
Chapter 4. Lexical and Syntax Analysis 
 

• Building a lexical analyzer 
• Syntax analyzer (Parsing problem) 

             Top-Down Parsing  
         Bottom-Up Parsing 
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Syntax analyzer (Parsing) is the process of analyzing an input sequence in order to 
determine its grammatical structure with respect to a given BNF grammar. 
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Reasons to Separate Lexical and Syntax Analysis 
 

•Simplicity – Lexical analysis are less complex than syntax analysis, less 
complex approaches can be used for lexical analysis; separating them 
simplifies the parser. 
•Efficiency – Lexical analysis requires a significant portion of total 
compilation time, separation allows optimization of the lexical analyzer 
and permits parallel development. 
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Building a lexical analyzer: 
 
– Write a formal description of the tokens and use a software tool that 
automatically constructs lexical analyzers given such a description, for 
instance lex in Unix. 
– Design a state diagram that describes the tokens and write a program 
that implements the state diagram 
 
 

position := initial + rate * 60 
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Lexical analyzer is essentially pattern matching - each token is described by some 
pattern for its lexemes.  
 

• The pattern for an identifier (token IDENT) is a letter followed by a sequence of 
letters, digits and underscores. Lexemes include: i3, foo, foo_7, ... 

 
• The pattern for a floating point numeric literal (token INT_LIT) is an optional sign, 

followed by a sequence of digits, followed by a decimal point, followed by a 
sequence of digits. Lexemes include: -7.3, 3.44, ... 

 
To generate a pattern matcher from regular expressions  

• convert regular expressions to state transition diagrams  
• generate pattern matching code from the diagrams  
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The state transition diagram for token identifier: 
 

                            Letter, digit or _  (repetive)           

 

 
Each circle is a state 
The arrows between the states are transitions.  
Each transition is labeled with the character that causes the transition to occur.  
 
1 is the start state where pattern matching begins.  
 
Any state consisting of 2 concentric circles is called an accepting state. When an 
accepting state is reached, the pattern has been matched.  
 
Hence, state 1 moves to state 2 if the first input character is a letter. Any other input is an 
error.  
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The state transition diagram for a token Num 
 
            Num->  (+|-){digit}.{digit} 
 
 
                                       digit                                                   digit 

 
 
 
 
This form of state transition diagram is easily implemented using a big switch statement.  
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For example, the pa  is: 
 

#include <ctype tdio.h> 
 
int state = 1; 
 
char c; // the 
c = getchar(); 
 
while (!done) {
 
switch (state) 
  case 1: if (i
       state = 
       c = getc
       } else i

state = 
       c=getcha
       } else e
case 2: if (is

        // stay
       c = getc

}  

 

ttern matcher corresponding to the num above

.h> // to use isdigit() #include <s

// the start state int= 1; 

current input character 
// read next character of input  

 

{ 
sdigit( c )){ 
2; 
har(); 
f (c == ‘+’ || c == ‘-‘) {       
3; 
r(); 
rror(); break; 
digit(c)) { 
 in same state  
har(); 
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       else if (c = '.') {  
       state= 4; 
       c=getchar(); } else error(); break; 
 case 3: if(isdigit(c)) { state = 2; 

c = getchar(); } else error(); 
       break; 
 case 4: if(isdigit(c)) { state = 5; 
        c = getchar(); } else error();    
       break; 
 case 5: if (isdigit(c)) { 
// stay in same state  
       c = getchar(); 

} else done = 1; // matched the longest string of input 
//characters that match the pattern 

break;  
}//switch 

}//loop 
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