
 1

For each of the following variables named x, specify whether they are static, stack-dynamic, or heap-

dynamic:

a) in C++:

int* x = new(int); heap-dynamic

b) in Java:

class book {

 protected string title;

 book(String x) stack-dynamic

 { title = x; }

}

 2

What is the output of the following program? You may assume

that the program compiles and runs without error.

public class Test {

public static void f (int counter) {

counter++;

}

public static void g (int counter) {

f(counter);

f(counter);

}

public static void main (String[] args) {

int counter = 0;

f(counter);

System.out.print(counter);

g(counter);

System.out.println(counter);

}

}

(A) 1 3

(B) 0 2

(C) 0 0

(D) 1 1

(E) 1 2

 3

Consider the following program:

 procedure Main is

 a, b: Integer;

 procedure sub1 is

 a, c, e: Integer;

 begin -- of sub1

 a := 6; c := 7; e := 8;

 ... <---------------- 3

 end; -- of sub1

 procedure sub2 is

 a, c, d: integer;

 begin --- of sub2

 a := 3; c := 4; d := 5;

 ... <---------------- 2

 sub1();

 ...

 end; -- of sub2

begin

 a := 1; b := 2; --- of Main

 ... <---------------- 1

 sub2();

 ...

 end; ---- of Main

(a) Determine what variables are visible at positions 1, 2, 3 and

what their values are (given the call sequence indicated) with

static scoping.

(b) Determine what variables are visible at positions 1, 2, 3 and

what their values are (given the call sequence indicated) with

dynamic scoping.

Position Static Scoping Dynamic Scoping

1 a=1, b=2 a=1, b=2

2 a=3, b=2, c=4, d=5 a=3, b=2, c=4, d=5

3 a=6, b=2, c=7, e=8 a=6, b=2, c=7, d=5, e=8

 4

Chapter 6. Data Types

 Primitive Data Types
 Character String Types
 User-Defined Ordinal Types
 Array Types
 Associative Arrays
 Record Types
 Union Types
 Pointer and Reference Types

What is a data type?

- A type is a set: when you declare a variable of a certain type you are saying that the values

the variable can have are elements of a certain set.

 5

Primitive Data Types

- Any type that a program can use but cannot define

 Numerical types:

 - Integer

 Java‟s signed integer sizes: byte, short, int, long

 - Floating point

 Boolean

- introduced in ALGOL 60 and have been included in most programming languages since

then

 Character

 - stored with numeric coding

 - ASCII (Most commonly used coding): 1 byte 0 – 127

 Extended ASCII code 128-255

- Unicode: 2 bytes, include characters from foreign languages

 – Originally used in Java

 – C# and JavaScript also support Unicode

 6

Character String Type

 - A sequence of characters

Two main design issues:

1. Should strings be simply a character array or a primitive type?

Pascal, C, C++, Ada:

 - Not primitive, strings are just a character array and are defined as such in programs.

 - these languages provide string operations: substrings, concatenation, assignments, etc.

 C and C++

 - use a string library (string.h): strcmp, strcat, etc.

• SNOBOL4 (a string manipulation language)

–Primitive

• Java

– Primitive via the String class

2. Should strings have static or dynamic length?

 Static length strings

 Limited dynamic length strings

 Dynamic length strings

 7

(1) Static length strings:

 - the length is specified in the string declaration(FORTRAN, COBOL, Pascal)

 CHARACTER (LEN = 15) NAME1, NAME2

 (FORTRAN 90)

 - Static length strings are always full: if a shorter string is assigned to a string variable,

the empty characters are set to blanks.

(2) limited dynamic length strings (C and C++):

- allow strings to have varying length up to a declared and fixed maximum set by the

variable‟s definition.

 – a special null character „\0‟ is used to indicate the end of a string‟s characters, rather

 than maintaining the length
void main(){

 char text_1[100], text_2[100];

 int i;

 char message[] = "Hello, I am a string;

 what are you?";

 printf("Original message: %s\n", message);

 i=0;

 while ((text_1[i] = message[i]) != '\0')

 i++;

 printf("Text_1: %s\n", text_1);}

 8

(3) dynamic length strings (no maximum) (JavaScript, Perl):

 - allow strings to varying length with no maximum.

 Perl is a typeless language, you can create strings by simply assigning any text to a scalar

variable:

 $name = "Sherzod";

 $length = length($name);

Character String Implementation
Software is used to implement string storage, retrieval and manipulation

• A descriptor for static length string: compile-time descriptor (required only during

compilation time) such as Fortran.

• Limited dynamic length string: need a run-time descriptor for length (store both fixed

maximum length and the current length) such as C or C++.

Compile- and Run-Time Descriptors

Compile-time descriptor for
static strings Run-time descriptor for limited

dynamic strings

 9

• Dynamic length string require a simpler run-time descriptor because only the

current length needs to be stored

Dynamic length strings: how does one manage storage

(1) storing strings in a linked list

 - allocation and deallocation processes are simpler

 - large amount of storage and overhead

 (2) store complete strings in adjacent storage cells

 - requires less storage

 - allocation process is slower

 10

Array Types

• Index Syntax

–FORTRAN, PL/I, Ada use parentheses

–Most other languages use brackets

Arrays Index Types

• FORTRAN, C: integer only

• Pascal: any ordinal type (integer, Boolean, char)

• Ada: integer , Boolean or char.

• Java: integer types only

• C, C++, Perl, and Fortran do not specify range checking

• Java, ML, C# specify range checking

 They give a run-time error if the program tries to use an out-of-range subscript.

 11

Array Initialization

• Some language allow initialization at the time of storage allocation

–C, C++, Java, C#

 int list [] = {4, 5, 7, 83}

–Character strings in C and C++ are implemented as array of char

 char name [] = “freddie”;

– Arrays of strings in C and C++ can be initialized with string literal

char *names [] = {“Bob”, “Jake”, “Joe”};

–Java initialization of String objects

 String[] names = {“Bob”, “Jake”, “Joe”};

- Ada provide two mechanisms for initialize arrays in the declaration statement: by listing

them in the order in which they are stored, or by direct assigning them to an index position

using =>operator.

List: array(1..5) of Integer := (1,3,5,7,9)

Brunch array(1..5) of Integer:= (1=> 17, 3=> 34, others => 0)

 The other clause is used to initialize the remaining elements

 12

Associative Arrays

• An unordered collection of data elements that are indexed by an equal number of
values called keys

Example in Perl
 %hi_temps = ("Mon" => 77, "Tue" => 79, “Wed” => 65);

Associative Arrays in Perl

 Names begin with %; literals are delimited by parentheses

%hi_temps = ("Mon" => 77, "Tue" => 79, “Wed” => 65);

 Subscripting is done using braces and keys

 $hi_temps{"Wed"} = 83;

 % sign has changed to a $ to access an individual element

 Elements can be removed with delete

 delete $hi_temps{"Tue"};

 13

User-Defined Ordinal Types

 - The range of possible values can be easily associated with the set of positive integers

- Enumeration Types and Subrange Type

Enumeration Types

Every possible value of the type can be named, we say the data are enumerable.

Days of the week (sunday, monday, tuesday, etc), months in the year, colors in the rainbow.

enum Bread {wholewheat, ninegrain, rye, french}

Bread todaysLoaf;

todaysLoaf = Bread.rye;

System.out.println("bread choice is: " + todaysLoaf);

Output of: bread choice is: rye

 14

Ordinal Values
Each value of an enumerated type is stored as an integer, called its ordinal value

• The ordinal method returns the ordinal value of the object

• The name method returns the name of the identifier corresponding to the object's value

public class IceCream {

 enum Flavor {vanilla, chocolate, strawberry, fudgeRipple, coffee, rockyRoad,

 mintChocolateChip, cookieDough}

 public static void main (String[] args) {

 Flavor cone1 = Flavor.rockyRoad;

 System.out.println ("cone1 value: " + cone1);

 System.out.println ("cone1 ordinal: " + cone1.ordinal());

 System.out.println ("cone1 name: " + cone1.name());}

cone1 value: rockyRoad

cone1 ordinal: 5

cone1 name: rockyRoad

 15

User-Defined Ordinal Types

Subrange Types

• An ordered contiguous subsequence of an ordinal type

–Example: 12..18 is a subrange of integer type

• Ada‟s design

Subranges are included in the category of types called subtypes.

type Days is (mon, tue, wed, thu, fri, sat, sun);

subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Subrange Evaluation

• Aid to readability

–Make it clear to the readers that variables of subrange can store only certain range of values

• Reliability

–Assigning a value to a subrange variable that is outside the specified range is detected as an error

 16

Record Types
An aggregate of data elements in which individual elements are identified by names

 for collection of heterogeneous data.

 Records can be nested.

 Introduced by COBOL, popular since then.

typedef struct {

 int age;

 char *name;

 enum sex { male, female };

} Person;

 - Different languages use different syntax for records

struct PERSON {

 int age;

 long ss;

 float weight;

 char name[25];

} family_member; // Define object of type PERSON

 17

 int main() {

 struct PERSON sister; // C style structure declaration

 PERSON brother; // C++ style structure declaration

 sister.age = 13; // assign values to members

 brother.age = 7; }

- The class structure in OO supports records.

 class Person {

String name;

int id_number;

Date birthday;

int age; }

References to record Field

- Dot-notation to select a field of a record.

 rec.field

- Nested records need a selection “path”:

 rec.fieldr1. … . fieldrn.field

 18

Structures can generally be nested.

- Example in C.

struct point {

 int x;

 int y; };

enum colors {blue, green, yellow};

struct rectangle{

 struct point lleft;

 struct point uright;

 colors color;

 int fillpercent;};

struct rectangle r1;

r1.lleft.x = 4.5;

r1.lleft.y = 5;

struct cell {

 char data;

 struct cell *ptr;

}

 19

- COBOL uses level numbers to show nested records;

01 EMPLOYMENT-RECORD.

 02 EMPLOYEE-NAME.

 05 FIRST PICTURE IS X(20).

 05 MIDDLE PICTURE IS X(10).

 05 LAST PICTURE IS X(20).

 02 EMPLOYEE-ADDRESS

MIDDLE OF EMPLOYMENT-NAME OF EMPLOYEE-RECORD

Evaluation and Comparison to Arrays

• Records are used when collection of data values is heterogeneous

• Access to array elements is much slower than access to record fields, because subscripts are dynamic

(field names are static)

Implementation of Record Type

 20

- Implementation: Stored contiguously in memory

- Offset address relative to the beginning of the records is associated with each field

Unions Types

 21

- a user-defined data type that, at any given time, contains only one object from its list of members

- may store different type values at different times during a program execution.

• C/C++ language

• Similar to record type, it contains multiple data types.

• Members share the same data space. If a new assignment is made, the previous value is automatically

erased

• Can manipulate different kinds of data in a single unit of storage

A union may be a member of a record. A record may be a member of union.

union number{

 int x;

 /*4 bytes*/

 double y;

 /*8 bytes*/

 char z[20];

 /*20 bytes*/

};

#include <stdio.h>

#include <stdlib.h>

 main(){

 union {

 float u_f;

 int u_i;

 } var;

 var.u_f = 23.5;

 printf("value is %f\n", var.u_f);

 var.u_i = 5;

 printf("value is %d\n", var.u_i);

 exit(0);}

 22

• Design issues

– Should type checking be required?

Discriminated vs. Free Unions
 free union: Fortran, C, and C++ provide union constructs in which there is no language support for

type checking; programmer are allowed complete freedom from type checking.

#include <stdio.h>

int main() {

 union {

 int i;

 char *s;

 } x;

 Discriminated unions or variant records (introduced in ALGOL 68)

 – Type checking is done

 – Used in ALGOL 68, Pascal, Ada

 x.i = „a‟;

 printf(x.i);

 23

Example: (Ada Union Type)

type Shape is (Circle, Triangle, Rectangle);

type Figure (Form: Shape) is

 Record

 Filled : Boolean;

 case Form is

 when Circle => Diameter: Float;

 when Triangle =>

 Leftside, Rightside: Integer;

 Angle: Float;

 when Rectangle => Side1, Side2: Integer;

 end case;

 end record;

Evaluation of Unions

• Potentially unsafe construct

 – Do not allow type checking

• Java and C# do not support unions

The following statement declare variables of Figure:

 Figure_2 : Figure(Form=> Triangle)

Figure_2 declared is constrained to be a triangle and

cannot be another variant.

