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Bus Interconnection Overview
* Physical structure

* Clocking

* Arbitration and decoding

* Topology types

* Data transfer modes
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Qutline

Bus-based Communication Preliminaries
> Terminology
> Physical structure
> Clocking
> Arbitration and decoding
> Topology types
> Data transfer modes
> Physical implementation issues
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Communication-centric Design

e Communication is the most critical aspect affecting
system performance

e Communication architecture consumes upto 50% of
total on-chip power

 Ever increasing number of wires, repeaters, bus
components (arbiters, bridges, decoders etc.) increases
system cost

e Communication architecture design, customization,
exploration, verification and implementation takes up
the largest chunk of a design cycle

Communication Architectures in complex systems and SoCs
significantly affects performance, power, cost & time-to-market!
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Interconnection Strategies

Tradeoffs between interconnection complexity/parallelism.
How to interconnect hardware modules?

Consider 4 modules (registers) capable of exchanging
their contents. Methods of interconnection.

Notation for data swap: SWAP(RI, R))
Ri <= Rj; temp <= Ri;
Rj<=RIi; Rj<= temp;

Module-to-Module Communication
« Point-to-point

« Single shared bus

« Multiple special purpose buses
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Point-to-Point Connection

e Four Modules interconnected via 4:| MUXes and point-to-point
connections.

$0<1:0> i I‘I.II Y S1C1:U>_}~L :'I.I: Y $2<1:0> l :'IJI L §3¢1:0> ¢ Li l
V> i oL i s i 03y i
| | |

Modules have edge-triggered N-bit registers to transfer, controlled by LDi signals.
Nx4:1 Multiplexers per module (register) controlled by Si<1:0> control signals.

Control of SWAP Operation, SWAP(R1, R2) Control Signals
01 —» S2<1.0>; Establish
10 —» S1<1:0>; connection patins
1 > LD2;1— LD1; Swap takes place at next active clock
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MUX and Bus Transfers

Select Load
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Single Bus Interconnection

Nl

5<1:0> —» ML

¢ Single Bus
v ) v Y
LB0 ™ Ro LD1_ o[ Rt LD2 o[ R2 LD3 o [ R3
J |

« Module MUX are replaced by a single MUX block.
« 25% hardware cost of the previous alternative.
» Shared set of inter-connection is called a BUS.

Multiple Transfers R0 <= R1 and R3 <= R2

State X: (RO <= R1) State Y: (R3 <= R2)
01 —» S<1.0>; 10 — S<1:0>;
1— LDO; 1— LD3;

Two control states are required for transfers.
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Alternatives to Multiplexers

¢ )

LDO LD1 R1 LD3

—)| RO > 4)R2 —Y| R3

“PEY Y Y
|

L g » >

o Tri-state buffers as an interconnection scheme
» Reduces Interconnection Physical Wires

Only one contents gated to shared bus at a time.

Decoder decodes the input control lines S<1:0> and generates one select
signal to enable only one tri-state buffer.

COE838: SoC Design ©G. Khan



Load

LOAD

l Load

RV}

En

vn

Register with bi-directional
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Input-output lines
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Ez E1 En

Tri-state bus using bi-
directional lines.

Instead of separate Input
and Output Lines
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Bus: Basic Architecture

PCB Busses —VME, Multibus-Il, ISA, EISA, PCl and PCI
Express

e Bus is made of wires shared by multiple units with
logic to provide an orderly use of the bus.

e Devices can be Masters or Slaves.

e Arbiter determines - which device will control the
bus.

e Bus protocol is a set of rules for transmitting
information between two or more devices over a bus.

* Bus bridge connects two buses, which are not of the
same type having different protocols.

e Buses may be unified or split type (address and data).
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Bus: Basic Architecture

Processor Memory 1 Memory 2
Master I'F Slave IF Slave /F

Decoder determines the target for any transfer initiated by a
master

I'F-lInterface

Decoder Arbiter

| ‘ Bus 1

Slawe LF

Bridge

Master IIF

DsP

Master 'F

MastenSlave 'F

DMA
- 1

‘ ‘ ‘ ‘ Bus 2

Decoder

Artiter
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Bus Signals

address lines

ﬁ

data lines

ﬁ

control lines

ﬁ

Typically a bus has three types of signal lines
Address

Carry address of destination for which transfer is initiated
Can be shared or separate for read, write data

Data

Transfer information between source and destination devices
Can be shared or separate for read, write data

Control
Requests and acknowledgements

Specify more information about type of data transfer e.g. Byte
enable, burst size, cacheable/bufferable, ...
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Interconnect Architectures

IP blocks need to communicate among each
other

e System level issues and specifications of an SoC
Interconnect:

* Communication Bandwidth — Rate of Information Transfer

* Communication Latency — Delay between a module requesting
the data and receiving a response to its request.

= Master and Slave — Initiate (Master) or response (Slave) to
communication requests

= Concurrency Requirements — Simultaneous Comm. Channels
= Packet or Bus Transaction — Information size per transaction
= Multiple Clock Domains — IP module operate at different clocks
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Bus Basics

Master Slave 000

Control Lines
Address Lines
Data Lines

Bus Master: has ability to control the bus, initiates transaction
Bus Slave: module activated by the transaction

Bus Communication Protocol: specification of sequence of
events and timing requirements in transferring information.

Asynchronous Bus Transfers: control lines (req, ack) serve to
orchestrate sequencing.

Synchronous Bus Transfers: sequence relative to common
clock.
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Embedded Systems busses
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Types of Bus Topologies

Shared bus

Slave 3

| Mistar2| | Slave 2 | | Master 4| | Slave 4 |
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Types of Bus Topologies

e Hierarchical shared bus

Master 1 Slave 1 Master 3 Slave 3

_I_I_LI__\_’_I_

Master 2 Slave 2 Briage 2

e Improves system throughput ‘ ‘

e Multiple ongoing transfers on
different buses

Bridge 1

Master 4 Slave 4

COE838: SoC Design ©G. Khan



Types of Bus Topologies

e Split bus
Master 1 Slave 1 Master 3 Slave 3
Master 2 Slave 2 Master 4 Slave 4

e Reduces impact of capacitance across two segments

e Reduces contention and energy
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Types of Bus Topologies

e Full crossbar/matrix bus (point to point)

Slave 1

COE838: SoC Design

Slave 2

Slave 3
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Ring bus

COE838: SoC Design

Types of Bus Topologies

Master 1 Slave 1 Master 1 Slave 1
Master 2 Slave 2 Master 4 Slave 4
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Bus Physical Structure

Tri-state buffer based bidirectional signals

Master 1 Slave 1 Master 2 Slave 2
Master I/F Slave I'F Master I/F Slave I/F

ELUFFER BUFFER BUFFER ELUFFER

Control Control Control Control

Bus

e Commonly used in off-chip/backplane buses
+ take up fewer wires, smaller area footprint

- higher power consumption, higher delay, hard to debug
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Bus Physical Structure
MUX based signals

Control

> ’J/.‘

RS > L |
a | = o =1 o
AR = :| &
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Control

Separate read, write channels
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Bus Clocking

* Synchronous Bus

° Includes a clock in control lines

> Fixed protocol for communication that is relative to clock

° Involves very little logic and can run very fast

> Require frequency converters across frequency domains

COEB838: SoC Design
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Bus Clocking

Asynchronous Bus

> No clock

> Requires a handshaking protocol
performance not as good as that of synchronous bus
No need for frequency converters, but does need extra lines

> No clock skew as in the synchronous bus

ADDR

l

0 xfffO000

DATA { 0x10

WRITE ——

REQ N \
/ N

ACK
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Decoding and Arbitration

e Decoding

> determines the target for any transfer initiated by a
master

o Arbitration

> decides which master can use the shared bus if more
than one master request bus access simultaneously

e Decoding and Arbitration can either be

o centralized
o distributed

COEB838: SoC Design ©G. Khan
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Centralized Decoding and Arbitration

Processor

Memory 1

Memory 2

Master I/F

Slave I/F

Arbiter

Slave I'F

e Minimal change is required if new
components are added to the system

COE838: SoC Design

Master I'F

1 T‘ ‘T_ i
F 1l |

DSF

MasterSlave IYF

DMA

©G. Khan

Decoder

26



Distributed Decoding and Arbitration

Processor Memory 1 Memory 2
Master I/F Slave I/'F Slave I'F
Arboiter Decoder Decoder
Arbiter ArbiterDecocer
Master I/F MasterSlave IF
DSP DMA

+ requires fewer signals as compared to centralized method
- more hardware duplication and logic/ chip-area
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Arbitration Schemes

* Random: Randomly select master to grant the bus access
e Static priority

o

Masters assigned static priorities

o

Higher priority master request always serviced first
Can be pre-emptive (AMBA-2) or non-preemptive (AMBA-3)
May lead to starvation of low priority masters

* Round-Robin (RR)

o Masters allowed to access bus in a round-robin manner

o

o

> No starvation — every master guaranteed bus access
> Inefficient if masters have vastly different data injection rates

° High latency for critical data streams

COEB838: SoC Design ©G. Khan
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Arbitration Schemes
- TDMA

> Time division multiple access
> Assign slots to masters based on BWV requirements

o If a master does not have anything to read/write during its
time slots, leads to low performance

> Choice of time slot length and number critical

« TDMA/RR

o Two-level scheme

o If master does not need to utilize its time slot, second level
RR scheme grants access to another waiting master

o Better bus utilization

> Higher implementation cost for scheme (more logic, area)

COEB838: SoC Design ©G. Khan
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Arbitration Schemes

e Dynamic priority
> Dynamically vary priority of master during application
execution

(0]

Gives masters with higher injection rates a higher priority

(0]

Requires additional logic to analyze traffic at runtime

(0]

Adapts to changing data traffic profiles

(0]

High implementation cost
(several registers to track priorities and traffic profiles)

* Programmable priority

o Simpler variant of dynamic priority scheme

> Programmable register in arbiter allows software to change priority
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Bus Data Transfer Modes

Single Non-pipelined Transfer
> The Simplest Transfer Mode
first request for access to bus from arbiter
on being granted access, set address and control signals
Send/receive data in subsequent cycles

T1 T2 T3 T4 T5 T6 T7 T8
S e I e B N e Y e Y e O e

BUSREQ —/ \ \ / \
GRANT / \ \ T

ADDR C 2T D ( C A7 —

RDATA CTATD (O A7

COE838: SoC Design ©G. Khan

31



Bus Data Transfer Modes

Pipelined Transfer - Overlap address and data phases

Only works if separate address & data busses are present

CLK

BUSRECQ_MT

BUSRECQ_ M2

GRANT_MT

GRANT_MZ

ADDR

WDATA
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Bus Data Transfer Modes

Non-pipelined Burst Transfer

Send multiple data items, with only a single arbitration for entire
transaction

master must indicate to the arbiter it intends to perform a
burst transfer

Saves time spent requesting for arbitration
M T2 T3 T4 T5 T6é T7 T8 T9 TI0 Tii

K M MMM M rrorur
BUSREQ N
GRANT —— \
ADDR A1 A
WDATA D_AT
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> Useful when separate address and data buses available

Bus Data Transfer Modes

Pipelined Burst Transfer

> Reduces data transfer latency

CLK

BUSREQ

GRANT

ADDR

WDATA

T1

T2

13

T4

T5

T6

T7

78

_/

A1

M
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Bus Data Transfer Modes
Split Transfer

o If slaves take a long time to read/write data, it can
prevent other masters from using the bus

o Split transfers improve performance by ‘splitting’ a
transaction
Master sends read request to slave
Slave relinquishes control of bus as it prepares data
* Arbiter can grant bus access to another waiting master
* Allows utilizing otherwise idle cycles on the bus

When slave is ready, it requests bus access from
arbiter

On being granted access, it sends data to master

> Explicit support for split transfers required from slaves
and arbiters (additional signals, logic)
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Bus Data Transfer Modes

Out-of-Order Transfer

> Allows multiple transfers from different masters, or same
master, to be SPLIT by a slave and be in progress
simultaneously on a single bus

> Masters can initiate data transfers without waiting for earlier
data transfers to complete

> Allows better parallelism, performance in buses

> Additional signals are needed to transmit IDs for every data
transfer in the system

> Master interfaces need to be extended to handle data transfer
IDs and be able to reorder the received data

o Slave interfaces have out-of-order buffers for reads, writes, to
keep track of pending transactions, plus logic for processing IDs

= Any application typically has a limited buffer size beyond
which performance doesn’t increase.

COEB838: SoC Design ©G. Khan

36



Physical implementation - Bus wires

* Bus wires are implemented as long metal lines on silicon

transmitting data using electromagnetic waves
(finite speed limit)

* As application performance requirements increase, clock
frequencies are also increasing
> Greater bus clock frequency = shorter bus clock period

100 MHz = 10 ns ; 500 MHz = 2 ns

e Time allowed for a signal on a bus to travel from source-to-

destination in a single bus clock=cycle is decreasing

e Can take multiple cycles to send a signal across a chip
6-10 bus clock cycles @ 50 nm

unpredictability in signal propagation time has serious consequences
for performance and correct functioning of synchronous digital
circuits (such as busses)
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Physical implementation Issues - Bus wires

Partition long bus wires into shorter ones
° Hierarchical or split bus communication architectures

> Register slices or buffers to pipeline long bus wires
enable signal to traverse a segment in one clock cycle

Bus wire 1

>>{ > >D>{]>D>D>}>D>

Bus wire 2

Synchronous —D—D—WW —D>D— Synchronous

Source Destination

Component . eee Component
Bus wire n

—>D>{>D>D>{}D>D>D>{] DD

I:l Flip Flops (FF) [> repeaters

e Asynchronous buses: No clock signal

* Low level techniques: add repeaters or using fat

wires
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On-Chip Bus Interconnection

For highly connected multi-core system
= Communication bottleneck
For multi-master buses
Arbitration will become a complex problem

Power grows for each communication event as
more units attached will increase the
capacitive load.

A crossbar switch can overcome some of these
problems and limitations of the buses

Crossbar i1s not scalable
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Network-on-Chip vs. Bus Interconnection

e Total bandwidth grows
Link speed unaffected
Concurrent spatial reuse
Pipelining is built-in
Distributed arbitration

Separate abstraction layers
However

 No performance guarantee
Extra delay in routers
Area and power overhead?
Modules need NI
Unfamiliar methodology

BUS inter-connection is fairly
simple and familiar

However
« Bandwidth is limited, shared

« Speed goes down as # of
Masters grows

* No concurrency
* Pipelining is tough
« Central arbitration

* No layers of abstraction
(communication and

computation are coupled)

COE838: SoC Design
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Summary

* On-chip communication architectures are
critical components in SoC designs

> Power, performance, cost, reliability constraints

> Rapidly increasing in complexity with the no. of cores

* Review of basic concepts of (widely used) bus-
based communication architectures

Open Problems

> Designing communication architectures to satisfy
diverse and complex application constraints
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