Chapter 4. Lexical and Syntax Analysis

e Building a lexical analyzer

e Syntax analyzer (Parsing problem)
Top-Down Parsing
Bottom-Up Parsing

Source of Result of
your program Tokens Parsing

SN e

Lexical
Analyzer

Syntactic
Analyzer

Syntax analyzer (Parsing) is the process of analyzing an input sequence in order to
determine its grammatical structure with respect to a given BNF grammar.

Reasons to Separate Lexical and Syntax Analysis

- Simplicity - Lexical analysis are less complex than syntax analysis, less
complex approaches can be used for lexical analysis; separating them
simplifies the parser.

- Efficiency - Lexical analysis requires a significant portion of total
compilation time, separation allows optimization of the lexical analyzer
and permits parallel development.

Building a lexical analyzer:

- Write a formal description of the tokens and use a software tool that
automatically constructs lexical analyzers given such a description, for
instance lex in Unix.

- Design a state diagram that describes the tokens and write a program
that implements the state diagram

position := initial + rate * 60

Source of
your program Tokens

\ Lexical /
Analyzer

Lexical analyzer is essentially pattern matching - each token is described by some
pattern for its lexemes.

e The pattern for an identifier (token IDENT) is a letter followed by a sequence of
letters, digits and underscores. Lexemes include: 13, foo, foo 7, ...

e The pattern for a floating point numeric literal (token INT LIT) is an optional sign,
followed by a sequence of digits, followed by a decimal point, followed by a
sequence of digits. Lexemes include: -7.3, 3.44, ...

To generate a pattern matcher from regular expressions
e convert regular expressions to state transition diagrams
e generate pattern matching code from the diagrams

The state transition diagram for token identifier:

Letter, digit or _ (repetive)

Each circle is a state
The arrows between the states are transitions.
Each transition is labeled with the character that causes the transition to occur.

1 is the start state where pattern matching begins.

Any state consisting of 2 concentric circles 1s called an accepting state. When an
accepting state is reached, the pattern has been matched.

Hence, state 1 moves to state 2 if the first input character is a letter. Any other input is an
error.

The state transition diagram for a token Num

Num-> (+-){digit}.{digit}

digit digit
@ digit . @ digit
1 - 2 J——— — >
+ digit

This form of state transition diagram is easily implemented using a big switch statement.

For example, the pattern matcher corresponding to the num above is:
#include <ctype.h> // to use isdigit() #include <stdio.h>
int state = 1; // the start state int= 1;

char c; // the current input character
c = getchar(); // read next character of input

while (!done) {

switch (state) { _*<I> digit g;%

case 1: 1f (isdigit(c)) {
state = 2;
c = getchar();
} else if (c == “+' || == ‘-') {

)

state = 3;
c=getchar () ;
} else error(),; break;
case 2: 1f (isdigit(c)) {
// stay in same state
c = getchar();
}

else if (c = '.") {

state= 4;
c=getchar(); } else error(); break;
case 3: 1f(isdigit(c)) { state = 2;
c = getchar(); } else error();
break;
case 4: 1f(isdigit(c)) { state = 5;
c = getchar(); } else error():
break;
case 5: if (isdigit(c)) {

// stay in same state
c = getchar ()

} else done = 1; // matched the longest string of input
//characters that match the pattern

break;
}//switch
}//loop

	Syntax analyzer (Parsing) is the process of analyzing an input sequence in order to determine its grammatical structure with respect to a given BNF grammar.
	Reasons to Separate Lexical and Syntax Analysis
	
	
	
	
	This form of state transition diagram is easily implemented using a big switch statement.

