
Quiz Review

Q1. What is the advantage of binding things as early as possible? Is there any advantage
to delaying binding?

Answer:

Early binding generally leads to greater efficiency (compilation approach)

Late binding general leads to greater flexibility

Q2. For the following grammar:
S →a S b | c E
E →d | f E a

(1) Circle the strings that can be generated by the grammar and cross out those that
cannot:
 cfda (T) acfab (F) aacdbb (T) aacfdab (F)

(2) The grammar is ambiguous. True or false (circle one)
 False

 1

Q3.

a. Using grammar G, draw a parse tree (also known as a derivation tree) for the following
sentence:
((a . b) c (d) (()))

In this parse tree, the root node is labelled S; leaf nodes are labelled with terminal
symbols.

 2

 3

b. Write down a rightmost derivation for the sentence given in part (a).
Hints: In a derivation, the first line is the goal symbol and the last line is the sentence; the
derivation is rightmost if the rightmost nonterminal symbol is expanded at each step.

 4

Q4. Do a top down leftmost derivation of the following string given the grammar listed
below:
a = b * (c + a)

Is the grammar from above ambiguous or not? Why or why not?
Yes. An expression such as: a + b * c can generate two different parse trees.

 5

Q5. LR parser

How a string like "1 + 1" would be parsed by LR parser.

Grammar:

(1) E → E * B
(2) E → E + B
(3) E → B
(4) B → 0

(5) B → 1

 6

Stack Input Action

0 1+1$ Shift 2
0‘1’2 + 1 $ Reduce 5 (Use GOTO[0, B])
0‘B’4 + 1 $ Reduce 3 (Use GOTO[0, E])
0‘E’3 + 1 $ Shift 6
0‘E’3‘+’6 1 $ Shift 2
0‘E’3‘+’6‘1’2 $ Reduce 5 (Use GOTO[6, B])
0‘E’3‘+’6‘B’8 $ Reduce 2 (Use GOTO[0, E])
0E3 $ Accept

 7

Type Checking

The process of checking that for each operation, the types of its operands are appropriate,
i.e. the operation is legal for these types.

In all programming languages, every value has a certain type, and the compiler and/or the
runtime system knows what the type is.

Static versus Dynamic Type-Checking

Static type-checking: type-checking done by the compiler, before executing the
program.

• int i;
 int j;
 i = j;

 8

Java and C# are Strongly Typed = the compiler checks that every
assignment and every method call is type correct.

public class Num {
// class providing useful numeric routines
 public static int gcd (int n, int d) {
 while (n != d)
 if (n > d) n = n - d; else d = d - n;
 return n;
 }
}

int y = 7, z = 3;

int x =Num.gcd (z,y);

C and C++ are not strongly typed language because both include union
types, which are not type checked.

 9

•Type checking is the activity of ensuring that the operands of an
operator are of compatible types.

•A compatible type is one that is either legal for the operator, or is
allowed under language rules to be implicitly converted, by compiler-
generated code, to a legal type.

int i;
double c = i;

Object o1 = new Car();

– This automatic conversion is called a coercion.

•A type error is the application of an operator to an operand of an
inappropriate type

 10

The advantages of static type-checking

• Potential errors can be identified earlier.
• More care is needed in the program design and implementations can take advantage

of the additional information to produce more efficient programs with less runtime
checking code.

The penalty of static checking is reduced programmer flexibility.

Dynamic type-checking: type-checking done while executing the program.

• Dynamic type checking gives more freedom
and flexibility to the programmer.

• At run-time, type-checking can know the actual
values of variables, not just their initial value or
declared type.

• This flexibilty is at the cost that type checking
errors now occur unpredictably at run-time.

Shape s = new Circle();
Shape s = new Triangle();

11

• All languages combine run-time and compile-
time type-checking (Java, etc.)

• Some languages, such as JavaScript and PHP,
allow only dynamic type checking.
e s = new Line();

hape s = new Circle();
 s.draw();

hape s = new Line();

 s.draw();
Shap

 S

 S

Scope: The range of statements over which it is visible

Local variable
Declared in the same program subunit (program, subprogram, function, etc.) in which it
is used.

Nonlocal variable (static-scoped language. Such as Ada.)
A variable not declared in the same program subunit in which it is used, but not available
to every subunit in the program.

Global variable
A variable not declared in the same program subunit in which it is used, and available to
every subunit in the program.
 void foo (int x) { // begin scope of x

 int y; // begin scope of y

 ...

 y=0; } // end scope of x and y

 12

In most block-structured languages, the scope of a name is its enclosing block.

void foo (int x) { // begin scope of x

 if (x == 0) { // begin scope of y

 int y = 0;

 ...

 } // end scope of y

 ...

 for (int z=0; // begin scope of z

 z<5; z++) {

 ...

 } // end scope of z

 ...

 } // end scope of x

 13

Static Scope versus Dynamic Scope

Static Scope: the scope of a variable can be statically determined prior to
execution. Called static scoping. (Introduced by ALGOL 60)

Two categories of Static-scoped language:

(1) Subprograms can be nested, which created nested static scope,
(Ada, JavaScript, and PHP)

(2) Subprograms cannot be nested (C-based languages).
(3) We focus on languages that allow nested subprograms.

 14

To connect a name reference to a variable, you must find the declaration.
Consider the following Ada procedure
procedure Big is
 X: Integer; •Search process: search declarations, first locally,

then in increasingly larger enclosing scopes, until
one is found for the given name
•Enclosing static scopes (to a specific scope) are

estors; the nearest static
 static parent

 procedure Sub1 is
 begin
 ….. X …..

ciated with the static text of

pe by looking at structure of
n execution path telling how

15
called its static anc
ancestor is called a

s

Static Scope is asso
program.
Can determine sco
program rather tha
got there.

ig

ig
 end;
 procedure Sub2 i
 X : Integer;
 Begin
 ………
 end;
 begin --- of B
 ….
 End --- of B

•Variables can be hidden from a unit by having a "closer" variable with
the same name
•C++ and Ada allow access to these "hidden" variables
 –In Ada: unit.name
 X declared in Big can be accessed in Sub2 by the reference Big.X
 –In C++: using scope operator (::)
 ::name

cout << "global j: " << ::j << endl;
 func();
 return 0;
}

void func() {
 float f = 20.0;
 cout << "f in func: " << f << endl;
 cout << "global f: " << ::f << endl;
}

#include < iostream >
void func();
int i = 5;
int j = 3;
float f = 10.0;

int main() {
 int j = 7;
 cout << "i in main: " << i << endl;
 cout << "j in main: " << j << endl;

 16

Blocks
–A method of creating static scopes inside program units--from ALGOL
60
–Examples:
 C and C++: for (...) {
 int index;
 ...
 }
 Ada: declare LCL : FLOAT;
 begin
 ...
 end

The scope created by blocks are treated exactly like those created by
subprograms. Reference to variables in a block that are not declared
there are connected to declarations by searching enclosing scopes in
order of increasing size.

 17

• C++ allow variables definition to appear anywhere in function. When
a definition appears at a position other than at the beginning of a
function, that variable’s scope is from its definition statement to the
end of function.

• In C, all data declarations in a function must appear at the beginning
of the function.

• The for statement of C++, Java and C# allow variable definition in
their initialization expression. The scope is restricted to the for
construct, as the case with Java and C#.

• The classes of C++, Java and C# treat their instance variable
differently from the variable defined in their methods. The scope of a
variable defined in a method start at the definition. However,
regardless of where a variable is defined in a class, its scope is the
whole class

 18

Dynamic Scope

• on calling sequences of program units
• ces to variables are connected to declarations by searching back through
th n of subprogram calls that forced execution to this point

 IN

Based
Referen
e chai

 MA

• Dynamic Scope is associated with the

execution path of program.
• LISP and APL use dynamic scoping

 - declaration of x
 SUB1
 - declaration of x -
 ...
 call SUB2

Scope Example

•Static scoping
–Reference to x of SUB2 is to MAIN's x
Dynamic scoping
Reference to x of SUB2 is to SUB1's x

 ...
 SUB2

 .
 c

19

B
B

Evaluation of Dynamic Scoping:
Advantage: convenience
Disadvantage: poor readability
 ...
 - reference to x -
 ...
..
all SUB1

IN calls SUB1
1 calls SUB2
2 uses x
•
–

•
–
–

 …

MA
SU
SU

program ...
 var A : integer;
 procedure Y(...);
 begin
 ...; B := A + B; ...

 end; {Y}

 procedure Z(...);

 var A: integer;

 begin

 ...; Y(...); ...

 end; {Z}

 begin {main}

 ...; Z(...);...

 end.
Question: Which variable with name A is used when Y is called from Z?

• In static, clearly globally defined A.
• In dynamic, local A in Z (since declaration of A in Z is most recent).

 20

Variable categories by lifetime and memory location:
 1. static variables
 2. stack-dynamic variables
 3. heap-dynamic variables

 21

#include <iostream.h>

void showstat(int curr) {
 static int nStatic=0; // Value of nStatic is retained between each function call
 nStatic += curr;
 cout << "nStatic is " << nStatic << endl;
}

void main() {
 for (int i = 0; i < 5; i++)

22

Java: public class Counter {
 public static int count=0;
 public Counter (){
 }

 public static void counting_function(){
 System.out.println("count = " +
++count);
 }

 public static void main (String[] args) {
 counting_function(); // 1
 counting_function(); // 2
 counting_function(); // 3
 counting_function(); // 4
 counting_function(); // 5
 }
 showstat(i);
}

Imagine you wanted to count how many Duck instances are being created while your
program is running.

Non-static variable:
class Duck {

Programming Language Support:

C, C++, Java: include the "static" specifier
on a local variable definition.

FORTRAN I, II, IV: all variables static.

Pascal: no support.

 int duckCount = 0;
 public Duck() {

 duckCount++;
}

Static variable:
public class Duck {
 private int size;
 private static int duckCount = 0;
 public Duck ()

 duckCount
}
}

- Static variable instance variable.

 23
{
++;

is a class variable, rather than an

 24

In most current programming languages, the formal parameters and local variables of
subroutines (functions, methods) are stack-dynamic variables.

int foo (int a, int b) {
 int x = 4;
 a = a + bar(b);
 return x + a + b;
}

 25

Heap-dynamic variables
nameless variables allocated on the heap for dynamic data structures or for instances of
objects in OO programming languages.

 26

In Java or C++, heap-dynamic variables are allocated by the new operator.

 Car c = new Car();

In C, the allocation operator is the function malloc(size),

#include <stdlib.h>

/* Allocate space for an array with 10 elements of type int */
int *ptr = (int *) malloc (sizeof(int) * 10);
if (ptr == NULL)
 exit(1); /* We could not allocate any memory, so exit */

Memory allocated via malloc is persistent: it will continue to exist until the program
terminates or the memory is deallocated by the programmer .

void free(ptr)

 27

• dynamic objects in C++ (via new and delete),

int *intnode;
. . .
intnode = new int;
. . .
delete intnode;

Heap-Dynamic Variables

Advantage: high flexibility, convenient to implement data structures, such as liked list
 and trees.

Disadvantage: (1) difficult to use pointer and reference correctly.
 (2) low reliability, complexity of storage management implementation.

- Solutions in Java:
 - remove pointers (only use references)
 - array bound checking
 - garbage collection

 28

Referencing Environments

• referencing environment of a statement is the collection of all names that are
visible in the statement
•In a static-scoped language, it is the local variables plus all of the visible
variables in all of the enclosing scopes

procedure Example is begin -- Sub2

 ... <============= 3
 end;

 begin -- Example
 ... <============= 4
 endl;

int Referencing Environment
1
2
3
4

 A, B, : Integer;
 ...

 procedure Sub1 is
 X, Y : Integer;
 begin -- Sub1
 ... <============ 1
 end;

 29
Po

procedure Sub2 is
 X : Integer;
 ...
 procedure Sub3 is
 X : Integer;
 begin –- Sub3
 ... <============= 2
 end;

•In a dynamic-scoped language, the referencing environment is the local variables
plus all visible variables in all active subprograms
•A subprogram is active if its execution has begun but has not yet terminated
void sub1() {

 int a, b;

 …… 1

} / * end of sub1 */

void sub2() {

 int b, c;

 ……

 sub1

} /* end

void ma

 int c,

 ……

The reference environments of the indicated program points

are as follows:

Point Referencing Environment

1. a and b of sub1, c of sub2, d of main, (c of main

 b of sub2 are hidden)

b and c of sub2, d of main, (c of main is hidden)

c and d of main

 sub2

 } /* en

 30
 2

;

 of sub2 */

in() {

 d;

. 3

and

2.

3.

();

d of main */

nly once when it is bound to storage

example, by using pi instead of 3.14159

void example(){
final int len =100;
int [] intList = new int[len];
Named Constants

•a variable that is bound to a value o

Advantages:

• readability can be improved, for
• Used to parameterize programs

void example(){
int [] intList = new int[100];
….
31

….
for (index = 0; index<len; index++){
……
}

for (index = 0; index<len; index++){
……
}
….
Average=sum/len;
…
}

for (index = 0; index<100; index++){
……

}

for (index = 0; index<100; index++){
……
}
….
Average=sum/100;
…
}

	Late binding general leads to greater flexibility
	Q5. LR parser
	Type Checking
	
	Static versus Dynamic Type-Checking

	End --- of Big
	
	
	
	
	
	Dynamic Scope

	Heap-dynamic variables
	
	
	
	Heap-Dynamic Variables

