
• The Parsing Problem
 Top-Down Parsing
 Bottom-Up Parsing

 Result of

Parsing

Syntactic
Analyzer

 Tokens

Lexical
Analyzer

Source of
your program

Parsing is the process of analyzing an input sequence in order to determine its
grammatical structure with respect to a given BNF grammar.

A parser is a computer program that carries out this task.

 1

Goals of the parser

Given the source of your program,

- Check the input program to determine whether it is syntactically correct.

- Produce a complete parse tree.

Parsing strategies:

(1) top-down

• Trying to find a leftmost derivation for an input string. Equivalently, construct the
parse tree from the root downward to leaf.

• LL parsers are examples of top-down parsers. It parses the input from Left to right,

and constructs a Leftmost derivation of the sentence (Hence LL).

 2

Example:

<E>→ <F> <EP>
<EP> → + <F>
<F> → id | num.

Parse id+id

<E>→ <F> <EP>
<E>→ id <EP>
<E>→ id + <F>
<E>→ id + id

3

Example of top-down parsing: Recursive-descent parsing

It consists of a collection of subprograms, many of which are recursive, and it produces a
parse tree in top-down order.

• There is a subprogram for each nonterminal in the grammar, which can parse sentences
that can be generated by that nonterminal.

• EBNF is ideally suited for being the basis for a recursive-descent parser, because EBNF
minimizes the number of nonterminals. (minimize the number of subprograms)

<E>→ <F> <EP>
<EP> → + <F>
<F> → id | num.

Three functions: E(), EP() and F () corresponding to the three nonterminals <E>, <EP>
and <F> in the grammar.

 4

Recursive-descent parsing

void EP() // <EP> → + <F>
{

 if (t == PLUS) {
 t =next-token();
 F();

 }

 void F() { // <F> -> id | num)
 if (t == ID || t == NUM) {
 t = next-token(); }
} else error("expected identifier or
number”;}

<E>→ <F> <EP>
<EP> → + <F>
<F> → id | num.

Parse id+id

void main() {

t = next_token(); // initialize with
 // the first token
E(); // start parse

}

 viod E() { // <E>→ <F> <EP>

 }

 5
 F();
 EP();

A grammar for simple expressions:

<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → id | (<expr>)

• Assume we have a lexical analyzer named lex(), which puts the next token code in
nextToken.

– For each terminal symbol in the RHS, compare it with the next input token; if they
match, continue, else there is an error.

– For each nonterminal symbol in the RHS, call its associated parsing subprogram.

 6

/* Function expr parses strings in the language generated by the rule:
<expr> → <term> {(+ | -) <term>}
*/
void expr() {
/* Parse the first term */
 term();
 while (nextToken == PLUS_CODE || nextToken == MINUS_CODE){
 lex();
 term();
 }
}

The parsing subprogram for <term> is similar to that for <expr>

/* <term> -> <factor> {(*|/) <factor>}
void term() {
 factor();
 while (nextToken == TIMES_CODE||nextToken == SLASH_CODE) {
 lex();
 factor(); }}

 7

• A nonterminal that has more than one RHS requires an initial process to determine
which RHS it is to parse
–The correct RHS is chosen on the basis of the next token of input
–If no match is found, it is a syntax error
/* Function factor
 <factor> -> id | (<expr>) */

 void factor() {
 /* Determine which RHS */
 if (nextToken) == ID_CODE)
 lex();
 else if (nextToken == LEFT_PAREN_CODE) {
 lex();
 expr();
 if (nextToken == RIGHT_PAREN_CODE)
 lex();
 else
 error();}
 else error(); /* Neither RHS matches */
 }

 8

Exercise: (Recursive-descent parsing)

<E> -> <T>< EP>
<EP> -> + <T>< EP> | - <T>< EP>
<T> -> <F>< TP>
<TP> -> * <F> <TP> | / <F> <T>
<F> -> num | id

 9

Here is a C program that parses this grammar:

else if (current_token == DIV)
 { next_token(); F(); TP(); };
}

F() { // F -> num | id
 if (current_token == NUM || current_token == ID)
 next_token();
 else error();
}

E() { // <E> -> <T>< EP>
 T();
 EP(); }

EP() { // EP -> + <T>< EP> | -<T>< EP>
 if (current_token == PLUS)
 { next_token(); T(); EP(); }
 else if (current_token == MINUS)
 { next_token(); T(); EP(); };
}

T() { // <T> -> <F>< TP>

• For each nonterminal we write one procedure;
• For each nonterminal in the RHS of a rule, we

call the nonterminal's procedure;
• For each terminal, we compare the current

token with the expected terminal.
• If there are multiple productions for a

nonterminal, we use an if-then-else statement
to choose which rule to apply.

| / <F>< TP>
ES)

P(); }

10
 F();
 TP(); }

TP() { // TP -> * <F>< TP>
 if (current_token == TIM
 { next_token(); F(); T

The restriction of the recursive descent parsing

–The Left Recursion Problem

• If a grammar has left recursion, either direct or indirect, it cannot be the basis for a top-
down parser

A->A+B

Indirect left recursive poses the same problem as direct left recursion.

A->BaA
B->Ab

 11

– The inability to determine the correct RHS on the basis of next token of input,

A->aB | aAb

• Left Factoring --- find out the common prefixes change the production

<A> -> xy | xz

to

<A> -> x<AP>
<AP> -> y|z

Replace
 <variable> → identifier | identifier [<expression>]
with
 <variable> → identifier <new>
 <new> → ε | [<expression>]

 12

(2) Bottom up
Build parse trees from the leaves to the root, also called LR parsers.
 L - Left to right scan of the input

 R - generates a rightmost derivation (in reverse)
E -> E + T | T
T -> T * F | F
F -> (E) | id

Rightmost derivation (in reverse)
 Parse id+id*id
E-> E+T
Î E+T*F
Î E+T*id
Î E+ F*id
Î E+id*id
Î T+id*id
Î F+id*id
Î id+id*id

The left recursive problem is acceptable to LR parsers.

 13

Structure of an LR parser

• A LR parser uses a parse stack to
keep track of the parse.

The parse stack stores the state of an
LR parser (S0X1S1X2S2…XmSm)

Ss are state symbols and the Xs are
grammar symbols

• The parser is controlled by a

parsing table generated from the
grammar.

 14

The parsing table has two components: an ACTION table and a GOTO table

– The ACTION table specifies the action of the parser, given the parser state and the next
token

–The GOTO table specifies which state to put on top of the parse stack after a reduction
action is done

To explain the parsing table workings we will use the following small grammar:

(1) E → E * B
(2) E → E + B
(3) E → B
(4) B → 0
(5) B → 1

 15

The Action and Goto Table

The action table is indexed by a state
of the parser and a terminal (including
a special terminal $ that indicates the
end of the input stream) and contains
three types of actions:

• shift, which is written as 'sn' and
indicates that the next state is n

• reduce, which is written as 'rm'
and indicates that a reduction with
grammar rule m should be
performed

• accept, which is written as 'acc'
and indicates that the parser

 accepts the string in the input stream.

 action goto
state * + 0 1 $ E B

0 s1 s2 3 4
1 r4 r4 r4 r4 r4
2 r5 r5 r5 r5 r5
3 s5 s6 acc
4 r3 r3 r3 r3 r3
5 s1 s2 7
6 s1 s2 8
7 r1 r1 r1 r1 r1
8 r2 r2 r2 r2 r2

The goto table is indexed by a state of the parser and a nonterminal and simply indicates
what the next state of the parser will be if it has recognized a certain nonterminal.

 16

The LR Parsing Algorithm

1. The stack is initialized with [0]. The current state will always be the state that is on
top of the stack.

2. Given the current state and the current terminal on the input stream an action is
looked up in the action table. There are four cases:

o a shift sn:
� the current terminal is removed from the input stream to stack, and
� the state n is pushed onto the stack and becomes the current state,

o a reduce rm:
� the number m is written to the output stream,
� for every symbol in the right-hand side of rule m a state is removed from

the stack and
� given the state that is then on top of the stack and the left-hand side of rule

m a new state is looked up in the goto table and made the new current state
by pushing it onto the stack.

o an accept: the string is accepted
o no action: a syntax error is reported

3. The previous step is repeated until the string is accepted or a syntax error is reported.

 17

An Example

How a string like "1 + 1" would be parsed by LR parser.

When the parser starts it always starts with the initial state 0 and the following stack:

[0]

Stack Input Action

0 1+1$ Shift 2
0‘1’2 + 1 $ Reduce 5 (Use GOTO[0, B])
0‘B’4 + 1 $ Reduce 3 (Use GOTO[0, E])
0‘E’3 + 1 $ Shift 6
0‘E’3‘+’6 1 $ Shift 2
0‘E’3‘+’6‘1’2 $ Reduce 5 (Use GOTO[6, B])
0‘E’3‘+’6‘B’8 $ Reduce 2 (Use GOTO[0, E])
0E3 $ Accept

Finally, we read a '$' from the input stream which means that according to the action table
the parser accepts the input string.

 18

Show a complete parse, including the parse stack contents, input string, and action for
the string id*(id+id).

 1. E->E+T
 2. E->T

3. T->T*F
4. T->F
5. F->(E)
6. F->id

 19

 20

 Stack Input Action
 0 id * (id + id) $ Shift 5
 0id5 * (id + id) $ Reduce 6 (Use GOTO[0, F])
 0F3 * (id + id) $ Reduce 4 (Use GOTO[0, T])
 0T2 * (id + id) $ Shift 7
 0T2*7 (id + id) $ Shift 4
 0T2*7(4 id+ id)$ Shift 5
 0T2*7(4id5 + id) $ Reduce 6 (Use GOTO[4, F])
 0T2*7(4F3 + id) $ Reduce 4 (Use GOTO[4, T])
 0T2*7(4T2 + id) $ Reduce 2 (Use GOTO[4, E])
 0T2*7(4E8 + id) $ Shift 6
 0T2*7(4E8+6 id) $ Shift 5
 0T2*7(4E8+6id5) $ Reduce 6 (Use GOTO[6, F])
 0T2*7(4E8+6F3) $ Reduce 4 (Use GOTO[6, T])
 0T2*7(4E8+6T9) $ Reduce 1 (Use GOTO[4, E])
 0T2*7(4E8) $ Shift 11
 0T2*7(4E8)11 $ Reduce 5 (Use GOTO[7, F])
 0T2*7F10 $ Reduce 3 (Use GOTO[0, T])
 0T2 $ Reduce 2 (Use GOTO[0, E])
 0E1 $ Accept

	Goals of the parser
	<A> -> xy | xz
	E-> E+T
	
	The left recursive problem is acceptable to LR parsers.
	Structure of an LR parser

	The Action and Goto Table
	The LR Parsing Algorithm
	An Example

