
Chapter 4. Lexical and Syntax Analysis

• Building a lexical analyzer
• Syntax analyzer (Parsing problem)

 Top-Down Parsing
 Bottom-Up Parsing

Source of
your program

Lexical
Analyzer

 Tokens

Result of
Parsing

Syntactic
Analyzer

Syntax analyzer (Parsing) is the process of analyzing an input sequence in order to
determine its grammatical structure with respect to a given BNF grammar.

 1

Reasons to Separate Lexical and Syntax Analysis

•Simplicity – Lexical analysis are less complex than syntax analysis, less
complex approaches can be used for lexical analysis; separating them
simplifies the parser.
•Efficiency – Lexical analysis requires a significant portion of total
compilation time, separation allows optimization of the lexical analyzer
and permits parallel development.

 2

Building a lexical analyzer:

– Write a formal description of the tokens and use a software tool that
automatically constructs lexical analyzers given such a description, for
instance lex in Unix.
– Design a state diagram that describes the tokens and write a program
that implements the state diagram

position := initial + rate * 60

Source of
your program

 Tokens

Lexical
Analyzer

 3

Lexical analyzer is essentially pattern matching - each token is described by some
pattern for its lexemes.

• The pattern for an identifier (token IDENT) is a letter followed by a sequence of
letters, digits and underscores. Lexemes include: i3, foo, foo_7, ...

• The pattern for a floating point numeric literal (token INT_LIT) is an optional sign,

followed by a sequence of digits, followed by a decimal point, followed by a
sequence of digits. Lexemes include: -7.3, 3.44, ...

To generate a pattern matcher from regular expressions

• convert regular expressions to state transition diagrams
• generate pattern matching code from the diagrams

 4

The state transition diagram for token identifier:

 Letter, digit or _ (repetive)

Each circle is a state
The arrows between the states are transitions.
Each transition is labeled with the character that causes the transition to occur.

1 is the start state where pattern matching begins.

Any state consisting of 2 concentric circles is called an accepting state. When an
accepting state is reached, the pattern has been matched.

Hence, state 1 moves to state 2 if the first input character is a letter. Any other input is an
error.

 5

The state transition diagram for a token Num

 Num-> (+|-){digit}.{digit}

 digit digit

This form of state transition diagram is easily implemented using a big switch statement.

 6

For example, the pa is:

#include <ctype tdio.h>

int state = 1;

char c; // the
c = getchar();

while (!done) {

switch (state)
 case 1: if (i
 state =
 c = getc
 } else i

state =
 c=getcha
 } else e
case 2: if (is

 // stay
 c = getc

}

ttern matcher corresponding to the num above

.h> // to use isdigit() #include <s

// the start state int= 1;

current input character
// read next character of input

{
sdigit(c)){
2;
har();
f (c == ‘+’ || c == ‘-‘) {
3;
r();
rror(); break;
digit(c)) {
 in same state
har();
7

 else if (c = '.') {
 state= 4;
 c=getchar(); } else error(); break;
 case 3: if(isdigit(c)) { state = 2;

c = getchar(); } else error();
 break;
 case 4: if(isdigit(c)) { state = 5;
 c = getchar(); } else error();
 break;
 case 5: if (isdigit(c)) {
// stay in same state
 c = getchar();

} else done = 1; // matched the longest string of input
//characters that match the pattern

break;
}//switch

}//loop

8

	Syntax analyzer (Parsing) is the process of analyzing an input sequence in order to determine its grammatical structure with respect to a given BNF grammar.
	Reasons to Separate Lexical and Syntax Analysis
	
	
	
	
	This form of state transition diagram is easily implemented using a big switch statement.

