(* noprune = 1 *) reg my_ reg;

Altera Corporation 7-37
May 2006

Quartus Il Handbook, Volume 1

Example 7-21. VHDL Example of a noprune Attribute
signal my reg : stdlogic;
attribute noprune: boolean;

attribute noprune of my reg : signal is true;

Keep Combinational Node/Implement as Output of Logic Cell

This synthesis attribute and corresponding logic option direct the
Compiler to keep a wire or combinational node through logic synthesis
minimizations and netlist optimizations. A wire that has a keep attribute
or a node that has the Implement as Output of Logic Cell logic option
applied becomes the output of a logic cell in the final synthesis netlist, and
the name of the logic cell will be the same as the name of the wire or node.
You can use this directive to make combinational nodes visible to the
SignalTap II logic analyzer.

I The option cannot keep nodes that have no fan-out. Node names
cannot be maintained for wires with tri-state drivers, or if the
signal feeds a top-level pin of the same name (in this case the
node name is changed to a name such as <net name>~reg0).

You can set the Implement as Output of Logic Cell logic option in the
Quartus II GUI, or you can set the keep attribute in your HDL code as
shown in Example 7-22, Example 7-23, and Example 7-24. In these
examples, the Compiler maintains the node name my wire.

= Inaddition to keep, the Quartus II software supports the
syn_keep attribute name for compatibility with other synthesis

tools.

Example 7-22. Verilog HDL Example of a keep Attribute
wire my wire /* synthesis keep = 1 */;

Example 7-23. Verilog-2001 Example of a keep Attribute

(* keep = 1 *) wire my_wire;

Example 7-24. VHDL Example of a syn_keep Attribute
signal my wire: bit;
attribute syn keep: boolean;

attribute syn keep of my wire: signal is true;

7-38

Altera Corporation
May 2006

Quartus Il Synthesis Options

Altera Corporation
May 2006

Maximum Fan-Qut

This attribute and logic option directs the Compiler to control the number
of destinations fed by a node. The Compiler duplicates a node and splits
its fan-out until the individual fan-out of each copy falls below the
maximum fan-out restriction. You can apply this option to a register or a
logic cell buffer. You can also use this option to reduce the load of critical
signals, which can improve performance. You can use this option to
instruct the Compiler to duplicate (or replicate) a register that feeds nodes
in different locations on the target device. Duplicating the register may
allow the Fitter to place these new registers closer to their destination
logic, minimizing routing delay.

This option is available for all devices supported in the Quartus I
software except MAX® 3000, MAX 7000, FLEX 10K®, ACEX® 1K, and
Mercury™ devices. The maximum fan-out constraint is honored as long
as the following conditions are met:

B The node is not part of a cascade, carry, or register cascade chain

B The node does not feed itself

B The node feeds other logic cells, DSP blocks, RAM blocks and/or
pins through data, address, clock enable, etc, but not through any
asynchronous control ports (such as asynchronous clear)

The software does not create duplicate nodes in these cases either because
there is no clear way to duplicate the node, or, in the third condition above
where asynchronous control signals are involved, to avoid the possible
situation that small differences in timing could produce functional
differences in the implementation. If the constraint cannot be applied
because one of these conditions is not met, the Quartus II software issues
a message indicating that it ignored maximum fan-out assignment.

s If you have enabled any of the Quartus II netlist optimizations
that affect registers, add the preserve attribute to any registers
to which you have set a maxfan attribute. The preserve
attribute ensures that the registers are not affected by any of the
netlist optimization algorithms such as register retiming.

For details about netlist optimizations, refer to the Netlist Optimization &
Physical Synthesis chapter in volume 2 of the Quartus II Handbook.

You can set the Maximum Fan-Out logic option in the Quartus II GUI,
and this option supports wildcard characters. You can also set the
maxfan attribute in your HDL code as shown in Example 7-25, 7-26, and
7-27.In these examples, the Compiler duplicates the c1k_gen register, so
its fan-out is not greater than 50.

7-39

Quartus Il Handbook, Volume 1

=" Inaddition to maxfan, the Quartus II software supports the
syn_maxfan attribute name for compatibility with other
synthesis tools.

Example 7-25. Verilog HDL Example of a syn_maxfan Attribute
reg clk gen /* synthesis syn maxfan = 50 */;

Example 7-26. Verilog-2001 Example of a maxfan Attribute

(* maxfan = 50 *) reg clk gen;

Example 7-27. VHDL Example of a maxfan Attribute

signal clk gen : stdlogic;

attribute maxfan : signal ;

attribute maxfan of clk gen : signal is 50;

Megafunction Inference Control

The Quartus II Compiler automatically recognizes certain types of HDL
code and infers the appropriate megafunction The software uses the
Altera megafunction code when compiling your design even when you
do not specifically instantiate the megafunction. The software infers
megafunctions to take advantage of logic that is optimized for Altera
devices. The area and performance of such logic may be better than the
results obtained by inferring generic logic from the same HDL code.

Additionally, you must use megafunctions to access certain
architecture-specific features, such as RAM, digital signal processing
(DSP) blocks, and shift registers, that generally provide improved
performance compared with basic logic elements.

e« For details on coding style recommendations when targeting
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

The Quartus II software provides options to control the inference of
certain types of megafunctions, as described in the following
sub-sections.

Multiply-Accumulators & Multiply-Adders

Use the Auto DSP Block Replacement logic option to control DSP block
inference for multiply-accumulations and multiply-adders. This option is
turned on by default. To disable inference, turn off this option for your

7-40 Altera Corporation
May 2006

Quartus Il Synthesis Options

Altera Corporation
May 2006

whole project on the Analysis & Synthesis Settings page of the Settings

dialog box, or disable the option for a specific block with the Assignment

Editor.

[l=~ Any registers that the software maps to the altmult accum
and altmult_add megafunctions and places in DSP blocks are
not available in the Simulator because their node names do not
exist after synthesis.

Shift Registers

Use the Auto Shift Register Replacement logic option to control shift
register inference. This option is turned on by default. To disable
inference, turn off this option for your whole project on the Analysis &
Synthesis Settings page of the Settings dialog box, or for a specific block
with the Assignment Editor. The software may not infer small shift
registers because small shift registers typically do not benefit from
implementation in dedicated memory. However, you can use the Allow
Any Shift Register Size for Recognition logic option to instruct
synthesis to infer a shift register even when its size is considered too
small.

s The registers that the software maps to the altshift_taps
megafunction and places in RAM are not available in the
Simulator because their node names do not exist after synthesis.

The Auto Shift Register Replacement logic option is turned off
automatically when a formal verification tool is selected in the
EDA Tool Settings. The software issues a warning and lists shift
registers that would have been inferred if no formal verification
tool was selected in the compilation report. To allow the use of a
megafunction for the shift register in the formal verification
flow, you can either instantiate a shift register explicitly using
the MegaWizard Plug-in Manager or black-box the shift register
in a separate entity /module.

RAM & ROM

Use the Auto RAM Replacement and Auto ROM Replacement logic
options to control RAM and ROM inference, respectively. These options
are turned on by default. To disable inference, turn off the appropriate
option for your whole project on the Analysis & Synthesis Settings page
of the Settings dialog box, or disable the option for a specific block with
the Assignment Editor.

7-41

Quartus Il Handbook, Volume 1

7-42

The software may not infer very small RAM or ROM blocks because very
small memory blocks can typically be implemented more efficiently by
using the registers in the logic. However, you can use the Allow Any
RAM Size for Recognition and Allow Any ROM Size for Recognition
logic options to instruct synthesis to infer a memory block even when its
size is considered too small.

=" The Auto ROM Replacement logic option is automatically
turned off when a formal verification tool is selected in the EDA
Tool Settings page. A warning is issued and a report panel lists
ROMs that would have been inferred if no formal verification
tool was selected. To allow the use of a megafunction for the
shift register in the formal verification flow, you can either
instantiate a ROM explicitly using the MegaWizard Plug-in
Manager or create a black box the ROM in a separate
entity /module.

Although formal verification tools do not support inferred RAM blocks,
because of the importance of inferring RAM in many designs, the Auto
RAM Replacement logic option remains on when a formal verification
tool is selected in the EDA Tool Settings page. The Quartus II software
automatically black boxes any module or entity that contains a RAM
block that is inferred. The software issues a warning and lists the

black box that is created in the compilation report. This block box allows
formal verification tools to proceed; however, the entire module or entity
containing the RAM cannot be verified in the tool. Altera recommends
explicitly instantiating RAM blocks in separate modules or entities so that
as much logic as possible can be verified by the formal verification tool.

RAM Style & ROM Style—for Inferred Memory

These attributes specify the implementation for an inferred RAM or ROM
block. You can specify the type of TriMatrix™ embedded memory block
to be used, or specify the use of standard logic cells (LEs or ALMs). The
attributes are supported only for device families with TriMatrix
embedded memory blocks.

The ramstyle and romstyle attributes take a single string value. The
values “M512”, “M4K”, and “M-RAM” indicates the type of memory
block to use for the inferred RAM or ROM. The value “logic” indicates
that the RAM or ROM should be implement in regular logic rather than
dedicated memory blocks. You can set the attribute on a module or entity,
in which case it specifies the default implementation style for all inferred
memory blocks in the immediate hierarchy. You can also set the attribute
on a specific signal (VHDL) or variable (Verilog HDL) declaration, in
which case it specifies the preferred implementation style for that specific
memory, overriding the default implementation style.

Altera Corporation
May 2006

Quartus Il Synthesis Options

=" If you specify a value of “logic”, the memory still appears as a
RAM or ROM block in the RTL Viewer, but it is converted to
regular logic during a later synthesis step.

[l Inaddition to ramstyle and romstyle, the Quartus II
software supports the syn_ramstyle attribute name for
compatibility with other synthesis tools.

Example 7-28, 7-29, and 7-30 specify that all memory in the module or
entity my _memory blocks should be implemented using a specific type
of block.

Example 7-28. Verilog-1995 Example of Applying a romstyle Attribute to a Module Declaration
module my memory blocks (...) /* synthesis romstyle = "M4K" */

Example 7-29. Verilog-2001 Example of Applying a ramstyle Attribute to a Module Declaration
(* ramstyle = "M512" *) module my memory blocks (...);

Example 7-30. VHDL Example of Applying a romstyle Attribute to an Architecture

architecture rtl of my my memory blocks is

attribute romstyle : string;
attribute romstyle of rtl : architecture is "M-RAM";
begin

Example 7-31, 7-32, and 7-33 specify that the inferred memory my_ram
or my_rom should be implemented using regular logic instead of a
TriMatrix memory block.

Example 7-31. Verilog-1995 Example of Applying a syn_ramstyle Attribute to a Variable Declaration
reg [0:7] my ram[0:63] /* synthesis syn ramstyle = "logic" */;

Example 7-32. Verilog-2001 Example of Applying a romstyle Attribute to a Variable Declaration
(* romstyle = "logic" *) reg [0:7] my rom[0:63];

Example 7-33. VHDL Example of Applying a ramslyle Attribute to a Variable Declaration
type memory t is array (0 to 63) of std logic vector (0 to 7);
signal my ram : memory t;

attribute ramstyle : string;

attribute ramstyle of my ram : signal is "logic";

Altera Corporation 7-43
May 2006

Quartus Il Handbook, Volume 1

RAM Initialization File—for Inferred Memory

Theram init file attribute specifies the initial contents of an inferred
memory in the form of a Memory Initialization File (.mif). The attribute
takes a string value containing the name of the RAM initialization file.

Example 7-34. Verilog-1995 Example of Applying a ram_init_file Attribute
reg [7:0] mem[0:255] /* synthesis ram init file
= " my_ init file.mif" */;

Example 7-35. Verilog-2001 Example of Applying a ram_init_file Attribute

(* ram_init file = "my init file.mif" *) reg [7:0] mem[0:255];

Example 7-36. VHDL Example of Applying a ram_init_file Attribute

type mem t is array(0 to 255) of unsigned(7 downto 0);
signal ram : mem t;

attribute ram init file : string;

attribute ram_init_file of ram :

signal is "my init file.mif";

s In VHDL, you can also initialize the contents of an inferred
memory by specifying a default value for the corresponding
signal. Quartus II integrated synthesis automatically converts
the default value into a MIF for the inferred RAM.

Multiplier Style—for Inferred Multipliers

The multstyle attribute specifies the implementation style for

multiplication operations (*) in your HDL source code. You can use this

attribute to specify whether you prefer the Compiler to implement a

multiplication operation in general logic or dedicated hardware, if

available in the target device.

=" Specifying amultstyle of "dsp" does not guarantee that the
Quartus II software can implement a multiplication in dedicated
DSP hardware. The final implementation depends, among other
things, on the availability of dedicated hardware in the target
device, the size of the operands, and whether or not one or both
operands are constant.

The multstyle attribute takes a string value of "logic" or "dsp,"
indicating a preferred implementation in logic or in dedicated hardware,
respectively. In Verilog HDL, apply the attribute to a module declaration,

7-44 Altera Corporation
May 2006

Quartus Il Synthesis Options

a variable declaration, or a specific binary expression containing the *
operator. In VHDL, apply the synthesis attribute to a signal, variable,
entity, or architecture.

'~ Inadditiontomultstyle, the Quartus Il software supports the
syn_multstyle attribute name for compatibility with other
synthesis tools.

When applied to a Verilog HDL module declaration, the attribute
specifies the default implementation style for all instances of the *
operator in the module. For example, in the following code examples, the
multstyle attribute directs the Quartus II software to implement all
multiplications inside module my_module in dedicated multiplication
hardware.

Example 7-37. Verilog-1995 Example of Applying a multstyle Attribute to a Module Declaration
module my module (...) /* synthesis multstyle = "dsp" */;

Example 7-38. Verilog-2001 Example of Applying a multstyle Attribute to a Module Declaration
(* multstyle = "dsp" *) module my module(...);

When applied to a Verilog HDL variable declaration, the attribute
specifies the implementation style to be used for a multiplication operator
whose result is directly assigned to the variable. It overrides the
multstyle attribute associated with the enclosing module, if present.
For example, in Example 7-39 and 740, the multstyle attribute
applied to variable result directs the Quartus II software to implement
a * bin general logic rather than dedicated hardware.

Example 7-39. Verilog-2001 Example of Applying a multstyle Attribute to a Variable Declaration
wire [8:0] a, b;
(* multstyle = "logic" *) wire [17:0] result;
assign result = a * b; //Multiplication must be
//directly assigned to result

Example 7-40. Verilog-1995 Example of Applying a multstyle Attribute to a Variable Declaration
wire [8:0] a, b;
wire [17:0] result /* synthesis multstyle = "logic" */;
assign result = a * b; //Multiplication must be
//directly assigned to result

Altera Corporation 7-45
May 2006

Quartus Il Handbook, Volume 1

When applied directly to a binary expression containing the * operator,
the attribute specifies the implementation style for that specific operator
alone and overrides any multstyle attribute associated with target
variable or enclosing module. For example, in Example 7-41, the
multstyle attribute indicates thata * b should be implemented in
dedicated hardware.

Example 7-41. Verilog-2001 Example of Applying a multstyle Attribute to a Binary Expression
wire [8:0] a, b;

wire [17:0] result;

assign result = a * (* multstyle = "dsp" *) b;

s You can not use Verilog-1995 attribute syntax to apply the
multstyle attribute to a binary expression.

When applied to a VHDL entity or architecture, the attribute specifies the
default implementation style for all instances of the * operator in the
entity or architecture. For example, in Example 742, the multstyle
attribute directs the Quartus II software to use dedicated hardware, if
possible, for all multiplications inside architecture rt1 of entity

my entity.

Example 7-42. VHDL Example of Applying a multstyle Attribute to an Architecture
architecture rtl of my entity is

attribute multstyle : string;

attribute multstyle of rtl : architecture is "dsp";
begin

When applied to a VHDL signal or variable, the attribute specifies the
implementation style to be used for all instances of the * operator whose
result is directly assigned to the signal or variable. It overrides the
multstyle attribute associated with the enclosing entity or architecture,
if present. For example, in Example 7-43, the multstyle attribute
associated with signal result directs the Quartus II software to
implement a * b in general logic rather than dedicated hardware.

Example 7-43. VHDL Example of Applying a mulistyle Attribute to a Signal or Variable
signal a, b : unsigned(8 downto 0);
signal result : unsigned (17 downto 0);

attribute multstyle : string;
attribute multstyle of result : signal is "logic";
result <= a * b;

7-46 Altera Corporation
May 2006

Quartus Il Synthesis Options

Full Case

A Verilog HDL case statement is considered full when its case items cover
all possible binary values of the case expression or when a default case
statement is present. A full case attribute attached to a case statement
header that is not full forces the unspecified states to be treated as a “don’t
care” value. VHDL case statements must be full, so the attribute does not
apply to VHDL.

<o Using this attribute on a case statement that is not full avoids the latch
inference problems discussed in the Design Recommendations for Altera
Devices chapter in volume 1 of the Quartus II Handbook.

Ils~ Latches have limited support in formal verification tools. It is
important to ensure that you do not infer latches
unintentionally, e.g. through an incomplete case statement,
when using formal verification. Formal verification tools do
support the full case synthesis attribute (with limited
support for attribute syntax, as described in “Synthesis
Attributes” on page 7-21).

When you are using the full_case attribute, there is a potential cause
for a simulation mismatch between Verilog HDL functional and
post-Quartus II simulation because unknown case statement cases may
still function like latches during functional simulation. For example, a
simulation mismatch may occur with the code in the following example
when selis 2 'b11 because a functional HDL simulation output behaves
like a latch while the Quartus II simulation output behaves like “don’t
care.”

I Altera recommends making the case statement “full” in your
regular HDL code, instead of using the full_case attribute.

The case statement in Example 7—44 is not full because not all binary
values for sel are specified. Because the full case attribute is used,
synthesis treats the output as “don’t care” when the sel inputis 2 'b11.

Altera Corporation 7-47
May 2006

Quartus Il Handbook, Volume 1

Example 7-44. Verilog HDL Example of a full_case Attribute
module full case (a, sel, y);
input [3:0] a;
input [1:0] sel;
output y;
reg y;
always @ (a or sel)
case (sel) // synthesis full case
2'b00: y=al0];
2'b01l: y=alll;
2'b10: y=al2];
endcase
endmodule

Verilog-2001 syntax also accepts the statements in Example 7—45 in the
case header instead of the comment form shown in Example 7-44.

Example 7-45. Verilog-2001 Syntax for the full_case Attribute

(* full case *) case (sel)

Parallel Case

The parallel_case attribute indicates that a Verilog HDL case
statement should be considered parallel, that is, only one case item can be
matched at a time. Case items in Verilog HDL case statements may
overlap. To resolve multiple matching case items, the Verilog HDL
language defines a priority relationship among case items in which the
case statement always executes the first case item that matches the case
expression value. By default, the Quartus II software implements the
extra logic required to satisfy this priority relationship.

Attaching a parallel case attribute to a case statement’s header
allows the Quartus II software to consider its case items as inherently
parallel, that is, at most one case item matches the case expression value.
Parallel case items reduce the complexity of the generated logic.

In VHDL, the individual choices in a case statement may not overlap, so
they are always parallel and this attribute does not apply.

Use this attribute only when the case statement is truly parallel. If you
use the attribute in any other situation, the generated logic will not match
the functional simulation behavior of the Verilog HDL.

7-48 Altera Corporation
May 2006

Quartus Il Synthesis Options

=" Altera recommends that you avoid using the parallel case
attribute, due to the possibility of introducing mismatches
between Verilog HDL functional and post-Quartus II
simulation.

If you specify the supported Verilog HDL version as
SystemVerilog-2005 for your design, you can use the
SystemVerilog keyword unique to achieve the same result as
the parallel_case directive without causing simulation
mismatches.

The following example shows a casez statement with overlapping case
items. In functional HDL simulation, the three case items have a priority
order that depends on the bits in sel. For example, sel [2] takes priority
over sel [1] which takes priority over sel [0]. However the
synthesized design may simulate differently because the
parallel_case attribute eliminates this priority order. If more than one
bit of sel is high, then more than one output (a, b, or c) is high as well, a
situation that cannot occur in functional HDL simulation.

Example 7-46. Verilog HDL Example of a parallel_case Attribute

module parallel case (sel, a, b, c);

input [2:0] sel;
output a, b, c;
reg a, b, c¢;
always @ (sel)
begin

{a, b, ¢} = 3'bO;

casez (sel) // synthesis parallel case

3'b1l??: a = 1'bl;

3'b?1?: b = 1'bl;
3'b??1: ¢ = 1'bl;
endcase
end
endmodule

Verilog-2001 syntax also accepts the statements as shown in
Example 7-47 in the case (or casez) header instead of the comment
form as shown in Example 7-46.

Example 7-47. Verilog-2001 Syntax

(* parallel case *) casez (sel)

Altera Corporation
May 2006

7-49

Quartus Il Handbook, Volume 1

Translate Off & On

The translate_off and translate_ on synthesis directives indicate
whether the Quartus II software or a third-party synthesis tool should
compile a portion of HDL code that is not relevant for synthesis. The
translate_off directive marks the beginning of code that the
synthesis tool should ignore; the translate_on directive indicates that
synthesis should resume. A common use of these directives is to indicate
a portion of code that is intended for simulation only. The synthesis tool
reads synthesis-specific directives and processes them during synthesis;
however, third-party simulation tools read the directives as comments
and ignore them. Example 7—48 and Example 7-49 show these directives.

Example 7-48. Verilog HDL Example of Translate Off & On

// synthesis translate off

parameter tpd = 2; // Delay for simulation
#tpd;

// synthesis translate on

Example 7-49. VHDL Example of Translate Off & On
-- synthesis translate off

use std.textio.all;

-- synthesis translate_on

If you wish to ignore a portion of code in Quartus II integrated synthesis
only, you can use the Altera-specific attribute keyword altera. For
example, use the // altera translate off and

// altera translate_on directives to direct Quartus II integrated
synthesis to ignore a portion of code that is intended only for other
synthesis tools.

Ignore Translate Off

The Ignore Translate Off logic option directs Quartus II integrated
synthesis to ignore the translate off and translate_on attributes
described in the previous section. This allows you to compile code that
was previously intended to be ignored by third-party synthesis tools, for
example megafunction declarations that were treated as black boxes in
other tools but can be compiled in the Quartus II software. To set the
Ignore Translate Off logic option, click More Settings on the Analysis &
Synthesis Settings page of the Settings dialog box.

7-50 Altera Corporation
May 2006

Quartus Il Synthesis Options

Read Comments as HDL

The read _comments_as_ HDL synthesis directive indicates that the
Quartus II software should compile a portion of HDL code that is
commented out. This directive allows you to comment out portions of
HDL source code that are not relevant for simulation, while instructing
the Quartus II software to read and synthesize that same source code.
Setting the read_comments_as_HDL directive to on marks the
beginning of commented code that the synthesis tool should read; setting
the read comments_as_HDL directive to of £ indicates the end of the
code.

=" You can use this directive with translate off and
translate onto create one HDL source file that includes both
a megafunction instantiation for synthesis and a behavioral
description for simulation.

Because formal verification tools do not recognize the
read_comments_as_HDL directive, it is not supported when
you are using formal verification.

In Example 7-50 and 7-51, the commented code enclosed by
read comments_as_HDL is visible to the Quartus II Compiler and is
synthesized.

Il Because synthesis directives are case-sensitive in Verilog HDL,
you must match the case of the directive, as shown below.

Example 7-50. Verilog HDL Example of Read Comments as HDL
// synthesis read_comments_as_HDL on
// my rom lpm rom (.address (address),

//

.data (data)) ;

// synthesis read_comments_as_HDL off

Example 7-51. VHDL Example of Read Comments as HDL
-- synthesis read comments as HDL on
-- my_rom : entity lpm rom

-- port map

-- address => address,

-- data

=> data,)i

-- synthesis read comments_ as HDL off

Altera Corporation
May 2006

7-51

Quartus Il Handbook, Volume 1

Setting Other
Quartus Il
Options in Your
HDL Source
Code

7-52

This section describes Quartus II synthesis attributes that can be used to
set other Quartus II options and settings in your HDL source code. The
attributes described in the “chip_pin” and “Use I/O Flip-Flops” sections
can help you make pin-related assignments in your HDL code, and the
attribute described in the “Altera Attribute” section can be used to make
any other Quartus II option or setting assignments in your HDL code.
Assignments made with these synthesis attributes take precedence over
assignments made through the Quartus II user interface, the Quartus II
Settings File, or the Tcl interface.

Use 1/0 Flip-Flops

This attribute directs the Quartus II software to implement input, output,
and output enable flip-flops (or registers) in I/O cells that have fast, direct
connections to an I/O pin, when possible. Applying the useioff
synthesis attribute can improve I/O performance by minimizing setup,
clock-to-output, and clock-to-output enable times. This synthesis
attribute is supported using the Fast Input Register, Fast Output
Register, and Fast Output Enable Register logic options that can also be
set in the Assignment Editor.

For more information about which device families support fast input,
output, and output enable registers, refer to the device family data sheet,
device handbook, or the Quartus II Help.

The useioff synthesis attribute takes a Boolean value and can only be
applied to the port declarations of a top-level Verilog HDL module or
VHDL entity (it is ignored if applied elsewhere). Setting the value to 1
(Verilog HDL) or TRUE (VHDL) instructs the Quartus II software to pack
registers into I/O cells. Setting the value to 0 (Verilog HDL) or FALSE
(VHDL) prevents register packing into I/O cells.

In Example 7-52 and 7-53, the useiof f synthesis attribute directs the
Quartus II software to implement the registers a_reg, b_reg, and
o_reginthel/O cells corresponding to the ports a, b, and o respectively.

Altera Corporation
May 2006

Setting Other Quartus Il Options in Your HDL Source Code

Example 7-52. Verilog HDL Example of a useioff Attribute
module top level(clk, a, b, o);
input clk;
input
output [2:0] o /* synthesis useioff
reg [1:0] a_reg, b_reg;
reg [2:0] o_reg;
always @ (posedge clk)

begin
a_reg <= a;
b reg <= b;
O _reg <= a_reg + b_reg;
end
assign o = o_reg;
endmodule

[1:0] a, b /* synthesis useioff

1 */;
*

; /i

Verilog-2001 syntax also accepts the type of statements shown in
Example 7-53 and 7-54 instead of the comment form shown in

Example 7-52.

Example 7-53. Verilog-2001 Syntax for a useioff Attribute
(* useioff = 1 *) input [1:0] a, b;
(* useioff = 1 *) output [2:0] o;

Altera Corporation
May 2006

7-53

Quartus Il Handbook, Volume 1

Example 7-54. VHDL with a useioff Attribute
library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric std.all;
entity top level is

port (
clk : in std logic;
a, b : in unsigned (1l downto 0) ;
o : out unsigned (1l downto 0)) ;

attribute useioff : boolean;
attribute useioff of a : signal is true;
attribute useioff of b : signal is true;
attribute useioff of o : signal is true;
end top level;
architecture rtl of top_level is
signal o reg, a reg, b reg : unsigned(l downto 0);

begin
process (clk)
begin
a _reg <= a;
b reg <= b;

O reg <= a _reg + b reg;
end process;
o <= o_reg;
end rtl;

Altera Attribute

This attribute enables you to apply Quartus Il options and assignments to
an object (entity, instance, or net) in your HDL source code. With
altera_attribute, you can control synthesis options from your HDL
source even when the options lack a specific HDL synthesis attribute
(such as many of the logic options presented earlier in this chapter). You
can also use this attribute to pass entity-level settings and assignments to
phases of the Compiler flow beyond Analysis & Synthesis, such as
Fitting.

Assignments and settings made with the Altera Attribute take
precedence over assignments and settings made through the Quartus II
user interface, the Quartus II Settings File, or the Tcl interface.

The syntax for setting this attribute in HDL is the same as the syntax for
other synthesis attributes, as shown in “Synthesis Attributes” on
page 7-21.

7-54 Altera Corporation
May 2006

Setting Other Quartus Il Options in Your HDL Source Code

Altera Corporation
May 2006

The attribute value is a single string containing a list of Quartus II
Settings File variable assignments separated by semicolons, as shown in
the following example:

-name <wvariable_1> <wvalue_1>; -name <variable_2> <value_2>1;...]

If the Quartus II option or assignment includes a target, source, and/or
section tag, use the following syntax for each Quartus II Settings File
variable assignment.

-from <source> -to <target> -section_id <section>
-name <variable> <value>

The syntax for the full attribute value, including the optional target,
source, and section tags for two different Quartus II Settings File
assignments is shown in the following example:

"[-from <source_1>] [-to <target_1>] [-section_ id
<section_1>] -name <wvariable_1> <value_1>; [-from <source 2>]
[-to <target_2>] [-section_id <section_2>] -name <variable_2>
<value_2>"

If a variable’s assigned value is a string of text, you must use escaped
quotes around the value, as in the following examples (using non-existent
variable and value terms):

Verilog HDL

"VARIABLE NAME \" STRING_VALUE\ "

VHDL

"VARIABLE NAME ""STRING VALUE""

To find the Quartus II Settings File variable name or value corresponding
to a specific Quartus II option or assignment, you can make the option
setting or assignment in the Quartus II user interface and then note the
changes in the Quartus II Settings File. You can also refer to the Quartus II
Settings File Reference Manual which documents all variable names.

Example 7-55, 7-56, and 7-57 use altera_attribute to set the
power-up level of an inferred register. Note that for inferred instances,
you cannot apply the attribute to the instance directly so you should
apply the attribute to one of the instance's output nets. The Quartus II
software moves the attribute to the inferred instance automatically.

7-55

Quartus Il Handbook, Volume 1

Example 7-55. Verilog-1995 Example of Applying Altera Attribute to an Instance
reg my reg /* synthesis altera attribute = "-name POWER UP_LEVEL HIGH" */;

Example 7-56. Verilog-2001 Example of Applying Altera Attribute to an Instance
(* altera attribute = "-name POWER UP LEVEL HIGH" *) reg my reg;

Example 7-57. VHDL Example of Applying Altera Attribute to an Instance

signal my reg : std logic;

attribute altera attribute : string;

attribute altera_attribute of my reg: signal is "-name POWER UP_LEVEL
HIGH";

Example 7-58,7-59, and 7-60 use the altera_attribute to disable the
Auto Shift Register Replacement synthesis option for an entity. To apply
the Altera Attribute to a VHDL entity, you must set the attribute on its
architecture rather than on the entity itself.

Example 7-58. Verilog-1995 Example of Applying Altera Attribute to an Entity
module my entity(..) /* synthesis altera_attribute = "-name
AUTO_SHIFT REGISTER RECOGNITION OFF" */;

Example 7-59. Verilog-2001 Example of Applying Altera Attribute to an Entity
(* altera_attribute = "-name AUTO_SHIFT REGISTER_RECOGNITION OFF" ¥*)
module my entity(..) ;

Example 7-60. VHDL Example of Applying Altera Attribute to an Entity
entity my entity is
-- Declare generics and ports
end my_ entity;
architecture rtl of my entity is
attribute altera_attribute : string;
-- Attribute set on architecture, not entity
attribute altera attribute of rtl: architecture is "-name
AUTO_SHIFT REGISTER RECOGNITION OFF";
begin
-- The architecture body
end rtl;

7-56 Altera Corporation
May 2006

Setting Other Quartus Il Options in Your HDL Source Code

You can also use altera_attribute for more complex assignments
involving more than one instance. In Example 7-61, 7-62, and 7-63 the
altera_attribute is used to cut all timing paths from regl to reg2,
equivalent to this Tcl or QSF command:

set instance assignment -name CUT ON -from regl -to
reg2

Example 7-61. Verilog-1995 Example of Applying Altera Atiribute with -fo
reg regz;
reg regl /* synthesis altera_ attribute = "-name CUT ON -to reg2" */;

Example 7-62. Verilog-2001 Example of Applying Altera Attribute with -to
reg regz;
(* altera_attribute = "-name CUT ON -to reg2" *) reg regl;

Example 7-63. VHDL Example of Applying Altera Attribute with -to

signal regl, reg2 : std logic;

attribute altera attribute: string;

attribute altera attribute of regl : signal is "-name CUT ON -to reg2";

You may specify either the -to option or the - £rom option in a single
altera_attribute; integrated synthesis automatically sets the
remaining option to the target of the altera_ attribute. Youmay also
specify wildcards for either option. For example, if you specify “*” for the
-to option instead of reg2 in these examples, the Quartus II software
cuts all timing paths from regl to every other register in this design

entity.

I The altera attribute can be used only for entity-level
settings, and the assignments (including wildcards) apply only
to the current entity.

Altera Corporation 7-57

May 2006

Quartus Il Handbook, Volume 1

chip_pin

This attribute enables you to assign pins to the ports of an entity or
module in your HDL source. You may only assign pins to single-bit or
one-dimensional bus ports in your design.

For single-bit ports, the value of the chip pin attribute is the name of

the pin on the target device, as specified by the device’s pin table.

1= In addition to chip pin, the Quartus II software supports the
altera chip pin lc attribute name for compatibility with
other synthesis tools. When using this attribute in other
synthesis tools, some older device families require an “@”
symbol in front of each pin assignment. In the Quartus II
software, the “@” is optional.

Example 7-64, 7-65, and 7-66 show different ways of assigning input pin
my_pinl to Pin C1 and my pin2 to Pin 4 on a different target device.

Example 7-64. Verilog-1995 Examples of Applying Chip Pin to a Single Pin
input my pinl /* synthesis chip pin = "C1" */;
input my pin2 /* synthesis altera chip pin lc = "@4" */;

Example 7-65. Verilog-2001 Example of Applying Chip Pin to a Single Pin
(* chip pin = "C1" *) input my pinl;
(* altera _chip pin lc = "@4" *) input my pin2;

Example 7-66. VHDL Example of Applying Chip Pin to a Single Pin
entity my entity is
port (my pinl: in std logic; my pin2: in std_logic;..);
end my_ entity;
attribute chip pin : string;
attribute altera chip pin lc : string;
attribute chip pin of my pinl : signal is "C1";
attribute altera chip pin lc of my pin2 : signal is "@4"

For bus I/0 ports, the value of the chip pin attribute is a
comma-delimited list of pin assignments. The order in which you declare
the port’s range determines the mapping of assignments to individual
bits in the port. To leave a particular bit unassigned, simply leave its
corresponding pin assignment blank.

7-58 Altera Corporation
May 2006

Analyzing Synthesis Results

Example 7-67 assigns my_pin[2] to Pin_4,my_pin[1] to Pin_5, and
my pin[0] to Pin_é6.

Example 7-67. Verilog-1995 Example of Applying Chip Pin to a Bus of Pins
input [2:0] my pin /* synthesis chip pin = "4, 5, 6" */;

Example 7-68 reverses the order of the signals in the bus, assigning
my pin[0] toPin 4 andmy pin[2] toPin_6 butleavesmy pin[1]
unassigned.

Example 7-68. Verilog-1995 Example of Applying Chip Pin to Part of a Bus
input [0:2] my pin /* synthesis chip pin = "4, ,6" */;

Example 7-69 assignsmy _pin[2] toPin4 andmy_pin[0] to Pin 6,but
leaves my_pin[1] unassigned.

Example 7-69. VHDL Example of Applying Chip Pin to Part of a Bus of Pins
entity my entity is

port (my pin: in std logic vector (2 downto 0);..);
end my entity;

attribute chip pin of my pin: signal is "4, , 6";

i After you have performed synthesis, you can check your synthesis results
nalyzing y p y y yoursy.
. in the following locations:
Synthesis

Results B Messages
B Analysis & Synthesis Section of Compilation Report

B Project Navigator

Messages

The messages that appear during Analysis & Synthesis describe many of
the optimizations that the software performs during the synthesis stage,
and provide information about how the design is interpreted. You should
always check the messages to analyze critical warnings and warnings,
because these messages may relate to important design problems. It is
also useful to read the Information messages to get more information
about how the software processes your design.

Altera Corporation 7-59
May 2006

Quartus Il Handbook, Volume 1

7-60

Analysis & Synthesis Section of Compilation Report

The Compilation Report, which provides a summary of results for the
project, appears after a successful compilation, or you can choose it from
the Processing menu. After Analysis & Synthesis, before the Fitter begins,
the Summary information provides a summary of utilization based on
synthesis data, before fitter optimizations have occurred.
Synthesis-specific information is listed in the Analysis & Synthesis
section.

There are various report sections under Analysis & Synthesis, including
a list of the source files read for the project, the resource utilization by
entity after synthesis, and information about state machines, latches,
optimization results, and parameter settings.

For more information about each report section, refer to the Quartus II
Help.

Project Navigator

The Hierarchy tab of the Project Navigator provides a summary of
resource information about the entities in the project. After Analysis &
Synthesis, before the Fitter begins, the Project Navigator provides a
summary of utilization based on synthesis data, before Fitter
optimizations have occurred.

If you hold your mouse pointer over one of the entities in the Hierarchy
tab, a tooltip that shows parameter information for each instance.

Altera Corporation
May 2006

VHDL & Verilog HDL Messages

VHDL & Veril og The Quartus II software issues a variety of messages when it is analyzing
and elaborating the Verilog HDL and VHDL files in your design. These

HDL Messag es HDL messages help you identify potential problems early in the design
process.

HDL Message Types

HDL messages fall into three categories: Info, Warning, and Error.

B Info message—Lists a property of your design.

B Warning message—Indicates a potential problem in your design.
Potential problems come from a variety of sources, including typos,
inappropriate design practices, or the functional limitations of your
target device. Though HDL warning messages do not always
identify actual problems, you should always investigate code that
generates an HDL warning. Otherwise, the synthesized behavior of
your design might not match your original intent or its simulated
behavior.

B Error message—Indicates an actual problem with your design. Your
HDL code may be invalid due to a syntax or semantic error, or it may
not be synthesizable as written. Consult the Help associated with
any HDL error messages for assistance in removing the error from
your design.

In Example 7-70, the sensitivity list contains multiple copies of the
variable i. While the Verilog HDL language does not prohibit duplicate
entries in a sensitivity list, it is clear that this design has a typo: Variable
j should be listed on the sensitivity list to avoid a possible
simulation/synthesis mismatch.

Example 7-70. Generating an HDL Warning Message
//dup.v

module dup (input i, input j, output reg o) ;
always @ (1)

o=1&7;

endmodule
When processing this HDL code, the Quartus II software generates the
following warning message:
Warning: (10276) Verilog HDL sensitivity list warning
at dup.v(2): sensitivity list contains multiple
entries for "i".

Altera Corporation 7-61

May 2006

Quartus Il Handbook, Volume 1

In Verilog HDL, variable names are case-sensitive, so the variables
my regand MY REG in Example 7-71 are two different variables.
However, declaring variables whose names only differ in case may
confuse some users, especially those users who use VHDL, where
variables are not case-sensitive.

Example 7-71. Generating HDL Info Messages

// namecase.v

module namecase (input i, output o) ;
reg my_ reg;
reg MY REG;
assign o = i;

endmodule

When processing this HDL code, the Quartus II software generates the
following informational message:

Info: (10281) Verilog HDL information at
namecase.v(3): variable name "MY REG" and variable
name "my reg" should not differ only in case.

In addition, the Quartus II software generates additional HDL info
messages to inform you that neither my reg or MY REG are used in this
small design:

Info: (10035
namecase.v (3
Info: (10035
namecase.v (4

Verilog HDL or VHDL information at
object "my reg" declared but not used
Verilog HDL or VHDL information at
object "MY REG" declared but not used

Controlling the Display of HDL Messages

The Quartus II software allows you to control how many HDL messages
you see during the analysis and elaboration of your design files. You can
set the HDL Message Level to enable or disable groups of HDL messages,
or you can enable or disable specific messages.

For more information about synthesis directives and their syntax, refer to
“Synthesis Directives” on page 7-24.

Il=" These options are in addition to the general message
suppression options in the Quartus II software. For more
information about suppressing other messages, refer to the
Quartus 1I Project Management chapter in volume 2 of the
Quartus II Handbook.

7-62 Altera Corporation
May 2006

VHDL & Verilog HDL Messages

Setting the HDL Message Level

The HDL Message Level specifies the types of messages that the
Quartus II software displays when it is analyzing and elaborating your
design files. Table 7-6 details the information about the HDL message

levels.

Table 7-6. HDL Info Message Level

Level Purpose Description

Leveld Displays high-severity | If you want to see only those HDL messages that identify likely
messages only problems with your design, select Level1. When Levell is

selected, the Quartus Il software will only issue a message if
there is a high probability that it points an actual problem with your
design.

Level2 Displays high-severity | If you want to see additional HDL messages that identify possible
and medium-severity | problems with your design, select Level2. This is the default
messages setting.

Level3 Displays all messages, | If you want to see all HDL info and warning messages, select

including low-severity
message

Level3. This level includes extra “LINT” messages that suggest
changes to improve the style of your HDL code or make it easier
to understand.

You should address all issues reported at the Levell setting. The default
HDL message level is Level2.

To set the HDL Message Level in the user interface, on the Assignments
menu, click Settings; under Category, click Analysis & Synthesis
Settings. Set the HDL Message Level.

You can override this default setting in a source file with the
message level synthesis directive, which takes the values levell,
level2, and level3, as shown in Example 7-72 and 7-73.

Example 7-72. Verilog HDL Examples of message_level Directive

// altera message_ level levell

or

/* altera message level level3 */

Example 7-73. VHDL Example of message_level Directive

-- altera message level level2

Altera Corporation

May 2006

7-63

Quartus Il Handbook, Volume 1

A message_level synthesis directive remains effective until the end of
a file or until the next message_level directive. In VHDL, you can use
the message_level synthesis directive to set the HDL Message Level
for entities and architectures, but not for other design units. An HDL
Message Level for an entity applies to its architectures, unless overridden
by another message_1level directive. In Verilog HDL, you can use the
message_level directive to set the HDL Message Level for a module.

Enabling or Disabling Specific HDL Messages

You can enable or disable a specific HDL info or warning message with
its Message ID, which is displayed in parentheses at the beginning of the
message. Enabling or disabling a specific message overrides its HDL
Message Level.

To disable specific HDL messages in the GUI, from the Settings menu,
select Analysis & Synthesis Settings and click the Advanced button next
to the HDL Message Level setting. In the Advanced Message Settings
dialog box, add the Message IDs you wish to enable or disable.

To enable or disable specific HDL messages in your HDL, use the
message_on and message_off synthesis directives. Both directives
take a space-separated list of Message IDs. You can enable or disable
messages with these synthesis directives immediately before Verilog
HDL modules, VHDL entities, or VHDL architectures. You cannot enable
or disable a message in the middle of an HDL construct.

A message enabled or disabled via a message_on or message_off
synthesis directive overrides its HDL Message Level or any
message_level synthesis directive. The message will remain disabled
until the end of the source file or until its status is changed by another
message_on or message_off directive.

Example 7-74. Verilog HDL message_off Directive for Message with ID 10000
// altera message_ off 10000

or
/* altera message off 10000 */

Example 7-75. VHDL message_ off Directive for Message with ID 10000
-- altera message off 10000

7-64 Altera Corporation
May 2006

Node-Naming Conventions in Quartus Il Integrated Synthesis

Node-Naming
Conventions in
Quartus i
Integrated
Synthesis

Altera Corporation
May 2006

Being able to find the logic node names after synthesis can be useful
during verification or while debugging a design. This section provides an
overview of the conventions used by the Quartus II software when it
names the nodes created from your HDL design. The section focuses on
the conventions for Verilog HDL and VHDL code, but AHDL and BDFs
are discussed when appropriate.

Whenever possible, as described in this section, Quartus II integrated
synthesis uses wire or signal names from your source code to name nodes
such as LEs or ALMs. Some nodes, such as registers, have predictable
names that typically do not change when a design is resynthesized. The
names of other nodes, particularly LEs or ALMs that contain only
combinational logic, can change due to logic optimizations that the
software performs.

Synthesis netlist optimizations also change node names because nodes
are changed, combined, and duplicated to optimize the design.

For more information about the type of optimizations performed by
synthesis netlist optimizations, refer to Netlist Optimizations & Physical
Synthesis in volume 2 of the Quartus II handbook.

Ils~ The Quartus II Fitter can also change node names after
synthesis. For example when the Fitter uses register packing to
pack a register into anI/O element, or when logic is modified by
physical synthesis.

Hierarchical Node-Naming Conventions

To make each name in the design unique, the Quartus II software adds
the hierarchy path to the beginning of each name. The “|” separator is
used to indicate a level of hierarchy. For each instance in the hierarchy,
the software adds the entity name and the instance name of that entity,
using the “:” separator between each entity name and its instance name.
For example, if a design instantiates entity A with the namemy A inst,
the hierarchy path of that entity would be 2:my_A inst. The full name
of any node is obtained by starting with the hierarchical instance path;
followed by a “|”, and ending with the node name inside that entity,
using the following convention:

<entity 0> : <instance_name 0> | <entity 1>:
<instance_name 1> | . . . | <instance_name n>

For example, if entity A contains a register (DFF atom) called my_dff, its
full hierarchy name would be A:my A inst|my dff.

7-65

Quartus Il Handbook, Volume 1

You can turn off the Display Entity Name for Node Name option on the
Compilation Process Settings page of the Settings dialog box to instruct
the Compiler to generate node names that do not contain the name for
each level of the hierarchy. With this option on, the node names use the
following convention:

<instance_name 0> | <instance_name 1> | . . . | <instance_name n>

Node-Naming Conventions for Registers (DFF or D Flip-Flop
Atoms)

In Verilog HDL and VHDL, inferred registers are named after the reg or
signal connected to the output.

For example, the following is a description of a register in Verilog HDL
that creates a DFF primitive called my dff out:

Example 7-76. Verilog HDL Register
wire dff_in, my_dff_out, clk;

always @ (posedge clk)
my dff out <= dff_in;

Similarly, Example 7-77 is a description of a register in VHDL that creates
a DFF primitive called my dff_ out.

Example 7-77. VHDL Register
signal dff_in, my_ dff out, clk;
process (clk)
begin
if (rising edge(clk)) then
my dff out <= dff in;
end if;
end process;

In AHDL designs, DFF registers are declared explicitly rather than
inferred, so the software uses the user-declared name for the register.

For schematic designs using BDF, all elements are given a name when
they are instantiated in the design, so the software uses the user-defined
name for the register or DFF.

In the special case that a wire or signal (suchasmy_dff_out in the above
examples) is also an output pin of your top-level design, the Quartus II
software cannot use that name for the register (e.g., cannot use

7-66 Altera Corporation
May 2006

Node-Naming Conventions in Quartus Il Integrated Synthesis

my_ dff out) because the software requires that all logic and I/0O cells
have unique names. In this case, the Quartus II integrated synthesis
appends ~rego0 to the register name.

For example, the Verilog HDL code in Example 7-78 produces a register
called g~rego:

Example 7-78. Verilog HDL Register Feeding Output Pin

module my_dff

(input clk, input d, output q);

always @ (posedge clk)

q <= d;
endmodule

Altera Corporation
May 2006

This situation occurs only for registers driving top-level pins. If a register
drives a port of a lower level of the hierarchy, then the port is removed
during hierarchy flattening and the register retains its original name, in
this case, g.

Register Changes During Synthesis

On some occasions, you may not be able to find registers that you expect
to see in the synthesis netlist. Registers may be removed by logic
optimization, or their names may be changed due to synthesis
optimization. Common optimizations include inference of a state
machine, counter, adder-subtractor, or shift register from registers and
surrounding logic. Other common register changes occur when registers
are packed into dedicated hardware on the FPGA such as a DSP block or
a RAM block.

This section describes the device features that affect register names:

B State machines

B Inferred adder-subtractors, shift registers, memory, and DSP
functions

B Input and output registers of RAM and DSP blocks

State Machines

If a state machine is inferred from your HDL code, then the registers that
represent the states will be mapped into a new set of registers that
implement the state machine. Most commonly, the software converts the
state machine into a one-hot form where each state is represented by one
register. In this case for Verilog HDL or VHDL designs, the registers are
named according to the name of the state register and the states, where
possible.

7-67

Quartus Il Handbook, Volume 1

7-68

For example, consider a Verilog HDL state machine where the states are
parameter state0 = 1,statel = 2,state2 = 3, and where the
state machine register is declared as reg [1:0] my_fsm. In this
example, the three one-hot state registers are named my fsm.state0,
my fsm.statel,andmy fsm.state2.

In AHDL, state machines are explicitly specified with a machine name.
State machine registers are given synthesized names based on the state
machine name but not the state names. For example, if a state machine is
called my_fsm and has four state bits, they may be synthesized with
names such asmy fsm~12, my fsm~13,my fsm~14,and my fsm~15.

Inferred Adder-Subtractors, Shift Registers, Memory & DSP Functions

The Quartus II software infers megafunctions from Verilog HDL and
VHDL code for logic that forms adder-subtractors, shift registers, RAM,
ROM, and arithmetic functions that can be placed in DSP blocks.

For information about inferring megafunctions, refer to the Recommended
HDL Coding Styles chapter in the Quartus II Handbook.

Because adder-subtractors are part of a megafunction instead of generic
logic, the combinational logic exists in the design with different names.
For shift registers, memory, and DSP functions, the registers and logic are
typically implemented inside the dedicated RAM or DSP blocks in the
device. Thus, the registers are not visible as separate LEs or ALMs.

Input & Output Registers of RAM & DSP Blocks

Registers can be packed into the input registers and output registers of
RAM and DSP blocks, so that they are not visible as separate registers in
LEs or ALMs.

For information about packing registers into RAM and DSP
megafunctions, refer to the Recommended HDL Coding Styles chapter in
the Quartus II Handbook.

Altera Corporation
May 2006

Node-Naming Conventions in Quartus Il Integrated Synthesis

Node-Naming Conventions for Combinational Logic Cells

Whenever possible for Verilog HDL, VHDL, and AHDL code, the
Quartus II software uses wire names that are the targets of assignments,
but may change the node names due to synthesis optimizations.

For example, consider the Verilog HDL code in Example 7-79. Quartus II
integrated synthesis uses the names c, d, e, and f for the combinational
logic cells that are produced.

Example 7-79. Naming Nodes for Combinational Logic Cells in Verilog HDL

wire c;
reg d, e, £;

assign ¢ = a | b;
always @ (a or Db)
d =a & b;
always @ (a or b)
e =a * b;

end

always @ (a or b)
f=~(a | b);

begin

my_ label

Altera Corporation
May 2006

For schematic designs using BDF, all elements are given a name when
they are instantiated in the design and the software uses the user-defined
name when possible.

If logic cells, such as those created in the above example, are packed with
registers in device architectures such as the Stratix and Cyclone device
families, those names may not appear in the netlist after fitting. In other
devices such as the Stratix II and Cyclone II device families, the register
and combinational nodes are kept separate throughout the compilation,
so these names are more often maintained through fitting.

When logic optimizations occur during synthesis, it is not always
possible to retain the initial names as described above. In some cases,
synthesized names will be used, which are the wire names with a tilde (~)
and a number appended. For example, if a complex expression is
assigned to a wire w and that expression generates several logic cells,
those cells may have names such as w, w~1, w~2, and so on. Sometimes
the original wire name w is removed, and an arbitrary name such as
rt1~123iscreated. Itis a goal of Quartus Il integrated synthesis to retain
user names whenever possible. Any node name ending with ~<number>
is a name created during synthesis, which may change if the design is

7-69

Quartus Il Handbook, Volume 1

Scripting
Support

7-70

changed and re-synthesized. Knowing these naming conventions can
help you understand your post-synthesis results and make it easier to
debug your design or make assignments.

You can run procedures and make settings described in this chapter in a
Tel script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --ghelp ¢

The Scripting Reference Manual includes the same information in PDF
form.

For more information about Tcl scripting, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook. Refer to the Quartus II
Settings File Reference Manual for information about all settings and
constraints in the Quartus II software. For more information about
command-line scripting, refer to the Command-Line Scripting chapter in
volume 2 of the Quartus IT Handbook.

You can specify many of the options described in this section either on an
instance, or global level, or both.

Use the following Tcl command to make a global assignment:
set _global assignment -name <QSF Variable Name> <Value>
Use the following Tcl command to make an instance assignment:

set _instance assignment -name <QSF Variable Name> <Value>\
-to <lInstance Name>

Altera Corporation
May 2006

Scripting Support

Quartus Il Synthesis Options

Table 7-7 lists the Quartus II Settings File variable names and applicable
values for the settings discussed in this chapter. The Quartus II Settings
File variable name is used in the Tcl assignment to make the setting along
with the appropriate value. The Type column indicates whether the
setting is supported as a Global setting, or an Instance setting, or both.

Table 7-7. Quartus Il Synthesis Options (Part 1 of 2)

Setting Name Quartus Il Settings File Variable Values Type
Allow Any RAM Size |ALLOW_ANY RAM SIZE FOR_RECOGNITION |ON, OFF Global,
for Recognition Instance
Allow Any ROM ALLOW_ANY ROM_SIZE FOR_RECOGNITION|ON, OFF Global,
Size for Recognition Instance
Allow Any Shift ALLOW_ANY SHIFT REGISTER_SIZE FOR_|ON, OFF Global,
Register Size for RECOGNITION Instance
Recognition
Auto DSP Block AUTO DSP_RECOGNITION ON, OFF Global,
Replacement Instance
Auto RAM AUTO_RAM RECOGNITION ON, OFF Global,
Replacement Instance
Auto ROM AUTO_ROM_ RECOGNITION ON, OFF Global,
Replacement Instance
Auto Shift-Register |AUTO SHIFT REGISTER RECOGNITION ON, OFF Global,
Replacement Instance
Fast Input Register |FAST INPUT REGISTER ON, OFF Instance
Fast Output Enable |FAST OUTPUT ENABLE REGISTER ON, OFF Instance
Register
Fast Output FAST OUTPUT REGISTER ON, OFF Instance
Register
Implement as IMPLEMENT AS OUTPUT OF LOGIC CELL |ON, OFF Instance
Output of Logic Cell
Maximum Fan-Out | MAX FANOUT <Maximum Fan-Out Instance

Value>
Optimization <device family> OPTIMIZATION_TECHNIQUE |Area, Speed, Global,
Technique Balanced Instance
PowerPlay Power OPTIMIZE POWER DURING SYNTHESIS "NORMAL Global,
Optimization COMPILATION", Instance
"EXTRA EFFORT",
OFF
Power-Up Don't ALLOW_POWER_UP DONT_ CARE ON, OFF Global
Care
Altera Corporation 7-71

May 2006

Quartus Il Handbook, Volume 1

Table 7-7. Quartus Il Synthesis Options (Part 2 of 2)

Setting Name Quartus Il Settings File Variable Values Type
Power-Up Level POWER_UP_LEVEL HIGH, LOW Instance
Preserve PRESERVE HIERARCHICAL BOUNDARY Off, Relaxed, Instance
Hierarchical Firm
Boundary
Preserve Registers | PRESERVE REGISTER ON, OFF Instance
Remove Duplicate |REMOVE DUPLICATE LOGIC ON, OFF Global,
Logic Instance
Remove Duplicate |REMOVE DUPLICATE REGISTERS ON, OFF Global,
Registers Instance
Remove Redundant |REMOVE _REDUNDANT LOGIC CELLS ON, OFF Global
Logic Cells
Restructure MUX_RESTRUCTURE On, Of £, Auto Global,
Multiplexers Instance
Speed Optimization |SYNTH_CRITICAL_CLOCK ON, OFF Instance
Technique for Clock
Domains
State Machine STATE_MACHINE PROCESSING AUTO, "MINIMAL Global,
Processing BITS", "ONE HOTw, |Instance

"USER-ENCODED"

Assigning a Pin
Use the following Tcl command to assign a signal to a pin or device
location.
set_location assignment -to <signal name> <location>
For example,
set location assignment -to data input Pin A3
Valid locations are pin location names. Some device families also support
edge and I/O bank locations. Edge locations are EDGE_BOTTOM,
EDGE_LEFT, EDGE_TOP, and EDGE_RIGHT. I/O bank locations include
IOBANK_1 to IOBANK n, where n is the number of I/O banks in a
particular device.
Preparing a Design for Incremental Synthesis
To set up your design for incremental synthesis, identify design
partitions and enable incremental synthesis.

7-72 Altera Corporation

May 2006

Scripting Support

Creating Design Partitions

To create a partition, use the following command:

set_instance assignment -name PARTITION HIERARCHY \
<file name> -to <destination> -section_id <partition name>

The <destination> should be the entity’s short hierarchy path. A short
hierarchy path is the full hierarchy path without the top-level name, for
example: "ram:ram unit|altsyncram:altsyncram component”
(with quotation marks). For the top-level partition, you can use the
pipe (|) symbol to represent the top-level entity.

For more information about hierarchical naming conventions, refer to
“Node-Naming Conventions in Quartus II Integrated Synthesis” on
page 7-65.

The <partition name> is the user-designated partition name, which must
be unique and less than 1024 characters long. The name can consist only
of alpha-numeric characters, as well as pipe (|), colon (:) and
underscore (_) characters. Altera recommends enclosing the name in
double quotation marks (").

The <file name> is the name used for internally generated netlists files
during incremental compilation. Netlists are named automatically by the
Quartus II software based on the instance name if you create the partition
in the user interface. If you are using Tcl to create your partitions, you
must assign a custom file name that is unique across all partitions. For the
top-level partition, the specified file name is ignored, and you can use any
dummy value. To ensure the names are safe and platform independent,
file names must be unique regardless of case. For example, if a partition
uses the file name my_file, no other partition can use the file name
MY_FILE. For simplicity, Altera recommends that you base each file
name on the corresponding instance name for the partition.

The software stores all netlists in the db compilation database directory.
Enabling Incremental Synthesis
Turn on incremental synthesis using the following Tcl command:

set_global assignment -name INCREMENTAL COMPILATION \
INCREMENTAL SYNTHESIS

Altera Corporation 7-73
May 2006

Quartus Il Handbook, Volume 1

Synthesizing a Design Using Incremental Synthesis

Once incremental synthesis is turned on in the Quartus II Settings File
file, or through a Tcl command, incremental synthesis automatically
occurs when you compile using the execute_flow -compile
command for the quartus_sh compiler executable.

Synthesizing Using the Synthesis & Merge Commands

Use the separate synthesis and merge commands if you compile your
design using the individual compiler executables (e.g., quartus_map and
quartus_fit) instead of using the execute flow -compile command
for the quartus_sh compiler executable.

To enable incremental synthesis when using the quartus_map executable,
perform the following two steps:

1. Type the following command at a command prompt:
quartus map --incremental compilation=incremental synthesis ¢

Il This command enables the flow in the project, so
subsequent synthesis runs can be performed with the
quartus_map command without the incremental
compilation option.

2. Merge the synthesized partitions to create a flattened netlist for
further stages of the Quartus II compilation flow, including fitting.
Type the following command at a system command prompt:

quartus_cdb --merge ¢

Conclusion The Quartus II software includes complete Verilog HDL and VHDL
language support, as well as support for Altera-specific languages,
making it an easy-to-use, standalone solution for Altera designs. You can
use the synthesis options available in the software to help you improve
your synthesis results, giving you more control over the way your design
is synthesized.

7-74 Altera Corporation
May 2006

Synplify Pro Support

. lici lif
iArl I:l —E D)/A 8. Synplicity Synplify &

®

Q1151009-6.0.0

Introduction

Design Flow

Altera Corporation
May 2006

As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. This chapter documents support for
the Synplicity Synplify and Synplify Pro software in the Quartus® II
software, as well as key design flows, methodologies, and techniques for
achieving good results in Altera® devices, including the following topics:

B General design flow with the Synplify and Quartus II software

B Synplify software optimization strategies, including timing-driven
compilation settings, optimization options, and Altera-specific
attributes

B Exporting designs and constraints to the Quartus II software using
NativeLink® integration

B Guidelines for Altera megafunctions and library of parameterized
module (LPM) functions, instantiating them in a clear- or black-box
flow with the MegaWizard® Plug-In Manager, and tips for inferring
them from hardware description language (HDL) code

B Incremental compilation and block-based design, including the
Synplify Pro software MultiPoint flow

The content in this chapter applies to both the Synplify and Synplify Pro
software unless otherwise specified.

This chapter assumes that you have set up, licensed, and are familiar with
the Synplify or Synplify Pro software.

For more information about obtaining, licensing, and using the Synplify
software, refer to the Synplicity web site at www.synplicity.com.

A Quartus II software design flow using the Synplify software consists of
the following steps:

1. Create Verilog HDL or VHDL design files in the Quartus II
software, Synplify software, or a text editor.

2. Set up a project in the Synplify software and add the HDL design
files for synthesis.

3. Select a target device and add timing constraints and compiler
directives to optimize the design during synthesis.

Quartus Il Handbook, Volume 1

4. Synthesize the design in the Synplify software.

5. Create a Quartus II project and import the technology-specific
netlist and the tool command language (Tcl) constraint file
generated by the Synplify software into the Quartus II software for
placement and routing, and for performance evaluation.

6. After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

8-2 Altera Corporation
May 2006

Design Flow

Figure 8-1 shows the recommended design flow when using the Synplify
and the Quartus II software.

Figure 8-1. Recommended Design Flow

VHDL
(-vhd)
| | » | Functional/RTL
o Simulation
A 4
Constraints .
| - | -
»| g Settings > Synplify Software
Technology- Forward Annotated
Specific Netlist Timing Constraints
(.vgm/.edf) (.tcl/.acf)
A Gate-Level
> > Functional
Simulation
\ 4 Post-Synthesis
Constraints Simulation Files
> Settings P Quartus Il Software — (.vho/.vo)
l Gate-Level Timing
> > Simulation
Post Place-and-Route
No Timing & Area Simulation File
Requirements (.vho/.vo)
Satisfied?
Configuration/
Programming
Files (.sof/.pof)
(Program/Configure Device>
The Synplify and Synplify Pro software support both VHDL and Verilog
HDL source files. The Synplify Pro software also supports mixed
synthesis, allowing a combination of VHDL and Verilog HDL source
files.
Altera Corporation 8-3

May 2006

Quartus Il Handbook, Volume 1

8-4

Specify timing constraints and attributes for the design in a Synplify
Constraints File (.sdc) with the SCOPE editor in the Synplify software or
directly in the HDL source file. Compiler directives can also be defined in
the HDL source file. Many of these constraints are forward-annotated in
the Tcl file for Quartus II software use. You can save all project options
and included files in a Synplify Project file (.prj).

The HDL Analyst that is included in the Synplify software is a graphical
tool for generating schematic views of the technology-independent
register transfer level (RTL) view netlist (.srs) and technology-view netlist
(.srm) files. You can use the Synplify HDL Analyst to visually analyze
and debug your design. The HDL Analyst supports cross probing
between the RTL and Technology views, the HDL source code, and the
Finite State Machine (FSM) viewer. Refer to “FSM Compiler” on page 8-9.

I[l=" A separate license file is required to enable the HDL Analyst in
the Synplify software. The Synplify Pro software includes the
HDL Analyst.

Once synthesis is complete, import the electronic design interchange
format (EDIF) or Verilog Quartus Mapping (VQM) netlist to the
Quartus II software for place-and-route. You can use the Tcl file
generated by the Synplify software to forward-annotate your constraints,
and optionally to set up your project in the Quartus II software.

If the area and timing requirements are satisfied, use the files generated
by the Quartus II software to program or configure the Altera device. As
shown in Figure 8-1, if your area or timing requirements are not met, you
can change the constraints in the Synplify software or the Quartus II
software and repeat the synthesis. Repeat the process until the area and
timing requirements are met.

While you can perform simulation at various points in the process, final
timing analysis should be performed after placement and routing is
complete. Formal verification may also be performed at various stages of
the design process.

For more information about how the Synplify software supports formal
verification, refer to the Formal Verification section in volume 3 of the
Quartus II Handbook.

You can also use other options and techniques in the Quartus II software
to meet area and timing requirements. One such option is called
WYSIWYG Primitive Resynthesis, which can perform optimizations on
your VQM netlist within the Quartus II software.

Altera Corporation
May 2006

Design Flow

a®® For information about netlist optimizations, refer to the Netlist
Optimizations & Physical Synthesis chapter in volume 2 of the Quartus 11
Handbook.

In some cases, you may be required to modify the source code if area and
timing requirements cannot be met using options in the Synplify and
Quartus II software.

After synthesis, the Synplify software produces several intermediate and
output files. Table 8-1 lists these file types.

Table 8-1. Synplify Intermediate & Output Files

File Extensions File Description
.SIs Technology-independent RTL netlist that can be read only by the Synplify software
.srm Technology view netlist
.srr (1) Synthesis Report file
.edfl.vgm (2) Technology-specific netlist in electronic design interchange format (EDIF) or VQM file
format
.acfl.tcl (3) Forward-annotated constraints file containing constraints and assignments

Notes to Table 8-1:

(1) This report file includes performance estimates that are often based on pre-place-and-route information. Use the
fmax reported by the Quartus II software after place-and-route, because it is the only reliable source of timing
information. This report file includes post-synthesis device resource utilization statistics that may inaccurately
predict resource usage after place-and-route. The Synplify software does not account for black box functions nor
for logic usage reduction achieved through register packing performed by the Quartus II software. Register
packing combines a single register and look-up table (LUT) into a single logic cell, reducing the logic cell utilization
below the Synplify software estimate. Use the device utilization reported by the Quartus II software after
place-and-route.

(2) An EDIF output file (.edf) is created only for ACEX® 1K, FLEX® 10K, FLEX 10KA, FLEX 10KE, FLEX 6000,

FLEX 8000, MAX® 7000, MAX 9000, and MAX 3000 devices. A VQM file is created for all other Altera device
families.

(3) An Assignment and Configuration File (.acf) file is created only for ACEX 1K, FLEX 10K, FLEX 10KA, FLEX 10KE,
FLEX 6000, FLEX 8000, MAX 7000, MAX 9000, and MAX 3000 devices. The ACF is generated for backward
compatibility with the MAX+PLUS® II software. A Tcl file for the Quartus II software is created for all devices, and
also contains Tcl commands to create a Quartus II project and, if applicable, the MAX+PLUS® II assignments are
imported from the ACF file.

Output Netlist File Name & Result Format

Specify the output netlist directory location and name by performing the
following steps:

1. On the Project menu, click Implementation Options.

2. Click the Implementation Results tab.

Altera Corporation 8-5
May 2006

Quartus Il Handbook, Volume 1

3. In the Results Directory box, type your output netlist file directory
location.

4. In the Result File Name box, type your output netlist file name.

By default, directory and file name are set to the project implementation
directory and the top-level design module or entity name.

The Result Format and Quartus version options are also available on the
Implementation Results tab. The Result Format list specifies an EDIF or
VQM netlist depending on your device family. The software creates an
EDIF output netlist file only for ACEX 1K, FLEX 10K, FLEX 10KA,
FLEX 10KE, FLEX 6000, FLEX 8000, MAX 7000, MAX 9000, and

MAX 3000 devices. For other Altera devices, the software generates a
VQM-formatted netlist.

Beginning with the Synplify software version 8.4, select the version of the
Quartus II software that you are using in the Quartus version list. This
option ensures that the netlist is compatible with the software version and
supports the newest features. Altera recommends using the latest version
of the Quartus II software whenever possible. If your Quartus II software
is newer than the versions available in the Quartus version list, check if
there is a newer version of the Synplify software available that supports
the current Quartus II software version. Otherwise, choose the latest
version in the list for the best compatibility.

Svnp | |fv As designs become more complex and require increased performance,
P . using different optimization strategies has become important.

0 ptl mization Combining Synplify software constraints with VHDL and Verilog HDL

Strategies coding techniques and Quartus II software options can help you obtain

the required results.

<o For additional design and optimization techniques, refer to the Design
Recommendations for Altera Devices chapter in volume 1 and the Area &
Timing Optimization chapter in volume 2 of the Quartus II Handbook.

The Synplify software offers many constraints and optimization
techniques to improve your design’s performance. The Synplify Pro
software adds some additional techniques that are not supported in the
basic Synplify software. Wherever this document describes Synplify
support, this includes both the basic Synplify and the Synplify Pro
software; Synplify Pro-only features are labeled as such. This section
provides an overview of some of the techniques you can use to help
improve the quality of your results.

8-6 Altera Corporation
May 2006

Synplify Optimization Strategies

Altera Corporation
May 2006

For more information about applying the attributes discussed in this
section, refer to the Tasks & Tips chapter of the Synplify Software User
Guide.

Implementations in Synplify Pro

In the Synplify Pro software, on the Project menu, click New
Implementation to create different synthesis results without overwriting
the others. For each implementation, specify the target device, synthesis
options, and constraint files. Each implementation generates its own
subdirectory that contains all the resulting files, including VQM and Tel
files, from a compilation of the particular implementation. You can then
compare the results of the different implementations to find the optimal
set of synthesis options and constraints for a design.

Timing-Driven Synthesis Settings

The Synplify software supports timing-driven synthesis through
user-assigned timing constraints to optimize the performance of the
design. The Synplify software optimizes the design to attempt to meet
these constraints.

The Quartus II NativeLink feature allows timing constraints that are
applied in the Synplify software to be forward-annotated for the
Quartus II software using a Tcl script file for timing-driven place and
route. Refer to “Passing Constraints to the Quartus II Software” for more
details about how constraints such as clock frequencies, false paths, and
multicycle paths are forward-annotated. This section explains some of the
important timing constraints in the Synplify software.

=" The Synplify Synthesis Report File (.srr) contains timing reports
of estimated place-and-route delays. The Quartus II software
can perform further optimizations on a post-synthesis netlist
from third-party synthesis tools. In addition, designs may
contain black boxes or IP functions that have not been optimized
by the third-party synthesis software. Actual timing results are
obtained only after the design has gone through full placement
and routing in the Quartus II software. For these reasons, the
Quartus II post place-and-route timing reports provide a more
accurate representation of the design. The statistics in these
reports should be used to evaluate design performance.

Clock Frequencies

For single-clock designs, specify a global frequency when using the
push-button flow. While this flow is simple and provides good results,
often it does not meet the performance requirements for more advanced

8-7

Quartus Il Handbook, Volume 1

8-8

(©)

(03]

designs. You can use timing constraints, compiler directives, and other
attributes to help optimize the performance of a design. You can enter
these attributes and directives directly in the HDL code. Alternatively,
you can enter attributes (not directives) into an SDC file with the SCOPE
editor in the Synplify software.

Use the SCOPE editor to set global frequency requirements for the entire
design and individual clock settings. Use the Clocks tab in the SCOPE
editor to specify frequency (or period), rise times, fall times, duty cycle,
and other settings. Assigning individual clock settings, rather than
over-constraining the global frequency, helps the Quartus II software and
the Synplify software achieve the fastest clock frequency for the overall
design. The define_clock attribute assigns clock constraints.

Multiple Clock Domains

The Synplify software can perform timing analysis on unrelated clock
domains. Each clock group is a different clock domain and is treated as
unrelated to the clocks in all other clock groups. All the clocks in a single
clock group are assumed to be related and the Synplify software
automatically calculates the relationship between the clocks. You can
assign clocks to a new clock group, or put related clocks in the same clock
group by using the Clocks tab in the SCOPE editor or with the
define clock attribute.

Input/Output Delays

Specify the input and output delays for the ports of a design in the
Input/Output tab of the SCOPE editor or with the

define input delay and define output_delay attributes. The
Synplify software does not allow you to assign the tcg and tsy values
directly to inputs and outputs. However, a tco value can be inferred by
setting an external output delay, and a tgy value can be inferred by setting
an external input delay. The following equations illustrate the
relationship between tco/tsy and the input/output delays:

tco = clock period — external output delay
tsy = clock period — external input delay

When the syn forward io constraints attribute is set to 1, the
Synplify software passes the external input and output delays to the
Quartus II software using NativeLink integration. The Quartus II
software then uses the external delays to calculate the maximum system
frequency.

Altera Corporation
May 2006

Synplify Optimization Strategies

Multicycle Paths

Specify any multicycle paths in the design in the Multi-Cycle Paths tab
of the SCOPE editor or with the define multicycle path attribute.
A multicycle path is a path that requires more than one clock cycle to
propagate. It is important to specify which paths are multicycle to avoid
having the Quartus II and the Synplify compilers work excessively on a
non-critical path. Not specifying these paths can also result in an
inaccurate critical path being reported during timing analysis.

False Paths

False paths are paths that should not be considered during timing
analysis or which should be assigned low (or no) priority during
optimization. Some examples of false paths are slow asynchronous resets
and test logic added to the design. Set these paths in the False Paths tab
of the SCOPE editor. Use the define false path attribute.

FSM Compiler

If the FSM Compiler is turned on, the compiler automatically detects state
machines in a design. The compiler can then extract and optimize the
state machine. The FSM Compiler analyzes the state machine and decides
to implement sequential, gray, or one-hot encoding based on the number
of states. It also performs unused-state analysis, optimization of
unreachable states, and minimization of transition logic.

If the FSM Compiler is turned off, the compiler does not infer state
machines. The state machines are implemented as coded in the HDL
code. Thus, if the coding style for the state machine was sequential, then
the implementation is also sequential. If the FSM Compiler is turned on,
the compiler infers the state machines. The implementation is based on
the number of states regardless of the coding style in the HDL code.

You can use the syn state machine complier directive to specify or
prevent a state machine from being extracted and optimized. To override
the default encoding of the FSM Compiler, use the syn encoding
directive.

Altera Corporation 8-9
May 2006

Quartus Il Handbook, Volume 1

The values for the syn encoding directive are shown in Table 8-2.

Table 8-2. syn_encoding Directive Values

Value Description

Sequential Generates state machines with the fewest possible flip-flops. Sequential, also called binary,
state machines are useful for area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flip-flop changes during each transition.
Gray-encoded state machines tend to be free of glitches.

One-hot Generates state machines containing one flip-flop for each state. One-hot state machines
typically provide the best performance and shortest clock-to-output delays. However, one-hot
implementations are usually larger than binary implementations.

Safe Generates extra control logic to force the state machine to the reset state if an invalid state is

reached. The safe value can be used in conjunction with the other three values, which results
in the state machine being implemented with the requested encoding scheme and the
generation of the reset logic.

Example 8-1 shows sample VHDL code for applying the syn_encoding
directive.

Example 8-1. VHDL Code for syn_encoding

SIGNAL current_ state : STD _LOGIC VECTOR (7 DOWNTO O0) ;

ATTRIBUTE syn encoding : STRING;

ATTRIBUTE syn encoding OF current state : SIGNAL IS "sequential";

8-10

The default is to optimize state machine logic for speed and area, but this
is potentially undesirable for critical systems. The safe value generates
extra control logic to force the state machine to the reset state if an invalid
state is reached.

FSM Explorer in Synplify Pro

The Synplify Pro software can use the FSM Explorer to automatically
explore different encoding styles for a state machine, and then implement
the best encoding based on the overall design constraints. The FSM
Explorer uses the FSM Compiler to identify and extract state machines
from a design. However, unlike the FSM Compiler which chooses the
encoding style based on the number of states, the FSM Explorer tries
several different encoding styles before choosing a specific one. The
trade-off is that the compilation requires more time to perform the
analysis of the state machine, but finds an optimal encoding scheme for
the state machine.

Altera Corporation
May 2006

Synplify Optimization Strategies

Optimization Attributes & Options

The following sections list other attributes and options that you can
modify in the Synplify software to improve your design performance.

Retiming in Synplify Pro

The Synplify Pro software can retime a design, which can improve the
timing performance of sequential circuits by moving registers (register
balancing) across combinational elements. Be aware that retimed
registers incur name changes. To retime your design, turn on the
Retiming option in the Device tab in the Implementation Options
section, or use the syn _allow_ retiming attribute.

Maximum Fan-Out

When your design has critical path nets with high fan-outs, you can use
the syn_maxfan attribute to control the fan-out of the net. Setting this
attribute for a specific net results in the replication of the driver of the net
to reduce the overall fan-out. The syn_maxfan attribute takes an integer
value and applies it to inputs or registers. (The syn_maxfan attribute
cannot be used to duplicate control signals, and the minimum allowed
value of the attribute is 4.) Using this attribute may result in increased
logic resource utilization, thus putting a strain on routing resources and
leading to long compile times and difficult fitting.

If you need to duplicate an output register or output enable register, you
can create a register for each output pin by using the syn_useioff
attribute (refer to “Register Packing”).

Preserving Nets

During synthesis, the compiler maintains ports, registers, and
instantiated components. However, some nets may not be maintained in
order to create an optimized circuit. Applying the syn_keep directive
overrides the optimization of the compiler and preserves the net during
synthesis. The syn_keep directive takes a Boolean value and can be
applied to wires (Verilog HDL) and signals (VHDL). Setting the value to
true preserves the net through synthesis.

Altera Corporation 8-11
May 2006

Quartus Il Handbook, Volume 1

Register Packing

Altera devices allow for the packing of registers into I/O cells. Altera
recommends allowing the Quartus II software to make the I/O register
assignments. However, it is possible to control register packing with the
syn_useioff attribute. The syn useioff attribute takes a Boolean
value and can be applied to ports or entire modules. Setting the value to
1 instructs the compiler to pack the register into an I/O cell. Setting the
value to 0 prevents register packing in both the Synplify and Quartus II
software.

Resource Sharing

The Synplify software uses resource sharing techniques during synthesis
by default to reduce area. Turning off the Resource Sharing option on the
Options tab of the Implementation Options dialog box can improve
performance results for some designs. If you turn off this option, be sure
to check the results to determine if it helps the timing performance, and
if it does not help, then you should leave it on.

Preserving Hierarchy

The Synplify software performs cross-boundary optimization by default.
This results in the flattening of the design to allow optimization. Use the
syn_hier attribute to over-ride the default compiler settings. The
syn_hier attribute takes a string value and applies it to modules and /or
architectures. Setting the value to hard maintains the boundaries of a
module and/or architecture, and prevents cross-boundary optimization.

By default, the Synplify software generates a hierarchical VQM file. To
flatten the file, set the syn _netlist_hierarchy attribute equal to “0”.

Register Input & Output Delays

The advanced options called define reg input delay and

define reg output delay can speed up paths feeding a register or
coming from a register by a specific number of nanoseconds. The Synplify
software attempts to meet the global clock frequency goals for a design as
well as the individual clock frequency goals (set with define clock).
You can use these attributes to add delay to paths feeding into/out of
registers to further constrain critical paths.

8-12 Altera Corporation
May 2006

Synplify Optimization Strategies

These options are useful in closing timing when your design does not
meet timing goals because the routing delay after placement and routing
exceeds the delay predicted by the Synplify software. Rerun synthesis
using this option, specifying the actual routing delay (from place-and-
route results) so that the tool can meet the required clock frequency.

In the SCOPE constraint editor, use the registers panel with the following
entries:

B Register—Specifies the name of the register. If you have initialized a
compiled design, you can choose the name from the list.

B Type—Specifies whether the delay is an input or output delay.

B Route—Shrinks the effective period for the constrained registers by
the specified value without affecting the clock period that is
forward-annotated to the Quartus II software.

Use the following Tcl command syntax to specify an input or output
register delay in nanoseconds.

Example 8-2. Specifying an Input or Output Register Delay Using Tel Command Syntax
define reg input delay {<Register-} -route <delayin ns>
define_reg_output_delay {<Register>} -route <delay in ns>

syn_direct_enable

This attribute controls the assignment of a clock-enable net to the
dedicated enable pin of a register. Using this attribute, you can direct the
Synplify mapper to use a particular net as the only clock enable when the
design has multiple clock enable candidates.

You can also use this attribute as a compiler directive to infer registers
with clock enables. To do so, enter the syn_direct enable directive in
your source code, not the SCOPE spreadsheet.

The syn_direct_enable data type is Boolean. A value of 1 or true
enables net assignment to the clock-enable pin. The syntax for Verilog
HDL is shown below:

object /* synthesis syn direct enable = 1 */ ;

Altera Corporation 8-13
May 2006

Quartus Il Handbook, Volume 1

Standard 1/0 Pad

For certain Altera devices and the equivalent device I/O standard, you
can specify the I/O standard type to use for the I/O pad in the design
using the I/O Standard panel in the Synplify SCOPE editor.

Example 8-3 shows the Synplify SDC syntax for the define_io_standard
constraint, in which the delay type must be either input_delay or
output delay.

Example 8-3. Synplify SDC Syntax for the define_io_standard Constraint
define io_standard [-disable|-enable] ({<objectName>} -delay type \
[input delay|output delay] <columnTcIName>{<value>} \

[<columnTcIName>{ <value>} . . .1
“®.e For details about supported I/O standards, refer to Altera I/O Standards

8-14

in the Synplify Reference Manual.

Altera-Specific Attributes

The following attributes are for use with specific Altera device features.
These attributes are forward-annotated to the Quartus II project and are
used during the place-and-route process.

altera_chip_pin_lc

Use this attribute to make pin assignments. This attribute takes a string
value and applies it to inputs and outputs.

s This attribute is not supported for any of the MAX series
devices. In the SCOPE editor, select the attribute
altera_chip_pin_lc and set the value to a pin number or a list of
pin numbers.

Example 8—4 shows VHDL code for making location assignments to
ACEX 1K and FLEX 10KE devices.

[l=~ The “@” is used to specify pin locations for ACEX 1K and
FLEX 10KE devices. For these devices the pin location
assignments are written to the output EDIF.

Altera Corporation
May 2006

Synplify Optimization Strategies

Example 8-4. Making Location Assignments to ACEX 1K & FLEX 10KE Devices, VHDL
ENTITY sample (data in : IN STD LOGIC_VECTOR (3 DOWNTO 0) ;
data out: OUT STD_LOGIC_ VECTOR (3 DOWNTO 0)) ;
ATTRIBUTE altera chip pin lc : STRING;
ATTRIBUTE altera chip pin lc OF data out : SIGNAL IS "el4, @5,@l6, @15";

Example 8-5 shows VHDL code for making location assignments for
other Altera devices. The pin location assignments for these devices are
written to the output Tel script.

Example 8-5. Making Location Assignments to Other Devices, VHDL

ENTITY sample (data in : IN STD LOGIC_VECTOR (3 DOWNTO O0) ;
data out: OUT STD_LOGIC VECTOR (3 DOWNTO 0)) ;

ATTRIBUTE altera_chip_pin_lc : STRING;

ATTRIBUTE altera chip pin lc OF data out : SIGNAL IS "14, 5, 16,
15";

s The data_out signal is a 4-bit signal; data_out [3] is
assigned to pin 14 and data_out [0] is assigned to pin 15.

altera_implement_in_esb or altera_implement_in_eab

You can use these attributes to implement logic in either embedded
system blocks (ESBs) or embedded array blocks (EABs) rather than in
logic resources to improve area utilization. The modules selected for such
implementation cannot have feedback paths, and either all or none of the
I/Os must be registered. This attribute takes a boolean value and can be
applied to instances. (This option is applicable for devices with
ESBs/EABs only. For example, the Stratix® family of devices is not
supported by this option. This attribute is ignored for designs targeting
devices that do not have ESBs or EABs.)

altera_io_powerup

You can use this attribute to define the power-up value of an1/0 register
that has no set or reset. This attribute takes a string value (high | low) and
applies it to ports that have I/O registers.

altera_io_opendrain

Use this attribute to specify open-drain mode I/O ports. This attribute
takes a boolean value and applies it to outputs or bidirectional ports for
devices that support open-drain mode.

Altera Corporation 8-15
May 2006

Quartus Il Handbook, Volume 1

Expo rt| ng The NativeLink feature in the Quartus II software facilitates the seamless
. transfer of information between the Quartus II software and EDA tools,

Des'ﬂ ns to the and allows you to run other EDA design entry or synthesis, simulation,

Quartu sl and timing analysis tools automatically from within the Quartus II

. software. After a design is synthesized in the Synplify software, a VOM
SOftware USII‘Ig (or EDIF) file and Tl files are used to import the design into the

NativeLi nk Quartus II software for place-and-route. You can run the Quartus II
N software from within the Synplify software or as a standalone
Integratlﬂn application. Once you have imported the design into the Quartus II

software, you can specify different options to further optimize the design.

s When you are using NativeLink integration, the path to your
project must not contain white space. The Synplify software
uses Tcl scripts to communicate with the Quartus II software,
and the Tcl language does not accept arguments with white
space in the path.

You can use NativeLink integration to integrate the Synplify software
and Quartus II software with a single GUI for both the synthesis and
place-and-route operations. NativeLink integration allows you to run the
Quartus II software from within the Synplify software GUI or to run the
Synplify software from within the Quartus II software GUL

Running the Quartus Il Software from within the Synplify
Software

To use the Quartus II software from within the Synplify software, you
must first verify that the QUARTUS_ROOTDIR environment variable
contains the Quartus II software installation directory. This environment
variable is required to use the Synplify and Quartus II software together.

Under each Implementation in the Synplify software, you can create a
place-and-route implementation called pr_<number> (Altera Place &
Route). You can create new place and route implementations using the
New P&R button in the GUI. To run the Quartus II software in
command-line mode after each synthesis run, use the text box to turn on
the place-and-route implementation. The results of the place and route
are written to a log file in the pr_<number> directory under the current
implementation directory.

8-16 Altera Corporation
May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

Altera Corporation
May 2006

You can also use the commands in the Quartus II menu to run the
Quartus II software at any time following a successful completion of
synthesis. Use one of the following commands from the Quartus II
submenu under the Options menu in the Synplify software:

B Launch Quartus—Opens the Quartus II software GUI and creates a
Quartus II project with the synthesized output file,
forward-annotated timing constraints, and pin assignments. You can
use this to configure options for the project and execute any
Quartus II commands.

B Run Background Compile—Runs the Quartus II software in
command-line mode with the project settings from the synthesis run.
The results of the place-and-route are written to a log file.

The <project_name>_cons.tcl file is used to set up the Quartus II project
and calls the <project_name>.tcl file to pass constraints from the Synplify
software to the Quartus II software. The <project_name>.tcl file contains
device, timing, and location assignments.

Using the Quartus Il Software to Launch the Synplify Software

You can set up the Quartus II software to run the Synplify software for
synthesis using NativeLink integration. This feature allows you to use the
Synplify software to synthesize a design as part of a normal compilation
in the Quartus II software.

To set up Synplify in Quartus II, on the Tools menu, click Options. In the

Options window, click EDA Tool Options and specify the path of
Synplify software, as shown in Figure 8-2.

8-17

Quartus Il Handbook, Volume 1

8-18

Figure 8-2. Specifying the Path to the Synplify Software

Options

Category:

]

[

[] (e (e

General

License Setup
Processing

Global User Libraries (&l Projects)

Azzignment Editor
Blocks/Symbal Editor

Chip Editar

LagicLock Regions Window
Memary Editar

Messages

PFin Planner

Programrmer

Report Window

Resource Property E ditor
RTL/Technology Map Viewsr
SignalT ap Il Logic Analyzer
Tenxt Editar

Timing Clasure Flaorplan
WWaveform Editor

X

EDA Tool Options

[Enable cross-probing between Buartus |l and other EDA tooks

EDA Tool
LeanardaSpectm
Precision Synthesis
Synplify

Sunplify Pra
ModslSim
ModelSim-Altera
NCSim

Location of executable
< double-click to change path >
< double-click to change path >

C:A\Program Files\Synplicity\fpga_B44...
C:Program Files\Synplicitysfpga_g4'bin

< double-click to change path »
< double-click to change path >
< double-click to change path »

For detailed information about using NativeLink integration with the

Synplify software, refer to the Quartus II Help.

Running the Quartus Il Software Manually Using the

Running the Synplify software with NativeLink integration

requires a floating network license (as opposed to a node-locked

single-PC license), because batch mode compilation is

supported only with floating licenses.

Synplify-Generated Tcl Script

You can also use the Quartus II software separately from the Synplify

software. To run the Tcl script generated by the Synplify software to set
up your project, perform the following steps:

1.

Ensure the VOM and Tcl files are located in the same directory (they
should both be located in the implementation directory by default).

In the Quartus II software, on the View menu, point to Utility

Windows and click Tcl Console. The Quartus II Tcl Console opens.

Altera Corporation

May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

Altera Corporation
May 2006

3. At the Tcl Console command prompt, type:

source <path>/<project name>_cons.tcl +

Passing Constraints to the Quartus Il Software

This section describes how Synplify constraints are converted to the
equivalent Quartus II assignments and are forward-annotated to the
Quartus II software with Tcl commands.

Default or Global Clock Frequency

Use the following Synplify command to set the Synplify default or global
clock frequency that applies to the entire project:

set_option -frequency <frequency>

The <frequency> is specified in MHz. If a global frequency is not specified,
the software uses the default global clock frequency of 1 MHz.

The set_option Synplify constraint is passed to the Quartus II software
with the following command:

set global assignment -name FMAX REQUIREMENT
<frequency> MHz

If a frequency is not specified in the Quartus Il software, the software uses
the default global clock frequency of 1 GHz.

8-19

Quartus Il Handbook, Volume 1

Individual Clocks & Frequencies

You can specify clock frequencies for individual clocks with the following
Synplify commands:

Example 8-6. Specifying Clock Frequencies for Individual Clocks

define clock -name {<clock_name>} -freq <frequency> -clockgroup <clock_group>
-rise <rise_time> -fall <fall_time>

define clock -name {<clock_name>} -period <period> -clockgroup <clock_group>
-rise <rise_time> -fall <fall_time>

Table 8-3 shows the command arguments.

Table 8-3. Command Arguments

Argument Description

-name The <clock_name> specifies a design port name or a register output signal name, and, after
synthesis, corresponds to a <mapped_clock_name>.

-freq (1) The <frequencys is specified in MHz.

-period (2) |The <period> is specified in ns.

-clockgroup | Ifthe <clock_group> is not specified, it defaults to default clkgroup. Synplify assumes all
clocks belonging to the same clock group are related. If you do not specify a clock group, the
clock belongs to the default clock group. Therefore, if you do not specify any clock groups, all
the clocks are considered related by default in the software.

-rise The <rise_time> and <fall_time> specify a non-default duty cycle. By default, the Synplify
_fall synthesis tool assumes that the clock is a 50% duty cycle clock, with the rising edge at 0 and
the falling edge at period/2. If you have another duty clock cycle, you can specify the
appropriate Rise At and Fall At values.

Notes to Table 8-3:

(1) When the <frequency> is specified, the Synplify software uses <fall_time> and <frequency> to calculate the
duty_cycle with the following formula: duty cycle = (<fall_time> — <rise_time>) x <frequency> + 10.

(2) When the <period> is specified, the Synplify software uses <fall_time> and <period> to calculate the duty cycle
with the following formula: duty cycle =100 x (<fall_time> — <rise_time>) + <period>.

The equivalent Quartus I commands depend on how the clock groups
are defined. In the Quartus II software, clocks that belong to the same or
related clock settings are considered related clocks. Clocks assigned to
unrelated clock settings are unrelated clocks. There is a one-to-one
correspondence between each Quartus II clock setting and a Synplify
clock group.

= The following sections describe only the frequency constraints.
You can use the corresponding constraints for period.

8-20 Altera Corporation
May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

Virtual Clocks

The Quartus II software supports virtual clocks. If you use the virtual
clock setting in Synplify, the setting is mapped to a constraint in the
Quartus II software.

Route Delay Option

The -route option in Synplify clock constraints is designed for use for
synthesis only if you do not meet timing goals because the routing delay
after placement and routing exceeds the delay predicted by the Synplify
software. This constraint does not have to be forward annotated to the
Quartus II software.

Global Signals

The Synplify software automatically promotes clock signals to global
routing lines and passes Global Signal assignments to the Quartus II
software. The assignments ensure that the same global routing
constraints are applied during placement and routing.

Note that the signals promoted to global routing can be different than the
ones that the Quartus II software promotes to global routing by default.
Synplify promotes only clock signals and not other control signals such
as reset or enable. By default, without constraints from the Synplify
software, the Quartus II software promotes control signals to global
routing if they have high fan-out.

Multiple Clocks in Different Clock Groups

You can specify clock frequencies for multiple clocks with the Synplify
commands shown in Example 8-7.

Example 8-7. Specifying Clock Frequencies for Multiple Clocks
define clock -name ({<clock_namel>} -freq <frequencyl> \
-clockgroup <clock_groupl> -rise <rise_timel> -fall <fall timel>

define clock -name ({<clock_name2>} -freq <frequency2> \
-clockgroup <clock_group2> -rise <rise_time2> -fall <fall_time2>

<clock_group1> and <clock_group2> are unique names defined in the
Synplify software for base clock settings in the Quartus II software.

Altera Corporation 8-21
May 2006

Quartus Il Handbook, Volume 1

If the clock <rise_time> is zero (“0”), multiple separate clocks are passed
to the Quartus II software with the commands shown in Example 8-8:

Example 8-8. Quartus 1l Assignments for Multiple Clocks if the Clock Rise Time is Zero
create_base_clock -fmax <frequencyl>MHz -duty cycle <duty_cyclel> \
-target mapped clock namel <base_clock_settingl>

create_base clock -fmax <frequency2>MHz -duty cycle <duty_cycle2> \
-target mapped clock name2 <base_clock_setting2>

If the clock <rise_time> is non-zero, multiple separate clocks are passed to
the Quartus II software with the following commands shown in
Example 8-9:

Example 8-9. Quartus Il Assignments for Multiple Clocks if the Clock Rise Time is Not Zero

create base clock -fmax <frequencyl>MHz -duty cycle <duty cyclel>\
-no_target <base clock settingl>

create base clock -fmax <frequency2>MHz -duty cycle <dutycycle2> \
-no_target <base clock setting2>

create relative clock -base clock <base clock settingl> -offset <rise timel>ns \
-duty_cycle <dutycyclel> -multiply <multiply by> -divide <divide by> \
-target <mapped clock namel> <derived clock setting1>

create relative clock -base clock <base clock setting2> -offset <rise time2>ns \
-duty_cycle <dutycycle2> -multiply <multiply by> -divide <divide by> \
-target <mapped clock name2> <derived clock_setting2>

Multiple Clocks with Different Frequencies in the Same Clock Group

You can specify multiple clocks with relative clock settings in the same
clock group in Synplify with different frequencies with the commands
shown in Example 8-10:

Example 8-10. Specifying Multiple Clocks with Different Frequencies in the Same Clock Group
define clock -name {<clock_namel>} -freq <frequencyl> -clockgroup <clock_groupl> \
-rise <rise_timel> -fall <fall timel>

define clock -name {<clock_name2>} -freq <frequency2> -clockgroup <clock_groupl> \
-rise <rise_time2> -fall <fall_time2>

8-22 Altera Corporation
May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

s When you specify clocks with different frequencies in the same
clock group, the software calculates the <multiply_by> and the
<divide_by> factors for relative clock settings from <frequency1>
and <frequency2> in the clock group settings.

If the clock <rise_time> is zero (“0”), multiple clocks with relative clock
settings in the same clock group with different frequencies are passed to
the Quartus II software with the commands shown in Example 8-11:

Example 8-11. Quartus Il Assignments for Multiple Clocks with Different Frequencies in the Same Clock
Group, if the Clock Rise Time is Zero

create base clock -fmax <frequencyl>MHz -duty cycle <duty_cyclel> \

-target <mapped_clock_namel> <base_clock_settingl>

create_relative clock -base clock <base_clock_settingl> \
-duty cycle <duty cycle2> -multiply <multiply_by> -divide <divide_by> \
-target <mapped_clock_name2> <derived_clock_setting2 >

Inter-Clock Relationships—Delays & False Paths between Clocks

You can set a clock-to-clock delay constraint in Synplify with the
commands in Example 8-12.

Example 8-12. Specifying Clock-to-Clock Delay Constraints

define clock_delay -fall <clock_namel> -rise <clock_name2> <delay_value>
define clock delay -rise <clock_namel> -fall <clock_name2> <delay_value>
define clock delay -rise <clock_namel> -rise <clock_name2> <delay_value>
define clock_delay -fall <clock_namel> -fall <clock_name2> <delay_value>

If <delay_value> is set to £alse, these constraints in Synplify indicate a
false path between the two clocks. If all four rise/fall clock-edge pairs are
specified in the Synplify software, the Synplify constraints are mapped to
the following constraint in the Quartus II software:

set_timing cut_assignment -from <clock_namel> \
-to <clock_name2>

If all four clock-edge pairs are not specified in Synplify, the constraint
cannot be mapped to a constraint in the Quartus II software.

If <delay_value> is set to a value other than false, these constraints in
Synplify is not mapped to a constraint in the Quartus II software. The
Quartus II software does not support clock-edge to clock-edge delay
constraints.

Altera Corporation 8-23
May 2006

Quartus Il Handbook, Volume 1

8-24

False Paths

You can specify the false path constraint in Synplify with the command
shown below.

define false path -from <sig_namel> -to <sig_name2>

The signals <sig_namel> and <sig_namel> can be design port names or
register instance names.

The define_false_path constraint in Synplify is mapped to the constraint
in the Quartus II software, as shown below.

set_timing cut_assignment -from <sig _namel> \
-to <sig_name2>

Synplify can identify pairs of signal sets such that every member of the
cross-product of these two sets is a valid false path constraint. Signal
groups can be defined in the Quartus II software with the commands
shown below.

timegroup -add_member sig namel_ i <sig_groupl>
(for every signal in <sig_groupl>)

timegroup -add _member sig name2 i <sig group2>
(for every signal in <sig_group2>)

set_timing cut_assignment -from <sig groupl> \
-to <sig_group2>

If the signals <sig_namel> or <sig_name2> represent multiple signals such
as a wildcard, group, or bus, the constraints you can expand
appropriately for representation in the Quartus II software. The
Quartus II software supports wildcard signal names, and signal groups
for timing assignments. The Quartus II software does not support bus
notation, such as A[7:4].

False Path from a Signal
You can specify a false path constraint from a signal in Synplify with the
following command:

define false path -from <sig_name>

The Quartus II software does not support “from-only” path
specifications. You must also include a “to-path” specification. However,
you can specify a wildcard for the - to signal. This constraint in Synplify
is mapped to the following constraint in the Quartus II software:

Altera Corporation
May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

Altera Corporation
May 2006

set_timing cut_assignment -from <sig_name> -to {*}

False Path to a Signal
You can specify a false path constraint to a signal in Synplify with the
following command:

define false path -to <sig_name>

The Quartus II software does not support to-only path specifications.
You must include a from-path specification.” However, you can specify
a wildcard for the - from signal. This constraint in Synplify is mapped to
the following constraint in the Quartus II software:

set timing cut assignment -from {*} -to <sig_name>

False Path Through a Signal
You can specify a false path constraint through a signal in Synplify with
the following command:

define false path -from <sig_namel> -to <sig_name2> \
-through <sig_name3>

The Quartus II software does not currently support false paths with a
“through path” specification. Any constraint in Synplify with a
-through specification is not mapped to a constraint in the Quartus II
software.

Multicycle Paths

You can specify a multicycle path constraint in Synplify with the
following command:

define multicycle path -from <sig_namel> \
-to <sig_name2> <clock_cycles>

This constraint in Synplify is mapped to the following constraint in the
Quartus II software:

set_multicycle_assignment -from <sig namel> \
-to <sig_name2> <clock_cycles>

If the signals <sig_namel> or <sig_name2> represent multiple signals such
as a wildcard, group, or bus, the constraints can be appropriately
expanded for representation in the Quartus II software as described in
“False Paths” on page 8-9.

8-25

Quartus Il Handbook, Volume 1

8-26

=" <clock_cycles> is the number of clock cycles for the multicycle
path.

Multicycle Path from a Signal
You can specify a multicycle path constraint from a signal in Synplify
with the following command:

define multicycle path -from <sig_name> <clock_cycles>

This constraint is mapped using a wildcard for the -to value in the
Quartus II software, similar to the false path constraints:

set_multicycle_assignment -from <sig name> \
-to {*} <clock_cycles>

Multicycle Path to a Signal
You can specify a multicycle path constraint to a signal in Synplify with
the following command:

define multicycle path -to <sig_name> <clock_cycles>

This constraint is mapped using a wildcard for the - from value in the
Quartus II software, similar to the false path constraints:

set multicycle assignment -from {*} <sig_name>\
<clock_cycles>

Multicycle Path Through a Signal
You can specify a multicycle path constraint through a signal in Synplify
using the following command:

define multicycle path -from <sig_namel> -to <sig_name2>\
-through <sig_name3> <clock_cycles>

The Quartus II software does not currently support multicycle paths with
a through path specification. Any constraint in Synplify with a
-through specification is not mapped to a constraint in the Quartus II
software.

Maximum Path Delays

You can specify the maximum path delay relationships between signals
in Synplify with the following command:

define path delay -from <sig_namel> -to <sig_name2> \
-max <delay_value>

Altera Corporation
May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

Altera Corporation
May 2006

This constraint in Synplify is mapped to the following constraint in the
Quartus II software:

set_instance_assignment -from <sig namel> \
-to <sig_name2> -name SETUP RELATIONSHIP <delay_value>ns

The Quartus II software does not support signal groups or bus notation,
and supports only register names for this constraint.

Maximum Path Delay from a Signal
You can specify the maximum path delay constraint from a signal in
Synplify with the following command:

define path delay -from <sig_name> -max <delay_value>

This constraint is mapped using a wildcard for the -to value in the
Quartus II software, similar to false path constraints:

set instance assignment -from <sig_name> -to {*} \
-name SETUP_RELATIONSHIP <delay_value>ns

Maximum Path Delay to a Signal
You can specify the maximum path delay constraint to a signal in
Synplify with the following command:

define path delay -to <sig_name> -max <delay_value>

This constraint is mapped using a wildcard for the - from value in the
Quartus II software, similar to the false path constraints.

set_instance assignment -from {*}<sig name> \
-to <sig_name> -name SETUP_ RELATIONSHIP <delay value>ns

Maximum Path Delay through a Signal
You can specify the maximum path delay constraint through a signal in
Synplify with the following command:

define_path delay -from <sig_namel> -to <sig_name2> \
-through <sig_name3> -max <delay_value>

The Quartus II software does not currently support maximum path delay
constraints with a “through path” specification. Any constraint in
Synplify with a -through specification is not mapped to a constraint in
the Quartus II software.

8-27

Quartus Il Handbook, Volume 1

8-28

Register Input & Output Delays

These register input delay and register output delay constraints in
Synplify are for use in synthesis only, and therefore are not
forward-annotated to the Quartus II software.

Default External Input Delay
You can specify the default input delay constraint in Synplify with the
following command:

define input delay -default <delay_value>

This constraint is mapped to the following constraint in the Quartus II
software:

set input delay -clock {*} <delay_value> {*}

Port-Specific External Input Delay
You can specify a port-specific input delay constraint in Synplify with the
following command:

define input_delay <input_port_name> <delay_value> \
-ref <clock_name>: <clock_edge>

The <clock_edge> can be set to r (rising edge) or £ (falling edge).

When the clock edge is r (rising edge), this constraint is mapped to the
following constraint in the Quartus II software:

set input delay -clock <clock_name> <delay_value> \
<input_port_name>

When the clock_edge is £ (falling edge), this constraint is not mapped to
a constraint in the Quartus II software. The Quartus II software does not
support the specification of input delays with respect to the falling edge
of the clock.

Default External Output Delay
You can specify the default output delay constraint in Synplify with the
following command:

define output delay -default <delay_value>

This constraint is mapped to the following constraint in the Quartus II
software:

set output delay -clock {*} <delay_value> {*}

Altera Corporation
May 2006

Guidelines for Altera Megafunctions & Architecture-Specific Features

Guidelines for
Altera
Megafunctions
& Architecture-
Specific
Features

Altera Corporation
May 2006

Port-Specific External Output Delay
You can specify a port-specific input delay constraint in Synplify with the
following command:

define output_delay <output_port_name> <delay_value> \
-ref <clock_name>: <clock_edge>

The <clock_edge> can be set to r (rising edge) or £ (falling edge). When
the clock edge is r (rising edge), this constraint is mapped to the
following constraint in the Quartus II software:

set output delay -clock <clock_name> <delay_value> \
<output_port_name>

When the clock_edge is £ (falling edge), this constraint is not mapped to
a constraint in the Quartus II software. The Quartus II software does not
support the specification of output delays with respect to the falling edge
of the clock.

Altera provides parameterizable megafunctions including the LPMs,
device-specific Altera megafunctions, intellectual property (IP) available
as Altera MegaCore® functions, and IP available through the Altera
Megafunction Partners Program (AMPPSM). You can use megafunctions
by instantiating them in your HDL code or inferring them from generic
HDL code.

If you want to instantiate a megafunction in your HDL code, you can do
so by using the MegaWizard Plug-In Manager to parameterize the
function or instantiating the function using the port and parameter
definition. The MegaWizard Plug-In Manager provides a graphical
interface within the Quartus II software for customizing and
parameterizing any available megafunction for the design. “Instantiating
Altera Megafunctions Using the MegaWizard Plug-In Manager” on
page 8-30 describes the MegaWizard Plug-In Manager flow with the
Synplify software.

For more information about specific Altera megafunctions, refer to the
Quartus II Help. For more information about IP functions, refer to the
appropriate IP documentation.

The Synplify software also automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. The Synplify software provides options to
control inference of certain types of megafunctions, as described in
“Inferring Altera Megafunctions from HDL Code” on page 8-35.

8-29

Quartus Il Handbook, Volume 1

8-30

For a detailed discussion about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus I Handbook. The Recommended HDL Coding
Styles chapter also provides details on using the MegaWizard Plug-In
Manager in the Quartus II software and explains the files generated by
the wizard, as well as providing coding style recommendations and
HDL examples for inferring megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction, the MegaWizard Plug-In Manager creates
a VHDL or Verilog HDL wrapper file that instantiates the megafunction
(a black box methodology). Some megafunctions also support the
generation of a fully synthesizeable netlist for improved results with EDA
synthesis tools such as Synplify (a clear box methodology). Clear- and
black-box methodologies are described in the following sections.

Clear Box Methodology

You can use the MegaWizard Plug-In Manager to generate a fully
synthesizeable netlist. This flow is referred to as a clear box methodology
because the Synplify software can “see” into the megafunction file. The
clear box feature enables the synthesis tool to report more accurate timing
estimates and resource utilization, and to take better advantage of timing
driven optimization than a black box methodology.

For certain megafunctions, the clear box feature is enabled by turning the
Generate clear box netlist file instead of a default wrapper file (for use
with supported EDA synthesis tools only) option on in the MegaWizard
Plug-In Manager. If the option does not appear, then clear box models are
not supported for the selected megafunction. The Synplify software
supports clear box models for Stratix and Cyclone™ devices. Turning this
option on causes the Quartus Il MegaWizard Plug-In Manager to
generate a synthesizeable clear box netlist instead of the megafunction
wrapper file described in “Black Box Methodology” on page 8-31.

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for
Clear Box Megafunction Instantiation

If you turn on the <output file>_inst.v option on the last page of the
wizard, the MegaWizard Plug-In Manager generates a Verilog HDL
instantiation template file for use in your Synplify design. This file can
help you instantiate the megafunction clear box netlist file, <output file>.v,
in your top-level design. Include the megafunction clear-box netlist file in
your Synplify Project. Also include the stratix.v library file from the

Altera Corporation
May 2006

Guidelines for Altera Megafunctions & Architecture-Specific Features

Altera Corporation
May 2006

lib/altera directory of the Synplify installation directory; this file provides

the port and parameter definitions of the clear box primitives. Finally,

include the megafunction clear box netlist file, <output file>.v, along with
your Synplify-generated VQM netlist in your Quartus II project.

I The Synplify software reads the clear box description for the
alt_pll megafunction and writes the netlist for the phase-
locked loop (PLL) into the resulting VOM output netlist.
Therefore, for alt pll instantiations, do not include the
megafunction clear box netlist file <output file>.v in your
Quartus II project. Reading the PLL function allows the Synplify
software to interpret the multiplication and division factors in
the PLL instantiation to make the correct timing assignment.

Using MegaWizard Plug-In Manager-Generated VHDL Files for Clear
Box Megafunction Instantiation

If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard Plug-In Manager generates
a VHDL Component declaration file and a VHDL Instantiation template
file for use in your design. These files help to instantiate the megafunction
clear box netlist file, <output file>.vhd, in your top-level design. Include
the megafunction clear box netlist file in your Synplify Project. Finally,
include the megafunction clear box netlist file, <output file>.vhd, along
with your Synplify-generated VQM netlist in your Quartus II project.

['=~ The Synplify software reads the clear box description for the
alt_pll megafunction and writes the netlist for the PLL into
the resulting VOM output netlist. Therefore, for alt_pll
instantiations, do not include the megafunction clear box netlist
file <output file>.vhd in your Quartus II project. Reading the PLL
function allows the Synplify software to interpret the
multiplication and division factors in the PLL instantiation to
make the correct timing assignment.

Black Box Methodology

Using the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black-box methodology because the megafunction is
treated as a black box in the Synplify software. The black box wrapper file
is generated by default in the MegaWizard Plug-In Manager and is
available for all megafunctions.

The black box methodology does not allow the synthesis tool any
visibility into the function module and therefore does not take full
advantage of the synthesis tool’s timing driven optimization. For better
timing optimization, especially if the black box does not have registered

8-31

Quartus Il Handbook, Volume 1

8-32

inputs and outputs, add timing models to black boxes. Refer to “Other
Synplify Software Attributes for Creating Black Boxes” on page 8-34 for
details.

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for
Black Box Megafunction Instantiation

If you check the <output file>_inst.v and <output file>_bb.v options on the
last page of the wizard, the MegaWizard Plug-In Manager generates a
Verilog HDL instantiation template file and a hollow-body black-box
module declaration for use in your Synplify design. The instantiation
template file helps to instantiate the megafunction variation wrapper file,
<output file>.v, in your top-level design. Do not include the megafunction
variation wrapper file in your Synplify Project, but add it, with your
Synplify-generated VOM netlist, to your Quartus II project. Add the
hollow-body black-box module declaration <output file>_bb.v to your
Synplify Project to describe the port connections of the black box.

You can use the syn_black_box compiler directive to declare a module
as a black box. The top-level design files must contain the megafunction
port mapping and hollow-body module declaration, as described above.
You can apply the syn_black_box directive to the module declaration
in the top-level file or a separate file included in the project (such as the
<output file>_bb.v file) to instruct the Synplify software that this is a black
box. The software compiles successfully without this directive, but
reports an additional warning message. Using this directive allows you
to add other directives as discussed in “Other Synplify Software
Attributes for Creating Black Boxes” on page 8-34.

Example 8-13 shows a sample top-level file that instantiates
verilogCount.v, which is a customized variation of the 1pm_counter
generated by the MegaWizard Plug-In Manager.

Altera Corporation
May 2006

Guidelines for Altera Megafunctions & Architecture-Specific Features

Example 8-13. Top-Level Verilog HDL Code with Black Box Instantiation of Ipm_counter
module topCounter (clk, count) ;
input clk;
output [7:0] count;
verilogCounter verilogCounter inst (
.clock (clk),
.q (count)
)
endmodule
// Module declaration found in verilogCounter bb.v
// The following attribute is added to create a
// black box for this module.
module verilogCounter (
clock,
g) /* synthesis syn black box */;
input clock;
output [7:0] qg;
endmodule

Using MegaWizard Plug-In Manager-Generated VHDL Files for Black
Box Megafunction Instantiation

If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard Plug-In Manager generates
a VHDL component declaration file and a VHDL instantiation template
file for use in your Synplify design. These files can help you instantiate
the megafunction variation wrapper file, <output file>.vhd, in your
top-level design. Do not include the megafunction variation wrapper file
in your Synplify Project, but add it, along with your Synplify-generated
VQOM netlist, to your Quartus II project.

You can use the syn_black_box compiler directive to declare a
component as a black box. The top-level design files must contain the
megafunction variation component declaration and port mapping, as
described above. Apply the syn_black_box directive to the component
declaration in the top-level file. The software compiles successfully
without this directive, but reports an additional warning message. Using
this directive allows you to add other directives such as the ones in the
“Other Synplify Software Attributes for Creating Black Boxes” section.

Example 8-14 shows a sample top-level file that instantiates
vhdlCount.vhd, which is a customized variation of the Ipm_counter
generated by the MegaWizard Plug-In Manager.

Altera Corporation 8-33
May 2006

Quartus Il Handbook, Volume 1

Example 8-14. Top-level VHDL Code with Black Box Instantiation of Ipm_counter
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY testCounter IS
PORT
(
clk: IN STD LOGIC ;
count: OUT STD_LOGIC VECTOR (7 DOWNTO 0)
)
END testCounter;
ARCHITECTURE top OF testCounter IS
component vhdlCount
PORT (
clock: IN STD LOGIC ;
g: OUT STD LOGIC VECTOR (7 DOWNTO 0)
) ;
end component;
attribute syn black box : boolean;
attribute syn black box of vhdlCount: component is true;
BEGIN
vhdlCount inst : vhdlCount PORT MAP (
clock => clk,
g => count
)
END top;

Other Synplify Software Attributes for Creating Black Boxes

The black box methodology does not allow the synthesis tool any
visibility into the function module. Thus, it does not take full advantage
of the synthesis tool’s timing-driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes. This can be done with a
“gray box” methodology by adding the syn_tpd, syn_tsu, and
syn_tco attributes. Refer to Example 8-15 for a Verilog HDL example.

Example 8-15. Verilog HDL Example

module ram32x4 (z,d,addr,we,clk) ;

/* synthesis syn black box syn tcol="clk->z[3:0]=4.0"
syn tpdl="addr[3:0]->z[3:0]=8.0"
syn tsul="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */

output [3:0]z;

input [3:0]d;

input [3:0]addr;

input we

input clk

endmodule

8-34 Altera Corporation
May 2006

Guidelines for Altera Megafunctions & Architecture-Specific Features

The following additional attributes are supported by the Synplify
software to communicate details about the characteristics of the black box
module within the HDL code:

B syn resources—Specifies the resources used in a particular black
box

B Dblack box_pad pin—Prevents mapping to I/O cells

B Dblack box_tri pin—Indicates a tri-stated signal

a® For more information about applying these attributes, refer to the Tasks
& Tips chapter of the Synplify User Guide.

Inferring Altera Megafunctions from HDL Code

The Synplify software uses Behavior Extraction Synthesis Technology
(BEST) algorithms to infer high-level structures such as RAMs, ROMs,
operators, FSMs, and so forth. It then keeps the structures abstract for as
long as possible in the synthesis process. This allows the use of
technology-specific resources to implement these structures by inferring
the appropriate Altera megafunction when a megafunction provides
optimal results. The following sections outline some of the
Synplify-specific details when inferring Altera megafunctions. The
Synplify software provides options to control inference of certain types of
megafunctions, which is also described in the following sections.

«® For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Inferring Multipliers

Figure 8-3 shows the RTL view of an unsigned 8x8 multiplier with two
pipeline stages after synthesis as seen in HDL Analyst in the Synplify
software. This multiplier is converted into an 1pm_mult megafunction.
For devices with DSP blocks, the software may implement the 1pm mult
function in a DSP block instead of logic elements (LEs), depending on
device utilization.

Altera Corporation 8-35
May 2006

Quartus Il Handbook, Volume 1

8-36

Figure 8-3. HDL Analyst View of Ipm_mult Megafunction (Unsigned 8x8
Multiplier with Pipeline=2)

clk
=

a[7:0] [7:0) . | 7] .)
— D[7:0] Q[7:0] 01500 7.9 Q0] [2u015:0]
aregl70] mult_out[15:0) out[15:0]

o) PO o0 o J

b_reg(7:0]

Resource Balancing
While mapping multipliers to DSP blocks, the Synplify software
performs resource balancing for optimum performance.

Altera devices have a fixed number of DSP blocks, which include a fixed
number of embedded multipliers. If the design uses more multipliers
than are available, the Synplify software automatically maps the extra
multipliers to logic (logic elements (LEs), or adaptive logic modules
(ALMs)).

If a design uses more multipliers than are available in the DSP blocks, the
Synplify software maps the multipliers in the critical paths to DSP blocks.
Next, any wide multipliers, which may or may not be in the critical paths,
are mapped to DSP blocks. Smaller multipliers and multipliers that are
not in the critical paths may then be implemented in logic (LEs or ALMs).
This ensures that the design fits successfully in the device.

Controlling the Inferring of DSP Blocks

Multipliers can be implemented in DSP blocks or in logic in Altera
devices that contain DSP blocks. You can control this implementation
through attribute settings in the Synplify software.

Signal Level Attribute

You can control the implementation of individual multipliers by using
the syn _multstyle attribute as shown below:

<signal_name> /* synthesis syn multstyle = "logic" */

where signal_name is the name of the signal.

Il=" This setting applies to wires only; it cannot be applied to
registers.

Altera Corporation
May 2006

Guidelines for Altera Megafunctions & Architecture-Specific Features

Table 8—4 shows the values for the signal level attribute in the Synplify
software that controls the implementation of the multipliers in the DSP
blocks or LEs.

Table 8-4. Attribute Settings for DSP Block in the Synplify Software

Attribute Name Value Description

syn multstyle |[lpm mult |LPM Function inferred and multipliers
implemented in DSP block

syn multstyle |logic LPM function not inferred and multipliers
implemented LEs by the Synplify software

The following examples show simple Verilog HDL and VHDL code
using the syn _multstyle attribute.

Example 8-16. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
module mult (a,b,c,r,en);

input [7:0] a,b;

output [15:0] «r;

input [15:0] c;

input en;

wire [15:0] temp /* synthesis syn multstyle="logic" */;

assign temp = a*b;
assign r = en ? temp : c;
endmodule

Altera Corporation 8-37
May 2006

Quartus Il Handbook, Volume 1

Example 8-17. Signal Attributes for Controlling DSP Block Inference in VHDL Code
library ieee;

use ieee.std_logic_1164.all;

use leee.std logic unsigned.all;

entity onereg is port (
r : out std logic vector (15 downto 0);
en : in std logic;

a in std logic_vector (7 downto 0);

b : in std logic_vector (7 downto 0);

c in std logic_ vector (15 downto 0)

)

end onereg;

architecture beh of onereg is

signal temp : std logic vector (15 downto 0) ;
attribute syn multstyle : string;

attribute syn multstyle of temp : signal is "logic";

begin
temp <= a * b;

r <= temp when en='1l' else c;
end beh;

Inferring RAM

Follow the guidelines below for the Synplify software to successfully
infer RAM in a design:

B The address line must be at least 2 bits wide.

B Resets on the memory are not supported. Refer to the device family
documentation for information about whether read and write ports
must be synchronous.

B Some Verilog HDL statements with blocking assignments may not
be mapped to RAM blocks, so avoid blocking statements when
modeling RAMs in Verilog HDL.

For certain device families, the syn ramstyle attribute specifies the
implementation to use for an inferred RAM. You can apply
syn_ramstyle globally, to a module, or to a RAM instance, to specify
registers or block ramvalues. To turn off RAM inference, set the
attribute value to registers.

When inferring RAM for certain Altera device families, the Synplify
software generates additional bypass logic. This logic is generated to
resolve a half-cycle read /write behavior difference between the RTL and
post-synthesis simulations. The RTL simulation shows the memory being
updated on the positive edge of the clock, and the post-synthesis

8-38 Altera Corporation
May 2006

Guidelines for Altera Megafunctions & Architecture-Specific Features

simulation shows the memory being updated on the negative edge. To
eliminate the bypass logic, the output of the RAM must be registered. By
adding this register, the output of the RAM is seen after a full clock cycle,
by which time the update has occurred; thus, eliminating the need for the
bypass logic.

For Stratix II, Stratix, Cyclone II, and Cyclone series devices, you can
disable the creation of glue logic by setting the syn_ramstyle value to
no_rw_check. Use syn ramstyle with a value of no_rw_check to
disable the creation of glue logic in dual-port mode.

Example 8-18 shows sample VHDL code for inferring dual-port RAM.

Example 8-18. VHDL Code for Inferred Dual-Port RAM
LIBRARY ieee;

USE ieee.std logic 1164.all;

USE ieee.std logic signed.all;

ENTITY dualport ram IS

PORT (data_out: OUT STD LOGIC_VECTOR (7 DOWNTO O0) ;
data_in: IN STD LOGIC_VECTOR (7 DOWNTO O0) ;
wr_addr, rd addr: IN STD LOGIC_VECTOR (6 DOWNTO O0) ;
we: IN STD LOGIC;
clk: IN STD LOGIC) ;

END dualport ram;

ARCHITECTURE ram_infer OF dualport_ram IS

TYPE Mem Type IS ARRAY (127 DOWNTO 0) OF STD LOGIC VECTOR (7 DOWNTO O0) ;
SIGNAL mem: Mem Type;

SIGNAL addr_reg: STD LOGIC VECTOR (6 DOWNTO O0) ;

BEGIN
data_out <= mem (CONV_INTEGER (rd_addr)) ;
PROCESS (clk, we, data in) BEGIN
IF (clk='1l' AND clk'EVENT) THEN
IF (we='1l') THEN
mem (CONV_INTEGER (wr_addr)) <= data_in;
END IF;
END IF;
END PROCESS;
END ram infer;

Altera Corporation 8-39
May 2006

Quartus Il Handbook, Volume 1

Example 8-19 shows an example of the VHDL code preventing bypass
logic for inferring dual-port RAM. The extra latency behavior stems from
the inferring methodology and is not required when instantiating a
megafunction.

Example 8-19. VHDL Code for Inferred Dual-Port RAM Preventing Bypass Logic
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std logic signed.all;

ENTITY dualport ram IS

PORT (data_out: OUT STD LOGIC_VECTOR (7 DOWNTO O) ;
data in : IN STD LOGIC VECTOR (7 DOWNTO O) ;
wr_addr, rd addr : IN STD LOGIC_VECTOR (6 DOWNTO 0) ;
we : IN STD LOGIC;
clk : IN STD LOGIC) ;

END dualport ram;

ARCHITECTURE ram_infer OF dualport ram IS

TYPE Mem Type IS ARRAY (127 DOWNTO 0) OF STD LOGIC_VECTOR (7 DOWNTO O0) ;
SIGNAL mem : Mem Type;

SIGNAL addr reg : STD LOGIC VECTOR (6 DOWNTO O0) ;

SIGNAL tmp_out : STD_LOGIC_VECTOR (7 DOWNTO 0); --output register

BEGIN
tmp out <= mem (CONV_INTEGER (rd addr)) ;
PROCESS (clk, we, data in) BEGIN
IF (clk='1l' AND clk'EVENT) THEN
IF (we='1l') THEN
mem (CONV_INTEGER (wr_addr)) <= data_ in;

END IF;
data out <= tmp_ out; --registers output preventing
-- bypass logic generation.
END IF;

END PROCESS;
END ram infer;

Inferring ROM

Follow the guidelines below for the Synplify software to successfully
infer ROM in a design:

B The address line must be at least 2 bits wide.

B ROM must be at least half full.

B A CASE or IF statement must make 16 or more assignments using
constant values of the same width.

8-40 Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Incremental
Compilation &
Block-Based
Design

Altera Corporation
May 2006

Inferring Shift Registers

The software infers shift registers for sequential shift components so that
they can be placed in dedicated memory blocks in supported device
architectures using the altshift_taps megafunction.

If it is required, set the implementation style with the syn_srlstyle
attribute. If you do not want the components automatically mapped to
shift registers, set the value to registers. You can set the value globally
or on individual modules or registers.

For some designs, turning off shift register inference can improve the
design performance.

As designs become more complex and designers work in teams, a
block-based hierarchical or incremental design flow is often an effective
design approach. In an incremental compilation flow, you can make
changes to part of the design while maintaining the placement and
performance of unchanged parts of the design. Design iterations are
made dramatically faster by focusing new compilations on a particular
design partitions and merging results with previous compilation results
of other partitions. In a bottom-up or team-based approach, you can
perform optimization on individual subblocks and then preserve the
results before you integrate the blocks into a final design and optimize it
at the top level.

MultiPoint synthesis, which is available for certain device technologies in
the Synplify Pro software, provides an automated block-based
incremental synthesis flow. The MultiPoint feature manages a design
hierarchy to let you design incrementally and synthesize designs that
take too long for top-down synthesis of the entire project. MultiPoint
synthesis allows different netlist files to be created for different sections
of a design hierarchy, and supports Quartus II incremental compilation
and LogicLock™ design methodologies. It also ensures that only those
sections of a design that have been updated are resynthesized when the
design is compiled, reducing synthesis run time and preserving the
results for the unchanged blocks. You can change and resynthesize one
section of a design without affecting other sections of the design.

You can also partition your design and create different netlist files
manually with the Synplify software (basic Synplify and Synplify Pro) by
creating a separate project for the logic in each partition of the design.
Creating different netlist files for each partition of the design means that
each partition is independent of the others. When synthesizing the entire
project, only portions of a design that have been updated have to be

8-41

Quartus Il Handbook, Volume 1

8-42

resynthesized when you compile the design. You can make changes and
resynthesize one partition of a design to create a new netlist file without
affecting the synthesis results and placement of other partitions.

Hierarchical design methodologies can improve the efficiency of your
design process, providing better design reuse opportunities and fewer
integration problems when working in a team environment. When you
use these incremental synthesis methodologies, you can take advantage
of the incremental compilation and methodologies in the Quartus II
software. You can perform placement and routing on only the changed
partitions of the design, reducing place-and-route time and preserving
your fitting results. Following the guidelines in this section can help you
achieve good results with these methodologies.

The following list shows the general top-down compilation flow when
using these features of the Quartus II software:

1. Create Verilog HDL or VHDL design files as in the regular design
flow.

2. Determine which hierarchical blocks are to be treated as separate
partitions in your design.

3. Setup your design using the MultiPoint feature or separate projects
so that a separate netlist file is created for each partition of the
design.

4. If using separate projects, disable I/O pad insertion in the
implementations for lower-level partitions.

5. Compile and technology-map each partition in the Synplify Pro or
Synplify software, making constraints as you would in the regular
design flow.

6. Import the VOM or EDIF netlist and the Tcl file for each partition
into the Quartus II software and set up the Quartus II project(s) to
use incremental compilation.

7. Compile your design in the Quartus II software and preserve the
compilation results using the post-fit netlist in incremental
compilation.

8. When you make design or synthesis optimization changes to part of
your design, resynthesize only the changed partition to generate
new netlist and Tcl file. Do not regenerate netlist files for the
unchanged partitions.

Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Altera Corporation
May 2006

9. Import the new netlist and Tcl file into the Quartus II software and
recompile the design in the Quartus II software using incremental
compilation.

For more information about creating partitions and using the
incremental compilation in the Quartus II software, refer to the

Quartus II Incremental Compilation for Hierarchical & Team-Based Design
chapter in volume 1 of the Quartus II Handbook. For more information
about using the LogicLock feature in the Quartus II software, refer to the
LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Hierarchy & Design Considerations with Multiple VQM Files

To ensure the proper functioning of the synthesis flow, you can create
separate netlist files only for modules and entities. In addition, each
module or entity should have its own design file. If two different modules
are in the same design file but are defined as being part of different
partitions, you cannot maintain incremental compilation since both
partitions would have to be recompiled when you change one of the
modules.

Altera recommends that you register all inputs and outputs of each
partition. This makes logic synchronous and avoids any delay penalty on
signals that cross partition boundaries.

If you use boundary tri-states in a lower-level block, the Synplify
software pushes (or “bubbles”) the tri-states through the hierarchy to the
top level to make use of the tri-state drivers on output pins of Altera
devices. Because bubbling tri-states requires optimizing through
hierarchies, lower-level tri-states are not supported with a block-based
compilation methodology. You should use tri-state drivers only at the
external output pins of the device and in the top-level block in the
hierarchy.

For more tips on design partitioning, refer to the Design Recommendations
for Altera Devices chapter in volume 1 of the Quartus II Handbook.

Creating a Design with Separate Netlist Files

The first stage of a hierarchical or incremental design flow is to ensure
that different parts of your design do not affect each other. Ensure that
you have separate netlists for each partition in your design so that you
can take advantage of the incremental compilation and LogicLock design
flows in the Quartus II software. If the whole design is in one netlist file,
changes in one partition affect other partitions because of possible node
name changes when you resynthesize the design.

8-43

Quartus Il Handbook, Volume 1

8-44

You can generate multiple VQM files either by using the MultiPoint
synthesis flow and LogicLock attributes in the Synplify Pro software, or
by manually creating separate Synplify projects and creating a black box
for each block that you want to be considered as a separate design
partition.

In the MultiPoint synthesis flow (Synplify Pro only), you create multiple
VQMs from one easy-to-manage top-level synthesis project. By using the
manual black box method (Synplify or Synplify Pro), you have multiple
synthesis projects, which may be required for certain team-based or
bottom-up designs where a single top-level project is not desired.

Once you have created multiple VQM files using one of these two
methods, you need to create the appropriate Quartus II projects to
place-and-route the design.

Creating a Design with Multiple VQM Files Using Synplify Pro
MultiPoint Synthesis

This section describes how to generate multiple VQM files using the
Synplify Pro MultiPoint synthesis flow. You must first set up your
compile points, constraint files, and Synplify Pro options, then apply
Altera-specific attributes to write multiple VQM files and create
LogicLock region assignments.

Set Compile Points & Create Constraint Files

The MultiPoint flow lets you segment a design into smaller synthesis
units, called Compile Points. The synthesis software treats each Compile
Point as a partition for incremental mapping, which allows you to isolate
and work on individual Compile Point modules as independent
segments of the larger design without impacting other design modules.
A design can have any number of Compile Points, and Compile Points
can be nested. The top-level module is always treated as a Compile Point.

Compile Points are optimized in isolation from their parent, which can be
another Compile Point or a top-level design. Each block created with a
Compile Point is unaffected by critical paths or constraints on its parent
or other blocks. A Compile Point is independent, with its own individual
constraints. During synthesis, any Compile Points that have not yet been
synthesized are synthesized before the top level. Nested Compile Points
are synthesized before the parent Compile Points in which they are
contained. When you apply the appropriate Synplify Pro LogicLock
constraints to a Compile Point module, then a separate netlist is created
for that Compile Point, isolating that logic from any other logic in the
design.

Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Figure 8-6 on page 8-52 shows an example of a design hierarchy that can
be split into multiple partitions. The top-level block of each partition can
be synthesized as a separate Compile Point.

In this case, modules A, B, and F are Compile Points. The top-level
Compile Point consists of the top-level block in the design (that is, block
A in this example), including the logic that is not defined under another
Compile Point. In this example, the design for top-level Compile Point A
also includes the logic in one of its subblocks, C. Because block F is
defined as its own Compile Point, it is not treated as part of the top-level
Compile Point A. Another separate Compile Point B contains the logic in
blocks B, D, and E. One netlist is created for the top-level module A and
submodule C, another netlist is created for B and its submodules D and
E, while a third netlist is created for F.

Apply Compile Points to the module or architecture in the Synplify Pro
SCOPE spreadsheet or in the SDC file. You cannot set a Compile Point in
the Verilog HDL or VHDL source code. You can set the constraints
manually using Tcl or by editing the SDC file. You can also use the GUI
which provides two methods, manual or automated, as shown below.

Defining Compile Points Using Tcl or SDC
To set Compile Points using Tcl or an SDC file, use the
define compile point command, as shown in Example 8-20.

Example 8-20. The define_compile_point Command
define compile point [-disable] [-comment <comment>] <objnames \
[-type <compile point type>]

In the syntax statement above, objname represents any module in the
design. Currently, locked is the only Compile Point type supported.

Each Compile Point has a set of constraint files that begin with the
define current_design command to set up the SCOPE

environment.

define current design {<my_module>}

Altera Corporation 8-45
May 2006

Quartus Il Handbook, Volume 1

8-46

Manually Defining Compile Points from the GUI

The manual method requires you to separately create constraint files for
the top-level and the lower-level Compile Points. To use the manual
method:

1. From the top level, select the Compile Points tab in the SCOPE
spreadsheet.

2. Select the modules that you want to define as Compile Points.

Currently, locked Compile Points are the only type supported. All
Compile Points must be defined from the top level because the
Compile Points tab is not available in the SCOPE spreadsheet from
lower level modules.

3. Manually create a constraint file for each module.

To ensure that changes to a Compile Point do not affect the top-level
parent module, disable the Update Compile Point Timing Data option
on the Implementation Options dialog box. If this option is enabled,
updates to a child module can impact the top-level module.

Automatically Defining Compile Points from the GUI

When you use the automated process, the lower-level constraint file is
created automatically. This eliminates the manual step necessary to do to
set up each Compile Point. To use the automated method, perform the
following steps:

1. On the File menu, select New. Click to create a new Constraint File,
or click the SCOPE icon in the tool bar.

2. From the Select File Type tab of the Create a New SCOPE File
dialog box, select Compile Point.

3. Select the module you want to designate as a Compile Point. The
software automatically sets the Compile Points in the top-level
constraint file and creates a lower-level constraint file for each
Compile Point.

To ensure that changes to a Compile Point do not affect the top-level
parent module, disable the Update Compile Point Timing Data option
on the Implementation Options dialog box. If this option is enabled,
updates to a child module can impact the top-level module.

Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Altera Corporation
May 2006

When using Compile Points with the incremental compilation or
LogicLock design flow, keep the following restrictions in mind:

B To use Compile Points effectively, you must provide timing
constraints (timing budgeting) for each Compile Point; the more
accurate the constraints, the better your results are. Constraints are
not automatically budgeted, so manual time budgeting is essential.
Altera recommends that you register all inputs and outputs of each
partition. This avoids any logic delay penalty on signals that cross
partition boundaries.

B When using the Synplify Pro attribute syn_useioff to pack
registers in the I/ O Elements (IOEs) of Altera devices, these registers
must be in the top-level module, not a lower level. Otherwise, you
must allow the Quartus II software to perform I/O register packing
instead of the syn_useioff attribute. You can use the Fast Input
Register or Fast Output Register options, or set I/O timing
constraints and turn on Optimize I/O cell register placement for
timing on the Fitter Settings page of the Settings dialog box in the
Quartus II software.

B There is no incremental synthesis support for top-level logic; any
logic in the top-level is resynthesized during every compilation in
the Synplify Pro software.

For more information about Compile Points, refer to the Synplify Pro
User Guide and Reference Manual on the Synplicity web site at
www.synplicity.com/literature/index.html.

Apply the LogicLock Attributes

To instruct the Synplify Pro software to create a separate VQM netlist file
for each Compile Point, you must indicate that the Compile Point is being
used with LogicLock regions in the incremental compilation or
LogicLock design methodology. Since separate netlist files are required
for incremental compilation, you must use the LogicLock attributes if you
plan to use the incremental compilation feature in the Quartus II
software. When you apply the appropriate LogicLock attributes, the
Synplify Pro software also writes out Tcl commands for the Quartus I
software to create a LogicLock region for each netlist.

LogicLock regions in the Quartus II software have size and location
properties. The region’s size is defined by the height and width of the
rectangular area. If the region is specified as auto-size, then the Quartus II
software determines the appropriate size to fit the logic assigned to the
region. When you specify the size, you must include enough device
resources to accommodate the assigned logic. The location of a region is
defined by its origin, which is the position of its bottom-left corner or top-
left corner, depending on the target device family. In the Quartus II

8-47

Quartus Il Handbook, Volume 1

software, this location can be specified as locked or floating. If the
location is floating, the Quartus II software determines the location
during its optimization process.

'~ Floating locations are the only type currently supported in the
Synplify Pro software.

When you use incremental compilation in the Quartus II software, you
should lock down the size and location of the region in the Quartus II

software after the first compilation to achieve the best quality of results.

Table 8-5 shows the valid combinations of the LogicLock attributes.

Table 8-5. LogicLock Location & Size Properties

altera_logiclock_location
Attribute

altera_logiclock_size

Attribute Description

Floating

Auto The most flexible type of LogicLock constraint. Allows the

Quartus Il software to choose appropriate region size and
location.

Floating

Fixed Assumes size of LogicLock constraint area is already

optimal in existing Quartus Il project.

8-48

You can apply these attributes to the top-level constraint file or to the
individual constraint files for each lower-level Compile Point. You can
use the Attribute tab of the SCOPE spreadsheet to set attributes.

Synplify Pro offers another attribute, syn_allowed_resources, which
restricts the number of resources for a given module. You can apply the
syn _allowed resources attribute to any Compile Point view.

For specific information regarding these attributes, refer to the
Synplify Pro online help or reference manual.

Creating a Quartus 1l Project for Multiple VQM Files

During compilation, the Synplify Pro software creates a <top-level
project>.tcl file that provides the Quartus II software with the appropriate
constraints and LogicLock assignments, creating a region for each VQM
file along with the information to set up a Quartus II project.

The Tl file contains the following commands for each LogicLock region.
Example 8-21 is for module A (instance ul) in the project named top
where the region name cpll 1 was selected by Synplify Pro for the
Compile Point.

Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Example 8-21. Commands for Each LogicLock Region in a Tcl File

set_global assignment -section_id{taps region} -name{LL_ AUTO SIZE}{ON}
set_global assignment -section_id{taps region} -name{LL STATE}{FLOATING}
set instance assignment -section id{taps region} -to{|taps:ul} \

-name{LL MEMBER OF} {taps_region}

Altera Corporation
May 2006

These commands create a LogicLock region with Auto Size and Floating
Origin properties. This flexible LogicLock region allows the Quartus II
Compiler to select the size and location of the region.

For more information about Tcl commands, refer to the Tcl Scripting
chapter in volume 2 of the Quartus II Handbook.

Depending on your design methodology, you can create one Quartus II
project for all netlists (a top-down placement and routing flow) or a
separate Quartus II project for each netlist (a bottom-up placement and
routing flow). In a top-down incremental compilation design flow, you
create design partition assignments and LogicLock floorplan location
assignments for each partition in the design within a single Quartus II
project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.
You may require a bottom-up design flow if each partition must be
optimized separately, such as in certain team-based design flows. To
perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a top-
level design using the incremental compilation export and import
features to maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

Creating a Single Quartus II Project for a Top-Down Incremental
Compilation Flow

Use the <top-level project>.tcl file that contains the Synplify Pro
assignments for all partitions within the project. This method allows you
to import all the partitions into one Quartus II project and optimize all
modules within the project at once, taking advantage of the performance
preservation and compilation-time reduction incremental compilation
offers. Figure 8—4 shows a visual representation of the design flow for the
example design in Figure 8-6.

8-49

Quartus Il Handbook, Volume 1

Figure 8-4. Design Flow Using Multiple VAM Files with One Quartus Il Project

Use a Tl file (.tel) to Import — |
Synplify Pro Assignments

Quartus Il Project

a.vgm

b.vgm

f.vgm

Creating Multiple Quartus II Projects for a Bottom-Up LogicLock
Design Flow
Generate multiple Quartus II projects, one for each partition and netlist in
the design. Each designer in the project can optimize their partition
separately within the Quartus II software and export the placement for
their partitions. Figure 8-5 shows a visual representation of the design
flow for the example design in Figure 8-6. The optimized sub-designs can
be brought into one top-level Quartus II project using incremental
compilation.

Figure 8-5. Design Flow Using Multiple VQM Files with Multiple Quartus Il Projects

Use b.tel to Import

Quartus Il Project

a.vgm

>

Synplify Pro ——»|
Assignments

Quartus Il Project

b.vgm

l«—— Use a.tel to Import
Synplify Pro Assignments

Quartus Il Project

f.vgm

Use f.tel to Import
le«—— Synplify Pro
Assignments

8-50

Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Altera Corporation
May 2006

Generating a Design with Multiple VQM Files Using Black Boxes

This section describes how to manually generate multiple VQM files
using black boxes. This manual flow is supported in versions of the
Synplify software that do not include the MultiPoint Synthesis feature.

Manually Creating Multiple VQM Files Using Black Boxes

To create multiple VOM files manually in the Synplify software, create a
separate project for each low-level module and the top-level design that
you want to maintain as a separate VQM file. Implement black box
instantiations of lower-level partitions in your top-level project. When
synthesizing the projects for the lower-level modules, perform the
following steps.

1. Inthe Implementation Options dialog box, turn on Disable I/O
Insertion for the target technology.

2. Read the HDL files for the modules.
[~ Modules may include black box instantiations of
lower-level modules that are also maintained as separate
VQM files.
3. Add constraints with the SCOPE constraint editor.

4. Enter the clock frequency to ensure that the sub-design is correctly
optimized.

5. Inthe Attributes tab, set syn_netlist_hierarchy to 0.

When synthesizing the top-level design project, perform the following
steps:

1. Turn off Disable I/O Insertion for the target technology.
2. Read the HDL files for top-level designs.

3. Create black boxes using lower-level modules in the top-level
design.

4. Add constraints with the SCOPE constraint editor.

5. Enter the clock frequency to ensure that the design is correctly
optimized.

6. In the Attributes tab, set syn_netlist_hierarchy to 0.

8-51

Quartus Il Handbook, Volume 1

The following sections describe an example of black box implementation
to create separate VQM files. Figure 8-6 shows an example of a design
hierarchy that is split up into multiple partitions.

Figure 8-6. Partitions in a Hierarchical Design

Partition Top
A
B C
!—l—\ Iﬁ
D E F
Partition B Partition F

In Figure 8-6, the partition top contains the top-level block in the design
(block A) and the logic that is not defined as part of another partition. In
this example, the partition for top-level block A also includes the logic in
one of its subblocks, C. Because block F is contained in its own partition,
it is not treated as part of the top-level partition A. Another separate
partition, B, contains the logic in blocks B, D, and E. In a team-based
design, different engineers may work on the logic in different partitions.
One netlist is created for the top-level module A and its submodule C,
another netlist is created for B and its submodules D and E, while a third
netlist is created for F. To create multiple VQM files for this design, follow
these steps:

1. Generate a VQM file for module B. Use B.v/.vhd, D.v/.vhd, and
E.v/.vhd as the source files.

2. Generate a VQM file for module F. Use E.v/.vhd as the source files.
3. Generate a top-level VQM file for module A. Use A.v/.vhd and

C.v/.vhd as the source files. Ensure that you use black box modules
B and F, which were optimized separately in the previous steps.

8-52 Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Creating Black Boxes in Verilog HDL

Any design block that is not defined in the project or included in the list
of files to be read for a project are treated as a black box by the software.
Use the syn_black_box attribute to indicate that you intend to create a
black box for the given module. In Verilog HDL, you must provide an
empty module declaration for the module that is treated as a black box.

Example 8-22 shows an example of the A.v top-level file. Follow the same
procedure below for lower-level files which also contain a black box for
any module beneath the current level hierarchy.

Example 8-22. Verilog HDL Black Box for Top-Level File A.v

module A (data_in, c

1k, e, 1ld, data out);

input data _in, clk, e, 1d;
output [15:0] data out;

wire [15:0] cnt out;

B Ul (.data in (data_in),.clk(clk), .1d (1ld),.data out(cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .g(data out));

// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black

boxes.

module B (data_in, clk, 1d, data out) /* synthesis syn black box */ ;
input data in, clk, 1d;
output [15:0] data_ out;

endmodule

module F (d, clk, e,
input [15:0] d;
input clk, e;
output [15:0] qg;

endmodule

g) / *synthesis syn black box */ ;

Altera Corporation
May 2006

8-53

Quartus Il Handbook, Volume 1

Creating Black Boxes in VHDL

Any design block that is not defined in the project or included in the list
of files to be read for a project are treated as a black box by the software.
Use the syn_black_box attribute to indicate that you intend to treat the
given component as a black box. In VHDL, you need a component
declaration for the black box just like any other block in the design.

= Although VHDL is not case-sensitive, VQM (a subset of
Verilog HDL) is case-sensitive. Entity names and their port
declarations are forwarded to the VQM. Black box names and
port declarations are also passed to the VQM. To prevent
case-based mismatches between VQM, use the same
capitalization for black box and entity declarations in VHDL

designs.

Example 8-23 shows an example of the A.vhd top-level file. Follow this
same procedure for any lower-level files that contain a black box for any

block beneath the current level of hierarchy.

Example 8-23. VHDL Black Box for Top-Level File A.vhd
LIBRARY ieee;

USE ieee.std logic 1164.all;

LIBRARY synplify;

use synplify.attributes.all;

ENTITY A IS
PORT (data in : IN INTEGER RANGE 0 TO 15;
clk, e, 1d : IN STD LOGIC;
data out : OUT INTEGER RANGE 0 TO 15);
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT (
data_in : IN INTEGER RANGE 0 TO 15;
clk, 1d : IN STD LOGIC;
d out : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

COMPONENT F PORT (
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD LOGIC;
g : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

attribute syn black box of B: component is true;
attribute syn black box of F: component is true;

-- Other component declarations in A.vhd go here

8-54

Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

signal cnt out : INTEGER RANGE 0 TO

BEGIN

Ul : B
PORT MAP (
data_in => data_in,
clk => clk,
1d => 14,
d out => cnt out);

U2 : F
PORT MAP (
d => cnt_out,
clk => clk,
e => e,
g => data out);

15;

-- Any other code in A.vhd goes here

END a_arch;

Altera Corporation
May 2006

After you have completed the steps described in this section, you have a
netlist file for each partition of the design. These files are ready for use
with incremental compilation in the Quartus II software.

Creating a Quartus Il Project for Multiple VQM Files

The Synplify software creates a Tcl file for each VQM file, that provide the
Quartus II software with the appropriate constraints and information to
set up a project. For details on using the Tcl script generated by the
Synplify software to set up your Quartus II project and pass your
constraints, refer to “Running the Quartus II Software Manually Using
the Synplify-Generated Tcl Script” on page 8-18.

Depending on your design methodology, you can create one Quartus II
project for all netlists (a top-down placement and routing flow) or a
separate Quartus II project for each netlist (a bottom-up placement and
routing flow). In a top-down incremental compilation design flow, you
create design partition assignments and LogicLock floorplan location
assignments for each partition in the design within a single Quartus II
project. This methodology allows for the best quality of results and
performance preservation during incremental changes to your design.
You may require a bottom-up design flow where each partition must be
optimized separately, such as in certain team-based design flows. To
perform a bottom-up compilation in the Quartus II software, create

8-55

Quartus Il Handbook, Volume 1

8-56

separate Quartus II projects and import each design partition into a top-
level design using the incremental compilation export and import
features to maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

Creating Compile Points in Single Quartus II Project for a Top-Down
Incremental Compilation Flow

Use the <top-level project>.tcl file that contains the Synplify assignments
for the top-level design. This method allows you to import all the
partitions into one Quartus II project and optimize all modules within the
project at once, taking advantage of the performance preservation and
compilation time reduction offered by incremental compilation.

Figure 8-7 shows a visual representation of the design flow for the
example design in Figure 8-6.

All the constraints from the top-level project will be passed to the
Quartus II software in the top-level Tcl file, but any constraints made in
the lower-level projects within the Synplify software is not
forward-annotated. Enter these constraints manually in your Quartus II
project.

Figure 8-7. Design Flow Using Multiple VAM Files with One Quartus Il Project

Quartus Il Project

a.vqm
Use a.tel to import top-level —»| l
Synplify Pro assignment. *
Enter any lower-level
asignments manually.
b.vgm f.vgm

Creating Multiple Quartus II Projects for a Bottom-Up Design Flow
Use the Tcl file that is created for each VQM file by the Synplify software
for each Synplify Project. This method generates multiple Quartus II
projects, one for each block in the design. Each designer in the project can
optimize their block separately within the Quartus II software and export
the placement of their blocks. Figure 8-8 on page 8-57 shows a visual
representation of the design flow for the example in Figure 8-6 on

Altera Corporation
May 2006

Conclusion

page 8-52. Designers should create a LogicLock region for each block; the
top-level designer should then import all the blocks and assignments into
the top-level project. This method allows each block in the design to be
treated separately; each block can then be imported into one top-level
project.

Figure 8-8. Design Flow Using Multiple Synplify Projects & Multiple Quartus Il Projects

Quartus Il Project

Use b.tel to Import —»]
Synplify Assignments

a.vqm
l«—— Use a.tel to Import

. Synplify Assignments

.
Quartus Il Project Quartus Il Project

b.vgm f.vgm
l«—— Use f.tel to Import
Synplify Assignments

Conclusion

Altera Corporation
May 2006

Advanced synthesis is an important part of the design flow. Taking
advantage of the Synplicity Synplify and Quartus II design flows allows
you to control how your design files are prepared for the Quartus II
place-and-route process, as well as improve performance and optimize a
design for use with Altera devices. Several of the methodologies outlined
in this chapter can help optimize a design to achieve performance goals
and save design time.

8-57

Quartus Il Handbook, Volume 1

8-58 Altera Corporation
May 2006

- M hics Precisi
Z;\l |:| —E D)/A 9. Mentor Graphics Precision

RTL Synthesis Support

®

QI151011-6.0.0

Introduction

Altera Corporation
May 2006

As programmable logic device (PLD) designs become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. This chapter documents support for
the Mentor Graphics® Precision RTL Synthesis software in the

Quartus® II software design flow, as well as key design methodologies
and techniques for improving your results for Altera® devices. This
chapter includes the following sections:

B General design flow with the Precision RTL Synthesis software and

the Quartus II software

Creating a project and compiling the design

Setting constraints to achieve optimal results

Synthesizing the design and evaluating the results

Exporting designs to the Quartus II software using NativeLink®

integration

B Guidelines for Altera megafunctions and the library of
parameterized modules (LPM) functions, instantiating them in a
clear-box or black-box flow using the MegaWizard® Plug-In
manager, and tips for inferring them from HDL code

B Incremental compilation and block-based design

This chapter assumes that you have installed and licensed the Precision
RTL Synthesis software and the Quartus II software.

To obtain and license the Precision RTL Synthesis software, refer to the
Mentor Graphics web site at www.mentor.com. To install and run the
Precision RTL Synthesis software and to set up your work environment,
refer to the Precision RTL Synthesis User’s Manual in the Precision
Manuals Bookcase in the Help menu.

Quartus Il Handbook, Volume 1

Design Flow

9-2

The basic steps in a Quartus II design flow using the Precision RTL
Synthesis software are as follows:

1.

Create Verilog HDL or VHDL design files in the Quartus II design
software, the Precision RTL Synthesis software, or with a text editor.

Create a project in the Precision RTL Synthesis software that
contains the HDL files for your design, select your target device,
and set global constraints. For best results when using Altera
megafunctions, Mentor Graphics recommends using the clear box
option which enables synthesis to report more accurate resource
utilization and timing estimates. Refer to “Clear-Box Methodology”
on page 9-20 for details.

Compile the project in the Precision RTL Synthesis software.

Add specific timing constraints, optimization attributes, and
compiler directives to optimize the design during synthesis.
=" For best results, Mentor Graphics recommends specifying

constraints that are as close as possible to actual operating
requirements. Properly setting clock and I/O constraints,
assigning clock domains, and indicating false and
multicycle paths guide the synthesis algorithms more
accurately toward a suitable solution in the shortest
synthesis time.

Synthesize the project in the Precision RTL Synthesis software. With
the design analysis capabilities and cross-probing of Precision RTL
Synthesis software, you can identify and improve circuit area and
performance issues using pre-layout timing estimates.

Create a Quartus II project and import the technology-specific EDIF
(.edf) netlist and the tool command language (.tcl) file generated by
the Precision RTL Synthesis software into the Quartus II software
for placement and routing, and for performance evaluation using
actual post-layout timing data.

After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

These steps are described in detail throughout this chapter. Figure 9-1
shows the Quartus II design flow using Precision RTL Synthesis as
described in the steps above.

Altera Corporation
May 2006

Design Flow

Figure 9-1. Design Flow Using the Precision RTL Synthesis Software & Quartus Il Software

WVHDL Verilog HDL
o | Functional/RTL
o Simulation
A J
Constraints . .
- | -
»| & Settings P Precision RTL Synthesis
Technology- Forward Annotated
Specific Netlist Timing Constraints
(.edf) (.tcl/.acf)
Gate-Level
Functional
Simulation
\ Post-Synthesis
» | Constraints Simulation Files
»| & Settings Quartus Il Software — (.vhol.vo)
l Gate-Level Timing
Simulation
o Post Place-and-Route
No ~ Timing & Area Simulation File

Requirements
Satisfied?

(.vho/.va)

Configuration/
Programming
Files (.sof/.pof)

(Program/Configure Device)

Altera Corporation
May 2006

If your area or timing requirements are not met, you can change the
constraints and resynthesize the design in the Precision RTL Synthesis
software, or you can change constraints to optimize the design during
place and route in the Quartus II software. Repeat the process until the
area and timing requirements are met (Figure 9-1).

You can use other options and techniques in the Quartus II software to
meet area and timing requirements. One such option is the WYSIWYG
Primitive Resynthesis option, which can perform optimizations on your
EDIF netlist in the Quartus II software.

Quartus Il Handbook, Volume 1

For information about netlist optimizations, refer to the Netlist
Optimizations and Physical Synthesis chapter in volume 2 of the Quartus II
Handbook. For more recommendations on how to optimize your design,
refer to the Area & Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

While simulation and analysis can be performed at various points in the
design process, final timing analysis should be performed after
placement and routing is complete.

During the synthesis process, the Precision RTL Synthesis software
produces several intermediate and output files. Table 9-1 lists these files
with a short description of each file type.

Table 9-1. Precision RTL Synthesis Software Intermediate & Output Files
File Extension(s) File Description

.sdc Design constraints file in Synopsys Design Constraints File
.psp Precision RTL Synthesis Software Project File
.xdb Mentor Graphics Design Database File
.rep (1) Synthesis Area & Timing Report File
.edf Technology-specific netlist in electronic design interchange format (EDIF)
.acf/.tcl (2) Forward-annotated constraints file containing constraints and assignments

Notes to Table 9-1:

(1) The timing report file includes performance estimates that are based on preplace-and-route information. Use the
fpax reported by the Quartus II software after place-and-route for accurate post-place-and-route timing
information. The area report file includes post-synthesis device resource utilization statistics that may differ from
the resource usage after place-and-route due to black-boxes or further optimizations performed during placement
and routing. Use the device utilization reported by the Quartus II software after place-and-route for final resource
utilization results. See “Synthesizing the Design & Evaluating the Results” on page 9-11 for details.

(2) An Assignment & Configuration File (.acf) file is created only for ACEX® 1K, FLEX® 10K, FLEX 10KA, FLEX 6000,
FLEX 8000, MAX® 7000, MAX 9000, and MAX 3000 devices. The Assignment & Configuration File is generated for
backward compatibility with the MAX+PLUS® II software. A Tcl file for the Quartus II software is created for all
devices, which also contains Tcl commands to create and compile a Quartus II project.

9-4

Altera Corporation
May 2006

Creating a Project & Compiling the Design

Creati ng a After creating your design files, create a project in the Precision RTL
. Synthesis software that contains the basic settings for compiling the

PrOIBCt & design.

Compiling the

Design Creating a Project

Set up your design files as follows:

1. In the Precision RTL Synthesis software, click the New Project icon
in the Design Bar on the left side of the GUL

2. Set the Project Name and the Project Folder. The implementation
name of the design corresponds to this project name.

3. Add input files to the project with the Add Input Files icon in the
Design Bar. Precision RTL Synthesis software automatically detects
the top-level module/entity of the design. It uses the top-level
module/entity to name the current implementation directory, logs,
reports, and netlist files.

4. In the Design Bar, click the Setup Design icon.

5. To specify a target device family, expand the Altera entry, and
choose the target device and speed grade.

6. If desired, set a global design frequency and/or default input and
output delays. This constrains all clock paths and all I/O pins in
your design. Modify the settings for individual paths or pins that do
not require such a setting. All timing constraints are
forward-annotated to the Quartus II software using Tcl scripts.

To generate additional netlist files (for example, an HDL netlist for
simulation), on the Tools menu, point to Set Options > Output and click
Additional Output Netlist. The Precision RTL Synthesis software
generates a separate file for each selected type of file: EDIF, Verilog HDL,
and VHDL.

Compiling the Design

To compile the design into a technology-independent implementation,
click the Compile icon in the Design Bar.

Altera Corporation 9-5
May 2006

Quartus Il Handbook, Volume 1

Setti ng In the next steps, you set constraints and map the design to technology-
. specific cells. The Precision RTL Synthesis software maps the design by
Constraints default to the fastest possible implementation that meets your timing

constraints. To accomplish this, you must specify timing requirements for
the automatically determined clock sources. With this information, the
Precision RTL Synthesis software performs static timing analysis to
determine the location of the critical timing paths. The Precision RTL
Synthesis software achieves the best results for your design when you set
as many realistic constraints as possible. Ensure to set constraints for
timing, mapping, false paths, multicycle paths, and others that control the
structure of the implemented design.

Mentor Graphics recommends creating a Synopsys Design Constraint file
(.sdc) and adding this file to the Constraint Files section of the Project
Files list. You can create this file with a text editor or use the Precision RTL
Synthesis software to generate one automatically for you on the first
synthesis run. To create an initial constraint file manually, set constraints
on design objects (such as clocks, design blocks, or pins) in the Design
Hierarchy browser. By default, the Precision RTL Synthesis software
saves all timing constraints and attributes in two files: precision_rtl.sdc
and precision_tech.sdc. The precision_rtl.sdc file contains constraints set
on the RTL-level database (after compilation) and precision_tech.sdc file
contains constraints set on the gate-level database (after synthesis)
located in the current implementation directory.

You can also enter constraints at the command line. After adding
constraints at the command line, update the SDC file with the update
constraint file command.

= You can add constraints that change infrequently directly to the
HDL source files with HDL attributes or pragmas.

g For more details and examples, refer to the Attributes chapter in the
Precision Synthesis Reference Manual in the Precision Manual Bookcase in
the Help menu.

Setting Timing Constraints

Timing constraints, based on the industry-standard Synopsys Design
Constraint file format, help the Precision RTL Synthesis software to
deliver optimal results. Missing timing constraints can result in
incomplete timing analysis and may prevent timing errors from being
detected. Precision RTL Synthesis software provides constraint analysis
prior to synthesis to ensure that designs are fully and accurately
constrained. All timing constraints are forward-annotated to the
Quartus II software using Tcl scripts.

9-6 Altera Corporation
May 2006

Setting Constraints

Il=" Because the Synopsys Design Constraint file format requires
that timing constraints must be set relative to defined clocks,
you must specify your clock constraints before applying any
other timing constraints.

You also can use multicycle path and false path assignments to relax
requirements or exclude nodes from timing requirements. Doing so can
improve area utilization and allow the software optimizations to focus on
the most critical parts of the design.

«® For details about the syntax of Synopsys Design Constraint commands,
refer to the Precision RTL Synthesis Users Manual and the Precision
Synthesis Reference Manual available in the Precision Manual Bookcase in
the Help menu.

Setting Mapping Constraints

Mapping constraints affect how your design is mapped into the target
Altera device. You can set mapping constraints in the user interface, in
HDL code, or with the set_attribute command in the constraint file.

Assigning Pin Numbers & 1/0 Settings

The Precision RTL Synthesis software supports assigning device pin
numbers, I/O standards, drive strengths, and slew-rate settings to
top-level ports of the design. You can set these timing constraints with the
set_attribute command, the GUI, or by specifying synthesis attributes in
your HDL code. These constraints are written into the Tcl file that is read
by the Quartus II software during place-and-route and do not affect
synthesis.

You can use the set_attribute command in the Synopsys Design
Constraint file to specify pin number constraints, I/O standards, drive
strengths, and slow slew-rate settings. Table 9-2 outlines the format to
use for entries in the Synopsys Design Constraint file.

Table 9-2. Constraint File Settings

Constraint Entry Format for Synopsys Design Constraint File

Pin number | set_attribute -name PIN NUMBER -value "<pin number>" -port <portname>
I/O standard | set_attribute -name IOSTANDARD -value "<I/O Standard>" -port <portname>
Drive set_attribute -name DRIVE -value "<drivestrengthin mA>" -port <portname>
strength

Slew rate set_attribute -name SLEW -value "TRUE | FALSE" -port <portnames
Altera Corporation 9-7

May 2006

Quartus Il Handbook, Volume 1

You can also specify these options in the GUI To specify a pin number or
other I/0O setting in the Precision RTL Synthesis GUI, follow these steps:

1. After compiling the design, expand the Ports entry in the Design
Hierarchy Browser.

2. Under Ports, expand the Inputs or Outputs entry.

= You also can assign I/O settings by right-clicking the pin in
the Schematic Viewer.

3. Right-click the desired pin name and select the Set Input
Constraints option under Inputs or Set Output Constraints option
under Outputs.

4. Enter the desired pin number on the Altera device in the Pin
Number box (Port Constraints dialog box).

5. Select the I/O standard from the IO_STANDARD list.

6. For output pins, you can also select a drive strength setting and slew
rate setting using the DRIVE and SLOWSLEW lists.

You also can use synthesis attributes or pragmas in your HDL code to
make these assignments. The following code samples show you how to
make a pin assignment in your HDL code.

Example 9-1. Verilog HDL Pin Assignment
//pragma attribute clk pin number P10;

Example 9-2. VHDL Pin Assignment
attribute pin number : string
attribute pin number of clk : signal is “P10”;

You can use the same syntax to assign the I/O standard using the
attribute ITOSTANDARD, drive strength using the attribute DRIVE, and
slew rate using the attribute SLEW.

= For more details about attributes and how to set them in your
HDL code, refer to the Precision Synthesis Reference Manual.

9-8 Altera Corporation
May 2006

Setting Constraints

Altera Corporation
May 2006

Assigning 1/0 Registers

The Precision RTL Synthesis software performs timing-driven I/O
register mapping by default. It moves registers into an I/O element (IOE)
when it does not negatively impact the register-to-register performance
of your design, based on the timing constraints.

You can force a register to the device’s IOE using the Complex1/0
constraint. This option does not apply if you turn off I/O pad insertion.
Refer to “Disabling I/O Pad Insertion” for more information.

To force an I/O register into the device’s IOE using the GUI, follow these
steps:

1. After compiling the design, expand the Ports entry in the Design
Hierarchy browser.

2. Under Ports, expand the Inputs or Outputs entry, as desired.

3. Under Inputs or Outputs, right-click the desired pin name and
select Force Register into I0.

=" You also can make the assignment by right-clicking on the pin
in the Schematic Viewer.

For Stratix® II, Cyclone™ II, MAX® I, Stratix, and Cyclone families of
devices, the Precision RTL Synthesis software can move an internal
register to an I/O register without any restrictions on design hierarchy.

For more mature devices, the Precision RTL Synthesis software can move
an internal register to an I/O register only when the register exists in the
top level of the hierarchy. If the register is buried in the hierarchy, you
must flatten the hierarchy so that the buried registers are moved to the
top level of the design.

Disabling I/0 Pad Insertion

The Precision RTL Synthesis software assigns I/O pad atoms (device
primitives used to represent the I/O pins and I/O registers used) to all
ports in the top level of a design by default. In certain situations, you may
not want the software to add I/O pads to all I/O pins in the design. The
Quartus II software can compile a design without I/O pads; however,
including I/O pads provides the Precision RTL Synthesis software with
the most information about the top-level pins in the design.

9-9

Quartus Il Handbook, Volume 1

9-10

Preventing the Precision RTL Synthesis Software from Adding I/0 Pads

If you are compiling a subdesign as a separate project, I/O pins cannot be
primary inputs or outputs of the device and therefore should not have an
I/0 pad associated with them. To prevent the Precision RTL Synthesis
software from adding I/O pads, perform the following steps:

1. On the Tools menu, click Set Options.

2. On the Optimization page of the Options dialog box, turn off Add
I0 Pads, then click Apply.

This procedure adds the following command to the project file:

setup design -addio=false

Preventing the Precision RTL Synthesis Software from Adding an I/0 Pad
on an Individual Pin

To prevent I/O pad insertion on an individual pin when you are using a
black box, such as Double Data Rate (DDR) or a Phase-Locked Loop
(PLL), at the external ports of the design, follow these steps:

1. After compiling the design, in the Design Hierarchy browser,
expand the Ports entry by clicking the +.

2. Under Ports, expand the Inputs or Outputs entry.

3. Under Inputs or Outputs, right-click the desired pin name and click
Set Input Constraints.

4. Inthe Port Constraints dialog box for the selected pin name, turn
off Insert Pad.

L=~ Youalso can make the assignment by right-clicking on the pin
in the Schematic Viewer or by attaching the nopad attribute to
the port in the HDL source code.

Controlling Fan-0Out on Data Nets

Fan-out is defined as the number of nodes driven by an instance or
top-level port. High fan-out nets can have significant delays which can
result in an unroutable net. On a critical path, high fan-out nets can cause
larger delay in a single net segment which can result in the timing
constraints not being met. To prevent this behavior, each device family
has a global fan-out value set in the Precision RTL Synthesis software

Altera Corporation
May 2006

Synthesizing the Design & Evaluating the Results

Synthesizing the
Design &
Evaluating the
Results

Altera Corporation
May 2006

library. In addition, the Quartus II software automatically routes high
fan-out signals on global routing lines in the Altera device whenever
possible.

To eliminate routability and timing issues associated with high fan-out
nets, the Precision RTL Synthesis software also allows you to override the
library default value on a global or individual net basis. You can override
the library value by setting a max _fanout attribute on the net.

To synthesize the design for the target device, click on the Synthesize
icon in the Precision RTL Synthesis Design Bar. During synthesis, the
Precision RTL Synthesis software optimizes the compiled design, then
writes out netlists and reports to the implementation subdirectory of your
working directory after the implementation is saved, using the naming
convention:

<project name>_impl <number>

After synthesis is complete, you can evaluate the results in terms of area
and timing. The Precision RTL Synthesis User’s Manual on the

Mentor Graphics web site describes different results that can be
evaluated in the software.

There are several schematic viewers available in the Precision RTL
Synthesis software: RTL schematic, Technology-mapped schematic, and
Critical Path schematic. These analysis tools allow you to quickly and
easily isolate the source of timing or area issues, and to make additional
constraint or code changes, if needed, to optimize the design.

Obtaining Accurate Logic Utilization & Timing Analysis Reports

Historically, designers have relied on post-synthesis logic utilization and
timing reports to determine how much logic their design requires, how
big a device they need, and how fast the design will run. However,
today’s FPGA devices provide a wide variety of advanced features in
addition to basic registers and look-up tables. The Quartus II software
has advanced algorithms to take advantage of these features, as well as
optimization techniques to both increase performance and reduce the
amount of logic required for a given design. In addition, designs may
contain black boxes and functions that take advantage of specific device
features. Because of these advances, synthesis tool reports provide
post-synthesis area and timing estimates, but the place-and-route
software should be used to obtain final logic utilization and timing
reports.

9-11

Quartus Il Handbook, Volume 1

Exporting
Designs to the
Quartus Il
Software Using
NativeLink
Integration

9-12

The NativeLink feature in the Quartus II software facilitates the seamless
transfer of information between the Quartus II software and EDA tools,
which allows you to run other EDA design entry/synthesis, simulation,
and timing analysis tools automatically from within the Quartus II
software.

After a design is synthesized in the Precision RTL Synthesis software, the
technology-mapped design is written to the current implementation
directory as an EDIF netlist file, along with a Quartus II Project
Configuration File and a Place-and-Route Constraints File, written as Tcl
scripts. You can use the Project Configuration script, <project name>.tcl, to
create and compile a Quartus II project for your EDIF netlist. This script
makes basic project assignments, such as assigning the target device
specified in the Precision RTL Synthesis software, and makes timing
assignments. For many devices, the Project Configuration script calls the
place-and-route constraints script, <project name>_pnr_constraints.tcl, to
make your timing constraints.

Running the Quartus Il Software from within the Precision RTL
Software

Precision RTL Synthesis software also has a built-in place-and-route
environment that allows you to run the Quartus II Fitter and view the
results in the Precision RTL Synthesis GUI This feature is useful when
performing an initial compilation of your design to view post-
place-and-route timing and device utilization results, but not all the
advanced Quartus II options that control the compilation process are
available.

After you specify an Altera device as the target, set the Quartus Il options.
On the Tools menu, click Set Options. On the Integrated Place and Route
page, specify the path to the Quartus II executables in the Path to
Quartus II installation box.

To automate the place-and-route process, click the Run Quartus icon in
the Quartus IT window of the Precision RTL Synthesis Toolbar. The
Quartus II software uses the current implementation directory as the
Quartus II project directory and runs a full compilation in the
background (that is, no user interface appears).

Two primary Precision RTL Synthesis software commands control the
place-and-route process. Place-and-route options are set by the
setup_place_and_route command. The process is started with the
place_and_route command.

Altera Corporation
May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

Precision RTL Synthesis software versions 2004a and later support using
individual Quartus II executables, such as analysis and synthesis
(quartus_map), Fitter (quartus_fit), and Timing Analyzer (quartus_tan),
for improved runtime and memory utilization during place and route.
This flow is referred to as the Quartus II Modular flow option in
Precision RTL Synthesis software and is compatible with Quartus II
software versions beginning with version 4.0. By default, the Precision
RTL Synthesis software generates this Quartus II Project Configuration
File (Tl file) for Stratix II, Stratix, Stratix GX, MAX II, Cyclone II, and
Cyclone device families. When using this flow, all timing constraints that
you set during synthesis are exported to the Quartus II place-and-route
constraints file (<project name>_pnr_constraints.tcl).

For other device families, Precision RTL Synthesis software uses the
Quartus II flow option, which enables the Quartus II compilation flow
that existed in Precision RTL Synthesis software versions earlier than
2004a. The Quartus II Project Configuration File (Icl file) written when
using the Quartus II flow option includes supported timing constraints
that you specified during synthesis. This Tcl file is compatible with all
versions of the Quartus II software; however, the format and timing
constraints do not take full advantage of the features in the Quartus II
software introduced with version 4.0.

To force the use of a particular flow when it is not the default for a certain
device family, use the following command to set up the integrated
place-and-route flow:

setup place_and_route -flow "<Altera Place-and-Route flow>"

Depending on the device family, you can use one of the following flow
options in the command above:

B Quartus II Modular
B Quartus II
B MAX+PLUS II

For example, for the Stratix II or MAX II device families (which were not
supported in Quartus II software versions earlier than 4.0), you can use
only the Quartus II Modular flow. For the Stratix device family you can
use either the Quartus II Modular or Quartus II flows. The FLEX 8000
device family, which is not supported in the Quartus II software, is
supported only by the MAX+PLUS II flow.

Altera Corporation 9-13
May 2006

Quartus Il Handbook, Volume 1

After the design is compiled in the Quartus II software from within the
Precision RTL Synthesis software, you can invoke the Quartus II GUI
manually and then open the project using the generated Quartus II
project file. You can view reports, run analysis tools, specify options, and
run the various processing flows available in the Quartus II software.

Running the Quartus Il Software Manually Using the Precision
RTL Synthesis-Generated Tcl Script

You can use the Quartus II software separately from the Precision RTL
Synthesis software. To run the Tcl script generated by the Precision RTL
Synthesis software to set up your project and start a full compilation,
perform the following steps:

1. Ensure the EDIF and Tcl files are located in the same directory (they
should both be located in the implementation directory by default).

2. In the Quartus II software, on the View menu, point to Utility
Windows and click Tcl Console.

3. At the Tcl Console command prompt, type the command:
source <path>/<project name>.tcl

4. On the File menu, click Open Project. Browse to the project name,
and click Open.

5. Compile the project in the Quartus II software.

Using Quartus Il Software to Launch the Precision RTL Synthesis
Software

Using NativeLink integration, you can set up the Quartus II software to
run the Precision RTL Synthesis software. This feature allows you to use
the Precision RTL Synthesis software to synthesize a design as part of a
normal compilation.

«® For detailed information about using NativeLink integration with the
Precision RTL Synthesis software, go to Specifying EDA Tool Settings in
the Quartus II Help index.

9-14 Altera Corporation
May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

Passing Constraints to the Quartus Il Software

The place-and-route constraints script forward-annotates timing constraints
that you made in the Precision RTL Synthesis software. This integration
allows you to enter these constraints once in the Precision RTL Synthesis
software, and then pass them automatically to the Quartus II software.

The following constraints are translated by the Precision RTL Synthesis
software:

create clock
set_input delay
set_output_delay
set_false path

set multicycle path

create_clock

You can specify a clock in the Precision RTL Synthesis software as shown in
Example 9-3.

Example 9-3. Specifying a Clock using create_clock
create clock -name <clock_name> -period <periodinns> -waveform {<edge_list>} -domain
<ClockDomain> <pin>

The period is always in units of ns. If no clock domain is specified, the clock
belongs to a default clock domain main. All clocks in the same clock domain
are treated as synchronous (that is, related) clocks. If no <clock_name> is
provided, the defaultname virtual default is used. The <edge_list> sets
the rise and fall edges of the clock signal over an entire clock period. The first
value in the list is a rising transition, typically the first rising transition after
time zero. The waveform can contain any even number of alternating edges,
and the edges listed should alternate between rising and falling. The position
of any edge can be equal to or greater than zero but must be equal to or less
than the clock period. If -waveform <edge_list> is not specified, but
-period <period_value> is specified, the default waveform has a rising edge
of 0.0 and a falling edge of <period_value>/2.

The Precision RTL Synthesis software passes the clock definitions to the
Quartus IT software with the create base clock command.

Altera Corporation 9-15
May 2006

Quartus Il Handbook, Volume 1

The following list describes some differences in the clock properties
supported by the Precision RTL Synthesis software and the Quartus II
software:

B The Quartus II software supports only clock waveforms with two
edges in a clock cycle. If the Precision RTL Synthesis software finds
a multi-edge clock, it passes to the Quartus II software and issues an
error message.

B Clocks in the same clock -domain are annotated with the
create_relative_clock command to create related clocks in the
Quartus II software.

B The Quartus II software assumes the first clock edge to be at time 0.0.
If the Precision RTL Synthesis software waveform has a first
transition at a time different than time zero (0.0), the Precision RTL
Synthesis software creates a base clock without any target, then uses
this to create a relative clock with an offset set to the first clock edge.

set_input_delay

This port-specific input delay constraint is specified in the Precision RTL
Synthesis software as shown in Example 9-4.

Example 9-4. Specifying set_input_delay
set_input_delay <delay_value port_pin_list> -clock <clock_name> -rise
-fall -add delay

This constraint is mapped to the set _input_delay setting in the
Quartus II software.

When the reference clock <clock_name> is not specified, all clocks are
assumed to be the reference clocks for this assignment. The input pin
name for the assignment can be an input pin name of a time group. The
software can use the option clock_fall to specify delay relative to the
falling edge of the clock.

Il=" Although the Precision RTL Synthesis software allows you to set
input delays on pins inside the design, these constraints are not
sent to the Quartus II software, and a message is displayed.

9-16 Altera Corporation
May 2006

Exporting Designs to the Quartus Il Software Using NativeLink Integration

set_output_delay

This port-specific output delay constraint is specified in the Precision RTL
Synthesis software as shown in Example 9-5.

Example 9-5. Using the set_output _delay Constraint
set_output_delay <delay_value> <port_pin_list> -clock <clock_name> -rise -fall

-add_delay

This constraint is mapped to the set_output_delay setting in the
Quartus IT software.

When the reference clock <clock_name> is not specified, all clocks are
assumed to be the reference clocks for this assignment. The output pin
name for the assignment can be an output pin name of a time group.

[l=~ Although the Precision RTL Synthesis software allows you to set
output delays on pins inside the design, these constraints are not
sent to the Quartus II software, and a message is displayed.

set_false_path

The false path constraint is specified in the Precision RTL Synthesis
software as shown in Example 9-6.

Example 9-6. Using the set _false_path Constraint
set_false path -to <to_node_list> -from <from_node_list> -reset_path

Altera Corporation
May 2006

The node lists can be a list of clocks, ports, instances, and pins. Multiple
elements in the list can be represented using wildcards such as “*” and

“uy v

This setting in the Precision RTL Synthesis software is mapped to a
set_timing_cut_assignment setting in the Quartus II software.

The node lists for this assignment represents top-level ports and/or nets
connected to instances (end points of timing assignments). The node lists
can contain wildcards. The Quartus II software does not support bus
notation such as A[7:4] in the node lists.

The Quartus II software does not support any setup, hold, rise, or
fall options for this assignment.

9-17

Quartus Il Handbook, Volume 1

The Quartus II software does not support false paths with the through
path specification. Any setting in the Precision RTL Synthesis software
with a -through specification cannot be mapped to a setting in the
Quartus II software.

If you use the £rom or to option without using both options, the
Precision RTL Synthesis command is converted to a Quartus II command
using wildcards. Table 9-3 lists these set false path constraints in
the Precision RTL Synthesis software and the Quartus II software
equivalent.

Table 9-3. set_false_path Constraints

Precision RTL Synthesis Assignment Quartus Il Equivalent
set_false_path -from <from_node_list> set_timing_cut_assignment -to {*} -from <node_list>
set_false_path -to <to_node_list> set_timing_cut_assignmet -to <node_list> -from {*}

set_multicycle_path

This multi-cycle path constraint is specified in the Precision RTL
Synthesis software as shown in Example 9-7.

Example 9-7. Using the set_multicycle_path Constraint
set multicycle path <multiplier_value> [-start] [-end] -to <to_node_list> -from
<from_node_list> -reset_path

9-18

The node lists can contain clocks, ports, instances, and pins. Multiple
elements in the list can be represented using wildcards such as “*” and
“?.” Paths without multicycle path definitions are identical to paths with
multipliers of 1. To add one additional cycle to the datapath, use a
multiplier value of 2. The option start is to indicate that source clock
cycles should be considered for the multiplier. The option end is to
indicate that destination clock cycles should be considered for the
multiplier. The default is to reference the end clock.

This setting in Precision RTL Synthesis software is mapped to a
set_multicycle_ assignment setting in the Quartus II software.

The node lists represent top-level ports and/or nets connected to
instances (end points of timing assignments). The node lists can contain
wildcards; the Quartus II software automatically expands all wildcards.
The Quartus II software does not support bus notation as A[7:4] in the
node list.

Altera Corporation
May 2006

Megafunctions & Architecture-Specific Features

If you use the from or to option without using both options, the
Precision RTL Synthesis command is converted to a Quartus II command
using wildcards. Table 9—4 lists the set_multicycle_ path constraints
in the Precision RTL Synthesis software and the Quartus II software
equivalent

Table 9-4. set_multicycle_path Constraints

Precision RTL Synthesis Assignment Quartus Il Equivalent
set_multicycle_path -from <from_node_list> set_multicycle_assignment -to {*} -from <node_list> <value>
<value>

set_multicycle_path -to <to_node_list> <value> | set_multicycle_assignmet -to <node_list> -from {*} <value>

Megafunctions
& Architecture-
Specific
Features

Altera Corporation
May 2006

The Quartus II software does not support the rise or £all options on
this assignment.

The Quartus II software does not support multicycle path with a
through path specification. Any setting in Precision RTL Synthesis
software with a - through specification cannot be mapped to a setting in
the Quartus II software.

Altera provides parameterizable megafunctions including LPM,
device-specific Altera megafunctions, intellectual property (IP) available
as Altera MegaCore functions, and IP available through the Altera
Megafunction Partners Program (AMPP®M). You can use megafunctions
by instantiating them in your HDL code or inferring them from generic
HDL code.

For more details about specific Altera megafunctions, refer to the
Quartus II Help. For more information about IP functions, consult the
appropriate IP documentation.

If you want to instantiate a megafunction in your HDL code, you can use
the MegaWizard Plug-In Manager to parameterize the function or you
can instantiate the function using the port and parameter definition. The
MegaWizard Plug-In Manager provides a graphical interface for
customizing and parameterizing any available megafunction for the
design. The “Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager” section describes the MegaWizard flow with the
Precision RTL Synthesis software.

The Precision RTL Synthesis software automatically recognizes certain

types of HDL code and infers the appropriate megafunction when a
megafunction will provide optimal results. The Precision RTL Synthesis

9-19

Quartus Il Handbook, Volume 1

software also provides options to control inference of certain types of
megafunctions, as described in the “Inferring Altera Megafunctions from
HDL Code” section.

«® Fora detailed information about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook. This chapter also provides details
about using the MegaWizard Plug-In Manager in the Quartus II
software and explains the files generated by the wizard. In addition, the
chapter provides coding style recommendations and examples for
inferring megafunctions in Altera devices.

Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction and to create a custom megafunction
variation, the MegaWizard creates either a VHDL or Verilog HDL
wrapper file. This file instantiates the megafunction (a black-box
methodology) or, for some megafunctions, generates a fully
synthesizeable netlist for improved results using EDA synthesis tools
such as the Precision RTL Synthesis software (a clear-box methodology).

Clear-Box Methodology

You can use the MegaWizard Plug-In Manager to generate a fully
synthesizable netlist. This flow is referred to as a clear-box methodology
because the Precision RTL Synthesis software can “see” into the
megafunction file. The clear box feature enables the synthesis tool to
report more accurate resource utilization and timing estimates, taking
better advantage of timing driven optimization.

This clear-box feature of the MegaWizard Plug-In Manager is turned on
by choosing the Generate clear box body (for EDA tools only) in the
MegaWizard Plug-In Manager for certain megafunctions. If the option
does not appear, then clear box models are not supported for the selected
megafunction. Turning on this option causes the MegaWizard Plug-In
Manager to generate a synthesizable clear box netlist instead of the
megafunction wrapper file described in the “Black-Box Methodology”
section.

9-20 Altera Corporation
May 2006

Megafunctions & Architecture-Specific Features

Altera Corporation
May 2006

Using MegaWizard-Generated Verilog HDL Files for Clear Box
Megafunction Instantiation

The MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file <output>_inst.v for use in your Precision RTL Synthesis
design. This file can help you instantiate the megafunction clear box
netlist file, <output file>.v, in your top-level design. Include the
megafunction clear box netlist file in your Precision RTL Synthesis project
and the information gets passed to the Quartus II software in the
Precision RTL Synthesis-generated EDIF output file.

Using MegaWizard-Generated VHDL Files for Clear Box
Megafunction Instantiation

The MegaWizard Plug-In Manager generates a VHDL Component
declaration file <output file>.cmp and a VHDL Instantiation template file
<output file>_inst.vhd for use in your design. These files help to
instantiate the megafunction clear box netlist file, <output file>.vhd, in
your top-level design. Include the megafunction clear box netlist file in
your Precision RTL Synthesis project and the information gets passed to
the Quartus II software in the Precision RTL Synthesis-generated EDIF
output file.

Black-Box Methodology

Using the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black-box methodology because the megafunction is
treated as a black box in the Precision RTL Synthesis software. The
black-box wrapper file is generated by default in the MegaWizard
Plug-In Manager and is available for all megafunctions.

The black-box methodology does not allow the synthesis tool any
visibility into the function module and so does not take full advantage of
the synthesis tool’s timing driven optimization.

Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for
Black-Box Megafunction Instantiation

The MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file <output file>_inst.v and a hollow-body black-box module
declaration <output file>_bb.v for use in your Precision RTL Synthesis
design. The instantiation template file helps to instantiate the
megafunction variation wrapper file, <output file>.v, in your top-level
design. Add the hollow-body black-box module declaration

<output file>_bb.v to your Precision RTL Synthesis project to describe
the port connections of the black box.

9-21

Quartus Il Handbook, Volume 1

You do not have to include the megafunction variation wrapper file
<output file>.v in your Precision RTL Synthesis project, but you must add
it to your Quartus II project along with your Precision RTL synthesis-
generated EDIF netlist. Alternately, you can include the file in your
Precision project and then right-click on the file in the input file list, and
select Properties. In the input file properties dialog, turn on Exclude file
from Compile Phase and click OK. When this option is on, the Precision
RTL Synthesis software does not compile this file and the tool makes a
copy of the file in the appropriate directory so that the Quartus II
software can compile the design during placement and routing.

Using MegaWizard Plug-In Manager-Generated VHDL Files for
Black-Box Megafunction Instantiation

The MegaWizard Plug-In Manager generates a VHDL Component
declaration file <output file>.cmp and a VHDL Instantiation template file
<output file>_inst.vhd for use in your Precision RTL Synthesis design.
These files can help you instantiate the megafunction variation wrapper
file, <output file>.vhd, in your top-level design.

You do not have to include the megafunction variation wrapper file,
<output file>.vhd, in your Precision RTL synthesis project, but you must
add it to your Quartus II project with your Precision RTL synthesis-
generated EDIF netlist. Alternately, you can include the file in your
Precision project and then right-click on the file in the input file list, and
select Properties. In the input file properties dialog, turn on Exclude file
from Compile Phase and click OK. When this option is on, the Precision
RTL Synthesis software does not compile this file and the tool makes a
copy of the file in the appropriate directory so that the Quartus II
software can compile the design during placement and routing.

Inferring Altera Megafunctions from HDL Code

The Precision RTL Synthesis software automatically recognizes certain
types of HDL code and maps arithmetic and relational operators, and
memory (RAM and ROM), to efficient technology-specific
implementations. This allows for the use of technology-specific resources
to implement these structures by inferring the appropriate Altera
megafunction when a megafunction will provide optimal results. In some
cases, the Precision RTL Synthesis software has options that you can use
to disable or control inference.

e« For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook, and the Precision
Synthesis Style Guide in the Precision RTL Synthesis Manuals Bookcase in
the Help menu.

9-22 Altera Corporation
May 2006

Megafunctions & Architecture-Specific Features

Multipliers

The Precision RTL Synthesis software detects multipliers in HDL code
and maps them directly to device atoms to implement the multiplier in
the appropriate type of logic. The Precision RTL Synthesis software also
allows you to control the device resources that are used to implement
individual multipliers, as described in the following section.

Controlling DSP Block Inference for Multipliers

By default, the Precision RTL Synthesis software uses DSP blocks
available in the Stratix series of devices to implement multipliers. The
default setting is AUTO, to allow Precision RTL Synthesis software the
flexibility to choose between logic look-up tables (LUTs) and DSP blocks,
depending on the size of the multiplier. You can use the Precision RTL
Synthesis GUI or HDL attributes to direct the mapping to only logic
elements or to only DSP blocks. The options for multiplier mapping in the
Precision RTL Synthesis software are shown in Table 9-5.

Table 9-5. Options for DEDICATED_MULT Parameter to Control Multiplier Implementation in Precision RTL

Synthesis
Value Description
ON Use only DSP blocks to implement multipliers, regardless of the size of the multiplier.
OFF Use only logic (LUTs) to implement multipliers.
AUTO Use logic (LUTs) and DSP blocks to implement multipliers depending on the size of the
multipliers.
Using the GUI
Perform the following steps to set the Use Dedicated Multiplier option
in the Precision RTL Synthesis GUI:
1. Compile the design.
2. In the Design Hierarchy browser, right-click the operator for the
desired multiplier and click Use Dedicated Multiplier.
Altera Corporation 9-23

May 2006

Quartus Il Handbook, Volume 1

Using Attributes

To control the implementation of a multiplier in your HDL code, use the
dedicated_mult attribute with the appropriate value from Table 9-5 as
shown in Example 9-8 and Example 9-9.

Example 9-8. Setting the dedicated_mult Atiribute in Verilog HDL
//synthesis attribute <signal name> dedicated mult <uvalue>

Example 9-9. Setting the dedicated_mult Attribute in VHDL
ATTRIBUTE dedicated mult: STRING;
ATTRIBUTE dedicated mult OF <signal name>: SIGNAL IS <uvalues;

The dedicated_mult attribute can be applied to signals and wires; it
does not work when applied to a register. This attribute can be applied
only to simple multiplier codesuchasa = b * c.

Some signals for which dedicated_mult attribute is set may be
synthesized away by the Precision RTL Synthesis software because of
design optimization. In such cases, if you want to force the
implementation, you should preserve the signal by setting the
preserve_signal attribute to TRUE as shown in Example 9-10.

Example 9-10. Setting the preserve_signal Attribute in Verilog HDL
//synthesis attribute <signal name> preserve_signal TRUE

Example 9-11. Setting the preserve_signal Attribute in VHDL
ATTRIBUTE preserve signal: BOOLEAN;
ATTRIBUTE preserve signal OF <signal name>: SIGNAL IS TRUE;

Example 9-12 and Example 9-13 are examples in Verilog HDL and
VHDL of using the dedicated_mult attribute to implement the given
multiplier in regular logic in the Quartus II software.

Example 9-12. Verilog HDL Multiplier Implemented in Logic
module unsigned mult (result, a, b);

output [15:0] result;

input [7:0] a;

input [7:0] b;

assign result = a * b; //synthesis attribute result dedicated mult OFF
endmodule

9-24 Altera Corporation
May 2006

Megafunctions & Architecture-Specific Features

Example 9-13. VHDL Multiplier Implemented in Logic
LIBRARY ieee;

USE ieee.std _logic_1164.ALL;

USE ieee.std logic_arith.ALL;

USE ieee.std logic unsigned.ALL;

ENTITY unsigned mult IS
PORT (
a: IN std logic_vector (7 DOWNTO O0) ;
b: IN std logic_vector (7 DOWNTO O0) ;
result: OUT std logic vector (15 DOWNTO 0)) ;
ATTRIBUTE dedicated mult: STRING;
END unsigned mult;

ARCHITECTURE rtl OF unsigned mult IS

SIGNAL a int, b _int: UNSIGNED (7 downto 0);

SIGNAL pdt int: UNSIGNED (15 downto 0);
ATTRIBUTE dedicated mult OF pdt_int: SIGNAL IS "OFF";
BEGIN

a_int <= UNSIGNED (a);

b_int <= UNSIGNED (b);

pdt_int <= a_int * b _int;

result <= std logic_ vector (pdt int) ;
END rtl;

Multiplier-Accumulators & Multiplier-Adders

The Precision RTL Synthesis software detects multiply-accumulators or
multiply-adders in HDL code and infers an altmult_accum or
altmult_add megafunction so that the logic can be placed in DSP
blocks, or maps directly to device atoms to implement the multiplier in
the appropriate type of logic.

[l=" The Precision RTL Synthesis software supports inference for
these functions only if the target device family has dedicated
DSP blocks.

The Precision RTL Synthesis software also allows you to control the
device resources used to implement multiply-accumulators or
multiply-adders in your project or in a particular module. Refer to the
“Controlling DSP Block Inference” on page 9-26 section for more
information.

e For more information about DSP blocks in Altera devices, refer to the
appropriate Altera device family handbook and device-specific
documentation. For details about which functions a given DSP block can
implement, refer to the DSP Solutions Center on the Altera web site.

Altera Corporation 9-25
May 2006

Quartus Il Handbook, Volume 1

e« For more information about inferring Multiply-Accumulator and
Multiply-Adder megafunctions in HDL code, refer to the Recommended
HDL Coding Styles chapter in volume 1 of the Quartus II Handbook, and
the Precision Synthesis Style Guide in the Precision RTL Synthesis Manuals
Bookcase in the Help menu.

Controlling DSP Block Inference

By default the Precision RTL Synthesis software infers the altmult_add
oraltmult_accummegafunction as appropriate for your design. These
megafunctions allow the Quartus II software the flexibility to choose
regular logic or DSP blocks depending on the device utilization and the
size of the function.

You can use the extract_mac attribute to prevent the inference of an
altumult addoraltmult_ accummegafunction in a certain module
or entity. The options for this attribute are shown in Table 9-6.

Table 9-6. Options for EXTRACT_MAC Attribute Controlling DSP Implementation

Value Description
TRUE The altmult_addoraltmult_accum megafunction is inferred
FALSE The altmult_add oraltmult_accum megafunction is not inferred

To control inference, use the extract_mac attribute with the
appropriate value from Table 9-6 in your HDL code as shown in
Example 9-14 and Example 9-15.

Example 9-14. Setting the extract_mac Attribute in Verilog HDL
//synthesis attribute <module name> extract _mac <value>

Example 9-15. Setting the extract_mac Attribute in VHDL

ATTRIBUTE extract mac: BOOLEAN;
ATTRIBUTE extract_mac OF <entity name>: ENTITY IS <value>;

To control the implementation of the multiplier portion of a
multiply-accumulator or multiply-adder, you must use the
dedicated_mult attribute as described in the “Controlling DSP Block
Inference” section. See that section for syntax details.

9-26 Altera Corporation
May 2006

Megafunctions & Architecture-Specific Features

Example 9-16 and Example 9-17 use the extract_mac,

dedicated mult, and preserve_ signal attributes (in Verilog HDL
and VHDL) to implement the given DSP function in logic in the Quartus II
software.

Example 9-16. Use of extract_mac, dedicated_mult & preserve_signal in Verilog HDL

module unsig altmult accuml (dataout, dataa, datab, clk, aclr, clken);
input [7:0] dataa, datab;
input clk, aclr, clken;

output [31:0] dataout;
reg [31:0] dataout;
wire [15:0] multa;
wire [31:0] adder_ out;

assign multa = dataa * datab;

//synthesis attribute multa preserve signal TRUE
//synthesis attribute multa dedicated mult OFF
assign adder out = multa + dataout;

always @ (posedge clk or posedge aclr)
begin
if (aclr)
dataout <= 0;
else if (clken)
dataout <= adder out;
end

//synthesis attribute unsig altmult accuml extract mac FALSE
endmodule

Example 9-17. Use of extract_mac, dedicated_mult, and preserve_signal in VHDL
LIBRARY ieee;

USE ieee.std logic 1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std logic signed.all;

ENTITY signedmult add IS
PORT (
a, b, ¢, d: IN STD LOGIC VECTOR (7 DOWNTO O) ;
result: OUT STD LOGIC_VECTOR (15 DOWNTO 0)
)i
ATTRIBUTE preserve signal: BOOLEAN;
ATTRIBUTE dedicated mult: STRING;
ATTRIBUTE extract mac: BOOLEAN;
ATTRIBUTE extract mac OF signedmult add: ENTITY IS FALSE;
END signedmult add;

Altera Corporation 9-27
May 2006

Quartus Il Handbook, Volume 1

ARCHITECTURE rtl OF signedmult add IS

SIGNAL a_int, b _int, c_int, d_int : signed (7 DOWNTO O0) ;
SIGNAL pdt_int, pdt2 int : signed (15 DOWNTO O0) ;
SIGNAL result int: signed (15 DOWNTO O0) ;

ATTRIBUTE preserve signal OF pdt_int: SIGNAL IS TRUE;
ATTRIBUTE dedicated mult OF pdt int: SIGNAL IS "OFF";
ATTRIBUTE preserve signal OF pdt2 int: SIGNAL IS TRUE;
ATTRIBUTE dedicated mult OF pdt2 int: SIGNAL IS "OFF";

BEGIN
a_int <= signed
b int <= signed
c_int <= signed
d_int <= signed

)
)i
).
)

(a
(b
(c);
(d

I

pdt_int <= a_int * b _int;

pdt2_int <= c_int * d_int;

result_int <= pdt_int + pdt2_int;
result <= STD LOGIC_ VECTOR (result int);

END rtl;

Incremental
Compilation &
Block-Based
Design

9-28

RAM & ROM

The Precision RTL Synthesis software detects memory structures in HDL
code and converts them to an operator that infers an alt syncram or
lpm ram_dp megafunction, depending on the device family. The
software then places these functions in memory blocks.

The software supports inference for these functions only if the target
device family has dedicated memory blocks.

For more information about inferring RAM and ROM megafunctions in
HDL code, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook, and the Precision Synthesis Style
Guide in the Precision RTL Synthesis Manuals Bookcase in the Help
menu.

As designs become more complex and designers work in teams, a
block-based hierarchical or incremental design flow is often an effective
design approach. In an incremental compilation flow, you can make
changes to part of the design while maintaining the placement and
performance of unchanged parts of the design. Design iterations can be
made dramatically faster by focusing new compilations on particular
design partitions and merging results with the results of previous
compilations of other partitions. In a bottom-up or team-based approach,
you can perform optimization on individual blocks and then integrate
them into a final design and optimize it at the top level.

Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Altera Corporation
May 2006

Using the Precision RTL Synthesis software, you can create different
netlist files for different partitions of a design hierarchy. Doing this makes
each partition independent of the others for either a top-down or a
bottom-up incremental compilation or LogicLock design flow. In either
case, only the portions of a design that have been updated must be
recompiled during design iterations. You can make changes and
resynthesize one partition in a design to create a new netlist without
affecting the synthesis results or fitting of other partitions. The following
steps show the general top-down compilation flow when using these
features of the Quartus II software:

1. Create Verilog HDL or VHDL design files as you do in the regular
design flow.

2. Determine which hierarchical blocks you want to treat as separate
partitions in your design.

3. Create a project with multiple implementations (or create multiple
projects) in the Precision RTL Synthesis software, one for each
partition in the design.

4. Disable I/O pad insertion in the implementations for lower-level
partitions.

5. Compile and synthesize each implementation or each project in the
Precision RTL Synthesis software, and make constraints as in the
regular design flow.

6. Import the EDIF netlist and the Tcl file for each partition into the
Quartus II software and set up the Quartus II project(s) to use the
incremental compilation or LogicLock methodology.

7. Compile your design in the Quartus II software and preserve the
compilation results using the post-fit netlist type in incremental
compilation or back-annotation in the LogicLock methodology.

8. When you make design or synthesis optimization changes to part of
your design, resynthesize only the changed partition to generate the
new EDIF netlist and Tcl file. Do not resynthesize the
implementations or projects for the unchanged partitions.

9. Import the new EDIF netlist and Tcl file into the Quartus II software

and recompile the design in the Quartus II software using the
incremental compilation or LogicLock methodology.

9-29

Quartus Il Handbook, Volume 1

9-30

For more information about creating partitions and using the
incremental compilation in the Quartus II software, refer to the

Quartus 11 Incremental Compilation for Hierarchical & Team-Based Design
chapter in volume 1 of the Quartus II Handbook. For more information
about using the LogicLock feature in the Quartus II software, refer to the
LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Hierarchy & Design Considerations

To ensure the proper functioning of the synthesis flow, you can create
separate partitions only for modules, entities, or existing netlist files. In
addition, each module or entity must have its own design file. If two
different modules are in the same design file but are defined as being part
of different partitions, you cannot maintain incremental synthesis
because both regions must be recompiled when you change one of the
modules.

Altera recommends that you register all inputs and outputs of each
partition. This makes logic synchronous and avoids any delay penalty on
signals that cross partition boundaries.

If you use boundary tri-states in a lower level block, the Precision RTL
Synthesis software pushes the tri-states through the hierarchy to the top
level to make use of the tri-state drivers on output pins of Altera devices.
Because pushing tri-states requires optimizing through hierarchies,
lower level tri-states are not supported with a block-based compilation
methodology. You should use tri-state drivers only at the external output
pins of the device and in the top-level block in the hierarchy.

For more tips on design partitioning, refer to the Design Recommendations
for Altera Devices chapter in volume 1 of the Quartus II Handbook.

Creating a Design with Separate Netlist Files

The first step in a hierarchical or incremental design flow is to ensure that
different parts of your design do not affect each other. Ensure that you
have separate netlists for each partition in your design so that you can
take advantage of the incremental compilation and LogicLock design
flows in the Quartus II software. If the whole design is in one netlist file,
changes in one partition affect other partitions because of possible node
name changes when you resynthesize the design.

Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Altera Corporation
May 2006

You can create different implementations for each partition in your
Precision RTL project, which allows you to switch between partitions
without leaving the current project file, or you can create a separate
project for each partition if you need separate projects for a bottom-up or
team-based design flow.

Create a separate implementation or a separate project for each lower
level module and for the top-level design that you want to maintain as a
separate EDIF netlist file. Implement black-box instantiations of lower
level modules in your top-level implementation or project.

For more information about managing implementations and projects,
refer to the Precision RTL Synthesis User’s Manual in the Precision
Manuals Bookcase in the Help menu.

When synthesizing the implementations for lower level modules,
perform these steps:

1. Turn off Add IO Pads on the Optimization page under Set Options
(Tools menu).

2. Read the HDL files for the modules.

[~ Modules may include black-box instantiations of lower
level modules that are also maintained as separate EDIF
files.

3. Add constraints for all partitions in the design.

When synthesizing the top-level design implementation, perform these
steps:

1. Read the HDL files for top-level designs.
2. Create black boxes for lower level modules in the top-level design.

3. Add constraints.

I In a top-down incremental compilation flow, constraints made
on lower level modules are not passed to the Quartus II
software. Ensure that appropriate constraints are made in the
top-level Precision RTL Synthesis project, or in the Quartus II
project.

The following sections describe an example of implementing black boxes

to create separate EDIF netlists. Figure 9-2 shows an example of a design
hierarchy separated into various partitions.

9-31

Quartus Il Handbook, Volume 1

Figure 9-2. Partitions in a Hierarchical Design

Partition Top
A
B C
!—l—\ Iﬁ
D E F
Partition B Partition F

In Figure 9-2, the top-level partition contains the top-level block in the
design (block A) and the logic that is not defined as part of another
partition. In this example, the partition for top-level block A also includes
the logic in the C subblock. Because block F is contained in its own
partition, it is not treated as part of the top-level partition A. Another
separate partition, B, contains the logic in blocks B, D, and E. In a
team-based design, different engineers may work on the logic in different
partitions. One netlist is created for the top-level module A and its
submodule C, another netlist is created for B and its submodules D and
E, while a third netlist is created for F. To create multiple EDIF netlist files
for this design, follow these steps:

1. Generate an EDIF file for module B. Use B.v/.vhd, D.v/.vhd, and
E.v/.vhd as the source files.

2. Generate an EDIF file for module F. Use E.v/.vhd as the source file.

3. Generate a top-level EDIF file for module A. Use A.v/.vhd and
C.v/.vhd as the source files. Ensure that you create black boxes for
modules B and F, which were optimized separately in the previous
steps.

9-32 Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Creating Black Boxes in Verilog HDL

Any design block that is not defined in the project or included in the list
of files to be read for a project is treated as a black box by the software. In
Verilog HDL, you must provide an empty module declaration for any
module that is treated as a black box.

A black-box example for top-level file A.v follows. Use this same
procedure for any lower level files, which also contain a black box for any
module beneath the current level of hierarchy.

Example 9-18. Verilog HDL Black Box for Top-Level File A.v
module A (data_in, clk, e, 1ld, data out);
input data_in, clk, e, 1d;
output [15:0] data_out;

wire [15:0] cnt out;

B Ul (.data_in (data_in), .clk(clk), .1d (1d),.data out (cnt_out));
F U2 (.d(cnt_out), .clk(clk), .e(e), .g(data out));

// Any other code in A.v goes here.
endmodule

// Empty Module Declarations of Sub-Blocks B and F follow here.
// These module declarations (including ports) are required for black
// boxes.

module B (data_in, clk, 1d, data out);
input data _in, clk, 1d;
output [15:0] data out;

endmodule

module F (d,

input [15:0]

input clk,

output [15:0] g;

endmodule

a;

Altera Corporation
May 2006

Creating Black Boxes in VHDL

Any design block that is not defined in the project or included in the list
of files to be read for a project is treated as a black box by the software. In
VHDL, you need a component declaration for the black box just like any
other block in the design.

9-33

Quartus Il Handbook, Volume 1

A black box for the top-level file A.vhd is shown in the following
example. Follow this same procedure for any lower level files that also
contain a black box or for any block beneath the current level of hierarchy.

Example 9-19. VHDL Black Box for Top-Level File A.vhd
LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY A IS
PORT (data in : IN INTEGER RANGE 0 TO 15;
clk, e, 1d : IN STD LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15);
END A;

ARCHITECTURE a_arch OF A IS
COMPONENT B PORT (
data_in : IN INTEGER RANGE 0 TO 15;
clk, 1d : IN STD LOGIC;
d out : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

COMPONENT F PORT (
d : IN INTEGER RANGE 0 TO 15;
clk, e: IN STD LOGIC;
g : OUT INTEGER RANGE 0 TO 15);
END COMPONENT;

-- Other component declarations in A.vhd go here
signal cnt out : INTEGER RANGE 0 TO 15;

BEGIN
Ul : B
PORT MAP (
data_in => data_in,
clk => clk,
1ld => 1d,
d out => cnt out);

U2 : F
PORT MAP (
d => cnt_out,
clk => clk,
e => e,
g => data_out) ;

-- Any other code in A.vhd goes here

END a_arch;

9-34 Altera Corporation
May 2006

Incremental Compilation & Block-Based Design

Altera Corporation
May 2006

After you complete the steps outlined in this section, you have different
EDIF netlist files for each partition of the design. These files are ready for
use in the incremental compilation or LogicLock design methodologies in
the Quartus II software.

Creating Quartus Il Projects for Multiple EDIF Files

The Precision RTL Synthesis software creates a Tcl file for each EDIF file,
and provides the Quartus II software with the appropriate constraints
and information to set up a project. For details about using the Tcl script
generated by the Precision RTL software to set up your Quartus II project
and to pass your top-level constraints, refer to “Running the Quartus II
Software Manually Using the Precision RTL Synthesis-Generated Tcl Script” on
page 9-14.

Depending on your design methodology, you can create one Quartus II
project for all EDIF netlists (a top-down flow), or a separate Quartus II
project for each EDIF netlist (a bottom-up flow). In a top-down
compilation design flow, you create design partition assignments and
floorplan location assignments for each partition in the design within a
single Quartus II project. This methodology provides the best quality of
results and performance preservation during incremental changes to
your design. You may need to use a bottom-up design flow when each
partition must be optimized separately, such as in certain team-based
design flows.

To perform a bottom-up compilation in the Quartus II software, create
separate Quartus II projects and import each design partition into a
top-level design using the incremental compilation export and import
features to maintain placement results. Alternately, you can use the
LogicLock design methodology to import each lower-level partition and
maintain placement results.

The following sections describe how to create the Quartus II projects for
these two design flows.

Creating a Single Quartus Il Project for a Top-Down Incremental
Compilation Flow

Use the <top-level project>.tcl file generated for the top-level partition to
create your Quartus II project and import all the netlists into this one
Quartus II project for an incremental compilation flow. You can optimize
all partitions within the single Quartus II project and take advantage of
the performance preservation and compilation time reduction that
incremental compilation provides. Figure 9-3 shows the design flow for
the example design in Figure 9-2.

9-35

Quartus Il Handbook, Volume 1

All the constraints from the top-level implementation are passed to the
Quartus II software in the top-level Tcl file, but any constraints made only
in the lower level implementations within the Precision RTL Synthesis
software are not forward-annotated. Enter these constraints manually in
your Quartus II project.

Figure 9-3. Design Flow Using Multiple EDIF Files with One Quartus Il Project

Quartus Il Project

a.edf
Use a.tel to import | l
top-level Precsion RTL *
synthesis software
assignments.
Enter any lower level
b.edf f.edf

assignments manually.

Creating Multiple Quartus Il Projects for a Bottom-Up Flow

Use the Tcl files generated by the Precision RTL Synthesis software for
each Precision RTL Synthesis software implementation or project to
generate multiple Quartus II projects, one for each partition in the design.
Each designer in the project can optimize their block separately in the
Quartus II software and export the placement of their blocks using the
incremental compilation or LogicLock design methodology. Designers
should create a LogicLock region for each block; the top-level designer
should then import all the blocks and assignments into the top-level
project. Figures 9—4 shows the design flow for the example design in
Figure 9-2.

9-36 Altera Corporation
May 2006

Conclusion

Figure 9-4. Design Flow: Using Multiple EDIF Files with Multiple Quartus Il Projects

Quartus Il Project

a.edf ,
l«—— Use a.tel to import
| Precision RTL synthesis
)\ software assignments.
Quartus Il Project Quartus Il Project
. b.edf f.edf
Use b.tcl to import —» l«— Use f.tcl to import
Precision RTL gynthesis Precision RTL synthesis
software assignments. software assignments.
Conclusion Advanced synthesis is an important part of the design flow. The Mentor

Altera Corporation
May 2006

Graphics Precision RTL Synthesis software and Quartus II design flow
allows you to control how to prepare your design files for the Quartus II
place-and-route process. This allows you to improve performance and
optimize a design for use with Altera devices. Several of the
methodologies outlined in this chapter can help you optimize a design to
achieve performance goals and save design time.

9-37

Quartus Il Handbook, Volume 1

9-38 Altera Corporation
May 2006

Z;\l |:| —E N 10. Mentor Graphics

o, LeonardoSpectrum Support

QI151010-6.0.0

Introduction

Altera Corporation
May 2006

As programmable logic devices (PLDs) become more complex and
require increased performance, advanced synthesis has become an
important part of the design flow. Combining HDL coding techniques,
Mentor Graphics LeonardoSpectrum™ software constraints, and
Quartus® I options provide the performance increase needed for today’s
system-on-a-programmable-chip (SOPC) designs.

The LeonardoSpectrum software is a mature synthesis tool supporting
legacy devices and many current devices. The LeonardoSpectrum
software version 2005b supports the Stratix® II, Stratix, Stratix GX,
Cyclone™ II, Cyclone, MAX® II, MAX series, APEX™ series, FLEX®
series, and ACEX® series device families. Altera® recommends using the
advanced Precision Synthesis software for new designs in new device
families.

For more information about Precision RTL Synthesis, refer to the Mentor
Graphics Precision RTL Synthesis Support chapter in volume 1 of the
Quartus II Handbook.

This chapter documents key design methodologies and techniques for
achieving better performance in Altera devices using the
LeonardoSpectrum and Quartus II design flow.

I This chapter assumes that you have set up, licensed, and are
familiar with the LeonardoSpectrum software.

To obtain and license the LeonardoSpectrum software, refer to the
Mentor Graphics web site at www.mentor.com. For information about
installing the LeonardoSpectrum software and setting up your working
environment, refer to the LeonardoSpectrum Installation Guide and the
LeonardoSpectrum User's Manual.

10-1

Quartus Il Handbook, Volume 1

De s|g n Flow gollowing are the basic steps in a LeonardoSpectrum-Quartus II design
ow:

Create Verilog HDL or VHDL design files in the LeonardoSpectrum
software or a text editor.

Import the Verilog HDL or VHDL design files into the
LeonardoSpectrum software for synthesis.

Select a target device and add timing constraints and compiler
directives to help optimize the design during synthesis.

Synthesize the project in the LeonardoSpectrum software.

Create a Quartus II project and import the technology-specific EDIF
Input File (.edf) netlist and the Tcl Script File (.tcl) generated by the
LeonardoSpectrum software into the Quartus II software for
placement and routing, and for performance evaluation.

After obtaining place-and-route results that meet your needs,
configure or program the Altera device.

Figure 10-1 shows the recommended design flow using the
LeonardoSpectrum and Quartus II software.

If your area and timing requirements are satisfied, use the programming
files generated from the Quartus II software to program or configure the
Altera device. As shown in Figure 10-1, if the area or timing requirements
are not met, change the constraints in the LeonardoSpectrum software
and re-run the synthesis. Repeat the process until the area and timing
requirements are met. You can also use other Quartus II software options
and techniques to meet the area and timing requirements.

10-2

Altera Corporation
May 2006

Design Flow

Figure 10-1. Recommended Design Flow Using LeonardoSpectrum & Quartus Il Software

VHDL
(.vhd)
o | Functional/RTL
= Simulation
A 4
p| Constraints | LeonardoSpectrum Software
7| & Settings =
Technology- Forward Annotated
Specific Netlist Timing Constraints
(.edf) (.tcl/.acf)
A Gate-Level
» > Functional
Simulation
Post-Synthesis
Constraints g Simulation Files
> & Settings > Quartus Il Software —— (.vhol.vo)
¢ Gate-Level Timing
> > Simulation
No Timing & Area PostSPIacl:e—_and';Toute
Requirements imulation File
Satisfied? (:vhol.vo)
Configuration/
Programming
Files (.sof/.pof)
C Program/Configure Device>
The LeonardoSpectrum software supports both VHDL and Verilog HDL
source files. With the appropriate license, it also supports mixed
synthesis, allowing a combination of VHDL and Verilog HDL source files.
Altera Corporation 10-3

May 2006

Quartus Il Handbook, Volume 1

After synthesis, the LeonardoSpectrum software produces several
intermediate and output files. Table 10-1 lists these file extensions with a
short description of each file.

Table 10-1. LeonardoSpectrum Intermediate & Output Files

File

Extension(s) File Description

.xdb Technology-independent register transfer level (RTL) netlist file that can only be read by the
LeonardoSpectrum software.

.edf Technology-specific output netlist in electronic design interchange format (EDIF).

.acf/.tcl (1) Forward-annotated constraint file containing constraints and assignments.

Note to Table 10-1:

(1) Anassignment and configuration (.acf) file is created only for ACEX 1K, FLEX series, and MAX series devices. The
assignment and configuration file is generated for backward compatibility with the MAX+PLUS® II software. A
Tcl Script File (.tcl) is generated for the Quartus II software which also contains Tcl commands to create a
Quartus II project.

Il Altera recommends that you do not use project directory names
that include spaces. Some file operations in the
LeonardoSpectrum software do not work correctly if the path
name contains spaces.

Specify timing constraints and compiler directives for the design in the
LeonardoSpectrum software, or in a constraint file (.ctr). Many of these
constraints are forward-annotated in the Tcl file for use by the Quartus II
software.

The Leonardolnsight™ Schematic Viewer is an add-on graphical tool for
schematic views of the technology-independent RTL netlist (.xdb) and
the technology-specific gate-level results. You can use the Schematic
Viewer to visually analyze and debug the design. It also supports cross
probing between the RTL and gate-level schematics, the design browser,
and the source code in the HDLInventor™ text editor.

10-4 Altera Corporation
May 2006

Optimization Strategies

Optimization
Strategies

Altera Corporation
May 2006

You can configure most general settings in the Quick Setup tab in the
LeonardoSpectrum user interface. Other Flow tabs provide additional
options, and some Flow tabs include multiple Power tabs (at the bottom
of the screen) with still more options. Advanced optimization options in
the LeonardoSpectrum software include timing-driven synthesis,
encoding style, resource sharing, and mapping I/O registers.

Timing-Driven Synthesis

The LeonardoSpectrum software supports timing-driven synthesis
through user-assigned timing constraints to optimize the performance of
the design. Setting constraints in the LeonardoSpectrum software are
straightforward. Constraints such as clock frequency can be specified
globally or for individual clock signals. The following sections describe
how to set the various types of timing constraints in the
LeonardoSpectrum software.

The timing constraints described in the “Global Power Tab” section are
set in the Constraints Flow tab. In this tab, there are Power tabs at the
bottom, such as Global and Clock, for setting various constraints.

Global Power Tab

The Global tab is the default Power tab in the Constraints Flow tab.
Specify the global clock frequency here. The Clock Frequency on the
Quick Setup tab is equivalent to the Registers to Registers delay setting.
You can also specify the following: Input Ports to Registers, Registers to
Output Ports, and Inputs to Outputs delays that correspond to global
tsu, tco, and tpp requirements, respectively, in the Quartus II software.
The timing diagram on this tab reflects the settings you have made.

Clock Power Tab

You can set various constraints for each clock in your design. First, select
the clock name in the Clock(s) window. The clock names appear after the
design is read from the Input Flow tab. Configure settings for that
particular clock and click Apply. If necessary, you can also set the Duty
Cycle to a value other than the default 50%. The timing diagram shows
these settings.

If a clock has an Offset from the main clock, which is considered to be

time “0”, this constraint corresponds to the
OFFSET_FROM_BASE_CLOCK setting in the Quartus II software.

10-5

Quartus Il Handbook, Volume 1

You can specify the pin number for the clock input pin in the Pin Location
field. This pin number is passed to the Quartus II software for
place-and-route, but does not affect synthesis in the LeonardoSpectrum
software.

Input & Output Power Tabs

Configure settings for individual input or output pins in the Input and
Output tabs. First, select a name in the Input Ports or Output Ports
window. The names appear after the design is read from the Input Flow
tab. Then make the setting for that pin as described below.

The Arrival Time setting indicates that the input signal arrives a specified
time after the rising clock edge (time “0”). This setting constrains the path
from the pin to the first register by including the arrival time in the total
delay, and corresponds to the EXTERNAL INPUT_ DELAY assignment in
the Quartus II software.

The Required Time setting indicates the maximum delay after time “0”
that the output signal should arrive at the output pin. This setting directly
constrains the register to output delay, and corresponds with the
EXTERNAL_ OUTPUT DELAY assignment in the Quartus II software.

Specify the pin number for the I/O pin in the Pin Location field. This pin
number is passed to the Quartus II software for place-and-route, but does
not affect synthesis in the LeonardoSpectrum software.

Other Constraints

The following sections describe other constraints that can be set with the
LeonardoSpectrum user interface.

Encoding Style

The LeonardoSpectrum software encodes state machines during the
synthesis process. To improve performance when coding state machines,
separate state machine logic from all arithmetic functions and data paths.
Once encoded, a design cannot be re-encoded later in the optimization
process. You must follow a particular VHDL or Verilog HDL coding style
for the LeonardoSpectrum software to identify the state machine.

10-6 Altera Corporation
May 2006

Optimization Strategies

Table 10-2 shows the state machine encoding styles supported by the
LeonardoSpectrum software.

Table 10-2. State Machine Encoding Styles in the LeonardoSpectrum Software

Style Description

Binary Generates state machines with the fewest possible flipflops. Binary state machines are useful for
area-critical designs when timing is not the primary concern.

Gray Generates state machines where only one flipflop changes during each transition. Gray-encoded
state machines tend to be glitchless.

One-hot Generates state machines containing one flipflop for each state. One-hot state machines provide
the best performance and shortest clock-to-output delays. However, one-hot implementations are
usually larger than binary implementations.

Random Generates state machines using random state machine encoding. Only use random state
machine encoding when no other implementation achieves the desired results.

Auto (default) | Implements binary or one-hot encoding, depending on the size of enumerated types in the state

machine.
The Encoding Style setting is created in the Input Flow tab. It instructs
the software to use a particular state machine encoding style for all state
machines. The default Auto selection implements binary or one-hot
encoding, depending on the size of enumerated types in the state
machine.
-

) To ensure proper recognition and improve performance when coding
state machines, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus II Handbook for design guidelines.

Resource Sharing

You can also enable the Resource Sharing setting in the Input Flow tab.
This setting allows optimization to reduce device resources. You should
generally leave this setting turned on.

Mapping 1/0 Registers

The Map 1/O Registers option is located in the Technology Flow tab. The
Map I/O Registers option applies to Altera FPGAs containing I/O cells
(IOCs) or I/O elements (IOE). If the option is turned on, input or output
registers are moved into the device’s I/O cells for faster setup or
clock-to-output times.

Altera Corporation 10-7
May 2006

Quartus Il Handbook, Volume 1

Ti m|ng Ana |ysis The LeonardoSpectrum software reports successful synthesis with an
. information message in the Transcript or Information window.
with the Estimated device usage and timing results are reported in the Device
Leonardo- Utilization section of this window. Figure 10-2 shows an example of a
LeonardoSpectrum compilation report.
Spectrum

Software Figure 10-2. LeonardoSpectrum Compilation Report

Device UTtilization for EFZ0KZ00EQCZ208

Reszource U=ed Avail Ttilization

I0= 22 136 16.18%
L= 114 4320 1.37%
Hemory Bits 0 106496 0.00%

Clock Freguency Eeport

Clock . Frequency

clk . 52.2 MHz
clk? : 149 .5 MH=

Critical Path Report

The LeonardoSpectrum software estimates the timing results based on
timing models. The LeonardoSpectrum software has no information
about how the design is placed and routed in the Quartus II software, so
it cannot report accurate routing delays. Additionally, if the design
includes any black-boxed Altera-specific functions, the
LeonardoSpectrum software does not report timing information for these
functions.

Final timing results are generated by the Quartus II software and are
reported separately in the Transcript or Information window if the Run
Integrated Place and Route option is turned on. Refer to “Integration
with the Quartus II Software” on page 10-10 for more information.

10-8 Altera Corporation
May 2006

Exporting Designs Using NativeLink Integration

Exporting
Designs Using
NativeLink
Integration

Altera Corporation
May 2006

You can use NativeLink® integration to integrate the LeonardoSpectrum
software and the Quartus II software with a single GUI for both the
synthesis and place-and-route operations. NativeLink integration allows
you to run the Quartus II software from within the LeonardoSpectrum
software GUI, or to run the LeonardoSpectrum software from within the
Quartus II software GUI for device families supported in the Quartus II
software.

Generating Netlist Files

The LeonardoSpectrum software generates an EDIF netlist file readable
as an input file in the Quartus II software for place-and-route. Select the
EDIF file option name in the Output Flow tab. The EDIF netlist is also
generated if the Auto option is turned on in the Output Flow tab.

Including Design Files for Black-Boxed Modules

If the design has black-boxed megafunctions, be sure to include the
MegaWizard® Plug-In Manager-generated custom megafunction
variation design file in the Quartus II project directory, or add it to the list
of project files for place-and-route.

Passing Constraints with Scripts

The LeonardoSpectrum software can write out a Tcl file called
<project name>.tcl. This file contains commands to create a Quartus II
project along with constraints and other assignments. To output a Tcl
script, turn on the Write Vendor Constraint Files option in the Output
Flow tab.

To create and compile a Quartus II project using the Tcl file generated
from the LeonardoSpectrum software, perform the following steps in the
Quartus II software:

1. Place the EDIF netlist files and Tcl scripts in the same directory.

2. On the View menu, point to Utility, and click Tcl Console to open
the Quartus II Tcl Console.

3. Type source <path>/<project name> . tcl +, at a Tcl Console
command prompt.

4. On the File menu, click Open Project to open the new project. On
the Processing menu, click Start Compilation.

10-9

Quartus Il Handbook, Volume 1

Guidelines for
Altera
Megafunctions
& LPM
Functions

10-10

Integration with the Quartus Il Software

The Place And Route section in the Quick Setup tab allows you to
launch the Quartus II software from within the LeonardoSpectrum
software. Turn on the Run Integrated Place and Route option to start the
compilation using the Quartus II software to show the fitting and
performance results. You can also run the place-and-route software by
turning on the Run Quartus option on the Physical Flow tab and clicking
Run PR.

To use integrated place-and-route software, on the Options menu, point
to Place and Route Path and click Tools, and specify the location of the
Quartus II software executable file (browse to <Quartus II software
installation directory>/bin).

Altera provides parameterizable megafunctions ranging from simple
arithmetic units, such as adders and counters, to advanced phase-locked
loop (PLL) blocks, multipliers, and memory structures. These functions
are performance-optimized for Altera devices. Megafunctions include
the library of parameterized modules (LPM), device-specific
megafunctions such as PLLs, LVDS, and digital signal processing (DSP)
blocks, intellectual property (IP) available as Altera

MegaCore® functions, and IP available through the Altera Megafunction
Partners Program (AMPPs™).

I'=" Some IP cores require that you synthesize them in the
LeonardoSpectrum software. Refer to the user guide for the
specific IP.

There are two methods for handling megafunctions in the
LeonardoSpectrum software: inference and instantiation.

The LeonardoSpectrum software supports inferring some of the Altera
megafunctions, such as multipliers, DSP functions, and RAM and ROM
blocks. The LeonardoSpectrum software supports all Altera
megafunctions through instantiation.

Instantiating Altera Megafunctions

There are two methods of instantiating Altera megafunctions in the
LeonardoSpectrum software. The first and least common method is to
directly instantiate the megafunction in the Verilog HDL or VHDL code.
The second method, to maintain target technology awareness, is to use
the MegaWizard Plug-In Manager in the Quartus II software to setup and
parameterize a megafunction variation. The megafunction wizard creates
awrapper file that instantiates the megafunction. The advantage of using
the megafunction wizard in place of the instantiation method is the

Altera Corporation
May 2006

Guidelines for Altera Megafunctions & LPM Functions

Altera Corporation
May 2006

megafunction wizard properly sets all the parameters and you do not
need the library support required in the direct instantiation method. This
is referred to as the black box methodology.

'~ Altera recommends using the megafunction wizard to ensure
that the ports and parameters are set correctly.

When directly instantiating megafunctions, see the Quartus II Help for a
list of the ports and parameters.

Inferring Altera Memory Elements

The LeonardoSpectrum software can infer memory blocks from

Verilog HDL or VHDL code. When the LeonardoSpectrum software
detects a RAM or ROM from the style of the RTL code at a
technology-independent level, it then maps the element to a generic
module in the RTL database. During the technology-mapping phase of
synthesis, the LeonardoSpectrum software maps the generic module to
the most optimal primitive memory cells, or Altera megafunction, for the
target Altera technology.

For more information about inferring RAM and ROM megafunctions,
including examples of VHDL and Verilog HDL code, see the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

Inferring RAM

The LeonardoSpectrum software supports RAM inference for various
device families. The restrictions for the LeonardoSpectrum software to
successfully infer RAM in a design are listed below:

B The write process must be synchronous

B Theread process can be asynchronous or synchronous depending on
the target Altera architecture

B Resets on the memory are not supported

Table 10-3 shows a summary of the minimum memory sizes and
minimum address widths for inferring RAM in various device families.

To disable RAM inference, set the extract_ramand infer_ ram
variables to “false.” On the Tools menu, click Variable Editor to enter the
value “false” when synthesizing in the user interface with the Advanced
Flow tabs, or add the commands set extract ram false and set
infer ram false to your synthesis script.

10-11

Quartus Il Handbook, Volume 1

Table 10-3. Inferring RAM Summary

Stratix Il, Stratix, Stratix GX | APEX Series, Excalibur &
& Cyclone Series Mercury FLEX 10KE & ACEX 1K
RAM primitive altsyncram altdpram altdpram
Minimum RAM size 2 bits 64 bits 128 bits
Minimum address width 1 bit 4 bits 5 bits
Inferring ROM

You can implement ROM behavior in HDL source code with CASE
statements or specify the ROM as a table. The LeonardoSpectrum
software infers both synchronous and asynchronous ROM depending on
the target Altera device. For example, memory for the Stratix series
devices must be synchronous to be inferred.

To disable ROM inference, set the extract rom variable to “false.” To
enter the value “false” when synthesizing in the user interface with the
Advanced Flow tabs, on the Tools menu, click Variable Editor, or add the
commands set extract_rom false to your synthesis script.

Inferring Multipliers & DSP Functions

Some Altera devices include dedicated DSP blocks optimized for DSP
applications. The following Altera megafunctions are used with DSP
block modes:

B lpm mult
B altmult accum
B altmult add

You can instantiate these megafunctions in the design or have the
LeonardoSpectrum software infer the appropriate megafunction by
recognizing a multiplier, multiplier-accumulator (MAC), or
multiplier-adder in the design. The Quartus II software maps the
functions to the DSP blocks in the device during place-and-route.

e For more information about inferring multipliers and DSP functions,
including examples of VHDL and Verilog HDL code, refer to the
Recommended HDL Coding Styles chapter in volume 1 of The Quartus IT
Handbook.
10-12 Altera Corporation

May 2006

Guidelines for Altera Megafunctions & LPM Functions

Altera Corporation
May 2006

Simple Multipliers

The 1pm mult megafunction implements the DSP block in the simple
multiplier mode. The following functionality is supported in this mode:

B The DSP block includes registers for the input and output stages, and
an intermediate pipeline stage
B Signed and unsigned arithmetic is supported

Multiplier Accumulators

The altmult_accum megafunction implements the DSP block in the
multiply-accumulator mode. The following functionality is supported in
this mode:

B The DSP block includes registers for the input and output stages, and
an intermediate pipeline stage

B The output registers are required for the accumulator

B The input and pipeline registers are optional

B Signed and unsigned arithmetic is supported

1= If the design requires input registers to be used as shift registers,
use the black-boxing method to instantiate the
altmult_accum megafunction.

Multiplier Adders

The LeonardoSpectrum software can infer multiplier adders and map
them to either the two-multiplier adder mode or the four-multiplier
adder mode of the DSP blocks. The LeonardoSpectrum software maps the
HDL code to the correct altmult_add function.

The following functionality is supported in these modes:

B The DSP block includes registers for the input and output stages and
an intermediate pipeline stage

B Signed and unsigned arithmetic is supported, but support for the
Verilog HDL “signed” construct is limited

Controlling DSP Block Inference

In devices that include dedicated DSP blocks, multipliers,
multiply-accumulators, and multiply-adders can be implemented either
in DSP blocks or in logic. You can control this implementation through
attribute settings in the LeonardoSpectrum software.

10-13

Quartus Il Handbook, Volume 1

As shown in Table 104, attribute settings in the LeonardoSpectrum
software control the implementation of the multipliers in DSP blocks or
logic at the signal block (or module), and project level.

Table 10-4. Attribute Settings for DSP Blocks in the LeonardoSpectrum Software Note (1)

Level Attribute Name Value Description
Global |extract mac (2) |TRUE |All multipliers in the project mapped to DSP blocks.
FALSE | All multipliers in the project mapped to logic.
Module |extract mac (3) | TRUE Multipliers inside the specified module mapped to DSP blocks.
FALSE | Multipliers inside the specified module mapped to logic.
Signal | dedicated mult |ON LPM inferred and multipliers implemented in DSP block.

OFF

LPM inferred, but multipliers implemented in logic by the Quartus Il
software.

LCELL

LPM not inferred, and multipliers implemented in logic by the
LeonardoSpectrum software.

AUTO

LPM inferred, but the Quartus Il software automatically maps the
multipliers to either logic or DSP blocks based on the Quartus Il
software place-and-route.

Notes to Table 10—4:
(1) The extract_mac attribute takes precedence over the dedicated mult attribute.

(2) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for the entire project.
(3) For devices with DSP blocks, the extract_mac attribute is set to “true” by default for all modules.

Global Attribute

You can set the global attribute extract_mac to control the
implementation of multipliers in DSP blocks for the entire project. You
can set this attribute using the script interface. The script command is:

set extract _mac <value>

Module Level Attributes

You can control the implementation of multipliers inside a module or
component by setting attributes in the Verilog HDL source code. The
attribute used is extract_mac. Setting this attribute for a module affects
only the multipliers inside that module. The command is:

//synthesis attribute <module name> extract mac <value>

10-14

Altera Corporation
May 2006

Guidelines for Altera Megafunctions & LPM Functions

The Verilog HDL and VHDL codes samples shown in Examples 10-1
and 10-2 show how to use the extract_mac attribute.

Example 10-1. Using Module Level Attributes in Verilog HDL Code
module mult_add (dataa, datab, datac, datad, result);
//synthesis attribute mult_add extract_mac FALSE

// Port Declaration

input [15:0] dataa;

input [15:0] datab;

input [15:0] datac;

input [15:0] datad;

output [32:0] result;

// Wire Declaration
wire [31:0] multO_result;
wire [31:0] multl result;

// Implementation

// Each of these can go into one of the 4 mults in a

// DSP block

assign mult0_result = dataa * “signed datab;
//synthesis attribute multO_result preserve_signal TRUE

assign multl result = datac * datad;

// This adder can go into the one-level adder in a DSP
// block
assign result = (multO_result + multl result);

endmodule

Altera Corporation 10-15
May 2006

Quartus Il Handbook, Volume 1

Example 10-2. Using Module Level Attributes in VHDL Code
library ieee ;
USE ieee.std_logic_1164.all;

USE ieee.std logic_arith.all;

entity mult_acc is
generic (size : integer := 4)
port (
a: in std logic_vector (size-1 downto 0)
b: in std logic vector (size-1 downto 0)
clk : in std_logic;
accum_out: inout std logic_vector (2*size downto 0)

i

i

i

) g
attribute extract mac : boolean;

attribute extract_mac of mult_acc : entity is FALSE;
end mult_acc;

architecture synthesis of mult_acc is
signal a_int, b_int : signed (size-1 downto 0);
signal pdt_int : signed (2*size-1 downto 0);
signal adder_out : signed (2*size downto 0);

begin
a_int <= signed (a);
b_int <= signed (b);
pdt_int <= a_int * b_int;
adder_out <= pdt_int + signed(accum_out) ;
process (clk)

begin
if (clk'event and clk = '1l') then
accum_out <= std_logic_vector (adder out);
end if;

end process;
end synthesis ;

Signal Level Attributes

You can control the implementation of individual 1pm_mult multipliers
by using the dedicated_mult attribute as shown below:

//synthesis attribute <signal_name> dedicated mult <value>

Il The dedicated_mult attribute is only applicable to signals or
wires; it is not applicable to registers.

10-16 Altera Corporation

May 2006

Guidelines for Altera Megafunctions & LPM Functions

Table 10-5 shows the supported values for the dedicated mult
attribute.

Table 10-5. Values for the dedicated_mult Attribute

Value Description

ON LPM inferred and multipliers implemented in DSP block.

OFF LPM inferred and multipliers synthesized, implemented in logic, and optimized by the Quartus Il
software. (1)

LCELL | LPM not inferred and multipliers synthesized, implemented in logic, and optimized by the
LeonardoSpectrum software. (1)

AUTO | LPM inferred but the Quartus Il software maps the multipliers automatically to either the DSP block or
logic based on resource availability.

Note to Table 10-5:
(1) Althoughboth dedicated_mult=OFF and dedicated_mult=LCELLS result in logic implementations, the optimized
results in these two cases may differ.

[l=~ Some signals for which the dedicated mult attribute is set
may get synthesized away by the LeonardoSpectrum software
due to design optimization. In such cases, if you want to force
the implementation, the signal is preserved from being
synthesized away by setting the preserve_signal attribute
to “true.”

The extract_mac attribute must be set to “false” for the
module or project level when using the dedicated mult
attribute.

Examples 10-3 and 10—4 are samples of Verilog HDL and VHDL codes,
respectively, using the dedicated _mult attribute.

Altera Corporation 10-17
May 2006

Quartus Il Handbook, Volume 1

Example 10-3. Signal Attributes for Controlling DSP Block Inference in Verilog HDL Code
module mult (AX, AY, BX, BY, m, n, o, p);

input [7:0] AX, AY, BX, BY;

output [15:0] m, n, o, p;

wire [15:0] m_i = AX * AY; // synthesis attribute m i dedicated mult ON
// synthesis attribute m_i preserve signal TRUE

//Note that the preserve_signal attribute prevents

// signal m_i from getting synthesized away

wire [15:0] n_i = BX * BY; // synthesis attribute n_i dedicated mult OFF
wire [15:0] o_i = AX * BY; // synthesis attribute o i dedicated mult AUTO
wire [15:0] p_i = BX * AY; // synthesis attribute p i dedicated mult LCELL
// since n i , o i , p i signals are not preserved,

// they may be synthesized away based on the design

assign m = m_i;

assign n = n_i;

assign o = o_ij;

assign p = p_1i;

endmodule

Example 10-4. Signal Attributes for Controlling DSP Block Inference in VHDL Code
library ieee ;

USE ieee.std logic 1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std logic unsigned.all;

USE ieee.std_logic_signed.all;

ENTITY mult is
PORT(AX,AY,BX,BY: IN
std_logic_vector (17 DOWNTO 0) ;
m,n,o,p: OUT
std_logic_vector (35 DOWNTO 0)) ;
attribute dedicated mult: string;
attribute preserve_signal : boolean
END mult;
ARCHITECTURE struct of mult is

signal m_i, n i, o i, p_i : unsigned (35 downto 0);
attribute dedicated mult of m i:signal is "ON";
attribute dedicated mult of n_i:signal is "OFF";
attribute dedicated mult of o i:signal is "AUTO";
attribute dedicated mult of p_i:signal is "LCELL";

begin

m_i <= unsigned (AX) * unsigned (AY);
n i <= unsigned (BX) * unsigned (BY);
o_i <= unsigned (AX) * unsigned (BY);
p_ i <= unsigned (BX) * unsigned (AY);
m <= std logic vector (m_i);

n <= std_logic_vector(n_i);

o <= std logic_vector(o i) ;

p <= std_logic_vector(p_i);

end struct;

10-18 Altera Corporation

May 2006

Block-Based Design with the Quartus Il Software

Block-Based
Design with the
Quartus Il
Software

Altera Corporation
May 2006

Guidelines for Using DSP Blocks

In addition to the guidelines mentioned earlier in this section, use the
following guidelines while designing with DSP blocks in the
LeonardoSpectrum software:

B To access all the control signals for the DSP block, such as sign 3,
sign B, and dynamic addnsub, use the black-boxing technique.

B While performing signed operations, ensure that the specified data
width of the output port matches the data width of the expected
result. Otherwise, the sign bit may be lost or data may be incorrect
because the sign is not extended.

For example, if the data widths of input A and B are width_a and
width_ b, respectively, then the maximum data width of the result
canbe (width a + width_ b +2) for the four-multipliers adder
mode. Thus, the data width of the output port should be less than or
equal to (width_a + width b +2).

B While using the accumulator, the data width of the output port
should be equal to or greater than (width_a + width_b). The
maximum width of the accumulator can be
(width a +width b + 16). Accumulators wider than this are
implemented in logic.

B If the design uses more multipliers than are available in a particular
device, you may get a no fit error in the Quartus II software. In such
cases, use the attribute settings in the LeonardoSpectrum software to
control the mapping of multipliers in your design to DSP blocks or
logic.

The incremental compilation and LogicLock™ block-based design flows
enable users to design, optimize, and lock down a design one section at a
time. You can independently create and implement each logic module
into a hierarchical or team-based design. With this method, you can
preserve the performance of each module during system integration and
have more control over placement of your design. To maximize the
benefits of the incremental compilation or LogicLock design
methodology in the Quartus II software, you can partition a new design
into a hierarchy of netlist files during synthesis in the LeonardoSpectrum
software.

The LeonardoSpectrum software allows you to create different netlist
files for different sections of a design hierarchy. Different netlist files
mean that each section is independent of the others. When synthesizing
the entire project, only portions of a design that have been updated have
to be re-synthesized when you compile the design. You can make
changes, optimize, and re-synthesize your section of a design without
affecting other sections.

10-19

Quartus Il Handbook, Volume 1

a®® For more information about incremental compilation, refer to the
Quartus II Incremental Compilation for Hierarchical & Team-Based Design
chapter in volume 1 of the Quartus II Handbook. For more information
about the LogicLock feature, refer to the LogicLock Design Methodology
chapter in volume 2 of the Quartus II Handbook.

Hierarchy & Design Considerations

You must plan your design’s structure and partitioning carefully to use
incremental compilation and LogicLock features effectively. Optimal
hierarchical design practices include partitioning the blocks at functional
boundaries, registering the boundaries of each block, minimizing the I/O
between each block, separating timing-critical blocks, and keeping the
critical path within one hierarchical block.

«® For more recommendations for hierarchical design partitioning, refer to
the Design Recommendations for Altera Devices chapter in volume 1 of the
Quartus II Handbook.

To ensure the proper functioning of the synthesis tool, you can apply the
LogicLock option in the LeonardoSpectrum software only to modules,
entities, or netlist files. In addition, each module or entity should have its
own design file. If two different modules are in the same design file but
are defined as being part of different regions, it is difficult to maintain
incremental synthesis since both regions would have to be recompiled
when you change one of the modules or entities.

If you use boundary tri-states in a lower-level block, the
LeonardoSpectrum software pushes (or “bubbles”) the tri-states through
the hierarchy to the top-level to take advantage of the tri-state drivers on
the output pins of the Altera device. Because bubbling tri-states requires
optimizing through hierarchies, lower-level tri-states are not supported
with a block-level design methodology. You should use tri-state drivers
only at the external output pins of the device and in the top-level block in
the hierarchy.

If the hierarchy is flattened during synthesis, logic is optimized across
boundaries, preventing you from making LogicLock assignments to the
flattened blocks. Altera recommends preserving the hierarchy when
compiling the design. In the Optimize command of your script, use the
Hierarchy Preserve command or in the user interface select Preserve in
the Hierarchy section on the Optimize Flow tab.

10-20 Altera Corporation
May 2006

Block-Based Design with the Quartus Il Software

Altera Corporation
May 2006

If you are compiling your design with a script, you can use an alternative
method for preventing optimization across boundaries. In this case, use
the Auto hierarchy setting and set the auto_dissolve attribute to false
on the instances or views that you want to preserve (that is, the modules
with LogicLock assignments) using the following syntax:

set _attribute -name auto dissolve -value false
.work . <blockl> . INTERFACE

This alternative method flattens your design according to the
auto_dissolve limits, but does not optimize across boundaries where
you apply the attribute as described.

For more details on LeonardoSpectrum attributes and hierarchy levels,
refer to the LeonardoSpectrum documentation in the Help menu.

Creating a Design with Multiple EDIF Files

The first stage of a hierarchical design flow is to generate multiple EDIF
files, enabling you to take advantage of the incremental compilation
flows in the Quartus II software. If the whole design is in one EDIF file,
changes in one block affect other blocks because of possible node name
changes. You can generate multiple EDIF files either by using the
LogicLock option in the LeonardoSpectrum software, or by manually
black boxing each block that you want to be part of a LogicLock region.

Once you have created multiple EDIF files using one of these methods,

you must create the appropriate Quartus II project(s) to place-and-route
the design.

Generating Multiple EDIF Files Using the LogicLock Option

This section describes how to generate multiple EDIF files using the
LogicLock option in the LeonardoSpectrum software. When synthesizing
a top-level design that includes LogicLock regions, use the following
general steps:

1. Read in the Verilog HDL or VHDL source files.

2. Add LogicLock constraints.

3. Optimize and write output netlist files, or choose Run Flow.

10-21

Quartus Il Handbook, Volume 1

10-22

To set the correct constraints and compile the design, use the following
steps in the LeonardoSpectrum software:

1.

11.

Switch to the Advanced Flow tab instead of the Quick Setup tab
(Tools menu).

Set the target technology and speed grade for the device on the
Technology Flow tab.

Open the input source files on the Input Flow tab.

Click Read on the Input Flow tab to read the source files but not
begin optimization.

Select the Module Power tab located at the bottom of the
Constraints Flow tab.

Click on a module to be placed in a LogicLock region in the
Modules section.

Turn on the LogicLock option.

Type the desired LogicLock region name in the text field under the
LogicLock option.

Click Apply.

Repeat steps 6-9 for any other modules that you want to place in
LogicLock regions.

In some cases, you are prompted to save your LogicLock and
other non-global constraints in a Constraints File (.ctr) when you
click anywhere off the Constraints Flow tab. The default name
is <project name>.ctr. This file is added to your Input file list, and
must be manually included later if you recreate the project.

The command written into the LeonardoSpectrum Information
or Transcript Window is the Tcl command that gets written into
the CTR file. The format of the “path” for the module specified
in the command should be work.<module>.INTERFACE. To
ensure that you don’t see an optimized version of the module,
do not perform a Run Flow on the Quick Setup tab prior to
setting LogicLock constraints. Always use the Read command,
as described in step 4.

Continue making any other settings as required on the Constraints
tab.

Altera Corporation
May 2006

Block-Based Design with the Quartus Il Software

12. Select Preserve in the Hierarchy section on the Optimize tab to
ensure that the hierarchy names are not flattened during
optimization.

13. Continue making any other settings as required on the Optimize
tab.

14. Run your synthesis flow using each Flow tab, or click Run Flow.

Synthesis creates an EDIF file for each module that has a LogicLock
assignment in the Constraints Flow tab. You can now use these files with
the incremental compilation flows in the Quartus II software.

I'=" You might occasionally see multiple EDIF files and LogicLock
commands for the same module. An “unfolded” version of a
module is created when you instantiate a module more than
once and the boundary conditions of the instances are different.
For example, if you apply a constant to one instance of the block,
it might be optimized to eliminate unneeded logic. In this case,
the LeonardoSpectrum software must create a separate module
for each instantiation (unfolding). If this unfolding occurs, you
see more than one EDIF file, and each EDIF file has a LogicLock
assignment to the same LogicLock region. When you import the
EDIF files to the Quartus Il software, the EDIF files created from
the module are placed in different LogicLock regions. Any
optimizations performed in the Quartus II software using the
LogicLock methodology must be performed separately for each
EDIF netlist.

Creating a Quartus Il Project for Multiple EDIF Files Including LogicLock
Regions

The LeonardoSpectrum software creates Tcl files that provide the
Quartus II software with the appropriate LogicLock assignments,
creating a region for each EDIF file along with the information to set up a
Quartus II project.

The Tcl file contains the commands shown in Example 10-5 for each
LogicLock region. This example is for module taps where the name
taps_region was typed as the LogicLock region name in the
Constraints Flow tab in the LeonardoSpectrum software.

Altera Corporation 10-23
May 2006

Quartus Il Handbook, Volume 1

Example 10-5. Tcl File for Module Taps with taps_region as LogicLock Region Name
project add_assignment {taps} {taps_region} {} {}
{LL_auTO SIZE} {ON}
project add_assignment {taps} {taps region} {} {}
{LL_STATE} {FLOATING}
project add_assignment {taps} {taps region} {} {}
{LL_MEMBER OF} {taps_region}

These commands create a LogicLock region with Auto-Size and
Floating-Origin properties. This flexible LogicLock region allows the
Quartus II Compiler to select the size and location of the region.

«® For more information about Tcl commands, refer to the TCL Scripting
chapter in volume 2 of the Quartus II Handbook.

You can use the following methods to import the EDIF file and
corresponding Tcl file into the Quartus II software:

B Use the Tcl file that is created for each EDIF file by the
LeonardoSpectrum software. This method allows you to generate
multiple Quartus II projects, one for each block in the design. Each
designer in the project can optimize their block separately in the
Quartus II software and preserve their results. Altera recommends
this method for bottom-up incremental and hierarchical design
methodologies because it allows each block in the design to be
treated separately. Each block can be brought into one top-level
project with the import function.

or

B Use the <top-level project>.tcl file that contains the assignments for all
blocks in the project. This method allows the top-level designer to
import all the blocks into one Quartus II project. You can optimize all
modules in the project at once in a top-down design flow. If
additional optimization is required for individual blocks, each
designer can use their EDIF file to create a separate project at that
time. You would then have to add new assignments to the top-level
project using the import function.

In both methods, you can use the following steps to create the Quartus II
project, import the appropriate LogicLock assignments, and compile the
design:

1. Place the EDIF and Tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console
to open the Quartus II Tcl Console.

10-24 Altera Corporation
May 2006

Block-Based Design with the Quartus Il Software

Altera Corporation
May 2006

3. Type source <path>/<project name>.tcl +.

4. To open the new completed project, on the File menu, click Open
Project. Browse to and select the project name, and click Open.

For more information about importing design using incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
& Team-Based Design chapter in volume 1 of the Quartus II Handbook. For
more information about importing LogicLock assignments, see the
LogicLock Design Methodology chapter in volume 2 of the Quartus II
Handbook.

Generating Multiple EDIF Files Using Black Boxes

This section describes how to manually generate multiple EDIF files
using the black-boxing technique. The manual flow, described below, was
supported in older versions of the LeonardoSpectrum software. The
manual flow is discussed here because some designers want more control
over the project for each submodule.

To create multiple EDIF files in the LeonardoSpectrum software, create a
separate project for each module and top-level design that you want to
maintain as a separate EDIF file. Implement black-box instantiations of
lower-level modules in your top-level project.

When synthesizing the projects for the lower-level modules and the
top-level design, use the following general guidelines.

For lower-level modules:

B Turn off Map IO Registers for the target technology on the
Technology Flow tab.

B Read the HDL files for the modules. Modules may include black-box
instantiations of lower-level modules that are also maintained as
separate EDIF files.

B Add constraints.

B Turn off Add I/O Pads on the Optimize Flow tab.

For the top-level design:

B Turn on Map IO Registers if you want to implement input and/or
output registers in the IOEs for the target technology on the
Technology Flow tab.

B Read the HDL files for the top-level design.

e Black-box lower-level modules in the top-level design

B Add constraints (clock settings should be made at this time).

10-25

Quartus Il Handbook, Volume 1

10-26

The following sections describe examples of black-box modules in a
block-based and team-based design flow.

In Figure 10-3, the top-level design A is assigned to one engineer
(designer 1), while two-engineers work on the lower levels of the design.
Designer 2 works on B and its submodules D and E, while designer 3
works on C and its submodule F.

Figure 10-3. Block-Based & Team-Based Design Example

Designer 1
A
B C
D E F
Designer 2 Designer 3

One netlist is created for the top-level module A, another netlist is created
for B and its submodules D and E, while another netlist is created for C
and its submodule F. To create multiple EDIF files, perform the following
steps:

1. Generate an EDIF file for module C. Use C.v and FE.v as the source
files.

2. Generate an EDIF file for module B. Use B.v, D.v, and E.v as the
source files.

3. Generate a top-level EDIF file A.v for module A. Ensure that your
black-box modules B and C were optimized separately in steps
1and 2.

Altera Corporation
May 2006

Block-Based Design with the Quartus Il Software

Black Boxing in Verilog HDL

Any design block that is not defined in the project, or included in the list
of files to be read for a project, is treated as a black box by the software. In
Verilog HDL, you must also provide an empty module declaration for the
module that you plan to treat as a black box.

Example 10-6 shows an example of the A.v top-level file. If any of your
lower-level files also contain a black-boxed lower-level file in the next
level of hierarchy, follow the same procedure.

Example 10-6. Verilog HDL Top-Level File Black-Boxing Example

module A (data_in,clk,e,1d,data_out);

input data_in, clk, e, 1d;
output [15:0] data_out;

reg [15:0] cnt_out;
reg [15:0] reg_a_out;

B Ul (.data_in (data_in),.clk (clk), .e(e), .1ld (1d),
.data_out (cnt_out));

C U2 (.d(ent_out), .clk (clk), .e(e), .q (reg_out));
// Any other code in A.v goes here.

endmodule

// Empty Module Declarations of Sub-Blocks B and C follow here.

// These module declarations (including ports) are required for blackboxing.

module B (data_in,e,1ld,data_out);
input data_in, clk, e, 1d;
output [15:0] data_out;
endmodule

module C (d,clk,e,q);
input d, clk, e;
output [15:0] g;

endmodule
= Previous versions of the LeonardoSpectrum software required
an attribute statement //exemplar attribute Ul NOOPT
TRUE, which instructs the software to treat the instance U1l as a
black box. This attribute is no longer required, although it is still
supported in the software.
Altera Corporation 10-27

May 2006

Quartus Il Handbook, Volume 1

Black Boxing in VHDL

Any design block that is not defined in the project, or included in the list
of files to be read for a project, is treated as a black box by the software. In
VHDL, you need a component declaration for the black box which is
normal for any other block in the design.

Example 10-7 shows an example of the A.vhd top-level file. If any of your
lower-level files also contain a black-boxed lower-level file in the next
level of hierarchy, follow the same procedure.

10-28 Altera Corporation
May 2006

Block-Based Design with the Quartus Il Software

Example 10-7. VHDL Top-Level File Black-Boxing Example
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY A IS
PORT (data_in : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
1d : IN STD LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15
)
END A;

ARCHITECTURE a_arch OF A IS

COMPONENT B PORT (
dataﬁin : IN INTEGER RANGE 0 TO 15;
clk : IN STD_LOGIC;
e : IN STD_LOGIC;
1d : IN STD_LOGIC;
data_out : OUT INTEGER RANGE 0 TO 15
)
END COMPONENT;

COMPONENT C PORT (
d : IN INTEGER RANGE 0 TO 15;
clk : IN STD LOGIC;
e : IN STD_LOGIC;
g : OUT INTEGER RANGE 0 TO 15
)
END COMPONENT;

-- Other component declarations in A.vhd go here

signal cnt_out : INTEGER RANGE 0 TO 15;
signal reg a out : INTEGER RANGE 0 TO 15;
BEGIN
CNT : C
PORT MAP (

data_in => data_in,

clk => clk,

e => e,

1ld => 1d,

data_out => cnt_out
)

REG A : D
PORT MAP (
d => cnt_out,
clk => clk,
e => e,
q => reg_a_out
)

-- Any other code in A.vhd goes here

END a_arch;

Altera Corporation 10-29
May 2006

Quartus Il Handbook, Volume 1

Previous versions of the LeonardoSpectrum software required
the attribute statement noopt of C: component is TRUE,
which instructed the software to treat the component C as a
black box. This attribute is no longer required, although it is still
supported in the software.

After you have completed the steps outlined in this section, you have a
different EDIF netlist file for each block of code. You can now use these
files for incremental compilation flows in the Quartus II software.

Creating a Quartus Il Project for Multiple EDIF Files

The LeonardoSpectrum software creates a Tcl file for each EDIF file,
which provides the Quartus II software with the information to set up a
project.

As in the previous section, there are two different methods for bringing
each EDIF and corresponding Tcl file into the Quartus II software:

10-30

Use the Tcl file that is created for each EDIF file by the
LeonardoSpectrum software. This method generates multiple
Quartus II projects, one for each block in the design. Each designer in
the project can optimize their block separately in the Quartus II
software and preserve their results. Designers should create a
LogicLock region for each block; the top-level designer should then
import all the blocks and assignments into the top-level project.
Altera recommends this method for bottom-up incremental and
hierarchical design methodology because it allows each block in the
design to be treated separately; each block can be imported into one
top-level project.

or

Use the <top-level project>.tcl file that contains the information to set
up the top-level project. This method allows the top-level designer to
create LogicLock regions for each block and bring all the blocks into
one Quartus II project. Designers can optimize all modules in the
project at once in a top-down design flow. If additional optimization
is required for individual blocks, each designer can take their EDIF
file and create a separate Quartus II project at that time. New
assignments would then have to be added to the top-level project
manually or through the import function.

Altera Corporation
May 2006

Block-Based Design with the Quartus Il Software

Altera Corporation
May 2006

For more information about importing designs using incremental
compilation, refer to the Quartus II Incremental Compilation for Hierarchical
& Team-Based Design chapter in volume 1 of the Quartus II Handbook. For
more information about importing LogicLock regions, refer to the
LogicLock Design Methodology chapter in the volume 2 of the Quartus IT
Handbook.

In both methods, you can use the following steps to create the Quartus II
project and compile the design:

1. Place the EDIF and Tcl files in the same directory.

2. On the View menu, point to Utility Windows and click Tcl Console.
The Quartus II Tcl Console is shown.

3. AtaTcl prompt, type source <path>/<project name>.tcl +.

4. On the File menu, click Open Project. In the New Project window,
browse to and select the project name. Click Open.

5. To create LogicLock assignments, on the Assignments menu, click
LogicLock Regions Window.

6. On the Processing menu, click Start Compilation.

Incremental Synthesis Flow

If you make changes to one or more submodules, you can manually create
new projects in the LeonardoSpectrum software to generate a new EDIF
netlist file when there are changes to the source files. Alternatively, you
can use incremental synthesis to generate a new netlist for the changed
submodule(s). To perform incremental synthesis in the
LeonardoSpectrum software, use the script described in this section to
reoptimize and generate a new EDIF netlist for only the affected modules
using the LeonardoSpectrum top-level project. This method applies only
when you are using the LogicLock option in the LeonardoSpectrum
software.

Modifications Required for the LogicLock_Incremental.tcl Script File

There are three sets of entries in the file that must be modified before
beginning incremental synthesis. The variables in the Tcl file are
surrounded by angle brackets (< >).

1. Add the list of source files that are included in the project. You can

enter the full path to the file or just the file name if the files are
located in the working directory.

10-31

Quartus Il Handbook, Volume 1

2. Indicate which modules in the design have changed. These modules
are the EDIF files that are regenerated by the LeonardoSpectrum
software. These modules contain a LogicLock assignment in the
original compilation.

Obtain the LeonardoSpectrum software path for each
module by looking at the CTR file that contains the
LogicLock assignments from the original project. Each
LogicLock assignment is applied to a particular module in
the design.

3. Enter the target device family using the appropriate device
keyword. The device keyword is written into the Transcript or
Information window when you select a target Technology and click
Load Library or Apply on the Technology Flow tab in the graphical
user interface.

Example 10-8 shows the LogicLock_Incremental.tcl file for the
incremental synthesis flow. You must modify the Tcl file before you can
use it for your project.

10-32 Altera Corporation
May 2006

Block-Based Design with the Quartus Il Software

Example 10-8. LogicLock_Interface.tcl Script File for Incremental Synthesis
HH#dHHH R R R R R

LogicLock Incremental Synthesis Flow
S

You must indicate which modules have changed (based on the source files
that have changed) and provide the complete path to each module

You must also specify the list of design files and the target Altera
technology being used

Read the design source files.
read <list of design files separated by spaces (such as block1.v block2.v)>

Get the list of modified modules in bottom-up "depth first search" order
where the lower-level blocks are listed first (these should be modules

that had LogicLock assignments and separate EDIF netlist files in the

first pass and had their source code modified)

set list of modified modules {.work.<block2>.INTERFACE .work.<blockl>.INTERFACE}

foreach module $list of modified modules {
set err_rc [regexp {N.(.*)\. (.*)\.(.*)} Smodule unused lib module name arch]
present_design $module

Run optimization, preserving hierarchy. You must specify a technology.
optimize -ta <technology> -hierarchy preserve

Ensure that the lower-level module is not optimized again when
optimizing higher-level modules.
dont_ touch $module

}

foreach module $list of modified modules {
set err rc [regexp {\.(.*)\.(.*)\.(.*)} $module unused lib module name arch]
present_design $module
undont_touch $module
auto_write $module_name.edf
Ensure that the lower-level module is not written out in the EDIF file
of the higher-level module.
noopt S$module

Running the Tcl Script File in LeonardoSpectrum

Once you have modified the Tcl script, as described in the “Modifications
Required for the LogicLock_Incremental.tcl Script File” on page 10-31,
you can compile your design using the script.

Altera Corporation 10-33
May 2006

Quartus Il Handbook, Volume 1

Conclusion

10-34

You can run the script in batch mode at the command line prompt using
the following command:

spectrum -file <Tcl_file> ¢

To run the script from the interface, on the File menu, click Run Script,
then browse to your Tcl file and click Open.

The LogicLock incremental design flow uses module-based design to
help you preserve performance of modules and have control over
placement. By tagging the modules that require separate EDIF files, you
can make multiple EDIF files for use with the Quartus II software from a
single LeonardoSpectrum software project.

Advanced synthesis is an important part of the design flow. Taking
advantage of the Mentor Graphics LeonardoSpectrum software and the
Quartus II design flow allows you to control how your design files are
prepared for the Quartus II place-and-route process, as well as to improve
performance and optimize a design for use with Altera devices. The
methodologies outlined in this chapter can help optimize a design to
achieve performance goals and save design time.

Altera Corporation
May 2006

Compiler FPGA Support

Z;\l |:| —E N 11. Synopsys Design

QI151014-6.0.0

®

Introduction

Altera Corporation
May 2006

Programmable logic device (PLD) designs have reached the complexity
and performance requirements of ASIC designs. As a result, advanced
synthesis has taken on a more important role in the design process. This
chapter documents the usage and design flow of the Synopsys Design
Compiler FPGA (DC FPGA) synthesis software with Altera® devices and
Quartus® II software. DC FPGA supports Stratix® II, Stratix, Stratix GX,

™

Cyclone™ II, and Cyclone devices.

This chapter assumes that you have set up and licensed the DC FPGA
software and Altera Quartus II software.

This chapter is primarily intended for ASIC designers experienced with
the Design Compiler (DC) software who are now developing PLD
designs, and experienced PLD designers who would like an introduction
to the Synopsys DC FPGA software.

To obtain the DC FPGA software, libraries, and instructions on general
product usage, go to the Synopsys web site at
http://solvnet.synopsys.com/retrieve/012889.html

The following areas are covered in this chapter:

B General design flow with the DC FPGA software and the Quartus II
software

Initialization procedure using the .synopsys_dc.setup file for
targeting Altera devices

Using Altera megafunctions with the DC FPGA software

Reading design files into the DC FPGA software

Applying synthesis and timing constraints

Reporting and saving design information

Exporting designs to the Quartus II software

11-1

Quartus Il Handbook, Volume 1

Design Flow
Using the

A high-level overview of the recommended design flow for using the
DC FPGA software with the Quartus II software is shown in Figure 11-1.

DC FPGA

Figure 11-1. Design Flow Using the DC FPGA Software & the Quartus I

Functional or

RTL Simulation

Forward Annotated
Timing Constraints
(-tel)

Configuration/
Programming Files

Software & the Software
Quartus II oL
Software (cvhd)
\ 4
Constraints o | Synopsys DC FPGA
& Settings = Software
A
Technology-Specific
Netlist
(-vam)
Constraints Quartus Il
— & Settings Software
Timing
& Area
Requirements
No Satisfied?
(.sof/.pof)
(Conﬁgure/Program Device)
11-2

Altera Corporation
May 2006

Setup of the DC FPGA Software Environment for Altera Device Families

Setup of the

DC FPGA
Software
Environment for
Altera Device
Families

Altera Corporation
May 2006

Altera recommends that you organize your project directory with several
subdirectories. A recommended project hierarchy is shown in
Figure 11-2.

Figure 11-2. Project Hierarchy

‘ Project Directory ‘

‘ db | ‘source‘ | work ‘ ‘reports| ‘scripts‘
.db v .vgqm Jlog .tel
.vhd .tel

To use the DC FPGA software to synthesize HDL designs for use with the
Quartus II software, the required settings should be included in your
.synopsys_dc.setup initialization file. This file is used to define global
variables and direct the DC FPGA software to the proper libraries used
for synthesis, as well as set internal assignments for synthesizing designs
for Altera devices.

The .synopsys_dc.setup file can reside in any one of three locations and
be read by the DC FPGA software. The DC FPGA software automatically
reads the .synopsys_dc.setup file at startup in the following order of
precedence:

1. Current directory where you run the DC FPGA software shell.
2. Home directory.
3. The DC FPGA software installation directory.

The DC FPGA software has vendor-specific setup files for each of the
Altera logic families in the installation directory. These vendor-specific
setup files are found where you have installed the libraries
(<dcfpga_rootdir>/libraries/fpga/altera) and are named in the form
synopsys_dc_<logic family>.setup. For example, if you want to use the
default setup for synthesizing an Altera Stratix device, you must link to
or copy the synopsys_dc_stratix.setup to your home or current directory
and rename the file .synopsys_dc.setup.

Synopsys recommends using the vendor-specific setup files provided

with each release of the DC FPGA software to ensure that you have all the
correct settings and obtain the best quality results.

11-3

Quartus Il Handbook, Volume 1

Example 11-1 contains the recommended synthesis settings for the
Stratix II device architecture.

Example 11-1. Recommended Synthesis Settings for Stratix Il Device Architecture

Setup file for Altera Stratixii

TCL style setup file but will work for original DC shell as well

Need to define the root location of the libraries by chaning the variable

$dcfpga_lib_path

set dcfpga lib path "<dcfpga rootdirs/libraries/fpga/altera"

set
set
set
set

set_

search path ".

$dcfpga_lib _path $dcfpga lib_path/STRATIXII S$search_path"
target_library "stratixii.db"

synthetic_library "tmg.sldb altera _mf.sldb lpm.sldb"

link library "* stratixii.db tmg.sldb altera _mf.sldb lpm.sldb stratixii mf.sldb"

fpga_defaults altera_stratixii

11-4

After generating your .synopsys_dc.setup file, run the DC FPGA
software in either the Tcl shell or in the Design Compiler software shell
without Tcl support. Run the DC FPGA software shell at a command
prompt by typing fpga shell-t or fpga_shell -tcl for the Tcl
shell version of the DC FPGA software. Run the non-Tcl version of the
DC FPGA software with the fpga_shell command. Altera
recommends using the Tcl shell for all of your synthesis work.

If you have created a Tcl synthesis script for use in the DC FPGA software
and wish to run it immediately at startup, you can start the DC FPGA
software shell and run the script with the command shown in the
example below:

fpga_shell-t -f <path>/<script filename>.tcl

Otherwise, you can run your scripts at any time at the fpga_shell-t>
prompt with the source command. An example is shown below:

source <paths/<script filename>.tcl

Altera Corporation
May 2006

Megafunctions & Architecture-Specific Features

Megafunctions
& Architecture-
Specific
Features

Altera Corporation
May 2006

Altera provides parameterized megafunctions including library of
parameterized modules (LPMs), device-specific Altera megafunctions,
intellectual property (IP) available as Altera MegaCore® functions, and IP
available through the Altera Megafunction Partners Program (AMPP).
You can use megafunctions by instantiating them in your HDL code, or
by inferring them from your HDL code during synthesis in the DC FPGA
software.

For more details on specific Altera megafunctions, refer to the Quartus II
Help.

The DC FPGA software automatically recognizes certain types of HDL
code and infers the appropriate megafunction when a megafunction
provides optimal results. The DC FPGA software also provides options to
control inference of certain types of megafunctions, as described in the
section “Instantiating Altera Megafunctions Using the MegaWizard
Plug-In Manager” on page 11-6.

For a detailed discussion about instantiating versus inferring
megafunctions, refer to the Recommended HDL Coding Styles chapter in
volume 1 of the Quartus I Handbook. This chapter also provides details
about using the MegaWizard® Plug-In Manager in the Quartus II
software and explains the files generated by the wizard. In addition, the
chapter provides coding style recommendations and examples for
inferring megafunctions in Altera devices.

If you instantiate a megafunction in your HDL code, you can use the
MegaWizard Plug-In Manager to parameterize the function, or you can
instantiate the function using the port and parameter definition. The
MegaWizard Plug-In Manager provides a graphical interface in the
Quartus II software for customizing and parameterizing megafunctions.
“Instantiating Altera Megafunctions Using the MegaWizard Plug-In
Manager” on page 11-6 describes the MegaWizard Plug-In Manager flow
with the DC FPGA synthesis software.

11-5

Quartus Il Handbook, Volume 1

Instantiating
Altera
Megafunctions
Using the
MegaWizard
Plug-In Manager

11-6

When you use the MegaWizard Plug-In Manager to set up and
parameterize a megafunction, the MegaWizard Plug-In Manager creates
a VHDL or Verilog HDL wrapper file that instantiates the megafunction
(a black box methodology). The MegaWizard can also generate a fully
elaborated netlist that is read by EDA synthesis tools, such as the DC
FPGA (a clear box methodology). Both clear box and black box
methodologies are described in the following sections.

Clear Box Methodology

You can use the MegaWizard Plug-In Manager to generate a fully
synthesizeable netlist. This flow is referred to as a clear box methodology
because starting in V-2005.06, the DC FPGA software can look into the
megafunction file. The clear box feature enables the synthesis tool to
report more accurate timing estimates and resource utilization, while
taking a better advantage of timing driven optimization than a black box
methodology.

This clear box feature is enabled by turning on the Generate clear box
netlist file instead of a default wrapper file (for use with supported
EDA synthesis tools only) option in the MegaWizard Plug-In Manager
for certain megafunctions. DC FPGA supports clear box megafunctions
foraltmult add, almult_ accum, altsyncramand

altshift taps. If the option does not appear, then clear box models
are not supported for the selected megafunction.

s The library declarations in the MegaWizard generated VHDL
output files need to be manually commented out to work
properly with the DC FPGA.

Reading Megafunction Wizard-Generated Synthesizable Clear Box Netlist
Files for Megafunction Instantiation

The DC FPGA software analyzes and elaborates the Megafunction
Wizard-generated Verilog HDL <output file>.v or VHDL <output file>.vhd
netlist that contains the parameters needed by the Quartus II software to
properly configure and instantiate your megafunction. Analyze the clear
box netlist files along with the rest of the RTL files during synthesis in DC
FPGA. The resulting netlist contains all the primitives that are part of the
clear box netlist. There is no need to put the clear box netlist file in your
Quartus II project along with your DC FPGA generated netlist file.

Altera Corporation
May 2006

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager

Altera Corporation
May 2006

Using the clear box Megafunction Wizard-generated netlist files provides
the DC FPGA software an understanding of their timing arcs and
resource usage. The DC FPGA software uses timing information to
optimize the surrounding circuits and resource data to better manage the
overall resource usage for the whole design. The DC FPGA software takes
the clear box netlist timing and area data into account when reporting the
timing and resource utilization for the device.

Advanced Clear Box Support for the Direct-Instantiated or Inferred Clear
Box Megafunctions

The DC FPGA provides advanced clear box support that enables a clear
box implementation for the direct-instantiated or inferred megafunctions
in your design. This methodology allows the DC FPGA to obtain the most
accurate interface timing and area data for the megafunctions. Therefore,
synthesis optimization is more effective, and timing and area reports are
more accurate.

The following describes the setup and usage model for this advanced
clear box support.

Design Compiler FPGA Setup

The advanced clear box flow will be enabled in the DC FPGA only when
the clearbox.sldb synthetic library is added to the synthetic_library
variable. For example:

set synthetic_library [concat clearbox.sldb $synthetic_library]
set link library [concat clearbox.sldb $link library]

Specify the path to the clear box loader (executable) in one of the
following ways:

B Setthe synlib_cbx exec_ path variable to the absolute path of
the clear box loader before the compile command:
set synlib_cbx_exec_path <Quartus Il installation directory
/bin/clearbox>

B Set the UNIX environment variable CLEARBOX_EXEC_PATH to the
absolute path of the clear box loader. For example:
setenv CLEARBOX_ EXEC_PATH <Quartus II installation
directory /bin/clearbox>

By default, the advance clear box flow is turned off. To enable the clear
box advanced flow, add the following to your DC FPGA script. Set it

before the compile command:

set fpga_ altera clearbox for user cells true

11-7

Quartus Il Handbook, Volume 1

UNIX Environment Setting

For the DC FPGA to work with the clear box loader, the following setting
is necessary for the LD_LIBRARY PATH environment variable. Assume
the QuartusII_Path used below is set to the Quartus II installation
directory.

On a Linux platform:
setenv LD_LIBRARY PATH QuartusII_Path/linux:$LD_LIBRARY_PATH
On a Solaris platform:

setenv LD_LIBRARY PATH QuartusII_Path/solaris:$LD_LIBRARY PATH

Error Message
The only error message that you might encounter when trying to enable
the advanced clear box flow is: DCFPGA UEGI-1

The DC FPGA reports this error when one of the following situations
occurs:

B It cannot find the clear box loader path. For example, the defined
path is incorrect.

B The Loader is not found in the specified path.

B The Loader specified is not executable.

Sample Design Compiler FPGA Clear Box Setup Script
The TCL script shown in Example 11-2 is a DC FPGA clear box setup
script. Use it before compiling the design in DC FPGA.

Example 11-2. Sample Clear Box Setup Script

set QuartusII Path /tools/altera/qiis51

set_unix variable CLEARBOX EXEC PATH $QuartusII Path/bin/clearbox
set old_1lp [get_unix_variable LD_LIBRARY_ PATH]

set platform [sh uname]

if { $platform == "Linux" } {
set_unix variable LD_LIBRARY PATH $QuartusII_Path/linux: old 1llp
} else {

Assume, if not linux, it is solaris
set _unix variable LD LIBRARY PATH SQuartusII Path/solaris: old llp

set synthetic library [concat clearbox.sldb $synthetic library]
set link library [concat clearbox.sldb $link_libraryl

set fpga altera clearbox for user cells true

11-8 Altera Corporation
May 2006

Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager

Black Box Methodology

Using the MegaWizard Plug-In Manager-generated wrapper file is
referred to as a black box methodology because the megafunction is
treated as a black box in the DCFPGA software. The black box wrapper
file is generated by default in the MegaWizard Plug-In Manager and is
available for all megafunctions. The black box methodology does not
allow the synthesis tool any visibility into the function module and
therefore, does not take full advantage of the synthesis tool’s timing
driven optimization.

There are two ways of instantiating Megafunction Wizard-generated
functions in your design hierarchy loaded in the DC FPGA software. You
can instantiate and compile the Verilog HDL or VHDL variation wrapper
file description of your megafunction in the DC FPGA software, or you
can instantiate a black box that just describes the ports of your
megafunction variation wrapper file.

I The library declarations in the MegaWizard generated VHDL
output files need to be manually commented out to work
properly with the DC FPGA.

Reading Megafunction Wizard-generated Variation Wrapper Files

The DC FPGA software has the ability to analyze and elaborate the
Megafunction Wizard-generated Verilog HDL <output file>.v or VHDL
<output file>.vhd netlist that contains the parameters needed by the
Quartus II software to properly configure and instantiate your
megafunction. The DC FPGA software may take advantage of this
variation wrapper file during the optimization of your design to reduce
area utilization and improve path delays. DC FPGA also supports altpll
in a non-black box flow (that is, the DC FPGA can automatically derive
PLL output clocks when the user has specified only the PLL input clock).

Using the megafunction variation wrapper file <output file>.v or
<output file>.vhd in the DC FPGA software synthesis provides good
synthesis results for area estimates, but actual timing results are best
predicted after place-and-route inside the Quartus II software. However,
reading the megafunction variation wrapper allows the DC FPGA
software to provide better synthesis estimates over a black box
methodology.

Altera Corporation 11-9
May 2006

Quartus Il Handbook, Volume 1

Using Megafunction Wizard-Generated Variation Wrapper Files in a Black
Box Methodology

Instantiating the megafunction wizard-generated wrapper file without
reading it in the DC FPGA software is referred to as a black box
methodology because the megafunction is treated as an unknown
container in the DC FPGA software.

The black box methodology does not allow synthesis software to have
any visibility into the module, thereby not taking full advantage of the
timing driven optimization of the DC FPGA software and preventing the
software from estimating logic resources for the black box design.

Using Megafunction Wizard-Generated Verilog HDL Files for Black
Box Megafunction Instantiation

By default, the MegaWizard Plug-In Manager generates the Verilog HDL
instantiation template file <output file>_inst.v and the black box module
declaration <output_file>_bb.v for use in your design in the DC FPGA
software. The instantiation template file helps to instantiate the
megafunction variation wrapper file, <output file>.v, in your top-level
design. Do not include the megafunction variation wrapper file in the
DC FPGA software project if you are following the black box
methodology. Instead, add the wrapper file and your generated Verilog
Quartus Mapping (.vqm) netlist in your Quartus II project. Add the
hollow body black box module declaration <output file>_bb.v to your
linked design files in the DC FPGA software to describe the port
connections of the black box.

Using Megafunction Wizard-Generated VHDL Files for Black Box
Megafunction Instantiation

By default, the MegaWizard Plug-In Manager generates a VHDL
component declaration file <output file>.cmp and a VHDL instantiation
template file <oufput file>_inst.vhd for use in your design. These files can
help you instantiate the megafunction variation wrapper file,

<output file>.vhd, in your top-level design. Do not include the
megafunction variation wrapper file in the DC FPGA software project.
Instead, add the wrapper file and your generated Verilog Quartus
Mapping netlist in your Quartus II project.

11-10 Altera Corporation
May 2006

Inferring Altera Megafunctions from HDL Code

Inferring Altera
Megafunctions
from HDL Code

Altera Corporation
May 2006

=" The DC FPGA software supports direct instantiation of all LPMs
and megafunctions. For a complete list of all LPMs and
Megafunctions, refer to the following two files in your
Quartus II installation directory:

e <Quartus II installation directory>
Nibraries/vhdl/lpm/lpm_pack.vhd

e <Quartus II installation directory>
Nlibraries/vhdl/altera_mf/altera_mf_components.vhd

DC FPGA supports direct instantiation of LPMs and megafunctions only.
These macro functions include all Altera IP cores and all components
listed in:

<Quartus II installation directory>/libraries/vhdl/
altera_mf_components.vhd or stratixgx_mf_components.vhd.

The following example is the usage model using the mypll for direct
instantiation:

1. During synthesis in DC FPGA, analyze the variation file
mypll.[v | vhd] along with the rest of the RTL files.

2. During place-and-route in the Quartus II software, simply run the
self-contained Verilog Quartus Mapping File. You do not need to
put the variation file in the Verilog Quartus Mapping directory.

The benefit of using the direct instantiation method is that the DC FPGA
is able to utilize the available clock enable pins of the LPMs and
megafunctions during the automatic gated-clock conversion process.

The DC FPGA software automatically recognizes certain types of HDL
code, and maps digital signal processing (DSP) functions and memory
(RAM and ROM)) to efficient, technology-specific implementations. This
allows the use of technology-specific resources to implement these
structures by inferring the appropriate Altera megafunction when it
provides optimal results.

For coding style recommendations and examples for inferring
megafunctions in Altera devices, refer to the Recommended HDL Coding
Styles chapter in volume 1 of the Quartus II Handbook.

Depending on the coding style, if you do not adhere to these
recommended HDL coding style guidelines, it is possible that the

DC FPGA software and Quartus II software will not take advantage of
the high performance DSP blocks and RAMs, and may instead

11-11

Quartus Il Handbook, Volume 1

implement your logic using regular logic elements (LEs). This causes
your logic to consume more area in your device and may adversely affect
your design performance. Altera device families do not all share the same
resources, so your HDL coding style may cause your logic to be
implemented differently in each family. For example, Stratix devices
contain dedicated DSP blocks which Cyclone devices lack. In a Cyclone
device, multipliers are implemented in LEs.

Example 11-3 shows Verilog HDL code that infers a two-port RAM that
can be synthesized into an M512 RAM block of a Stratix device.

Example 11-3. Verilog HDL Code Inferring a Two-Port RAM
module example ram (clk, we, rd addr, wr_addr, data in, data out);
input clk, we;
input [15:0] data_ in;
output [15:0] data_ out;
input [7:0] rd addr;
input [7:0] wr_addr;
reg [15:0] ram data [7:0];
reg [15:0] data out reg;
always @ (posedge clk)
begin
if (we)
ram data[wr_addr] <= data_in;
data out reg <= ram datal[rd addr];
end
assign data out = data_ out_ reg;
endmodule

One of the strengths of the DC FPGA software is its gated clock
conversion feature. Inferring megafunctions in HDL takes advantage of
this feature. For gated clocks or clock enables designed outside of LPMs,
Altera-specific megafunctions, and registers, the DC FPGA software
merges the gated clock functions into these design elements using
dedicated clock enable functionality during synthesis. The DC FPGA
software reconfigures the megafunction block or register to synthesize
the clock enable control logic. This can save area in your design and
improve your design performance by reducing the gated clock path delay
and the amount of logic used to implement the design. An illustration of
this kind of gated clock optimization is shown in Figure 11-3.

11-12 Altera Corporation
May 2006

Reading Design Files into the DC FPGA Software

Reading Design
Files into the
DC FPGA

Figure 11-3. Gated Clock Optimization

Syacll clock
" enable

E dataa[7:0]

) datab[7:0]

Ipm_mult

result[15:0]

DC FPGA recognizes gated clocks and utilizes clock
enable logic during synthesis where possible.

Ipm_mult

LY

clock
sysclk [>

dataa[7:0]
D..___.

datab7:0]

D clken

result[15:0]

R
enable

The DC FPGA software does not perform gated clock optimization on
instantiated black box megafunctions or on instantiated megafunction
variation wrapper file. The DC FPGA software performs gated clock
optimization only on synthesizable inferred megafunctions.

The process of reading design files into the DC FPGA software is a
two-step process where the DC FPGA software analyzes your HDL
design for syntax errors, then elaborates the specified design. The
elaboration process finds analyzed designs and instantiates them in the
elaborated design’s hierarchy. You must identify which supported

Software language the files are written in when reading designs into the DC FPGA
software. The supported HDL languages are listed in Table 11-1.
Table 11-1. Supported Design File Formats
Format Description Keyword | Extension

Verilog HDL (Synopsys Presto HDL) | Verilog hardware description language verilog AY
VHDL VHSIC hardware description language vhdl .vhd

.db Synopsys internal database format (7) db .db
EDIF Electronic design interchange format edif .edf
Note to Table 11-1:

(1) The Design Compiler DB format file requires additional license keys.

11-13

Altera Corporation
May 2006

Quartus Il Handbook, Volume 1

11-14

To set most of the required synthesis settings to generate an optimal
netlist, use the following command:

set_fpga defaults <architecture_name>
For example:
set fpga defaults altera stratixii

Use the following commands to analyze and elaborate HDL designs in
the DC FPGA software:

analyze -f <verilog|vhdl> <design file>
elaborate <design name> +

Once a design is analyzed, it is stored in a Synopsys library format file in
your working directory for reuse. You need to re-analyze the design only
when you change the source HDL file. Elaboration is performed after you
have analyzed all of the subdesigns below your current design.

Another way to read your design is by using the read_file command.
This can be used to read in gate-level netlists that are already mapped to
a specific technology. The read_file command performs analysis and
elaboration on Verilog HDL and VHDL designs that are written in
register transfer level (RTL) format. The difference between the
read_file command and the analyze and elaborate combination is that
the read_file command elaborates every design read, which is
unnecessary. Only the top-level design must be elaborated. The
read_file command is useful if you have a previously synthesized
block of logic that you want to re-use in your design.

To use the read_file command for a specific language, type the
following command:

read file -f <wverilog|vhdl|db|edif> <design file> +

You can also read files in specific languages using the read _verilog,
read_vhdl, read db, and read edif commands.

Once you have read all of your design files, specify the design you want
to focus your work on with the current _design command. This is
usually the top module or entity in your design that you wish to compile
up to. To use this command, type the following:

current_design <design name> +

Altera Corporation
May 2006

Selecting a Target Device

Selecting a
Target Device

Altera Corporation
May 2006

You then need to build your design from all of the analyzed HDL files
with the link command. To use this command, type the following;:

link ¢+

After linking your designs successfully in the DC FPGA software, you
should specify the constraints you are applying to your design. In the
DC FPGA software, you have the capability of loading multiple levels of
hierarchy and synthesizing specific blocks in a bottom-up synthesis
methodology, or you can synthesize the entire design from the top-level
module in a top-down synthesis methodology.

You can switch the current focus of the DC FPGA software between the
designs loaded by using the current design command. This changes
your current focus onto the design specified, and all subsequent
constraints and commands will apply to that design.

If you have read Quartus II megafunction wizard-generated designs or
third-party IP into the DC FPGA software, you can instruct the DC FPGA
software not to synthesize the IP. Use the set _dont_touch constraint
and apply it to each module of your design that you do not want
synthesized. To use this command, type the following;:

set_dont_touch <design name>

Using the set_dont_touch command can be helpful in a bottom-up
synthesis methodology, where you optimize designs at the lower levels
of your hierarchy first and do not allow the DC FPGA software to
resynthesize them later during the top-level integration. However,
depending on the design’s HDL coding, you might want to allow
top-level resynthesis to get further area reduction and improved path
delays. For best results, Altera recommends following the top-down
synthesis methodology and not using the set _dont_touch command
on lower level designs.

If you do not select an Altera device, the DC FPGA software, by default,
synthesizes for the fastest speed grade of the logic family library that is
loaded in your .synopsys_dc.setup file. If you are targeting a specific
device of an Altera family, you must have the correct library linked, then
specify the device for synthesis with the set fpga target device
command. To use this command, type the following:

set_fpga_ target device <device name> +

11-15

Quartus Il Handbook, Volume 1

You can have the DC FPGA software produce a list of all available
devices in the linked library by adding the -show_all option to the
set_fpga target_device command. An example of this list of
devices for the Stratix II library is shown in Example 11-4.

Example 11-4. List of Available Devices in the Linked Library Using the -show_all Option
Loading db file '/dc_fpga/libraries/fpga/altera/STRATIXII/stratixii.db’

Valid device names are:

AUTO *
EP2S15F484
EP2S15F672
EP2S30F484
EP2S30F672
EP2S60F484
EP2S60F672
EP2S60F1020
EP2S90F1020
EP2S90F1508
EP2S130F1020
EP2S130F1508
EP2S180F1020

Pins FFs Speed Grades
0 0 FASTEST
484 12480 C4

672 12480 Cc4

484 27104 C4

672 27104 c4

484 48352 c4

672 48352 Cc4

1020 48352 Cc4

1020 72768 c4

1508 72768 C4

1020 106032 Cc4

1508 106032 c4

1020 143520 C4

1508 143520 Cc4

EP2S180F1508

* Default part

Timing &
Synthesis
Constraints

11-16

For example, if you want to target the C4 speed grade device of the
Stratix I EP2S60F672 device, apply the following constraint:

set fpga target device EP2S60F672C4

You must create timing and synthesis constraints for your design for the
DC FPGA software to optimize your design performance. The timing
constraints specify your desired clocks and their characteristics, input
and output delays, and timing exceptions such as false paths and multi-
cycle paths. The synthesis constraints define the device, the type of /O
buffers that should be used for top-level ports, and the maximum register
fan-out threshold before buffer insertion is performed. Synopsys Design
Constraints (SDCs) are Tcl-format commands that are widely used in
many EDA software applications. The DC FPGA software supports the
same SDC commands that the full version of the Design Compiler
software supports. However, certain constraints that are used in ASIC
synthesis are not applicable to programmable logic synthesis, so the

DC FPGA software ignores them.

Altera Corporation
May 2006

Timing & Synthesis Constraints

Altera Corporation
May 2006

The DC FPGA software supports the following constraints:

create_clock
set_max_delay

set propagated clock
set_input_ delay
set_output delay
set_multicycle path

set false path
set_disable_timing

set fpga resource limit
set_register max fanout
set _max_fanout

set fpga target device

For the syntax and full usage of these commands, refer to the Synopsys
DC FPGA User Guide.

I For synthesis with the DC FPGA software, minimum timing
analysis is not necessary, as it primarily looks at setup timing
optimization to achieve the fastest clock frequency for your
design. Altera recommends adding additional minimum timing
constraints to your design inside the Quartus II software.

The DC FPGA forward annotates all the clock, timing exceptions, and
I/0 delay constraints to Quartus Il when thewrite par constraint
command is used in the DC FPGA. For more information about this
command, refer to “Exporting Designs to the Quartus II Software” on
page 11-22. Since the Quartus II software does not support the through
option for the timing exception constraints, the DC FPGA does not
forward annotate constraints that use the through option.

In the DC FPGA software, timing constraints applied to inferred RAM,
ROM, shift registers, and DSP MAC functions are obeyed. However,
these constraints are not forward-annotated to the Quartus II software
because these functions are inferred to Altera megafunctions. The
Quartus II software does not support timing constraints applied to
megafunctions. The workaround is to run the Verilog Quartus
Mapping/EDIF netlist through analysis and synthesis in the Quartus II
software (quartus_map). All megafunctions expand to atom primitives.
These atom primitives can be processed by the Quartus II software. You
can then apply constraints to the internal atoms of the megafunctions.

The timing reports generated from the DC FPGA software are
preliminary estimates of the path delays in your design, and accurate
timing is reported only after place-and-route is performed with the
Quartus II software.

11-17

Quartus Il Handbook, Volume 1

Compilation &
Synthesis

11-18

The DC FPGA software also performs cross-hierarchical boundary
optimization. Altera recommends running this command before a
compilation:

ungroup -small 500 ¢+

This allows the DC FPGA software to potentially improve area reduction
and performance improvement by ungrouping smaller blocks of logic in
your design hierarchy and combining functions.

After applying timing and synthesis constraints, you can begin the
compilation and synthesis process. The compile command runs this
process within the DC FPGA software. To run a compilation, at the shell

prompt type:
compile ¢
The compilation process performs two kinds of optimization:

B Architectural optimization focuses on the HDL description and
performs high-level synthesis tasks such as sharing resources and
sub-expressions, selecting Synopsys Design Ware implementations,
and re-ordering operators.

B Gate-level optimization works on the generic netlist created by logic
synthesis and works to improve the mapping efficiency to save area
and improve performance by minimizing path delays.

Compilation can be done using a top-down synthesis methodology or a
bottom-up synthesis methodology. The top-down synthesis
methodology involves a single compilation of your entire design with the
focus on the top module or entity of your design. The bottom-up
synthesis methodology involves incremental compilation of major blocks
in your design hierarchy and top-level integration and optimization.
Either methodology can be applied when synthesizing for Altera devices.
For best results, Altera recommends following the top-down synthesis
methodology.

An example synthesis script that reads the design, applies timing
constraints, reports results, saves the synthesized netlist file in the Verilog
Quartus Mapping File format, and creates the Tcl scripts to work with the

Altera Corporation
May 2006

Compilation & Synthesis

Quartus II software is shown in Example 11-5. It uses the command
write fpga, which is described in “write_fpga Command” on

page 11-22.

Example 11-5. Sample Synthesis Script

Setup output directories

set outdir ./design

file delete -force $outdir

file mkdir $outdir

set rptdir ./report

file delete -force $rptdir

file mkdir S$rptdir

Enable Presto compiler for VHDL design files
set hdlin enable_presto_for_vhdl TRUE

Setup libraries

define_design lib work-path .S$outdir/work
file mkdir $outdir/work

analyze -format verilog ./source/mult_box.v
analyze -format verilog ./source/mult_ram.v
analyze -format verilog ./source/top module.v
elaborate top_module

link

current_design top_module

create_clock -period 5 [get_ports clkl]

set_input delay -max 2 -clock clk [get ports {data in * mode in}]
set_input_delay -min 0.5 -clock clk [get ports {data in * mode_in}]

set_output_delay -max 2 -clock clk [get ports {data out ram data out port}]
set_output_delay -min 0.5 -clock clk [get ports {data_out ram data out port}]

set false path -from [get ports reset]
ungroup -small 500

compile

report_timing > $rptdir/top_module.log
report fpga > $rptdir/top module fpga.log
write_fpga $outdir

quit

Altera Corporation
May 2006

11-19

Quartus Il Handbook, Volume 1

Reporting

Design

After compilation is complete, the DC FPGA software reports

information about your design. You can specify which kinds of reports
you want generated with the reporting commands shown in Table 11-2.

Information

Table 11-2. Reporting Commands

Object Command Description
Design report design Reports design characteristics
report area Reports design size and object counts
report_hierarchy Reports design hierarchy
report_resources Reports resource implementations
report fpga Reports FPGA resource utilization statistics for the
design
Instances | report cell Displays information about instances
References | report reference Displays information about references
Ports report port Displays information about ports
report_ bus Displays information about bused ports
Nets report_net Reports net characteristics
report bus Reports bused net characteristics
Clocks report clock Displays information about clocks
Timing report timing Checks the timing of the design
report constraint Checks the design constraints
check timing Checks for unconstrained timing paths and clock-gating
logic
report_ design Shows operating conditions, timing ranges, internal input
and output, and disabled timing arcs
report_port Shows unconstrained input and output ports and port
loading
report timing requirements |Shows all timing exceptions set on the design
report_ clock Checks the clock definition and clock skew information
derive_clocks Checks internal clock and unused registers
report_path group Shows all timing path groups in the design
Cell get_cells Shows all cell instances that have a specific attribute
Attributes
e For more information about the usage of these commands, refer to the
Synopsys DC FPGA User Guide.
11-20 Altera Corporation

May 2006

Saving Synthesis Results

Saving
Synthesis
Results

The DC FPGA software only provides preliminary estimates of your
design’s timing delays because the timing of your design cannot be
accurately predicted until the Quartus II software has placed and routed
your design.

After synthesis, the technology-mapped design can be saved to a file in
one of the following four formats: Verilog HDL, VHDL, Synopsys
internal DB, or EDIFE.

The Quartus II software accepts an EDIF netlist or Verilog Quartus
Mapping netlist synthesized from the DC FPGA software. The default
output netlist from the DC FPGA software is Verilog Quartus Mapping.
The Verilog Quartus Mapping File format follows a subset of Verilog
HDL rules. You can use the same Verilog Quartus Mapping netlist format
with the Quartus II software and formal verification.

Use the write command to save your design work. The syntax for this
command is shown in Example 11-6.

Example 11-6. Syntax Using the write Command
write -format <verilog|db|edif> -output <file name> <design list>

[-hierarchy]

«

The -hierarchy option causes the DC FPGA software to write all the
designs within the hierarchy of the current design. The DC FPGA default
flow to interface with Quartus II software uses the Verilog Quartus
Mapping netlist.

To generate a Verilog Quartus Mapping netlist, set the required settings
using the commands shown in Example 11-7.

Example 11-7. Generating a Verilog Quartus Mapping Netlist
define name rules ALTERA -remove internal net bus
change names -rules ALTERA -hier

change names -rules verilog -hier

write -format verilog -hier -o <design top>.vgm

Altera Corporation
May 2006

The Synopsys internal DB format is useful when you have synthesized
your design and want to reuse it later in the DC FPGA software. The DB
file contains your constraints and synthesized design netlist, and loads
into the DC FPGA software faster than Verilog HDL or VHDL designs.

11-21

Quartus Il Handbook, Volume 1

You can also write out your design constraints in Tcl format for export to
the Quartus Il software with thewrite par constraint command or
by using the write_fpga command. These commands are explained in
“Exporting Designs to the Quartus II Software”.

Expo ri ng The DC FPGA software can create two Tcl scripts that start the Quartus II

. software, create your initial design project, apply the exported timing
Des'ﬂ ns to the constraints, and compile your design in the Quartus II software.
Quartus 11

You can generate the two Tcl scripts by using write and
Software write par constraint command together, or by using the
write fpga command alone.

write_fpga Command

The recommended method to export all of the place-and-route files from
the DC FPGA software is to use the write fpga command. This
command is used after the compile. Example 11-8 shows how the
write fpga command is used.

Example 11-8. Using the write_fpga Command after Compile
compile
write fpga <outputdirs

The write _fpga command will do the following in one step:

Example 11-9. Using the write_fpga Command to Generate All Files

write -hier -f db -o $Soutputdir/top module.db

write -hier -f edif -o Soutputdir/top module.edf
define name rules ALTERA -remove internal net bus

change names -rules ALTERA -hier

change names -rules verilog -hier

write -format verilog -hier -o <design top>.vagm
write par constraint S$outputdir/top module quartus setup.tcl

When you use the write fpga command, it generates all files in the
current work directory or in the directory you specify (entering an output
directory is optional) and generates the output files based on the current
design file name.

11-22 Altera Corporation
May 2006

Using Tcl Scripts with Quartus Il Software

write & write_par_constraint Commands

The write command is used to generate a post synthesis netlist for
place-and-route and formal verification. You should use a Verilog
Quartus Mapping formatting netlist to work with the Quartus II
software, beginning with the DC FPGA software, version 2005.09.
Example 11-10 uses the write and write_par_constraint commands to
generate the Verilog Quartus Mapping File and Tcl scripts:

Example 11-10. Using the write & write_par_constraint Commands
define name rules ALTERA -remove internal net bus
change names -rules ALTERA -hier

change names -rules verilog -hier

write -format verilog -hier -o <design top>.vgm

Using Tcl Scripts
with Quartus Il
Software

Altera Corporation
May 2006

Tcl scripts that start the Quartus II software and forward annotate the
timing constraints can be generated using the write_par_constraint
command.

write_par constraint <user-specified file name>.tcl

This command generates both Tcl scripts in one operation. The first Tcl
script has the name you specify in the write_par constraint
command. This script creates and compiles your Quartus II project. The
second script is automatically generated and named
<top_module>_const.tcl by default and contains your exported timing
constraints from the DC FPGA software. This constraint file is sourced by
the <user-specified file name>.tcl script and applies the timing constraints
used in the DC FPGA software to your project in the Quartus II software.

For example, if your design is called dma_controller, and you run the
command, write par constraint run_gquartus.tcl, the

DC FPGA software produces two Tcl scripts called run_quartus.tcl
and dma_controller const.tcl.

To use this Tcl script in the Quartus II Tcl shell, type the following
command at a command prompt:

quartus_sh -t <user-specified file name>.tcl

To run this Tl script in the Quartus II software GUI, type the following
command at the Quartus II Tcl console prompt:

source <user-specified file name>.tcl +

11-23

Quartus Il Handbook, Volume 1

The ability to run scripts in the Tcl console is useful when performing an
initial compilation of your design to view post place-and-route timing
and device utilization results, but the advanced Quartus II options that
control the compilation process are not available.

To create a Quartus II project without performing compilation
automatically, remove these lines from the script:

load package flow
execute flow -compile

Example 11-11. An Example Script

HEHH R R R R
Generated by DC FPGA X-2005.09 on Wed Aug 10 04:20:01 2005

#

Description: This TCL script is generated by DC FPGA using

write_par constraint command. It is used to create a new Quartus
II project, specify timing constraint assignments in Quartus II,

and run quartus_map, quartus_fit, quartus_tan, & quartus_asm.

#

Usage: To execute this TCL script in batch mode: quartus_sh -t turboTop.tcl

To execute this TCL script in Quartus II GUI: source turboTop.tcl

#

#

HHrrkkkkokkokkkokx WARNING *kkKkkk kKKK WARNING Kkkkhkkkhkhkkkhkkkkhkkkkkkkkkk*
#

Please ensure the P&R netlist name is represented correctly in this tcl file.

You may need to change the file name variable to match your actual netlist

name.

#

HEHH R R R R

Set the file name and project_name variable
set file name turboTop.vgm
set project_name turboTop

Close the project if open

if [is_project_open] {
project_close

}

Create a new project
project_new -overwrite -family STRATIXII -part EP2S30F484C3 $project_name

Make global assignments
set_global_assignment -name TOP_LEVEL_ENTITY $project_name

HH###HH R HEH R R R
1if you are using Verilog P&R netlist, please comment out EDIF assignment
and uncomment the VERILOG assignment below.

#set_global_assignment -name EDIF FILE $file name
set_global_assignment -name VOQM FILE $file name
R R R R R

11-24 Altera Corporation
May 2006

Place & Route with the Quartus Il Software

set_global assignment

-name ADV_NETLIST OPT SYNTH WYSIWYG REMAP ON

#set_global_assignment -name ADV_NETLIST OPT_SYNTH WYSIWYG_REMAP OFF

set_global assignment
set_global_assignment
eda_design_synthesis
set_global_assignment
eda_design_synthesis
set_global_assignment
eda_design_synthesis
set_global_assignment
set_global assignment

-name

EDA DESIGN_ ENTRY SYNTHESIS TOOL -value "Design Compiler FPGA"

-name EDA_ INPUT VCC_NAME -value VDD -section_id
-name EDA_ INPUT _GND_NAME -value GND -section_id
-name EDA LMF_FILE -value dc_fpga.lmf -section_id
-name VERILOG_LMF_FILE dc_fpga.lmf

-name FITTER_EFFORT "STANDARD FIT"

Source in the design timing constraint file
source S$project_name_ cons.tcl

The following runs quartus_map, quartus_fit, quartus_tan,

load_package flow
execute_flow -compile
project_close

& quartus_asm

Place & Route
with the
Quartus I
Software

Altera Corporation
May 2006

After synthesis in the DC FPGA software, the technology-mapped design
is written to the current project directory as an Verilog Quartus Mapping
netlist file. The project configuration script (<user-specified file name>.tcl)
is used to create and compile a Quartus II project containing your Verilog
Quartus Mapping netlist. The example script makes basic project
assignments such as assigning the target device as specified in the

DC FPGA software. The project configuration script calls the place-and-
route constraints script to make your timing constraints. The place-and-
route constraints script (<top module>_const.tcl) forward-annotates the
timing constraints that you made in the DC FPGA software, including
false path assignments, multi-cycle assignments, timing groups, and
related clocks. This integration means that you need to enter these
constraints only once, in the DC FPGA software, and they are passed
automatically to the Quartus II software.

After you have created your Quartus II project and successfully loaded
your Verilog Quartus Mapping netlist into the Quartus II project, you can
use the Quartus II software to perform place-and-route. The Synopsys
DC FPGA software uses only worst case timing delays and constraints,
and does not optimize minimum timing requirements. Altera
recommends that you add minimum timing constraints and perform
minimum timing analysis in the Quartus II software.

For more information about these advance features, area optimization,
and timing closure, refer to the Quartus II Handbook.

11-25

Quartus Il Handbook, Volume 1

Formality
Software
Support

Conclusion

11-26

You can use the Quartus II software to obtain accurate prediction of
post-conversion fyjsx performance and power consumption
characteristics when migrating from a high-density FPGA to a
cost-optimized, high-volume structured ASIC such as a HardCopy
Stratix device.

The Quartus II software place-and-route algorithms can use register
packing, register retiming, automatic logic duplication, and what-you-
see-is-what-you-get (WYSIWYG) primitive re-synthesis technologies to
increase logic utilization in your device and to deliver superior fy;ax
performance at extremely high logic utilization.

For more information, refer to the Quartus II Support for HardCopy Series
Devices chapter in volume 1 of the Quartus II Handbook.

Beginning with version 4.2, the Quartus II software interfaces with the
Formality software from Synopsys. Formality software verifies logic
equivalency between the RTL and DC FPGA post-synthesis netlist, and
between the DC FPGA post-synthesis netlist and the Quartus II
post-place-and-route netlist. A synthesized verilog netlist generated by
the DC FPGA is required to use with formality flow. Formality supports
Stratix II, Stratix and Stratix GX device families.

For more information about how to set the required synthesis settings to
generate a valid formal verification netlist and to use the Formality
software for equivalence checking, refer to the Synopsys Formality
Support chapter in volume 3 of the Quartus II Handbook.

Large FPGA designs require advanced synthesis of their HDL code.
Taking advantage of the Synopsys DC FPGA software and the Quartus II
software allows you to develop high-performance designs while
occupying as little programmable logic resources as possible. The

DC FPGA software and Quartus II software combination is an excellent
solution for the high density designs using Altera FPGA devices.

Altera Corporation
May 2006

Z;\l I:l —E D)/A 12. Analyzing Designs with

QI151013-6.0.0

® Quartus Il Netlist Viewers

Introduction

When to Use
Viewers:
Analyzing
Design
Problems

Altera Corporation
May 2006

As FPGA designs grow in size and complexity, the ability to analyze how
your synthesis tool interprets your design becomes critical. With today’s
advanced designs, often several design engineers are involved in coding
and synthesizing different design blocks, making it difficult to analyze
and debug the design. The Quartus® II RTL Viewer, State Machine
Viewer, and Technology Map Viewer provide powerful ways to view
your initial and fully mapped synthesis results during the debugging,
optimization, or the constraint entry process.

The first section in this chapter, “When to Use Viewers: Analyzing Design
Problems” describes examples of using the viewers to analyze your
design at various stages of the design cycle. The following sections
provide an introduction to the Quartus II design flow using the netlist
viewers, an overview of each viewer, and an explanation of the user
interface. The next sections describe the following activities:

B How to navigate and filter schematics

B How to probe to and from other windows within the Quartus I
software

B How to view a timing path from the Timing Analyzer report

The final section “Debugging HDL Code with the State Machine Viewer”
on page 12-45 provides a detailed example that uses the viewer to
analyze a design and quickly resolve a design problem.

You can use the netlist viewer to analyze your design to see how it was
interpreted by the Quartus II software. This section provides simple
examples of how to use the RTL, State Machine, and Technology Map
Viewers to analyze problems encountered in the design process.

For more explanation about how the netlist viewers display your design,
refer to the following sections:

Quartus II Design Flow with the Netlist Viewers
RTL Viewer Overview

State Machine Viewer Overview

Technology Map Viewer Overview

To see the user interface for the netlist viewers, refer to “Introduction to
the User Interface” on page 12-7.

12-1

Quartus Il Handbook, Volume 1

12-2

Using the RTL Viewer is a good way to view your initial synthesis results
to determine whether you have created the desired logic, and that the
logic and connections have been interpreted correctly by the software.
You can use the RTL Viewer and the State Machine Viewer to visually
check your design before simulation or other verification processes.
Catching design errors at this early stage of the design process can save
you valuable time.

If you see unexpected behavior during verification, this is another good
opportunity to use the RTL Viewer to trace through the netlist and ensure
that the connections and the logic in your design are as expected. You can
also use the State Machine Viewer to view state machine transitions and
transition equations. Viewing the design can help you find and analyze
the source of design problems. If your design looks correct in the RTL
Viewer, you know to focus your analysis on later stages of the design
process and investigate potential timing violations or issues in the
verification flow itself.

You can use the Technology Map viewer to look at the results at the end
of synthesis by running the viewer after performing Analysis &
Synthesis, or the results after placement and routing by running the
viewer after running the Fitter.

In addition, you can use the RTL Viewer or Technology Map Viewer to
locate the source of a particular signal, which can help you debug your
design. Use the navigation techniques described in this chapter to search
easily through the design. You can trace back from a point of interest to
find the source of the signal and ensure the connections are as expected.

You also can use the Technology Map Viewer to help you locate
post-synthesis nodes in your netlist and make assignments when
optimizing your design. This functionality can be useful, for example,
when making a multicycle clock timing assignment between two
registers in your design. You can start at an I/O port and trace forward or
backwards through the design and through levels of hierarchy to find
nodes that interest you, or to locate a specific register by visually
inspecting the schematic.

The RTL Viewer, State Machine Viewer, and Technology Map Viewer can
be used in many other ways throughout the design, debugging, and
optimization stages. Viewing the design netlist is a powerful way to
analyze design problems. This chapter shows how you can use the
various features of the netlist viewers to increase your productivity when
analyzing a design.

Altera Corporation
May 2006

Quartus Il Design Flow with the Netlist Viewers

Quartus Il
Design Flow
with the Netlist
Viewers

The first time you open one of the netlist viewers after compiling the
design, a preprocessor stage runs automatically before the viewer opens.
If you close the viewer and open it again later without recompiling the
design, the viewer opens immediately without performing the
preprocessing stage. Figure 12-1 shows how the netlist viewers fit into
the basic Quartus II design flow.

Figure 12-1. Quartus Il

Design Flow Including the RTL Viewer & Technology Map Viewer

Design Files

HDL / Schematic

VQM/EDIF
Netlist Files

RTL Viewer Preprocessor
<> RTL Viewer < > (Once per
Analysis & Analysis & Elaboration)
Elaboration
) i State Machine Viewer
<¢—p| State Machine Viewer <« Preprocessor (Once per
* Analysis & Elaboration)
Synthesis) Technology Technology Map Viewer
(Logic Synthesis <> Map Viewer <> Preprocessor
& Technology Mapping) (Once per Synthesis)
) Technology Map Viewer
(Place'::‘it(t ’Ieroute) <+> L?hC?ésv%}: +—> Preprocessor
P (Once per Fitting)
Timing Analyzer <> Technology <> gf;:rngggotﬂgn\éfgs:
i Map Viewer e o ;
Timing Analysis)

Altera Corporation
May 2006

Each viewer requires that your design has been compiled with the
minimum compilation stage listed below before the viewer can run the
preprocessor and open the design.

B To open the RTL Viewer or State Machine Viewer, you must first
perform at least Analysis & Elaboration.
B To open the Technology Map Viewer, you must first perform at least

Analysis & Synthesis.

12-3

Quartus Il Handbook, Volume 1

RTL Viewer
Overview

12-4

=" If you open one of the viewers without first compiling the
design with the appropriate minimum compilation stage, the
viewer does not appear. Instead, the Quartus II software issues
an error message instructing you to run the necessary
compilation stage and restart the viewer.

Both viewers display the results of the last successful compilation.
Therefore, if you make a design change that causes an error during
Analysis & Elaboration, you cannot view the netlist for the new design
files, but you can still see the results from the last successfully compiled
version of the design files. If you receive an error during compilation and
you have not yet successfully run the appropriate compilation stage for
your project, the viewer cannot be displayed; in this case, the Quartus II
software issues an error message when you try to open the viewer.

I[l=" Ifthe viewer window is open when you start a new compilation,
the viewer closes automatically. You must open the viewer again
to view the new design netlist after compilation completes
successfully.

The Quartus II RTL Viewer allows you to view a register transfer level
(RTL) graphical representation of your Quartus II integrated synthesis
results or your third-party netlist file within the Quartus II software.

You can view results after Analysis & Elaboration when your design uses
any supported Quartus II design entry method, including Verilog HDL
Design files (.v), VHDL (.vhd), AHDL Text Design Files (.tdf), schematic
Block Design Files (.bdf), or schematic Graphic Design Files (.gdf)
imported from the MAX+PLUS® II software. You can also view the
hierarchy of atom primitives (such as device logic cells and 1/O ports)
when your design uses a synthesis tool to generate a Verilog Quartus
Mapping File (.vqm) or Electronic Design Interchange Format (.edf)
netlist file. Refer to Figure 12-1, "Quartus II Design Flow Including the
RTL Viewer & Technology Map Viewer" for a flow diagram.

The Quartus II RTL Viewer displays a schematic view of the design
netlist after analysis and elaboration or netlist extraction is performed by
the Quartus II software, but before technology mapping and any
synthesis or fitter optimization algorithms occur. This view is not the final
design structure because optimizations have not yet occurred. This view
most closely represents your original source design. If you synthesized
your design using the Quartus II integrated synthesis, this view shows
how the Quartus II software interpreted your design files. If you are
using a third-party synthesis tool, this view shows the netlist written by
your synthesis tool.

Altera Corporation
May 2006

RTL Viewer Overview

Altera Corporation
May 2006

When displaying your design, the RTL Viewer optimizes the netlist to
maximize readability in the following ways:

B Logic with no fan-out (its outputs are unconnected) and logic with
no fan-in (its inputs are unconnected) are removed from the display.

B Default connections such as VCC and GND are not shown.

B Pins, nets, wires, module ports, and certain logic are grouped into

buses where appropriate.

Constant bus connections are grouped.

Values are displayed in hexadecimal format.

NOT gates are converted to bubble inversion symbols in the

schematic.

B Chains of equivalent combinational gates are merged into a single
gate, for example, a 2-input AND gate feeding a 2-input AND gate is
converted to a single 3-input AND gate.

B State machine logic is converted into a state diagram, state transition
table and state encoding table which are displayed in the State
Machine Viewer.

To run the RTL Viewer for a Quartus II project, first analyze the design to
generate an RTL netlist. To analyze the design and generate an RTL
netlist, on the Processing menu, point to Start and click Start Analysis &
Elaboration. You can also perform a full compilation or any process that
includes the initial Analysis & Elaboration stage of the Quartus II
compilation flow.

To run the viewer, on the Tools menu, point to Netlist Viewers and click

RTL Viewer, or select RTL Viewer from the Applications toolbar.

I The Applications toolbar does not display by default in the
Quartus II user interface. To add the toolbar, on the Tools menu,
click Customize. On the Customize dialog box, click the
Toolbars tab under Toolbars, and turn on Applications. Click
Close.

12-5

Quartus Il Handbook, Volume 1

State Machine
Viewer Overview

Technology Map
Viewer Overview

12-6

The State Machine Viewer presents a high-level view of finite state
machines in your design. The State Machine Viewer provides a graphical
representation of the states and their related transitions, as well as a state
transition table that displays the condition equation for each of the state
transitions, and encoding information for each state.

To run the State Machine Viewer, on the Tools menu, point to Netlist
Viewers and click State Machine Viewer. To open the State Machine
Viewer for a particular state machine, double-click the state machine
instance in the RTL Viewer, or right-click the state machine instance, and
click Hierarchy Down.

The Quartus II Technology Map Viewer provides a technology-specific,
graphical representation of your design after Analysis & Synthesis or the
Fitter has mapped your design into the target device. The Technology
Map Viewer shows the hierarchy of atom primitives (such as device logic
cells and I/O ports) in your design. For supported families, you can also
view the internal registers and look-up tables inside logic cell (LCELL)
and registers in I/ O atom primitives. Refer to “Viewing Contents of Atom
Primitives in the Technology Map Viewer” on page 12-21 for details.

[l=~ Where possible, the port names of each hierarchy are
maintained throughout synthesis. However, port names may
change or be removed from the design. For example, if a port is
unconnected or driven by GND or VCC, it is removed during
synthesis. When a port name is changed, the port is assigned a
related user logic name in the design, or a generic port name
such as IN1 or OUT1.

You can view your Quartus II technology-mapped results after synthesis,
fitting, or timing analysis. To run the Technology Map Viewer for a
Quartus II project, on the Processing menu, point to Start and click Start
Analysis & Synthesis to first synthesize and map the design to the target
technology. You also can perform a full compilation, or any process that
includes the synthesis stage in the compilation flow.

If you have completed the Fitter stage, the Technology Map Viewer
shows the changes made to your netlist by the Fitter, such as physical
synthesis optimizations. If you have completed the Timing Analysis
stage, you can locate timing paths from the Timing Analyzer report in the
Technology Map Viewer (refer to “Viewing a Timing Path” on page 12-37
for details). Refer to Figure 12-1 for a flow diagram.

To run the viewer, on the Tools menu, point to Netlist Viewers and click
Technology Map Viewer, or select Technology Map Viewer from the
Applications toolbar.

Altera Corporation
May 2006

Introduction to the User Interface

Introduction to The RTL Viewer window and Technology Map Viewer window each

the User
Interface

consist of two main parts: the schematic view and the hierarchy list.
Figure 12-2 shows the RTL Viewer window and indicates these two parts.
Both viewers also contain a toolbar that gives you tools to use in the
schematic view.

You can have only one RTL Viewer and one Technology Map Viewer
window open at a time, although each window can show multiple pages.
The window for each viewer has characteristics similar to other “child”
windows in the Quartus II software; it can be resized and moved,
minimized or maximized, tiled or cascaded, and moved in front of or
behind other windows.

Figure 12-2. RTL Viewer Window & RTL Toolbar

RTL Viewer Higrarchy Schematic
Toolbar List View

- : 1

rJ

Sefgction Tool ———y
Zoom Tool ——@&_ Page Tile: | ~at|e1 |Page 1af1
Hand Tool O Wreadwis 1| ¥
Full Screen — B-fitref
E # Instances % 1_._]
Refresh | # Primitives —
Pins : ;I
Find ——————84 | = nets g | y
Previous Page :i '—‘
Next Page
Back (Display = ' .
Preview View)
Forward —
(Display Next View)
v
. »

Altera Corporation

May 2006

Schematic View

The schematic view is shown on the right side of the RTL Viewer and
Technology Map Viewer. It contains a schematic representing the design
logic in the netlist. This is the main screen for viewing your gate-level
netlist in the RTL Viewer and your technology-mapped netlist in the
Technology Map Viewer.

12-7

Quartus Il Handbook, Volume 1

Schematic Symbols

The symbols for nodes in the schematic represent elements of your design
netlist. These elements include input and output ports, registers, logic
gates, Altera primitives, high-level operators, and hierarchical instances.

Figure 12-3 shows an example of an RTL Viewer schematic for a 3-bit
synchronous loadable counter. The “Code Sample for Counter Schematic
Shown in Figure 12-3” section shows the Verilog HDL code that
produced this schematic. In this example, there are multiplexers and a
group of registers (Table 12-1) in a bus along with an ADDER operator
(Table 12-3) inferred by the counting function in the HDL code.

The schematic displays wire connections between nodes with a thin black
line, and bus connections with a thick black line (Figure 12-3).

Figure 12-3. Example Schematic Diagram in the RTL Viewer

& RTL Viewer EI@BI

Fage Title ‘ counter | Page 1 of 1
N|Hierarchry List
=1 coLnter
+-Primit
+-Pins] resun reg~[2..0]
+ Mets
o result_reg[2..0]
DATAR FRE
u ;] {——>result][2..0]
ENA
PODER
bR CLR
clk e
load >
data[2..0]—=>
J
< 3¢ >

Example 12-1. Code Sample for Counter Schematic Shown in Figure 12-3
module counter (input [2:0] data, input clk, input load, output [2:0] result);
reg [2:0] result_reg;
always @ (posedge clk)
if (load)
result_reg <= data;
else
result_reg <= result_reg + 1;
assign result = result_reg;
endmodule

12-8 Altera Corporation
May 2006

Introduction to the User Interface

Figure 12—4 shows a portion of the corresponding Technology Map
Viewer schematic with a compiled design that targets a Stratix® device.
In this schematic, you can see the LCELL (logic cell) device-specific
primitives that represent the counter function, labeled with their
post-synthesis node names. The REGOUT port represents the output of the
register in the LCELL, and the COMBOUT port represents the output of the
combinational logic in the look-up table (LUT) of the LCELL. The
hexadecimal number in parentheses below each LCELL primitive
represents the LUT mask, which is a hexadecimal representation of the
logic function of the LCELL.

Figure 12-4. Example Schematic Diagram in the Technology Map Viewer

S Technology Map Viewer - Post-Fit

Fage Title | PostFit counter | Page 1 of 1
-
result_reg?]
K
resut_regl0] | . loama
clk fokc Add0~37 =rasullz]
data[0]C—————ama ——{oaTaz
load—> w0 ST ||| [
DATAC resu\tﬁreg['] LCELL @865
LCELL (BB3E) 0 LCELL (FOOO)
date[o= [=resul]l]
TAH RESOUT] —resul[1]
(an
\CELL paig
dalg[Z] > 2
hd >

Table 12-1 lists and describes the primitives and basic symbols that you
can display in the schematic view of the RTL Viewer and Technology Map
Viewer. Table 12-3 on page 12-13 lists and describes the additional higher
level operator symbols used in the RTL Viewer schematic view.

Altera Corporation 12-9
May 2006

Quartus Il Handbook, Volume 1

=" The logic gates and operator primitives appear only in the RTL
Viewer. Logic in the Technology Map Viewer is represented by
atom primitives such as LCELL.

Table 12-1. Symbols in the Schematic View (Part 1 of 3)

Symbol Description
1/0 Ports An input, output, or bidirectional port in the current level of hierarchy. A device input,
a4 ini [—— output, or bidirectional pin when viewing the top-level hierarchy. The symbol can
represent a bus. Only one wire is connected to the bidirectional symbol, representing
2 o both the input and the output paths.
Input symbols appear on the left-most side of the schematic, while output and
= e bidirectional symbols appear on the right-most side of the schematic.
1/0 Connectors An input or output connector, representing a net that comes from another page of the
——0uTi same hierarchy (refer to “Partitioning the Schematic into Pages” on page 12-24). To
go to the page that contains the source or the destination, right-click on the net and
choose the page from the menu (refer to “Following Nets across Schematic Pages”
ouT1iE__—

on page 12-25).

Hierarchy Port Connect

O

A connector representing a port relationship between two different hierarchies. A
connector indicates that a path passes through a port connector in a different level
of hierarchy.

OR, AND, XOR Gates

An OR, AND, or XOR gate primitive (the number of ports can vary). A small circle
(bubble symbol) on an input or output indicates that the port is inverted.

"
MUX A multiplexer (MUX) primitive with a selector port that selects between port 0 and port
1. A MUX with more than two inputs is displayed as an operator (refer to “Operator
D Symbols in the RTL Viewer Schematic View” on page 12—13).
o
ig
BUFFER A buffer primitive. The figure shows the tri-state buffer, with an inverted output enable
port. Other buffers without an enable port include LCELL, SOFT, CARRY, and
GLOBAL. The NOT gate and EXP expander buffers use this symbol without an enable
port and with an inverted output port.
3247
CARRY_SUM A CARRY_SUM buffer primitive, where ST represents SUM IN, SO represents SUM
inst OUT, CI represents CARRY IN, and CO represents the CARRY OUT port of the
s sol— buffer.
—Cl Cco——
12-10 Altera Corporation

May 2006

Introduction to the User Interface

Table 12-1. Symbols in the Schematic View (Part 2 of 3)

Symbol Description
LATCH A latch primitive with D data input, EN enable input, Q data output, and PRE preset
and CLR clear ports.
m Etch
1, }‘I'CI::c |
—]EM& -
GLR
(o)
]
DFFE/DFFEA/DFFAES |A DFFE (data flipflop with enable) primitive, with the same ports as a latch and a
ticket[1]mregl clock trigger. The other flipflop primitives are similar: DFFEA (data flipflop with enable
s "“EQ | and asynchronous load) primitive with additional ALOAD asynchronous load and

ADATA data signals, and DFFEAS (data flipflop with enable and both synchronous
and asynchronous load) which has ASDATA as the secondary data port.

Atom Primitive

result_reg[0]
CLK
DATAA
DATAB
DATAC
LCELL (8B8B)

REGOUTI—

Primitives are low-level nodes that cannot be expanded to any lower hierarchy. The
symbol displays the port names, the primitive type, and its name. The blue shading
indicates an atom primitive in the Technology Map Viewer which allows you to view
the internal details of the primitive. Refer to “Viewing Contents of Atom Primitives in
the Technology Map Viewer” on page 12—-21 for details.

Other Primitive

«[B]~106

—|DATAL

—DATAB
DATA OUTO —
—DATAC

—DATAD
LCELL(ESEM

Any primitive that does not fall into the categories above. Primitives are low-level
nodes that cannot be expanded to any lower hierarchy. The symbol displays the port
names, the primitive or operator type, and its name.

The figure shows an LCELL WYSIWYG primitive, with DATAA to DATAD and
COMBOUT port connections. This type of LCELL primitive would be found in the
Technology Map Viewer for technology-specific atom primitives when the contents of
the atom primitive cannot be viewed. The RTL Viewer contains similar primitives if
the source design was a VQM or EDIF netlist.

Instance

tapsiinst

rewt
et [iol:| -
|

selq

An instance in the design that does not correspond to a primitive or operator
(generally a user-defined hierarchy block), indicated by the double outline and green
shading. The symbol displays the instance name. To open the schematic for the
lower level hierarchy, right-click and choose the appropriate command (refer to
“Traversing & Viewing the Design Hierarchy” on page 12-20).

Altera Corporation
May 2006

12-11

Quartus Il Handbook, Volume 1

Table 12-1. Symbols in the Schematic View (Part 3 of 3)

Symbol Description
Encrypted Instance A user-defined encrypted instance in the design, indicated by the double outline and
const_mapperinst gray shading. The symbol displays the instance name. You cannot open the

i, schematic for the lower level hierarchy, because the source design is encrypted.
—| [
—_— N2 ouTy b——
—— I OUTH
—— e oUTS| p—

o b—

oure| ——

State Machine Instance | A finite state machine instance in the design, indicated by the double outline and
filter yellow shading. Double-clicking this instance opens the State Machine Viewer. Refer
to“State Machine Viewer” on page 12—17 for more details.

tep3

|
i

tap2

tapt

tapd

Table 12-2 lists and describes the symbol used only in the State Machine
Viewer.

Table 12-2. Symbol Available only in the State Machine Viewer

Symbol Description

State Node The node representing a state in a finite state machine. State transitions are indicated with
arcs between state nodes. The double circle border indicates the state connects to logic
outside the state machine, while a single circle border indicates the state node does not
feed outside logic.

tap1

12-12 Altera Corporation
May 2006

Introduction to the User Interface

Table 12-3 lists and describes the additional higher level operator
symbols used in the RTL Viewer schematic view.

Table 12-3. Operator Symbols in the RTL Viewer Schematic View (Part 1 of 2)

Symbol

Description

acdd~0

An adder operator:
ouT = A + B

A multiplier operator:
OUT = A X B

cliv~0

A divider operator:
OuUT = A/ B

CIVIDER
shift_left~0 A left shift operator:
OUT = (A << COUNT)
wp—7 0] AR

bt OLINTF.0]

LEFT_SHFT

shift_right~0 A right shift operator:
OUT = (A >> COUNT)
P QUTE. 0]
- O LIMTF .0
RIGHT_SHIFT
mad~0 A modulo operator:

MODULO

OUT = (A% B)

Altera Corporation
May 2006

12-13

Quartus Il Handbook, Volume 1

Table 12-3. Operator Symbols in the RTL Viewer Schematic View

(Part 2 of 2)

Symbol

Description

LezsThan~0

LEZS_THAM

A less than comparator:
OUT =(A<=B:A<B)

Muz~01

SEL[. 0]
DATAR. 0]

aur

BALI

A multiplexer:
OUT = DATA [SEL]
The data range size is 2sel range size

Select~0

SEL[.0]
out

DATAR. 0]

SELECTOR

A multiplexer with one-hot select input, and more than two input signals.

Decoder~1

INQLO) OUTEE.0]

DECODER

A binary number decoder:
ouT = (binary_number (IN) == x)
for x=0 to x=2(+1) - 1

12-14

Selecting an Item in the Schematic View

To select an item in the schematic view, ensure that the Selection Tool is
enabled in the viewer toolbar (this tool is enabled by default). Click on an
item in the schematic view to highlight it in red.

Select multiple items by pressing the Shift or Ctrl key while selecting with
your mouse. You also can select all nodes in a region by selecting a
rectangular box area with your mouse cursor when the Selection Tool is
enabled. To select nodes in a box, move your mouse to one corner of the
area you want to select, click the mouse button, and drag the mouse to the
opposite corner of the box, then release the mouse button. By default,
creating a box like this highlights and selects all nodes in the selected area
(instances, primitives, and pins), but not the nets. The Viewer Options
dialog box provides an option to select nets. To include nets, right-click in
the schematic and click Viewer Options. In the Net Selection section,
turn on the Select entire net when segment is selected option.

Altera Corporation
May 2006

Introduction to the User Interface

Altera Corporation
May 2006

Items selected in the schematic view are automatically selected in the
hierarchy list (refer to the “Hierarchy List” on page 12-15). The list
expands automatically if required to show the selected entry. However,
the list does not collapse automatically when entries are not being used
or are deselected.

When you select a hierarchy box, node, or port in the schematic view, the
item is highlighted in red but none of the connecting nets are highlighted.
When you select a net (wire or bus) in the schematic view, all connected
nets are highlighted in red. The selected nets are highlighted across all
hierarchy levels and pages. Net selection can be useful when navigating
a netlist because you see the net highlighted when you traverse between
hierarchy levels or pages.

In some cases, when you select a net that connects to nets in other levels
of the hierarchy, these connected nets also are highlighted in the current
hierarchy. If you prefer that these nets are not highlighted, use the
Viewer Options dialog box option to highlight a net only if the net is in
the current hierarchy. Right-click in the schematic, and click Viewer
Options. In the Net Selection section, turn on the Limit selections to
current hierarchy option.

Moving & Panning in the Schematic View

When the schematic view page is larger than the portion currently
displayed, you can use the scroll bars at the bottom and right side of the
schematic view to see other areas of the page.

You can also use the Hand Tool to “grab” the schematic page and drag it
in any direction. Enable the Hand Tool with the toolbar button. Click and
drag to move around the schematic view without using the scroll bars.

Hierarchy List

The hierarchy list is displayed on the left side of the viewer window. The
hierarchy list displays the entire netlist in a “tree” format based on the
hierarchical levels of the design. Using the hierarchy list, you can traverse
through the design hierarchy to view the logic schematic for each level.
You also can select an element in the hierarchy list that you want to see
highlighted in the schematic view.

'~ Nodes inside atom primitives are not listed in the hierarchy list.

12-15

Quartus Il Handbook, Volume 1

For each module in the design hierarchy, the hierarchy list displays the
the applicable elements listed in Table 12—4. Click the + icon to expand an
element.

Table 12-4. Hierarchy List Elements

Elements

Description

Instances

Modules or instances in the design that can be expanded to lower hierarchy levels.

State Machines

State machine instances in the design that can be viewed in the State Machine Viewer.

Primitives Low-level nodes that cannot be expanded to any lower hierarchy level. These include registers
and gates that you can view in the RTL Viewer when using Quartus Il integrated synthesis, or
logic cell atoms in the Technology Map Viewer or in the RTL Viewer when using a VQM or
EDIF from third-party synthesis software. In the Technology Map Viewer, you can view the
internal implementation of certain atom primitives, but you can not traverse into a lower level
of hierarchy.

Pins The /0 ports in the current level of hierarchy.
® Pins are device I/O pins when viewing the top hierarchy level, and are 1/O ports of the

design when viewing the lower levels.
o When a pin represents a bus or an array of pins, expand the pin entry in the list view to see
individual pin names.

Nets Nets or wires connecting the nodes. When a net represents a bus or array of nets, expand the
net entry in the tree to see individual net names.

Selecting an Item in the Hierarchy List

When you click any item in the hierarchy list, the viewer performs the

following actions:

B Searches for the item in the currently viewed pages, and displays the
page containing the selected item in the schematic view if it is not
currently displayed. (If you are currently viewing a filtered netlist,
for example, the relevant page within the filtered netlist is
displayed.)

B If the selected item is not found in the currently viewed pages, the
entire design netlist is searched, and the item is displayed in a default
view.

B Highlights the selected item in red in the schematic view.

When you double-click an instance in the hierarchy list, the viewer

displays the underlying implementation of the instance.

12-16 Altera Corporation

May 2006

Introduction to the User Interface

Altera Corporation
May 2006

You can select multiple items by pressing the Shift or Ctrl key while
selecting with your mouse. When you right-click an item in the hierarchy
list, you can navigate in the schematic view using the Filter and Locate
commands. Refer to “Filtering in the Schematic View” on page 12-27 and
“Probing to Source Design File & Other Quartus II Windows” on

page 12-35 for more information.

State Machine Viewer

The State Machine Viewer displays a graphical representation of the state
machines in your design. You can open the State Machine Viewer in any
of the following ways:

B On the Tools menu, point to Netlist Viewers, and click State
Machine Viewer

B Double-click on a state machine instance in the RTL Viewer

B Right-click on a state machine instance in the RTL Viewer, and click
Hierarchy Down

B Select a state machine instance in the RTL Viewer, and on the Project
menu, point to Hierarchy and click Down

Table 12-5 shows an example of the State Machine Viewer for a simple

state machine. The State Machine toolbar on the left side of the viewer
provides tools you can use in the state diagram view.

12-17

Quartus Il Handbook, Volume 1

Figure 12-5. State Machine in the State Machine Viewer

State Machine
Vigwer Toolbar State Machine Selection Box State Diagram View
f_l_l |

I | -, -
selection Tool — {1 €% State Machine Viewer | stat... I %5 Technology Map Viewer

Zoom Tool BEWll = State Machine Viewer | fsm:fsm1 |current_state
Hand Tool I . J
@ State Machine: |[my_fsmlfsrn:fsm1 lcurrent_state _ZJ
Full Screen LB I l
Highlight Fan-in—- g
Hightight Fan-out 4 £
Back (Display
Previous View) —{ <@
Forward |f.’3':'s,r.i.tajr'a—ﬁ:>
Next View)
Source State | Destination State | Condition A
S 50)|
2 | s4 's5 st _L0Y) |
3| S4 154 [rst_).[Y)
4 |4 '50 irst_)
5183 54 [rst_] v
i Tlansitinnsﬁ Encoding /
L State Encoding Table Tab
— State Transition Table
State Diagram View
The state diagram view is shown at the top of the State Machine Viewer
window. It contains a diagram of the states and state transitions.
The nodes that represent each state are arranged horizontally in the state
diagram view with the initial state, that is, the state node that receives the
reset signal, in the left-most position. Nodes that connect to logic outside
of the state machine instance are represented by a double circle. The state
transition is represented by an arc with an arrow pointing in the direction
of the transition.
When you select a node in the state diagram view, if you turn on the
Highlight Fan-in or Highlight Fan-out command from the View menu
or the State Machine Viewer toolbar, the respective fan-in or fan-out
transitions from the node are highlighted in red.
12-18 Altera Corporation

May 2006

Introduction to the User Interface

Altera Corporation
May 2006

=" Anencrypted block with a state machine displays encoding
information in the state encoding table, but does not display a
state transition diagram or table.

State Transition Table

The state transition table on the Transitions tab at the bottom of the State
Machine Viewer window displays the condition equation for each state
transition. Each transition (each arc in the state diagram view) is
represented by a row in the table. The table has the following three
columns:

B Source State—the name of the source state for the transition

B Destination State—the name of the destination state for the
transition

B Condition—the condition equation that causes the transition from
source state to destination state

To easily see all the transitions to and from each state name, click the
appropriate column heading to sort on that column.

The text in each column is left aligned by default; to change the alignment
and more easily see the relevant part of the text in the table, right-click in
the column, and click Align Right. To change back to left alignment,
choose Align Left.

You can click in any cell in the table to select it. To select all cells,
right-click in the cell and click Select All; or, on the Edit menu, click
Select All. To copy selected cells to the clipboard, right-click the cells and
click Copy Table; or, on the Edit menu, point to Copy and click Copy
Table. You can paste the table into any text editor as tab-separated
columns.

State Encoding Table

The state encoding table on the Encoding tab at the bottom of the State
Machine Viewer window displays the encoding information for each
state transition.

To view state encoding information in the State Machine Viewer, you
must have synthesized your design using Start Analysis & Synthesis. If
you have only elaborated your design using Start Analysis &
Elaboration, the encoding information is not displayed.

12-19

Quartus Il Handbook, Volume 1

Navigating the
Schematic View

12-20

Selecting an Item in the State Machine Viewer

Each state node and transition in the State Machine Viewer can be
selected and highlighted. To select a state transition, click the arc that
represents the transition.

When you select a state node and/or transition arc in the state diagram
view, the matching state node and/or equation conditions in the state
transition table are highlighted; conversely, when you select a state node
and/or equation condition in the state transition table, the corresponding
state node and/or transition arc is highlighted in the state diagram view.

Switching between State Machines

A design may contain multiple state machines. To choose which state
machine to view, use the State Machine selection box located at the top
of the State Machine Viewer. Click in the drop-down box and select the
desired state machine.

The previous sections provided an overview of the user interface for each
netlist viewer, and how to select an item in each viewer. This section
describes ways to navigate through the pages and hierarchy levels in the
schematic view of the RTL Viewer and Technology Map Viewer.

Traversing & Viewing the Design Hierarchy

You can open different hierarchy levels in the schematic view using the
hierarchy list (refer to “Hierarchy List” on page 12-15), or the Hierarchy
Up and Hierarchy Down commands in the schematic view.

Use the Hierarchy Down command to go down into, or expand an
instance’s hierarchy, and open a lower level schematic showing the
internal logic of the instance. Use the Hierarchy Up command to go up in
hierarchy, or collapse a lower level hierarchy, and open the parent higher
level hierarchy. When the Selection Tool is selected, the appropriate
option is available when your mouse pointer is located over an area of the
schematic view that has a corresponding lower or higher level hierarchy.

The mouse pointer changes as it moves over different areas of the
schematic to indicate whether you can move up, down, or both up and
down in the hierarchy (Figure 12-6). To open the next hierarchy level,
right-click in that area of the schematic, and click Hierarchy Down or
Hierarchy Up, as appropriate, or double-click in that area of the
schematic.

Altera Corporation
May 2006

Navigating the Schematic View

Altera Corporation
May 2006

Figure 12-6. Mouse Pointers Indicate How to Traverse Hierarchy
Deds [y &
L 4 1

Hierarchy Up Hierarchy Down Hierarchy Up or Down,

Flattening the Design Hierarchy

You can flatten the design hierarchy to see the design without
hierarchical boundaries. To flatten the hierarchy from the current level
and all the lower level hierarchies of the current design hierarchy,
right-click in the schematic, and click Flatten Netlist. To flatten the entire
design, choose this command from the top-level schematic of the design.

Viewing the Contents of a Design Hierarchy within the Current Schematic

You can use the Display Content and Hide Content commands to show
or hide a lower hierarchy level for a specific instance within the schematic
for the current hierarchy level.

To display the lower hierarchy netlist of an instance on the same
schematic as the remaining logic in the currently viewed netlist,
right-click the selected instance, and click Display Content.

To hide all of the lower hierarchy logic of a hierarchy box into a closed
instance, right-click the selected instance, and click Hide Content.

Viewing Contents of Atom Primitives in the Technology Map
Viewer

In the Technology Map Viewer, you can view the contents of certain
device atom primitives to see their underlying implementation details.
For logic cell (LCELL) atoms in Stratix, Cyclone™, and MAX® II devices,
you can view the look-up tables (LUT), registers, and logic gates. For I/O
atoms in Stratix II, Cyclone II, Stratix, Cyclone, and HardCopy® II
devices, you can view the registers and logic gates.

In addition, you can view the implementation of RAM and DSP blocks in
certain devices. You can view the implementation of RAM blocks in
Stratix II, Stratix II GX, Stratix, Stratix GX, Cyclone II, and Cyclone
devices. You can view the implementation of DSP blocks only in Stratix
and Stratix GX series of devices.

12-21

Quartus Il Handbook, Volume 1

If you can view the contents of an atom instance, it is colored blue in the
schematic view (Figure 12-7).

Figure 12-7. Instance that Can Be Expanded to View Internal Contents

result_reg[0]

—CLK
—DATAA
REGOUT—
—DATAB
—DATAC
LCELL (8B&B)

To view the contents of one or more atom primitive instances, select the
desired atom instance(s). Right-click the selected instance and click
Display Content. Figure 12-8 shows an expanded version of the instance
in Figure 12-7.

Figure 12-8. Internal Contents of the Atom Instance in Figure 12-7.

EENMER
— DATAC =E
— DATAA OUT D Q —
—Xs DATAG
SUM_LUT (3B5B) EMA
| CLR

To hide the contents (and revert to the compact format), select and
right-click the atom instance(s), and click Hide Content.

s In the schematic view, the internal details within an atom
instance can not be selected as individual nodes. Any mouse
action on any of the internal details is treated as a mouse action
on the atom instance.

12-22 Altera Corporation
May 2006

Navigating the Schematic View

Altera Corporation
May 2006

Zooming & Magnification

You can control the magnification of your schematic with the View menu,
the Zoom Tool in the toolbar, or the Ctrl key and mouse wheel button, as
described in this section.

The Fit in Window, Fit Selection in Window, Zoom In, Zoom Out, and
Zoom commands are available from the View menu, by right-clicking in
the schematic view and selecting Zoom, or from the Zoom toolbar. To
enable the zoom toolbar, on the Tools menu, click Customize. Click the
Toolbars tab and click Zoom to enable the toolbar.

By default, the viewer displays most pages sized to fit in the window. If
the schematic page is very large, the schematic is displayed at the
minimum zoom level, and the view is centered on the first node. Select
Zoom In to see the image at a larger size, and select Zoom Out to see the
image (when the entire image is not displayed) at a smaller size. The
Zoom command allows you to specify a magnification percentage (where
100% is considered the normal size for the schematic symbols). The Fit
Selection in Window command zooms in on the selected nodes in a
schematic to fit within the window. Use the Selection Tool to select one
or more nodes (instances, primitives, pins, and nets), then select Fit
Selection in Window to enlarge the area covered by the selection. This
feature is helpful when you want to see a particular element in a large
schematic. After you select a node, you can easily zoom in to view the
particular node.

You also can use the Zoom Tool on the viewer toolbar to control
magnification in the schematic view. When you select the Zoom Tool in
the toolbar, clicking on the schematic zooms in and centers the view on
the location you clicked. Right-click on the schematic (or press the Shift
key or the Ctrl key and click) to zoom out and center the view on the
location you clicked. When you select the Zoom Tool, you also can zoom
in to a certain portion of the schematic by selecting a rectangular box area
with your mouse cursor. The schematic is enlarged to show the selected
area. To change the minimum and the maximum zoom level, on the Tools
menu, click Options. In the Options dialog box, in the Category list,
select RTL/Technology Map Viewer, and set the desired minimum and
maximum zoom level.

By default, the viewers maintain the zoom level when filtering on the
schematic (refer to “Filtering in the Schematic View” on page 12-27). To
change the behavior so that the zoom level is always reset to “Fit in
Window,” on the Tools menu, click Options. In the Category list, select
RTL/Technology Map Viewer, and turn off Maintain zoom level.

12-23

Quartus Il Handbook, Volume 1

Partitioning the Schematic into Pages

For large design hierarchies, the RTL Viewer and Technology Map Viewer
partition your netlist into multiple pages in the schematic view. To control
how much of the design can be seen on each page, on the Tools menu,
click Options. In the Category list, select RTL/Technology Map Viewer,
and set the desired options under Display Settings.

The Nodes per page option specifies the number of nodes per partitioned
page. The default value is 50 nodes; the range is 1 to 1,000 nodes. The
Ports per page option specifies the number of ports (or pins) per
partitioned page. The default value is 1,000 ports/pins; the range is 1 to
2,000 ports/pins. The viewers partition your design into a new page if
either the node number or the port number exceeds the limit you have
specified. You may occasionally see the number of ports exceed the limit,
depending on the configuration of nodes on the page.

When a hierarchy level is partitioned into multiple pages, the title bar for
the schematic window indicates which page is displayed and how many
total pages exist for this level of hierarchy (shown in the format: Page

<current page number> of <total number of pages>) as shown in Figure 12-9.

Figure 12-9. RTL Viewer Title Bars Indicating Page Number Information

First Page of Higrarchy Hierarchy Level Consists of 3 Pages

:£ Technology Map Viewer - Post-Fit

Page Tide: | PostFit alt_u_div_bah:divider [Page 1jof{3 |

rainst
hoes
pn_divide:lpm_divide_companent
Instances
=| lpm_divide_2am:auto_gen
=| Instances
=1 sign_div_unsign_b
= Instances
= alt_u_div_
+ Primiti
+ Pins
+ Nets
+ Pins
4 >

e -~
DFFBercminaig)- 7
dencan[C > ‘
DFFDenominaial3) o
denemm[H—> ‘ I
DFFBercminaiael o
dencanfal—>
| seinaresE]
P L,
1
T
dencamE] > T '_l;
1
dercentST—>
»: denc[TIC_—> ! ! - I B fige (o] v
< >

12-24

Altera Corporation
May 2006

Navigating the Schematic View

Altera Corporation
May 2006

When you change the number of nodes or ports per page, the change
applies only to new pages that are shown or opened in the viewer. To
refresh the current page so that it displays the changed number of nodes
or ports, click the Refresh button in the toolbar.

Moving between Schematic Pages

To move to another schematic page, on the View menu, click Previous
Page or Next Page, or click the Previous Page icon or the Next Page icon
in the viewer toolbar.

To go to a particular page of the schematic, on the Edit menu, click Go To,
or right-click in the schematic view, and click Go To. In the Page list,
select the desired page number.

Moving Back & Forward through Schematic Pages

To return to the previous view after changing the page view, click Back
on the View menu, or click the Back icon on the viewer toolbar. To go to
the next view, click Forward on the View menu, or click the Forward icon
on the viewer toolbar.

'~ You can go Forward only if you have not made any changes to
the view since going Back. Use Back and Forward to switch
between page views. These commands do not undo an action
such as selecting a node.

Following Nets across Schematic Pages

Input and output connectors indicate nodes that connect across pages of

the same hierarchy. Right-click on a connector to display a menu of

commands that trace the net through the pages of the hierarchy.

1= After you right-click to follow a connector port, the viewer
opens a new page, which centers the view on the particular
source or destination net using the same zoom factor used by the
previous page. To trace a specific net to the new page of the
hierarchy, Altera recommends that you first select the desired
net, which highlights it in red, before you right-click to traverse

pages.

Input Connectors

Figure 12-10 shows an example of the menu that appears when you
right-click an input connector. The From command opens the page
containing the source of the signal. The Related commands, if applicable,
open the specified page containing another connection fed by the same
source.

12-25

Quartus Il Handbook, Volume 1

Figure 12-10. Input Connector Right Button Pop-Up Menu

mem_dak_ce_en_s

(Signa/ source is on page 1.

_data_oe_en_sx=

_MEM_D_out_ziE | & i S
[From Page 1 r

w_dsadil_en_siE |:Fle|ated Fage & l\-/‘
| dsackd_out_a 35— (Related Page B L=

Other connections fed by the
source are on these pages.

Output Connectors

Figure 12-11 shows an example of the menu that appears when you
right-click an output connector. The To command opens the specified
page that contains a destination of the signal.

Figure 12-11. Output Connector Right Button Pop-Up Menu

=-—3% Srdpath:dpath_LPB2_data_out_s
m—a—S " >dpath:dpath_GPB1_data_out_s

"_‘D>dpa'lh:dpath RAERA M Ant =
[3To Page 4

To Page 5
ToPage B

Destinations of the output
connector are on these pages.

12-26 Altera Corporation
May 2006

Filtering in the Schematic View

Go to Net Driver

To locate the source of a particular net in the schematic view, select the net
to highlight it, right-click the selected net, point to Go to Net Driver, and
click Current page, Current hierarchy, or Across hierarchies. Refer to
Table 12-5.

Table 12-5. Go to Net Driver Commands

Command

Action

Current page Locates the source or driver on the current page of the schematic only.

Current hierarchy Locates the source within the current level of hierarchy, even if the source is located on

another page of the netlist schematic.

Across hierarchies | Locates the source across hierarchies until the software reaches the source at the top

hierarchy level.

Filtering in the
Schematic View

Altera Corporation
May 2006

The schematic view opens the correct page of the schematic if needed,
and adjusts the centering of the page so that you can see the net source.
The schematic shows the default page for the net driver. The view is an
unfiltered view, so no filtering results are kept.

Filtering allows you to filter out nodes and nets in your netlist to view
only a logic path that interests you.

Filter your netlist by selecting hierarchy boxes, nodes, ports of a node,
net, or states in a state machine that are part of the path you want to see.
The following filter commands are available:

B Sources—Displays the sources of the selection

B Destinations—Displays the destinations of the selection

B Sources & Destinations—Displays both the sources and
destinations of the selection

B Selected Nodes and Nets—Displays only the selected nodes and
nets with the connections between them

B Between Selected Nodes—Displays nodes and connections in the
path between the selected nodes

B Bus Index—Displays the sources or destinations for one or more
indices of an output or input bus port

Select a hierarchy box, node, port, net, or state node, right-click in the
window, point to Filter and click the appropriate filter command. The
viewer generates a new page showing the netlist that remains after
filtering.

12-27

Quartus Il Handbook, Volume 1

When filtering in a state diagram in the State Machine Viewer, sources
and destinations refer to the previous and next transition states or paths
between transition states in the state diagram. The transition table and
encoding table also reflect the filtering.

You can go back to the netlist page before it was filtered using the Back
command, described in “Moving Back & Forward through Schematic
Pages” on page 12-25.

= When viewing a filtered netlist, clicking an item in the hierarchy
list causes the schematic view to display an unfiltered view of
the appropriate hierarchy level. You cannot use the hierarchy
list to select items or navigate in a filtered netlist.

Filter Sources Command

To filter out all but the source of the selected item, right click the item,
point to Filter and click Sources. The selected object type determines
what is displayed, as outlined in Table 12-6 below, and shown in
Figure 12-12 on page 12-29.

Table 12-6. Selected Objects Determine Filter Sources Display

Selected Object

Result Shown in Filtered Page

Node or hierarchy box

Shows all the sources of the node’s input ports. For an example, refer to
Figure 12—12 on page 12-29.

Net

Shows the sources that feed the net.

Input port of a node

Shows only the input source nodes that feed this port.

Output port of a node

Shows only the selected node.

State node in a state machine Shows the states that feed the selected state (previous transition states).

12-28

Altera Corporation
May 2006

Filtering in the Schematic View

Filter Destinations Command

To filter out all but the destinations of the selected node or port displayed
as outlined in Table 12-7 below, and shown in Figure 12-12 on

page 12-29, right-click the node or port, point to Filter, and click
Destinations.

Table 12-7. Selected Objects Determine Filter Destinations Display

Selected Object

Result Shown in Filtered Page

Node or hierarchy box

Shows all the destinations of the node’s output ports. For an example, refer
to Figure 12—12 on page 12-29.

Net

Shows the destinations fed by the net.

Input port of a node

Shows only the selected node.

Output port of a node

Shows only the fan-out destination nodes fed by this port.

State node in a state machine | Shows the states that are fed by the selected states (next transition states).

Filter Sources & Destinations Command

The Sources & Destinations command is a combination of the Sources
and Destinations filtering commands, in which the filtered page shows
both the sources and the destinations of the selected item. To select this
option, right-click on the desired object, point to Filter, and click
Sources & Destinations. For an example, refer to Figure 12-12.

Figure 12-12. Sources, Destinations & Sources & Destinations Filtering for inst4

Sources

pin_name3 [_>
pin_name4 —

pin_name >

_________________________ Destinations
pnames stz - M e TS
pin_name3 inst: | ——————— [U 1
instoouTt | dnstd N T —— Y I
pin_name4 | : |
pin_name6 !
|
, A S PR e
pin_name inst |
pin_name2 | -

-
-
-

-
—_—— -
e ——— -

Sources & Destinations

Altera Corporation
May 2006

12-29

Quartus Il Handbook, Volume 1

Filter between Selected Nodes Command

To show the nodes in the path between two or more selected nodes or
hierarchy boxes, right-click, point to Filter, and click Between Selected
Nodes. For this option, selecting a port of a node is the same as selecting
the node. For an example, refer to Figure 12-13.

Figure 12-13. Between Selected Nodes Filtering Between insi2 & inst3

. pin_name3 inst2 .
pin_name3 [inseoUT1 Inst4)
) pin_name4 I - instaouT1 INSt3
pin_name4 > instOUT1 - ins{30UT1 !
pin_names ————{ > pin_name6
. pin_name inst
pin_name > | :
. pin_name2
pin_name2 >
pin_names >——

Between Selected Nodes

Filter Selected Nodes & Nets Command

To create a filtered page that shows only the selected nodes and/or nets
and, if applicable, the connections between the selected nodes and/or
nets, right-click, point to Filter, and click Selected Nodes & Nets.
Figure 12-14 shows a schematic with some nodes selected.

Figure 12-14. Using Selected Nodes & Nets to Select Nodes

it e

=E =S

-

=
Figure 12-15 shows the schematic after filtering has been performed. If
you select a net, the filtered page shows the immediate sources and
destinations of the selected net.

12-30 Altera Corporation

May 2006

Filtering in the Schematic View

Altera Corporation
May 2006

Figure 12-15. Selected Nodes & Nets Filtering on Figure 12-14 Schematic

dd_sub_cellall] add_sub_cella[f]
—JoaTen DaTa

—{oaTas congo DaTAR COMBOUT—

1-oatan co

DATAD couT—
cin
YCLONEN_LCELL_COMB

—{cm
CYCLONEN_LCELL_COMB

n(;l

add_sub_sella[3] loell_ffa[]

—{paraa —cik
—{oatan consouT—
1={oaTan couTf— —ectr
—cm —{Ena
CYCLONEN_LCELL_COMB CYCLOMEI_LCELL_FF

REGOUTI—

Filter Bus Index Command

To show the path related to a specific index of a bus input or output port
in the RTL Viewer, right-click the port, point to Filter, and click Bus
Index. The Select Bus Index dialog box allows you to select the indices of
interest.

Filter Command Processing

The options to control filtering are available in the Filtering section of the
RTL/Technology Map Viewer Options dialog box. Right-click in the
schematic, and click Viewer Options to open the dialog box.

For all the filtering commands, the viewer stops tracing through the
netlist to obtain the filtered netlist when it reaches one of the following
objects:

B Apin
B A specified number of filtering levels, counting from the selected
node or port; the default value is 3
I~ Specify the Number of filtering levels in the Filtering
section of the RTL/Technology Map Viewer Options
dialog box. The default value is 3 to ensure optimal
processing time when performing filtering, but you can
specify a value from 1 to 100.

B A register (optional; turned on by default)
L=~ Turn the Stop filtering at register option on or off in the
Filtering section of the RTL/Technology Map Viewer

Options dialog box. Right-click in the schematic and click
Viewer Options to open the dialog box.

12-31

Quartus Il Handbook, Volume 1

By default, the filtered schematic shows all possible connection between
the nodes shown in the schematic. To remove the nodes and connections
that are not directly part of the path that was traced to generate a filtered
netlist, turn off the Shows all connections between nodes option in the
Filtering section of the RTL/Technology Map Viewer Options dialog
box.

Filtering Across Hierarchies

The filtering commands display nodes in all hierarchies by default. When
the filtered path passes through levels of hierarchy on the same schematic
page, green hierarchy boxes group the logic and show the hierarchy
boundaries. A diamond symbol appears on the border that represents the
port relationship between two different hierarchies (Figure 12-16 on
page 12-33 and Figure 12-17 on page 12-33).

The RTL/Technology Map Viewer Options dialog box provides an
option to control filtering if you prefer to filter only within the current
hierarchy. Right-click in the schematic, and click Viewer Options. In the
Filtering section, turn off the Filter across hierarchy option.

To disable the box hierarchy display, on the Tools menu, click Options. In
the Category list, select RTL/Technology Map Viewer, and turn off Show
box hierarchy.

I Netlists of the same hierarchy that are displayed over more than
one page are not grouped with a box. Filtering and expanding
on a blue atom primitive does not trace the underlying netlist
even when Filter across hierarchy is enabled.

Figures 12-16 and 12-17 show examples of filtering across hierarchical
boundaries. Figure 12-17 shows an example after the Sources filter has
been applied to an input port of the taps instance, where the input port
of the lower level hierarchical block connects directly to an input pin of
the design. The name of the instance is indicated within the green border
and appears as a tooltip when you move your mouse pointer over the
instance.

12-32 Altera Corporation
May 2006

Filtering in the Schematic View

Figure 12-16. Filtering Across Hierarchical Boundaries, Small Example

Instance Name —"taES:inst
Port Relationship
. By 1 Higrarchies b
resetL___>— . —
Hierarchical Boundary

Figure 12-17 shows a larger example after the Sources filter that has been
applied to an input port of an instance, in which the source comes from
input pins that are fed through another level of hierarchy.

Figure 12-17. Filtering Across Hierarchical Boundaries, Large Example

J

l

Sources command applied to an input port of an instance in which the source comes from input
pins that are fed through another fevel of hierarchy.

Expanding a Filtered Netlist

After a netlist is filtered, there may be ports whose connections are not
displayed because they are not part of the main path through the netlist.
Two expansion features, immediate expansion and the Expand
command, allow you to add the fan-out or fan-in signals of these ports to
the schematic display of a filtered netlist.

You can immediately expand any port whose connections are not
displayed by double-clicking that port in the filtered schematic. When
you do so, one level of logic is expanded.

Altera Corporation 12-33
May 2006

Quartus Il Handbook, Volume 1

12-34

To expand more than one level of logic, right-click the port and click the
Expand command. This command expands logic from the selected port
by the amount specified in the Viewer Options. To set these options,
right-click in the schematic view, and click Viewer Options. In the
Expansion section, set the Number of expansion levels option to specify
the number of levels to expand (the default value is 3 and the range is

1 to 100 levels). You also can set the Stop expanding at register option
(which is turned on by default) to specify whether to stop netlist
expansion when a register is reached.

You can select multiple nodes to expand when using the Expand
command. If you select ports that are located on multiple schematic
pages, only the ports on the currently viewed page are shown in the
expanded schematic.

In the State Machine Viewer, the Expand command has the following
three options:

B Sources—Displays the states that feed the selected states (previous
transition states).

B Destinations—Displays the states that are fed by the selected states
(next transition states).

B Sources & Destinations—Displays both the previous and next
transition states.

The state transition table and state encoding table also reflect the changes
to the filtering.

The expansion feature works across hierarchical boundaries if the filtered
page containing the port to be expanded was generated with the Filter
across hierarchy option turned on (refer to “Filtering in the Schematic
View” on page 12-27 for details on this option). When viewing timing
paths in the Technology Map Viewer, the Expand command always
works across hierarchical boundaries because filtering across hierarchy is
always turned on for these schematics (Refer to “Viewing a Timing Path”
on page 12-37 for details on these schematics).

Reducing a Filtered Netlist

In some cases, removing logic from a filtered schematic or state diagram
makes the schematic view easier to read or minimizes distracting logic
that you do not need to see on the schematic.

To reduce elements in the filtered schematic or state diagram view,
right-click the node or nodes you want to remove and click Reduce.

Altera Corporation
May 2006

Probing to Source Design File & Other Quartus Il Windows

Probing to
Source Design
File & Other
Quartus i
Windows

Altera Corporation
May 2006

The RTL, Technology Map, and State Machine Viewers let you
cross-probe from the viewer to the source design file and to various other
windows within the Quartus II software. You can select one or more
hierarchy boxes, nodes, nets, state nodes, or state transition arcs that
interest you in the viewer and locate the corresponding items in another
applicable Quartus II software window. You then can view and make
changes or assignments in the appropriate editor or floorplan.

To locate an item from the viewer in another window, right-click the
items of interest in the schematic or state diagram view, point to Locate,
and click the appropriate command. The following commands are
available:

Locate in Assignment Editor
Locate in Pin Planner

Locate in Timing Closure Floorplan
Locate in Chip Editor

Locate in Resource Property Editor
Locate in RTL Viewer

Locate in Technology Map Viewer
Locate in Design File

The options available for locating depend on the type of node and
whether it exists after placement and routing. If a command is enabled in
the menu, then it is available for the selected node. You can use the Locate
in Assignment Editor command for all nodes, but assignments may be
ignored during placement and routing if they are applied to nodes that
do not exist after synthesis.

The viewer automatically opens another window for the appropriate
editor or floorplan, and highlights the selected node or net in the newly
opened window. You can switch back to the viewer by selecting it in the
Window menu or by closing, minimizing, or moving the new window.

12-35

Quartus Il Handbook, Volume 1

Probing to the
Viewers from
Other Quartus Il
Windows

12-36

You can cross-probe to the RTL Viewer and Technology Map Viewer from
other windows within the Quartus II software. You can select one or more
nodes or nets in another window and locate them in one of the viewers.

You can locate nodes between the RTL, State Machine, and Technology
Map Viewers, and you can locate nodes in the RTL Viewer or Technology
Map Viewer from the following Quartus II software windows:

Project Navigator

Timing Closure Floorplan
Chip Editor

Resource Property Editor
Node Finder

Assignment Editor
Messages Window
Compilation Report

To locate elements in the viewer from another Quartus II window, select
the node or nodes in the appropriate window; for example, select an
entity in the Entity list on the Hierarchy tab in the Project Navigator, or
select nodes in the Timing Closure Floorplan, or select node names in the
From or To column in the Assignment Editor. Then, right-click the
selected object, point to Locate, and click Locate in RTL Viewer or Locate
in Technology Map Viewer. After you choose this command, the viewer
window opens, or is brought to the foreground if the viewer window is
already open.

= The first time the window opens after a compilation, the
preprocessor stage runs before the viewer window opens.

The viewer shows the selected nodes and, if applicable, the connections
between the nodes. The display is similar to what you see if you
right-click the object, point to Filter, and click Selected Nodes & Nets
using Filter Across Hierarchy. If the nodes cannot be found in the viewer,
a message box displays the message: “Can’t find message location.”

Altera Corporation
May 2006

Viewing a Timing Path

Viewing a
Timing Path

You can cross-probe from the Timing Analysis section of the Compilation
Report to see a visual representation of a timing path listed by the Timing
Analyzer.

To take advantage of this feature, you must first successfully complete a
full compilation of your design, including the Timing Analyzer stage. To
access the Timing Analyzer report which contains the timing results for
your design, on the Processing menu, click Compilation Report. To view
a path listed in any of the detailed reports for Clock Setup: <clock name>,
tsu, tco, tpd, or other timing parameters. When you select a detailed
report, the timing information is listed in a table format on the right side
of the Compilation Report; each row of the table represents a timing path
in the design. To view a particular timing path in the Technology Map
Viewer, right-click the appropriate row in the table, point to Locate, and
click Locate in Technology Map Viewer or Locate in RTL Viewer.

In the Technology Map Viewer, the schematic page displays the nodes
along the timing path with a summary of the total delay, as well as timing
data representing the interconnect (IC) and cell delays associated with
each node. The delay for each node is shown in the following format:
<post-synthesis node name> (<IC delay> ns, <cell delay> ns).

Figure 12-18 shows a portion of a timing path represented in the
Technology Map Viewer. The total delay for the entire path going through
a number of levels of logic (only three are shown in Figure 12-18) is
7.159 ns. The delays are indicated for each level of logic, for example, the
interconnect or IC delay to the first LCELL primitive is 0.383 ns, and the
cell delay through the LCELL is 0.075 ns. When the timing path passes
through a level of hierarchy, green hierarchy boxes group the logic and
show the hierarchical boundaries. A diamond symbol on the border
indicates the path passes between two different hierarchies.

Figure 12-18. Timing Path Schematic in the Technology Map Viewer

T

filtar.tapZ (0,000 nz,0.000 ng)

Em
DaTas

< H_DaTA
DaTan

SCLR

ro]

S

filter.tapd (0.383 ns,0.075 nz) e

—cL

— —|=VNCH_DATA
COMBOUT| ATAR

DATAD

REGOUT—
—JECLR

[T COMBOUT

LEELL 2500y

LCELL(FFFO)

Lo bl]|

LCELL (F588)

Altera Corporation

May 2006

12-37

Quartus Il Handbook, Volume 1

Other Features

inthe Schematic
Viewer
12-38

In the RTL Viewer, the schematic page displays the nodes in the path(s)
between the source and destination registers with a summary of the total
delay.

The RTL Viewer netlist is based on an initial stage of synthesis, so the
post-fitting nodes may not exist in the RTL Viewer netlist. Therefore, the
internal delay numbers are not displayed in the RTL Viewer as they are
in the Technology Map Viewer, and the timing path may not be displayed
exactly as it appears in the timing analysis report. If there are multiple
paths between the source and destination registers, the RTL Viewer
might display more than just the timing path. There are also some cases
when the path cannot be displayed, such as paths through state
machines, encrypted intellectual property (IP), or registers that are
created during the fitter process. In cases where the timing path
displayed in the RTL Viewer might not be the correct path, the compiler
issues messages.

This section describes other features in the schematic view that enhance
usability and help you analyze your design.

Tooltips

A tooltip is displayed whenever the mouse pointer is held over an
element in the schematic. The tooltip contains useful information about a
node, net, input port, and output port. Table 12-8 lists the information
contained in the tooltip for each type of node.

The tooltip information for an instance (the first row in Table 12-8)
includes a list of the primitives found within that level of hierarchy, and
the number of each primitive contained in the current instance. The
number includes all hierarchical blocks below the current instance in the
hierarchy. This information lets you estimate the size and complexity of
a hierarchical block without navigating into the block.

The tooltip information for atom primitives in the Technology Map
Viewer (the second row of Table 12-8) shows the equation for the design
atom. The equations are an expanded version of the equations you can
view in the Equations window in the Timing Closure Floorplan.
Advanced users can use these equations to analyze the design
implementation in detail.

For details on understanding equations, refer to the Quartus II Help.

To copy tooltips into the clipboard for use in other applications,
right-click the desired node or netlist, and click Copy Tooltip.

Altera Corporation
May 2006

Other Features in the Schematic Viewer

To turn off tooltips or change the duration of time that a tooltip is
displayed in the view, on the Tools menu, click Options. In the Category
list, select RTL/Technology Map Viewer and set the desired options
under Tooltip settings.

The Show names in tooltip for option specifies the number of seconds to
display the names of assigned nodes and pins in a tooltip when the
pointer is over the assigned nodes and pins. Selecting Unlimited displays
the tooltip as long as the pointer remains over the node or pin. Selecting 0
turns off tooltips. The default value is 5 seconds.

The Delay showing tooltip for option specifies the number of seconds
you must hold the mouse pointer over assigned nodes and pins before the
tooltip displays the names of the assigned nodes and pins. Selecting 0
displays the tooltip immediately when the pointer is over an assigned
node or pin. Selecting Unlimited prevents tooltips from being displayed.

The default value is 1 second.

Table 12-8. Tooltip Information (Part 1 of 2)

Description & Tooltip Format

Example Tooltips

Instance

Format: <instance name>, <instance type>
<primitive type>, <number of primitives>...
<primitive type>, <number of primitives>

tapzingt, INST

CFF 32
OPERATOR[SELECTOR) &
OFERATOR[DECODER] 1

Atom Primitive
Format: <instance name>, <primitive name> (<LUT Mask Value>)
{(x | c <Register or Combinational equation>)}

An r (as in the first example) represents the equation for a register,
and a c (as in the second example) represents the equation for
combinational logic.

insth[3], LCELL (0000
<13 insth[3]
=DFFEAS[
[GHD), GLOBAL[CLK), WCC, . ENA, SYNCH_DATA, . WCL)

CLK = clkx2
EM& = instd
SYNCH_DATA = resull[7]

accinst3ynm[2]~133, LCELL [00FO)
<o ynm[2]™133
=DATAL & IDATAD

DATALC = result[2]

DATAD = filter.tapl

Primitive
Format:<primitive name>, <primitive type>

|clocksinstFIMux~1, OFER MU

[md_mesinst1 Bldata[2.3]. DFFE]

Pin
Format: <pin name>, <pin type>

Fec_clock, INPUT]

Test_probe, OUTPUT

Connector instd_CLK
Format: <connector name>
Net |state_m:inst1 :decoder_node[2][0]. fan-out =1 |

Format: <net name>, fan-out = <number of fan-out signals>

Altera Corporation
May 2006

12-39

Quartus Il Handbook, Volume 1

Table 12-8. Tooltip Information (Part 2 of 2)

Description & Tooltip Format Example Tooltips

OUtPUt port far-out =9
Format: fan-out = <number of fan-out signals>

Input Port

Source fran: (1)
rezetreset sl

The information displayed depends on the type of the source net. The
examples of the tooltips shown represent the following type of source

< Destination lndex » | Source from: 2)

net: <[11] » | sample™~0:0UTA
< [10]» | sample~1:0UT1
(1) Single net < [9] > | sample~2:0UT1

< [B] > | zample™3:0UT1
< [7]» | sample™4:0UT1
(2) Individual nets, part of the same bus net < [EB] » | zample~5:0UT1
< [8] » | sample™E:0UTI
<[4 > | zample™7:0UT1

(3) Combination of different bus nets <[3]> | sample~E:0UTI
< [2]» | sample~3.0UT1
(4) Constant inputs < [1] > | zample™10:00UT1

< [0] # | zample™11:01T1

(5) Combination of single net and constant input Devtration e s Teoase] (3)

< [7.B] » | node2:OUT
(6) Bus net < [G]> | e3L00UT1
< [4] 3 [node2: 0T

: <[3.2] = [et3F0OUT
Source from refers to the source net name that connects to the input <[] | rode20UT1

port. < [0] > [ct330UT1

Destination Index refers to the bit(s) at the destination input port to < Diestination Indes » | Source frome | (4)
which the source net is connected (not applicable for single nets). <[11..0] > 112 KOO

< Destination lndex » | Source from: (5
<[22k
< [0] > | alwaps?~2:0UT1

< Destination Index » | Source from; | (6)
< [158..0] » | md_meinzt] 8:dout[15:0]

State Machine Node state_miingt] fiilter.tapl

Format: <node name>

State Machine Transition Arc

This information is displayed when you hold your mouse over the arrow
on the arc representing the transition between two states.

Format: (<equation for transition between states>)

[Inewt)

12-40 Altera Corporation
May 2006

Other Features in the Schematic Viewer

Altera Corporation
May 2006

Rollover

You can highlight an element and view its name in your schematic using
the rollover feature. When you place your mouse pointer over an object,
the object is highlighted and the name is displayed, helping you to
analyze your schematic diagram. This feature is enabled by default in the
netlist viewers. To turn off the Rollover feature, on the Tools menu, click
Options. In the Options dialog box, in the Category list, select
RTL/Technology Map Viewer and turn off Enable Rollover.

Figure 12-19. Rollover in the RTL Viewer & Technology Map Viewer

& RTL Viewer, (=3
Fage Title: | tapsinst | Page 1 of 1
Selectarz A Selector2 ~
Selector3
Selectord
Selectors
Selectors Decoderd OUT[E:0]
Selector? SEL[S.0]
+-xn[7..0] II—S[S]
+-xn_1[7..00
+-xn_2[7..00 II-Q[S] auT
410370 fl_1(5] f—0aTAR 0]
+- Pins
= Mets ¥[3]
clk.
+-d[7..0]
+-Decoder:
[alg e’ e’
< < ¥

The Properties Dialog Box

You can view the properties of an instance or a primitive using the
Properties Dialog box. To view the properties of an instance or a primitive
in the RTL Viewer or the Technology Map Viewer, right-click the node
and click Properties.

12-41

Quartus Il Handbook, Volume 1

12-42

The Properties dialog box contains the following information about the
selected node:

B The parameter values of an instance.

B The active level of the port (for example, active high or active low).
An active low port is denoted with an exclamation mark “!”.

B The port’s constant value (for example, VCC or GND). Table 12-9
describes the possible value of a port.

Table 12-9. Possible Port Values

Value Description
VCC The port is not connected and has VCC value (tied to VCC)
GND The port is not connected and has GND value (tied to GND)

-- The port is connected and has value (other than VCC or GND)

Unconnected | The port is not connected and has no value (hanging)

Displaying Net Names

To see names of all the nets displayed in your schematic, on the
Assignments menu, click Options. In the Category list, select
RTL/Technology Map Viewer and turn on Show Net Name under
Display Settings. This option is disabled by default. If you turn on this
option, the schematic view refreshes automatically to display the net
names.

Displaying Node Names

Nodes in some designs have long names that overlap the ports of other
symbols in the schematic. To remove the node names from the schematic,
on the Tools menu, click Options. In the Category list, select
RTL/Technology Map Viewer and turn off Show node name under
Display Settings. This option is turned on by default.

Full Screen View

To set the viewer window to fill the whole screen, on the View menu, click
Full Screen, or click the Full Screen icon in the viewer toolbar, or press
Ctrl+Alt+Space. The keyboard shortcut toggles the full screen. To return
to the standard screen view after viewing the full screen, press
Ctrl+Alt+Space again.

Altera Corporation
May 2006

Other Features in the Schematic Viewer

Altera Corporation
May 2006

Find Command

To open the Find dialog box shown in Figure 12-20, on the Edit menu,
click Find, or click the Find icon in the viewer toolbar, or right-click in the
schematic view, and click Find.

Figure 12-20. Find Dialog Box

Find 3
Find what: | |
[Match casze Search: Caras]

[~ Find whole words anly Al -

[~ Use regular expressions
Find i
v Instances [al
[Pins
[Mets

Advanced settings
& Search entire design
€ Limit search to schematic view

" Search entire design and display in search page

-

Select Up in the Search list to search from the current hierarchy to upper
(parent) hierarchies. Select Down to search from the current hierarchy to
lower (child) hierarchies. You can choose to search only instances (nodes)
in the design, or to also search pins and nets. By default, only instances
are searched.

When you click Find, the viewer selects and highlights the first item
found, opens the appropriate page of the schematic, if necessary, and
centers the page so that the node is seen in the viewable area (but does not
zoom in to the node). To find the next matching node, click Find Next.

You can use the options in the Advanced settings section to control the
scope of the results found during a search and how they are displayed in
the viewer. The default selection, Search entire design, searches for the
item in all design elements across the entire design. To search only in the
pages of the currently displayed netlist, such as a schematic showing
filtering results, choose Limit search to schematic view.

To display the results in a new page, select Search entire design and
display in search page. This command searches all design elements
across the entire design, and displays the results on a separate page
dedicated to search results. You can also append new search results to an

12-43

Quartus Il Handbook, Volume 1

existing search page with the Append results to current search page
command. The appended items appear in the same relative position as

they do in the full schematic. You can use this to find and select two

objects that are not on the same page and display them on the same page
after performing the Find command.

e Refer to “Finding Nodes in the RTL Viewer & Technology Map Viewer”
in the Quartus II Help for more details on using the Find dialog box.

Exporting & Copying a Schematic Image

You can export the RTL Viewer or Technology Map Viewer schematic
view in JPEG File Interchange Format (.jpg) or Windows Bitmap (.bmp)
file format, which allows you to include the schematic in project
documentation or share it with other project members. To export the
schematic view, on the File menu, click Export. In the Export dialog box,
type a file name and location, and select the desired file type. The default
file name is based on the current instance name and the default file type
is JPEG Interchange Format (.jpg). However, for pages that use filtering,
expanding, or reducing operations, the default name is

Filter<number of export operation>.<file extension>.

You can choose to copy the whole image or copy only a portion of the
image. To copy the full image, on the Edit menu, point to Copy and click
Full Image. To copy a portion of the image when using a Windows-based
platform, on the Edit menu, point to Copy and click Partial Image. The
cursor changes to indicate that you can draw a box shape. Drag the cursor
around the portion of the schematic you want to copy. When you release
the mouse button, the partial image is copied to the clipboard.

[l=" Occasionally, due to the design size and objects selected, an
image is too large to copy to the clipboard. In this case, the
Quartus II software displays an error message.

To export or copy a schematic that is too large to copy in one
piece, first split the design into multiple pages to export or to
copy smaller portions of the design. For information about how
to control how much of your design is shown on each schematic
page, refer to “Partitioning the Schematic into Pages” on

page 12-24. As an alterative, use the Partial Image feature to
copy a portion of the image.

The Copy feature is not available on UNIX platforms.

12-44 Altera Corporation
May 2006

Debugging HDL Code with the State Machine Viewer

Debugging HDL
Code with the
State Machine
Viewer

Printing

To print your schematic page, on the File menu, click Print. You can print
each schematic page onto one full page, or you can print the highlighted
parts of your schematic onto one page with the Selection option. Refer to
“Partitioning the Schematic into Pages” on page 12—-24 to control how
much of your design is shown on each schematic page.

1= Before printing, you can modify the page orientation. On the
File menu, click Page Setup. Change the page orientation from
Portrait to Landscape, or to the setting that best fits your design.
You also can adjust the page margins in the Page Setup dialog

box.

The hierarchy list in the viewers and the table view of the State
Machine Viewer cannot be printed. You can use the State
Machine Viewer Copy command to copy the table to a text
editor and print from the text editor.

This section provides an example of using the State Machine Viewer to
help debug HDL code. This example shows you how you can use the
various features in the netlist viewers to help solve design problems.

Simulation of State Machine Gives Unexpected Results

The section presents a design scenario in which you compiled your
design and performed a simulation in the Quartus II Simulator. The
simulation result is shown in Figure 12-21 and has unexpected undefined
states.

Figure 12-21. Simulation Result Showing Undefined States

Simulation Waveforms

Simulation mode: Timing
Master Time Bar: 0ps 1| ¥| Painter: 4962 nz Interval: 4962 nz Start: End:
0 pz ‘ID.ID nz 2D.ID nz SD.ID nz 4D.ID nz SD.ID nz BD.ID nz ?D.ID nz SD.ID nz SD.ID nz ‘IDDiD nz | L
Mame 0ps
1]
EE [I I I I I | I | I
> rat_ 1 7
=) femfsm2lcurrent_state frrent_state’y Undefined % curent_state.50 Y Undefined eurent_state 53
=) femfsmil|current_state frrent_state’y Undefined % curent_state. 50 Y Undefined eurent_state 53
I 1
- ®2
=1 ™ v
£ » £ >
Altera Corporation 12-45

May 2006

Quartus Il Handbook, Volume 1

To analyze the state machine design in the State Machine Viewer, follow
these steps:

1. Open the State Machine Viewer for the state machine of interest.
You can do this in one of the following ways:

2. On the Tools menu, point to Netlist Viewers, and click State
Machine Viewer. In the State Machine selection box, choose the
state machine that you want to view.

or

On the Tools menu, point to Netlist Viewers, and click RTL Viewer.
Browse to the hierarchy block that contains the state machine
definition and double-click the yellow state machine instance to
open the State Machine Viewer (Figure 12-24).You can open the State
Machine Viewer using either of two methods:

e In the schematic view, double-click an instance in the hierarchy
to open the lower level hierarchy. You can traverse through the
schematic hierarchy in this way to open the schematic page that
contains the state machine (Figure 12-22).

Figure 12-22. State Machine Instance in RTL Viewer Schematic View

next_state 55 currert_state
PFRE
—0 v} next_state. S5
=7 rst_ s |—
CLR
next_state. 54 83| —=
D—] next_state. 53 52| b—
next_state 52 next_state 52 S| —
E J next_state. 51 50| —
—0 Q
next_state. S0 55—
— ENA
CLR f ik
’ ‘

or

e Inthehierarchy list, click the + symbol next to Instances to open
a list of the instances in that hierarchy level of the design. You
can traverse down the hierarchy tree in this way to find the
instance that contains the state machine. Click on the name of
the state machine in the State Machines folder (Figure 12-23) to
open the appropriate schematic in the schematic view
(Figure 12-22).

12-46 Altera Corporation
May 2006

Debugging HDL Code with the State Machine Viewer

Altera Corporation
May 2006

Figure 12-23. State Machine Instance in RTL Viewer Hierarchy List

E] Instances
‘ E]--Fsm:l’sml

; E]--State Machines
' E'--'current_state
+- Primitives
- Pins
[+~ Nets

Figure 12-24. State Machine Viewer Showing Incorrect Transitions

& State Machine Yiewer | fam:fsm1 |current_state

State Machine: ‘Imy_fsmlfsm:fsmW lourrent_state j

Source State | Destination State | Condition | ~
1|54 54 [ret_].[next_state. 54)
2 |54 53 [rst_].[next_state. 53]
3| 54 52 [rst_].[next_state. 52)
4 |54 51 [rsl_] [next_state 51]
5| 54 s0 [rst_] + [nest_state.50)
E | 54 S5 [ret_].[next_state. S55)
7|53 54 [rst_].[next_state.54)
g Irst Linest state 531 b

53
TlanxilinnxA Encoding /(

You can now analyze this state machine instance using the state
machine diagram, transition table, and encoding table. You can
clearly see something is wrong with the state machine because there
are transitions between every state. Upon inspecting the state
machine behavior, you can determine that in this scenario, the
designer forgot to create default assignments for the next state (that
is, next_state = current_state if the conditions are not met).

After fixing the error in the HDL code, recompile the design and
repeat steps 1-3 to view the new state machine diagram and
transition table shown in Figure 12-25 to check that the state
transitions are now occurring correctly.

12-47

Quartus Il Handbook, Volume 1

Conclusion

12-48

Figure 12-25. State Machine Viewer Showing Correct Transitions

& State Machine Viewer, | fsm:fsm1 |current_state

State Machine ||my_fsm|fsm:lsm1 lcurrent_state j

o
2
5]
4|
o |

TlansiliunsA Encoding /

5. Perform a new simulation, as shown in Figure 12-26, and ensure
that the state machine now performs as expected.

Figure 12-26. Simulation Result Showing Correct States

Simulatinn Waveforms I
Simulation made: Timing
Master Time Bar: Ops Al | Painter: | 11974 ns Interval | 119741 Stark End:

0 ps ZEI.IEI ns 4EI.IEI ng EEI.IU ng BEI.IEI ns 'IEIEIiEI ns | ~

M ame 0ps

1]
= ok L L | E— L L L
» [. 1
= famifsmZlcument_state fent_state)unenl_state STiCurrent_state. ST current_state 51
; fsrvfsm [cument_state. fent_statelicunent_state. STiEurment_state. SCYGwrent_state. S Ticunent_state. 52 current_slate.Sf)E
S —1
[d He
=1 L [l
< AN ES ?

The Quartus II RTL Viewer, State Machine Viewer, and Technology Map
Viewer allow you to explore and analyze your initial synthesis netlist,
post-synthesis netlist, or post-fitting and physical synthesis netlist. The
viewers provide a number of features in the hierarchy list and schematic
view to help you trace through your netlist and find specific hierarchies
or nodes of interest. These capabilities can help you debug, optimize, or
constrain your design to increase your productivity.

Altera Corporation
May 2006

	Quartus II Version 6.0 Handbook Volume 1: Design & Synthesis
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Third-Party Software Product Information
	Typographic Conventions

	Section I. Design Flows
	Revision History
	1. Quartus II Incremental Compilation for Hierarchical & Team-Based Design
	Introduction
	Quartus II Design Flow
	Top-Down vs. Bottom-Up Design Flows
	Using Incremental Synthesis Only Instead of Full Incremental Compilation

	Design Partitions
	Design Partitions Compared to Physical Regions

	Preparing a Design for Incremental Compilation
	Compiling a Design Using Incremental Compilation
	What Represents a Source Change for Incremental Compilation?
	Determining Which Partitions Will be Recompiled
	Forcing Use of the Post-Fitting Netlist When a Source File has Changed

	Creating Design Partitions
	Creating Design Partitions in the GUI
	Partition Name

	Methodology for Creating Good Partitions

	Guidelines for Creating Good Design Partitions
	Partition Statistics Reports
	Resource Balancing
	RAM & DSP Blocks
	Global Routing Signals

	Timing Budgeting

	Setting the Netlist Type for Design Partitions
	Fitter Preservation Level
	Empty Partitions

	Creating a Design Floorplan With LogicLock Location Assignments
	Recommendations for Creating Good Floorplan Location Assignments
	Excluding or Filtering Certain Device Elements (Such as RAM or DSP Blocks)

	The Importance of Floorplan Location Assignments in Incremental Compilation
	Taking Advantage of the Early Timing Estimator

	Criteria for Successful Partition & Floorplan Schemes
	Exporting & Importing Partitions for Bottom-Up Design Flows
	Preparing the Top-Level Design for a Bottom-Up Incremental Compilation Methodology
	Exporting a Partition to be Used in a Top-Level Project
	Importing a Lower-Level Partition Into the Top-Level Project
	Importing Assignments & Advanced Import Settings
	Design Partition Properties After Importing
	Importing Design Partition Assignments Within the Subdesign
	Importing LogicLock Assignments
	Importing Other Instance Assignments
	Importing Global Assignments
	Advanced Import Settings
	Allow Creation of New Assignments
	Promote Assignments to all Instances of the Imported Entity
	Assignment Conflict Resolution: LogicLock Regions
	Assignment Conflict Resolution: Other Assignments

	Generating Bottom-Up Design Partition Scripts for Project Management
	Project Creation
	Assignments from the Top-Level Design
	Virtual Pin Assignments
	Virtual Pin Timing & Location Assignments

	LogicLock Region Assignments
	Global Signal Promotion Assignments
	Makefile Generation

	User Scenarios- Incremental Compilation Application Examples
	Top-Down Incremental Design Flows
	Scenario 1-Changing a Source File for One of Multiple Partitions in a Top-Down Compilation Flow
	Scenario 2-Optimizing the Placement for One of Multiple Partitions in a Top-Down Compilation Flow
	Scenario 3-Preserving One Critical Partition in a Multiple-Partition Design in a Top-Down Compilation Flow
	Scenario 4-Placing All but One Critical Partition in a Multiple-Partition Design in a Top-Down Compilation Flow

	Bottom-Up Design Flows
	Scenario 5-Team-Based Bottom-Up Design Flow
	Resolving Assignment Conflicts During Import
	Importing a Partition to be Instantiated Multiple Times

	Scenario 6-Design Iteration in a Bottom-Up Design Flow

	Incremental Compilation Restrictions
	Using Incremental Compilation with Quartus II Archive Files
	OpenCore Plus MegaCore Functions
	Engineering Change Management With the Chip Editor
	SignalProbe Feature
	SignalTap II Logic Analyzer & Logic Analyzer Interface in Bottom-Up Compilation Flows
	Restrictions on Megafunction Partitions
	Nodes Created & Changed During Routing
	Routing Preservation in Bottom-Up Compilation Flows
	Bottom-Up Design Partition Script Limitations
	Wildcard Support in Bottom-Up Design Partition Scripts
	Derived Clocks & PLLs in Bottom-Up Design Partition Scripts
	Virtual Pin Timing Assignments in Bottom-Up Design Partition Scripts
	Top-Level Ports that Feed Multiple Lower-Level Pins in Bottom-Up Design Partition Scripts
	Support for the TimeQuest Timing Analyzer & SDC Constraints

	Register Packing & Partition Boundaries
	I/O Register Packing
	Examples of I/O Register Packing Across Partition Boundaries
	Example 1-Output Register in Partition Feeding Output Pin
	Example 2-Output Register in Partition Feeding Multiple Output Pins
	Example 3-Output Register, Output Enable Register & Tri-State Logic in Partition Feeding Output Pin
	Example 4-Output Register and/or Output Enable Register in Partition Feeding Tri-State Output Pin
	Example 5-Bidirectional Logic in Partition Feeding Bidirectional Pin
	Example 6-Input Register in Partition Fed by Input Pin
	Example 8-Inverted Input Register in Partition Fed by Input Pin

	Scripting Support
	Generate Incremental Compilation Tcl Script Command
	Preparing a Design for Incremental Compilation
	Creating Design Partitions
	Setting Properties of Design Partitions
	Recommendations for Creating Good Floorplan Location Assignments-Excluding or Filtering Certain Device Elements (Such as RAM or DSP Blocks)
	Generating Bottom-Up Design Partition Scripts
	Command Line Support

	Exporting a Partition to be Used in a Top-Level Project
	Importing a Lower-Level Partition into the Top-Level Project
	Make Files
	User Scenarios-Incremental Compilation Application Examples
	Scenario 1-Changing a Source File for One of Multiple Partitions
	Scenario 2-Optimizing the Placement for One of Multiple Partitions

	Conclusion

	2. Quartus II Design Flow for MAX+PLUS II Users
	Introduction
	Chapter Overview
	Typical Design Flow
	Device Support
	Quartus II GUI Overview
	Project Navigator
	Node Finder
	Tcl Console
	Messages
	Status
	Analysis & Synthesis
	Partition Merge
	Fitter
	Assembler
	Timing Analyzer
	EDA Netlist Writer
	Design Assistant
	Converting an Existing MAX+PLUS II Design
	Converting MAX+PLUS II Graphic Design Files
	Importing MAX+PLUS II Assignments

	Quartus II Design Flow
	Creating a New Project
	Design Entry
	Making Assignments
	Assignment Editor
	Timing Assignments

	Synthesis
	Functional Simulation
	Place & Route
	Timing Analysis
	Timing Closure Floorplan
	Timing Simulation
	Quartus II Simulator Tool
	EDA Timing Simulation

	Power Estimation
	Programming

	Conclusion
	Quick Menu Reference

	3. Quartus II Support of HardCopy Series Devices
	Introduction
	HardCopy II Device Support
	HardCopy II Design Benefits
	Quartus II Features for HardCopy II Planning

	HardCopy II Development Flow
	Designing the Stratix II FPGA First
	Designing the HardCopy II Device First

	HardCopy II Companion Device Selection
	Migration Compatibility Filtering

	HardCopy II Recommended Settings in the Quartus II Software
	Limit DSP & RAM to HardCopy II Device Resources
	Enable Design Assistant to Run During Compile
	Timing Settings
	Enable Clock Latency
	Enable Recovery/Removal Analysis
	Enable Timing Constraint Check
	Report Combined Fast/Slow Timing
	Report IO Paths Separately

	Quartus II Software Version 6.0 Features Supported for HardCopy II Designs
	Physical Synthesis Optimization
	LogicLock Regions
	PowerPlay Power Analyzer

	Quartus II Features Not Presently Supported for HardCopy II Designs

	Chip Editor for HardCopy II Devices
	Formal Verification of Stratix II & HardCopy II Revisions
	HardCopy II Utilities Menu
	Companion Revisions
	Compiling the HardCopy II Companion Revision
	Comparing HardCopy II & Stratix II Companion Revisions
	Generate HardCopy II Handoff Report
	Archive HardCopy II Handoff Files
	HardCopy II Advisor
	HardCopy II Floorplan View

	Conclusion
	Features
	HARDCOPY_FPGA _PROTOTYPE, HardCopy Stratix & Stratix Devices
	The Design Flow Steps of the One Step Process
	Compile the Design for an FPGA
	Migrate the Compiled Project
	Close the Quartus FPGA Project
	Open the Quartus HardCopy Project
	Compile for HardCopy Stratix Device

	How to Design HardCopy Stratix Devices
	HardCopy Timing Optimization Wizard
	Tcl Support for HardCopy Migration

	Design Optimization & Performance Estimation
	Design Optimization
	Performance Estimation
	Buffer Insertion
	Placement Constraints

	Location Constraints
	LAB Assignments
	LogicLock Assignments

	Checking Designs for HardCopy Design Guidelines
	Altera-Recommended HDL Coding Guidelines
	Design Assistant
	Design Assistant Settings
	Running Design Assistant

	Reports & Summary

	Generating the HardCopy Design Database
	Static Timing Analysis
	Early Power Estimation
	HardCopy Stratix Early Power Estimation
	HardCopy APEX Early Power Estimation

	Tcl Support for HardCopy Stratix
	Targeting Designs to HardCopy APEX Devices
	Conclusion
	Related Documents

	4. Engineering Change Management
	Introduction
	Impact of Last Minute Design Changes
	Performance
	Compilation Time
	Verification
	Documentation

	ECO Support
	ECO Support at the HDL Level
	ECO Support at the Netlist Level

	Conclusion

	Section II. Design Guidelines
	Revision History
	5. Design Recommendations for Altera Devices
	Introduction
	Synchronous FPGA Design Practices
	Fundamentals of Synchronous Design
	Hazards of Asynchronous Design

	Design Guidelines
	Combinational Logic Structures
	Combinational Loops
	Latches
	Delay Chains
	Pulse Generators & Multivibrators

	Clocking Schemes
	Internally Generated Clocks
	Divided Clocks
	Ripple Counters
	Multiplexed Clocks
	Gated Clocks
	Synchronous Clock Enables
	Recommended Clock-Gating Method

	Hierarchical Design Partitioning
	Targeting Clock & Register-Control Architectural Features
	Clock Network Resources
	Reset Resources
	Register Control Signals

	Conclusion

	6. Recommended HDL Coding Styles
	Introduction
	Using Altera Megafunctions
	Instantiating Altera Megafunctions in HDL Code
	Instantiating Megafunctions Using the MegaWizard Plug-In Manager
	Creating a Clear Box Netlist File for Third-Party Synthesis Tools

	Instantiating Megafunctions Using the Port & Parameter Definition

	Inferring Altera Megafunctions from HDL Code
	lpm_mult-Inferring Multipliers from HDL Code
	altmult_accum & altmult_add-Inferring Multiply-Accumulators & Multiply-Adders from HDL Code
	altsyncram & lpm_ram_dp-Inferring RAM Functions from HDL Code
	Dual-Clock Synchronous RAM
	Single-Clock Synchronous RAM without Read-Through-Write Behavior
	Single-Clock Synchronous RAM with Read-Through-Write Behavior
	Synchronous RAM with Two Read Addresses
	Single-Clock Synchronous RAM with Asynchronous Read Address
	Specifying Initial Memory Contents

	lpm_rom-Inferring ROM from HDL Code
	altshift_taps-Inferring Shift Registers from HDL Code
	Verilog HDL Single-Bit Wide, 64-Bit Long Shift Register
	Verilog HDL 8-Bit Wide, 64-Bit Long Shift Register with Evenly Spaced Taps

	Device-Specific Coding Guidelines
	Register Power-Up Values in Altera Devices
	Secondary Register Control Signals Such as Clear & Clock Enable
	Tri-State Signals
	Adder Trees
	Architectures with 4-Input LUTs in Logic Elements
	Architectures with 6-Input LUTs in Adaptive Logic Modules

	Coding Guidelines for Other Logic Structures
	Latches
	Unintentional Latch Generation
	Inferring Latches Correctly
	Verilog HDL Set-Reset Latch Example
	HDL Data Type Latch Example

	State Machines
	Verilog HDL State Machines
	Verilog HDL State Machine Coding Example
	SystemVerilog State Machine Coding Example
	VHDL State Machines
	VHDL State Machine Coding Example

	Multiplexers
	Multiplexer Types
	Binary Multiplexers
	Selector Multiplexers
	Priority Multiplexers

	Default or Others Case Assignment
	Implicit Defaults
	Degenerate Multiplexers
	Buses of Multiplexers
	Quartus II Software Option for Multiplexer Restructuring

	Cyclic Redundancy Check Functions
	If Performance is Important, Optimize for Speed
	Use Separate CRC Blocks Instead of Cascaded Stages
	Use Separate CRC Blocks Instead of Allowing Blocks to Merge
	Take Advantage of Latency if Available
	Save Power by Disabling CRC Blocks When Not in Use
	Use the Device Synchronous Load (sload) Signal to Initialize

	Conclusion

	Section III. Synthesis
	Revision History
	7. Quartus II Integrated Synthesis
	Introduction
	Design Flow
	Language Support
	Verilog HDL Support
	Verilog-2001 Support
	SystemVerilog Support
	Verilog HDL Macros
	Specifying a Verilog Macro in the GUI
	Specifying a Verilog Macro on the Command Line

	VHDL Support
	VHDL Libraries
	Specifying a Destination Library Name in the Settings Dialog Box
	Specifying a Destination Library Name in the Quartus II Settings File or Using Tcl
	Specifying a Destination Library Name in Your VHDL File

	AHDL Support
	Schematic Design Entry Support

	Incremental Synthesis
	Partitions for Incremental Synthesis
	Partitions for Preserving Hierarchical Boundaries
	Preparing a Design for Incremental Synthesis
	Synthesizing a Design Using Incremental Synthesis
	Synthesizing Using the Synthesis & Merge Commands

	Forcing Complete Resynthesis
	Considerations & Restrictions When Using Incremental Synthesis
	Hierarchical Considerations
	Restrictions on Megafunction Partitions
	Resource Balancing
	Preserving Compilation Results
	OpenCore Plus MegaCore Functions

	Quartus II Synthesis Options
	Setting Synthesis Options
	Analysis & Synthesis Page of the Settings Dialog Box
	Quartus II Logic Options
	Synthesis Attributes
	Synthesis Directives

	Specifying Verilog & VHDL Versions for Each Design File
	Optimization Technique
	Speed Optimization Technique for Clock Domains
	PowerPlay Power Optimization
	State Machine Processing
	Manually Specifying State Assignments Using the syn_encoding Attribute
	Manually Specifying Enumerated Types Using the enum_encoding Attribute
	Preserve Hierarchical Boundary
	Restructure Multiplexers
	Power-Up Level
	Power-Up Don’t Care
	Remove Duplicate Logic
	Remove Duplicate Registers
	Remove Redundant Logic Cells
	Preserve Registers
	Noprune Synthesis Attribute/Preserve Fanout Free Node
	Keep Combinational Node/Implement as Output of Logic Cell
	Maximum Fan-Out
	Megafunction Inference Control
	Multiply-Accumulators & Multiply-Adders
	Shift Registers
	RAM & ROM

	RAM Style & ROM Style-for Inferred Memory
	RAM Initialization File-for Inferred Memory
	Multiplier Style-for Inferred Multipliers
	Full Case
	Parallel Case
	Translate Off & On
	Ignore Translate Off
	Read Comments as HDL

	Setting Other Quartus II Options in Your HDL Source Code
	Use I/O Flip-Flops
	Altera Attribute
	Verilog HDL
	VHDL

	chip_pin

	Analyzing Synthesis Results
	Messages
	Analysis & Synthesis Section of Compilation Report
	Project Navigator
	HDL Message Types
	Controlling the Display of HDL Messages
	Setting the HDL Message Level
	Enabling or Disabling Specific HDL Messages

	Node-Naming Conventions in Quartus II Integrated Synthesis
	Hierarchical Node-Naming Conventions
	Node-Naming Conventions for Registers (DFF or D Flip-Flop Atoms)
	Register Changes During Synthesis
	State Machines
	Inferred Adder-Subtractors, Shift Registers, Memory & DSP Functions
	Input & Output Registers of RAM & DSP Blocks

	Node-Naming Conventions for Combinational Logic Cells

	Scripting Support
	Quartus II Synthesis Options
	Assigning a Pin
	Preparing a Design for Incremental Synthesis
	Creating Design Partitions
	Enabling Incremental Synthesis
	Synthesizing a Design Using Incremental Synthesis
	Synthesizing Using the Synthesis & Merge Commands

	Conclusion

	8. Synplicity Synplify & Synplify Pro Support
	Introduction
	Design Flow
	Output Netlist File Name & Result Format

	Synplify Optimization Strategies
	Implementations in Synplify Pro
	Timing-Driven Synthesis Settings
	Clock Frequencies
	Multiple Clock Domains
	Input/Output Delays
	Multicycle Paths
	False Paths

	FSM Compiler
	FSM Explorer in Synplify Pro

	Optimization Attributes & Options
	Retiming in Synplify Pro
	Maximum Fan-Out
	Preserving Nets
	Register Packing
	Resource Sharing
	Preserving Hierarchy
	Register Input & Output Delays
	syn_direct_enable
	Standard I/O Pad

	Altera-Specific Attributes
	altera_chip_pin_lc
	altera_implement_in_esb or altera_implement_in_eab
	altera_io_powerup
	altera_io_opendrain

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Synplify Software
	Using the Quartus II Software to Launch the Synplify Software
	Running the Quartus II Software Manually Using the Synplify-Generated Tcl Script
	Passing Constraints to the Quartus II Software
	Default or Global Clock Frequency
	Individual Clocks & Frequencies
	Virtual Clocks
	Route Delay Option
	Global Signals
	Multiple Clocks in Different Clock Groups
	Multiple Clocks with Different Frequencies in the Same Clock Group
	Inter-Clock Relationships-Delays & False Paths between Clocks
	False Paths
	False Path from a Signal
	False Path to a Signal
	False Path Through a Signal

	Multicycle Paths
	Multicycle Path from a Signal
	Multicycle Path to a Signal
	Multicycle Path Through a Signal

	Maximum Path Delays
	Maximum Path Delay from a Signal
	Maximum Path Delay to a Signal
	Maximum Path Delay through a Signal
	Register Input & Output Delays
	Default External Input Delay
	Port-Specific External Input Delay
	Default External Output Delay
	Port-Specific External Output Delay

	Guidelines for Altera Megafunctions & Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Clear Box Methodology
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Clear Box Megafunction Instantiation
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Clear Box Megafunction Instantiation

	Black Box Methodology
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Black Box Megafunction Instantiation
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Black Box Megafunction Instantiation
	Other Synplify Software Attributes for Creating Black Boxes

	Inferring Altera Megafunctions from HDL Code
	Inferring Multipliers
	Resource Balancing
	Controlling the Inferring of DSP Blocks
	Signal Level Attribute

	Inferring RAM
	Inferring ROM
	Inferring Shift Registers

	Incremental Compilation & Block-Based Design
	Hierarchy & Design Considerations with Multiple VQM Files
	Creating a Design with Separate Netlist Files
	Creating a Design with Multiple VQM Files Using Synplify Pro MultiPoint Synthesis
	Set Compile Points & Create Constraint Files
	Defining Compile Points Using Tcl or SDC
	Manually Defining Compile Points from the GUI
	Automatically Defining Compile Points from the GUI

	Apply the LogicLock Attributes
	Creating a Quartus II Project for Multiple VQM Files
	Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up LogicLock Design Flow

	Generating a Design with Multiple VQM Files Using Black Boxes
	Manually Creating Multiple VQM Files Using Black Boxes
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating a Quartus II Project for Multiple VQM Files
	Creating Compile Points in Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Design Flow

	Conclusion

	9. Mentor Graphics Precision RTL Synthesis Support
	Introduction
	Design Flow
	Creating a Project & Compiling the Design
	Creating a Project
	Compiling the Design

	Setting Constraints
	Setting Timing Constraints
	Setting Mapping Constraints
	Assigning Pin Numbers & I/O Settings
	Assigning I/O Registers
	Disabling I/O Pad Insertion
	Preventing the Precision RTL Synthesis Software from Adding I/O Pads
	Preventing the Precision RTL Synthesis Software from Adding an I/O Pad on an Individual Pin

	Controlling Fan-Out on Data Nets

	Synthesizing the Design & Evaluating the Results
	Obtaining Accurate Logic Utilization & Timing Analysis Reports

	Exporting Designs to the Quartus II Software Using NativeLink Integration
	Running the Quartus II Software from within the Precision RTL Software
	Running the Quartus II Software Manually Using the Precision RTL Synthesis-Generated Tcl Script
	Using Quartus II Software to Launch the Precision RTL Synthesis Software
	Passing Constraints to the Quartus II Software
	create_clock
	set_input_delay
	set_output_delay
	set_false_path
	set_multicycle_path

	Megafunctions & Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Clear-Box Methodology
	Using MegaWizard-Generated Verilog HDL Files for Clear Box Megafunction Instantiation
	Using MegaWizard-Generated VHDL Files for Clear Box Megafunction Instantiation

	Black-Box Methodology
	Using MegaWizard Plug-In Manager-Generated Verilog HDL Files for Black-Box Megafunction Instantiation
	Using MegaWizard Plug-In Manager-Generated VHDL Files for Black-Box Megafunction Instantiation

	Inferring Altera Megafunctions from HDL Code
	Multipliers
	Controlling DSP Block Inference for Multipliers

	Using the GUI
	Using Attributes
	Multiplier-Accumulators & Multiplier-Adders
	Controlling DSP Block Inference
	RAM & ROM

	Incremental Compilation & Block-Based Design
	Hierarchy & Design Considerations
	Creating a Design with Separate Netlist Files
	Creating Black Boxes in Verilog HDL
	Creating Black Boxes in VHDL

	Creating Quartus II Projects for Multiple EDIF Files
	Creating a Single Quartus II Project for a Top-Down Incremental Compilation Flow
	Creating Multiple Quartus II Projects for a Bottom-Up Flow

	Conclusion

	10. Mentor Graphics LeonardoSpectrum Support
	Introduction
	Design Flow
	Optimization Strategies
	Timing-Driven Synthesis
	Global Power Tab
	Clock Power Tab
	Input & Output Power Tabs

	Other Constraints
	Encoding Style
	Resource Sharing
	Mapping I/O Registers

	Timing Analysis with the Leonardo- Spectrum Software
	Exporting Designs Using NativeLink Integration
	Generating Netlist Files
	Including Design Files for Black-Boxed Modules
	Passing Constraints with Scripts
	Integration with the Quartus II Software

	Guidelines for Altera Megafunctions & LPM Functions
	Instantiating Altera Megafunctions
	Inferring Altera Memory Elements
	Inferring RAM
	Inferring ROM

	Inferring Multipliers & DSP Functions
	Simple Multipliers
	Multiplier Accumulators
	Multiplier Adders

	Controlling DSP Block Inference
	Global Attribute
	Module Level Attributes
	Signal Level Attributes
	Guidelines for Using DSP Blocks

	Block-Based Design with the Quartus II Software
	Hierarchy & Design Considerations
	Creating a Design with Multiple EDIF Files
	Generating Multiple EDIF Files Using the LogicLock Option
	Creating a Quartus II Project for Multiple EDIF Files Including LogicLock Regions

	Generating Multiple EDIF Files Using Black Boxes
	Black Boxing in Verilog HDL
	Black Boxing in VHDL
	Creating a Quartus II Project for Multiple EDIF Files

	Incremental Synthesis Flow
	Modifications Required for the LogicLock_Incremental.tcl Script File
	Running the Tcl Script File in LeonardoSpectrum

	Conclusion

	11. Synopsys Design Compiler FPGA Support
	Introduction
	Design Flow Using the DC FPGA Software & the Quartus II Software
	Setup of the DC FPGA Software Environment for Altera Device Families
	Megafunctions & Architecture- Specific Features
	Instantiating Altera Megafunctions Using the MegaWizard Plug-In Manager
	Clear Box Methodology
	Reading Megafunction Wizard-Generated Synthesizable Clear Box Netlist Files for Megafunction Instantiation
	Advanced Clear Box Support for the Direct-Instantiated or Inferred Clear Box Megafunctions
	Design Compiler FPGA Setup
	UNIX Environment Setting
	Error Message
	Sample Design Compiler FPGA Clear Box Setup Script

	Black Box Methodology
	Reading Megafunction Wizard-generated Variation Wrapper Files
	Using Megafunction Wizard-Generated Variation Wrapper Files in a Black Box Methodology
	Using Megafunction Wizard-Generated Verilog HDL Files for Black Box Megafunction Instantiation
	Using Megafunction Wizard-Generated VHDL Files for Black Box Megafunction Instantiation

	Inferring Altera Megafunctions from HDL Code
	Reading Design Files into the DC FPGA Software
	Selecting a Target Device
	Timing & Synthesis Constraints
	Compilation & Synthesis
	Reporting Design Information
	Saving Synthesis Results
	Exporting Designs to the Quartus II Software
	write_fpga Command
	write & write_par_constraint Commands

	Using Tcl Scripts with Quartus II Software
	Place & Route with the Quartus II Software
	Formality Software Support
	Conclusion

	12. Analyzing Designs with Quartus II Netlist Viewers
	Introduction
	When to Use Viewers: Analyzing Design Problems
	Quartus II Design Flow with the Netlist Viewers
	RTL Viewer Overview
	State Machine Viewer Overview
	Technology Map Viewer Overview
	Introduction to the User Interface
	Schematic View
	Schematic Symbols
	Selecting an Item in the Schematic View
	Moving & Panning in the Schematic View

	Hierarchy List
	Selecting an Item in the Hierarchy List

	State Machine Viewer
	State Diagram View
	State Transition Table
	State Encoding Table
	Selecting an Item in the State Machine Viewer
	Switching between State Machines

	Navigating the Schematic View
	Traversing & Viewing the Design Hierarchy
	Flattening the Design Hierarchy
	Viewing the Contents of a Design Hierarchy within the Current Schematic

	Viewing Contents of Atom Primitives in the Technology Map Viewer
	Zooming & Magnification
	Partitioning the Schematic into Pages
	Moving between Schematic Pages
	Moving Back & Forward through Schematic Pages
	Following Nets across Schematic Pages
	Input Connectors
	Output Connectors

	Go to Net Driver

	Filtering in the Schematic View
	Filter Sources Command
	Filter Destinations Command
	Filter Sources & Destinations Command
	Filter between Selected Nodes Command
	Filter Selected Nodes & Nets Command
	Filter Bus Index Command
	Filter Command Processing
	Filtering Across Hierarchies
	Expanding a Filtered Netlist
	Reducing a Filtered Netlist

	Probing to Source Design File & Other Quartus II Windows
	Probing to the Viewers from Other Quartus II Windows
	Viewing a Timing Path
	Other Features in the Schematic Viewer
	Tooltips
	Rollover
	The Properties Dialog Box
	Displaying Net Names
	Displaying Node Names
	Full Screen View
	Find Command
	Exporting & Copying a Schematic Image
	Printing

	Debugging HDL Code with the State Machine Viewer
	Simulation of State Machine Gives Unexpected Results

	Conclusion

