
 1

Object-Oriented Programming and Exception Handling

 Introduction of Object-Oriented Programming

 Object-Oriented Programming in Java

 Object-Oriented Programming in C++

 Exception handling in Java

 Exception Handling in C++

Object-Oriented Concepts

 • Classes
 • Objects

 • Inheritance

 • Encapsulation

 • Polymorphism

•Many object-oriented programming (OOP) languages

 –Some only support OOP paradigms (e.g., Java)

 –Some also support procedural programming (e.g., C++)

 2

Object-Oriented Programming Language: Java

 Abstract class

 Interface

 Polymorphism

 Nested class

Abstract Classes

public abstract class Shape {
 abstract int getArea();
}

public class Rectangle extends Shape {
 double ht = 0.0;
 double wd = 0.0;

 public double getArea()
 {

 return (ht*WD);
 }
}

public class Circle extends Shape{
 double r =0.0;

 public double getArea()
 {

 return (2 * 3.14 * r);
 }

}

 3

 abstract

 abstract concrete

concrete concrete

 Animal

 Canine

 Wolf Dog

 Hippo

public abstract class Animal {

 private String name;

 public Animal(String nm)

 { name=nm; }

 public String getName() // regular method

 { return (name); }

 public abstract void speak(); // abstract

 //method - note no {}

}

 The only reason to establish this common interface is so it can be expressed differently

for each different subclass. It establishes a basic form, so you can say what’s in common

with all the derived classes.

 Abstract class express only the interface, not a particular implementation, so creating an

object of abstract class makes no sense

 4

Interface – more abstract than abstract class

 A Java interface is a collection of abstract methods and constants.

 An interface permits no implementation, not even partial implementation.

 An interface is a function specification about what a class do, not how it does.

Extending an interface
You can write an interface that inherits from an existing interface, and the keyword remains extends.

interface A{

 void meth1();

 void meth2();}

interface B extends A {

 void meth3();}

class myClass implements B {

 public void meth1(){

 System.out.println(“Implement meth1()”);}

 public void meth2(){

 System.out.println(“Implement meth2()”);}

 public void meth3(){

 System.out.println(“Implement meth3()”);}}

Class myClassTest {

 public static void main (string args[]) {

 myClass ob = new myclass();

 ob.meth1();

 ob.meth2();

 ob.meth3();

 }

}

 5

Polymorphism

polymorphism means "having many forms", it is based on the late binding technique.

Java defers method binding until run time -- this is called dynamic binding or late binding

Java's use late binding that allows you to declare an object as one class at compile-time
but executes based on the actual class at runtime.

Polymorphism via Inheritance

 Shape

 draw()

 erase()

 Circle

 draw()

 erase()

 Triangle

 draw()

 erase()

 Line

 draw()

 erase()

Shape s = new Circle();

Shape s = new Triangle();

Shape s = new Line();

 6

Nested Classes

Non-static nested classes (inner class)

(1) In Java, a non-static nested class is a class nested within another class:

 class C {

 class D {

 }

 }

(2) Objects of the non-static nested class are attached to objects of the outer class

 C c = new C()

 D d = c.new D()

 7

(3) Because the non-static nested class is considered part of the implementation of

the outer class, it has access to all of the outer class's instance variables and

methods.

public class EnclosingClass

{

 private String someMember = "someMember";

 private class InnerClass

 {

 public void doIt()

 {

 System.out.println(someMember);

 }

 }

 public static void main(String[] args)

 {

 new EnclosingClass().new InnerClass().doIt();

 }

}

 8

Static Nested classes

If a class is defined within another class and it is marked with the static modifier, it is

called a static nested class.

public class EnclosingClass{

 private static String staticMember = "Static Member";

 private String someMember = "Some Member";

 static class NestedClass {

 public void doIt()

 {

 System.out.println(staticMember);

 }

 }

 public static void main(String[] args)

 {

 new NestedClass().doIt();

 }

}

(1) They are exactly like classes declared outside

any other class

(2) To create object of static nested class, you

don't need to create an instance of the

enclosing class first.

(3) You cannot access instance members of that

enclosing class like Inner Class could

previously. A static nested class cannot refer

directly to instance variables or methods

defined in its enclosing class - it can use them

only through an object reference.

(4) A static nested class can access static members

(even private ones) of its enclosing class.

 9

Reexportation in C++

•A member that is not accessible in a subclass (because of private derivation) can

be declared to be visible there using the scope resolution operator (::), e.g.,

class subclass_3 : private base_class {

 base_class :: c;

…

}

 10

 Polymorphism in C++

A pointer to a derived class is type-compatible with a pointer to its base class.

class CPolygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; } };

class CRectangle: public CPolygon {

 public:

 int area ()

 { return (width * height); }

 };

class CTriangle: public CPolygon {

 public:

 int area ()

 { return (width * height / 2); } };

int main () {

 CRectangle rect;

 CTriangle trgl;

 CPolygon * ppoly1 = ▭

 CPolygon * ppoly2 = &trgl;

 ppoly1->set_values (4, 5);

 ppoly2->set_values (4, 5);

 cout << rect.area() << endl; ////error ???

 cout << trgl.area() << endl; /// error???

 return 0;}

 11

This is a problem.

 In order to use area() with the pointers to class CPolygon, this member

should also have been declared in the class CPolygon, and not only in its

derived classes.

 Because CRectangle and CTriangle implement different versions of area, we

cannot implement it in the base class. This is when virtual members

become handy.

Virtual members

 A member of a class that can be redefined in its derived classes.

 To declare a member of a class as virtual, we must precede its declaration

with the keyword virtual.

 Usually has a different functionality in the derived class
 A function call is resolved at run-time

 12

virtual function is a primary tool for polymorphic behaviour.

The difference between a non-virtual c++ member function and a virtual

member function

 the non-virtual member functions are resolved at compile time. This

mechanism is called static binding.

 C++ virtual member functions are resolved during run-time. This
mechanism is known as dynamic binding.

class CPolygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

 virtual int area ()

 { return (0); } };

20

10

0

 13

class CRectangle: public CPolygon {

 public:

 int area ()

 { return (width * height); }

 };

class CTriangle: public CPolygon {

 public:

 int area ()

 { return (width * height / 2); }

 };

int main () {

 CRectangle rect;

 CTriangle trgl;

 CPolygon poly;

 CPolygon * ppoly1 = ▭

 CPolygon * ppoly2 = &trgl;

 CPolygon * ppoly3 = &poly;

 ppoly1->set_values (4,5);

 ppoly2->set_values (4,5);

 ppoly3->set_values (4,5);

 cout << ppoly1->area() << endl;

 cout << ppoly2->area() << endl;

 cout << ppoly3->area() << endl;

 return 0;

}

 14

Abstract base classes

Abstract base classes are very similar to virtual member.

Virtual member: we can defined a valid function.

Abstract base classes: no implementation at all.

This is done by appending =0 (equal to zero) to the function declaration.

// abstract class CPolygon

class CPolygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

 virtual int area () =0;};

This type of function is called a pure

virtual function, and all classes that

contain at least one pure virtual function

are abstract base classes.

The main difference between an abstract

base class and a regular polymorphic class
is that we cannot create objects of it.

 15

We can create pointers to abstract base class and take advantage of all its

polymorphic abilities.

CPolygon poly;

 not valid because tries to instantiate an object.

Nevertheless, the following pointers:

CPolygon * ppoly1;

CPolygon * ppoly2;

 would be perfectly valid.

CPolygon is an abstract base class. Pointers to this abstract base class can be

used to point to objects of derived classes.

 16

class CPolygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

 virtual int area () =0;

 };

class CRectangle: public CPolygon {

 public:

 int area ()

 { return (width * height); }

 };

class CTriangle: public CPolygon {

 public:

 int area ()

 { return (width * height / 2); } };

int main () {

 CRectangle rect;

 CTriangle trgl;

 CPolygon * ppoly1 = ▭

 CPolygon * ppoly2 = &trgl;

 ppoly1->set_values (4,5);

 ppoly2->set_values (4,5);

 cout << ppoly1->area() << endl;

 cout << ppoly2->area() << endl;

 return 0;}

 17

Pure virtual members can be called from the abstract base class

We can create a function member of the abstract base class CPolygon that is

able to print on screen the result of the area() function even though CPolygon

itself has no implementation for this function.

// pure virtual members can be called

// from the abstract base class

class CPolygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

 virtual int area () =0;

 void printarea (void)

 { cout << this->area() << endl; }

 };

 18

class CRectangle: public CPolygon {

 public:

 int area ()

 { return (width * height); }

 };

class CTriangle: public CPolygon {

 public:

 int area ()

 { return (width * height / 2); }

 };

int main () {

 CRectangle rect;

 CTriangle trgl;

 CPolygon * ppoly1 = ▭

CPolygon * ppoly2 = &trgl;

 ppoly1->set_values (4,5);

 ppoly2->set_values (4,5);

 ppoly1->printarea();

 ppoly2->printarea();

 return 0;

}

 19

// poly_varsmeths

class Employee {

 public int salary;

 public Employee(int s) { salary = s; }

 public int getSalary() { return salary; }

}

class Pion extends Employee {

 public int salary;

 public Pion(int s) { super(s); salary = s/10; } E

 public int getSalary() { return salary; }

}

public class poly_varsmeths {

 public static void main(String[] args) {

 Employee E = new Pion(100);

 Pion P = new Pion(100);

 System.out.println(E.salary);

 System.out.println(E.getSalary()); P

 System.out.println(P.salary);

 System.out.println(P.getSalary()); }}

salary=s/10=10

salary=100

(Employee)

salary=s/10=10

salary=100

(Employee

 Employee

 salary: int

 getSalary()

 Pion

 salary: int

 getSalary()

