
Chapter 3: Describing Syntax and Semantics

• Introduction
• Formal methods of describing syntax (BNF)

We can analyze syntax of a computer
program on two levels:
 1. Lexical level
 2. Syntactic level

• Lexical analyzer collect characters

into tokens.
• Syntactic analyzer determine

syntax structure and determine
whether the given programs are
syntactically correct.

 1

Derivation

• A derivation is a repeated application of rules, starting with the start symbol and ending
with a sentence (all terminal symbols)

 <program> => <stmts> <program> → <stmts>

 <stmts> → <stmt> | <stmt> ; <stmts>
 <stmt> → <var> = <expr>
 <var> → a | b | c | d
 <expr> → <term> + <term> | <term> -
 <term>

 <term> → <var> | const

 => <stmt>
 => <var> = <expr>
 => a =<expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

 2

Parse Tree: A hierarchical representation of a derivation

For example x + y + z is parsed:

<exp> → <exp> <binary> <exp>
<exp> → <identifier>
 | <literal>
 | <unary> <exp>
 | <exp> <binary> <exp>
<binary> → '<' | '>' | '+' | '-'
<unary> → '-'
<identifier> → x|y|z

 3

An Ambiguous Expression Grammar

A grammar that can have more than one parse tree generating a particular string is
ambiguous.

<E> → <E> + <E> | <E> - <E> | <E> * <E> | <E> /

<E> | id

There are two parse trees for the expression id + id * id

E
E

E

E +

*
E id

idid

E

+E E

id *E E

id id

 4

Ambiguity is a problem: compiler chooses the code to be generated for a statement by
examining its parse tree. If more than one parse tree, the meaning of the structure cannot
be unique.

 5

Another example:

<expr> → <expr><op><expr>|const

<op> → /|-

Two parse trees for expression const – const / const

/ -- /constconstconstconstconst

<expr> <op> <expr>

const

<expr><expr> <op><op>

<expr>

<op> <expr><expr>

<expr><op><expr>

<expr>

 6

Exercise:

<Exp> → <Num> | <Exp> + <Exp> | <Exp> * <Exp>
 <Num>→ 2 | 3 | 5

Two parse trees for string 2 + 3 * 5

 7

 Exp

 Exp * Exp

 Exp + Exp Num

 | |

 Num Num 5

 | |

 2 3

In order to avoid ambiguity, it is essential that the gra
possible structure for each string in the language.

The ambiguity can be eliminated by imposing the precede
other.

mmar generate only one

nce of one operator over the

8

Imposing the precedence of one operator over the other.

We say that op1 has precedence over op2 if an expression of the form

e1 op1 e2 op2 e3

is interpreted only as

(e1 op1 e2) op2 e3

In other words, op1 binds tighter than op2.

From the point of view of derivation trees, the fact that e1 op1 e2 op2 e3 is interpreted as
(e1 op1 e2) op2 e3 means that the introduction of op1 must be done at a level strictly
lower than op2. In order to modify the grammar so that it generates only this kind of tree,
a possible solution is to introduce a new syntactic category producing expressions of the
form e1 op e2, and to force an order to op1 and op2.

 9

<Exp> → Num | <Exp> + <Exp> | <Exp> * <Exp>
Num→ 2 | 3 | 5

We can eliminate the ambiguities from the grammar by introducing a new syntactic
category Term producing expressions of the form <Exp> * <Exp>

<Exp> → <Exp> + <Exp> | <Term>
<Term> → <Term> * <Term> | Num

 Num→ 2 | 3 | 5

This modification corresponds to assigning * a higher priority than +.

 10

In the new grammar there is only one tree which can generate it:

 Exp

 Exp + Exp

 | |

 Term Term

 Num Term * Term

<Exp> → <Exp> + <Exp> | <Term>
<Term> → <Term> * <Term> | Num

 Num→ 2 | 3 | 5

 | | |

 2 Num Num

 | |

 3 5

 11

Associativity
Previous grammar is unambiguous regarding the precedence of * and +, but s
ambiguities of another kind.
 It allows two different derivation trees for the string 2 + 3 + 5, one correspo
structure (2 + 3) + 5 and one corresponding to the structure 2 + (3 + 5).
<expr> → <expr> <op> <expr> | const
<op> → +
Two parse trees for expression const + const + const

+ + + +constconstconstconstconst

<expr> <op> <expr>

const

<expr><expr> <op><op>

<expr>

<expr> <op> <expr>

<op> <expr><expr>

<expr> This ki
ambigu
not cau
problem

till has

nding to the

nd of
ity does
se
s

12

However, an operator might be not associative. For instance the case for the - and ^
exponentiation operators: (5 - 3) - 2 and 5 - (3 - 2) have different values, as well as (5 ^ 3)
^ 2 and 5 ^ (3 ^ 2).

In order to eliminate this kind of ambiguity, we must establish whether the operator is
left-associative or right-associative.

• Left-associative: e1 op e2 op e3 is interpreted as (e1 op e2) op e (op associates to the
left).

• Right-associative: e1 op (e2 op e3) (op associates to the right).

We can impose left-associativity (resp. right-associativity) by using a left-recursive (resp.
right-recursive) production for op.

<Exp> → <Exp> + <Exp> | <Term>
<Term> → <Term> * <Term> | <Num> is changed again to

<Exp> → <Exp> + <Term> | <Term>

<Term> → <Term> * Num | Num

This grammar is now unambiguous.

 13

Another Example
<Exp> → Num | <Exp> - <Exp>

This grammar is ambiguous since it allows both the interpretations (5 - 3) - 2 and 5 - (3 - 2).

If we want to impose the left-associativity:

<Exp> → Num | <Exp> - Num

Consider the following grammar:

<Exp> → Num | <Exp> ^ <Exp>

This grammar is ambiguous since it allows both the interpretations (5 ^ 3) ^ 2 and 5 ^ (3 ^ 2).

If we want to impose the right-associativity:

<Exp> → Num | Num ^ <Exp>

 14

Generally, we can eliminate ambiguity by revising the grammar.

Grammar: <E> → <E> + <E> | <E> * <E> | (E) | id

Two parse trees for expression id + id * id

 15

It is possible to write a grammar for arithmetic expressions that

1. is unambiguous.
2. enforces the precedence of * and / over + and -.
3. enforces left associativity.

Removal of Ambiguity:

Grammar: <E> → <E> + <E> | <E> * <E> | (E) | id

1. Enforce higher precedence for *

<E> → <E> + <E> | <T>
<T> → <T> * <T> | id | (E)

2. Eliminate right-recursion for <E> → <E> + <E> and <T> → <T> * <T>.

<E> → <E> + <T> | <T>
<T> → <T> * id | <T> * (E) | id | (E)

 16

Example:

position := initial + rate * 60

Lexical Analysis

Group these character as follows tokens:

 Token

• position identifier
• := assignment symbol
• initial identifier
• + plus sign
• rate identifier
• * multiplication sign
• 60 literal

Next, we want to determine that this is a structurally correct statement. This is the main
province of syntax analysis or parsing. The result of parsing is a parse tree

 17

<Ass t statement> → <identifier><assignment symbol> <expression>
<exp > →<expression> <plus sign> <expression>| <expression> <minus sign>
<exp >| <expression> <multiplication sign> <expression>

<exp > → <identifier> | <literal>

posi

expression

expression

expression

expression

expression

Assignmen Statement

ignmen
ression
ression

ression
tion := initial + rate * 60

identifier Multiplication
sign

identifier

Plus sign

identifier
Assignment
symbol

literal

18

Exercise 1. A grammar of binary numbers

Write a grammar of the language whose elements are all and only those unsigned binary
numbers that contain at least three consecutive digits 1. The language includes, for
example, 111, 00001111111010 and 1111110, but not 0011000101011 or 1010101010.

Answer 1. A grammar of binary numbers
<string> -> <term> | <mix> <term> | <term> <mix> | <mix> <term> <mix>
<mix> -> <bit> <mix> | <bit>
<bit> -> 0 | 1
<term> -> 1 1 1

or

<string> -> <term> | <bit> <string> | <string> <bit>
<bit> -> 0 | 1
<term> -> 1 1 1

 19

Exercise 2 Parse trees

Consider the following grammar with three terminal symbols: a b g.

<S> -> a <A> | g
<A> -> <C> g | b <A> | a <A>
 -> <C> b | <C>
<C> -> a

The start symbol is <S>. Consider the string:
a b a g

Show the leftmost derivation of a b a g,

Next, draw a parse tree for the string a b a g.

 20

Answer 2. Parse trees

<S> => a <A> => a b <A> => a b <C> g => a b a g

 <S>
 / \
 a <A>
 / \
 b <A>
 / \
 <C> g
 /
 a

 21

Exercise:
(1) Describe, in English, the language defined by the following grammar:
<S>→<A><C>
<A>→a<A>|a
→b|b
<C>→c<C>|c
(2) Write a grammar for the language consisting of strings that have n copies of the letter
a followed by the same number of copies of the letter b, where n>0. For example,
the strings ab, aaaabbbb are in the language but a, abb are not.

(3) Convert the following BNF to EBNF
 <assign> → <id> = <expr>
 <id> → A | B | C
 <expr> → <expr> + <expr>
 | <expr> * <expr>
 | (<expr>)
 | <id>

 22

 23

Answer:
(1) One or more a's followed by one or more b's followed by one or more c's.

(2)
<S> → a <S> b | a b

(3)
 <assign> → <id> = <expr>
 <id> → A | B | C
 <expr> → <expr> (+ | *) <expr>
 | (<expr>)
 | <id>

	Chapter 3: Describing Syntax and Semantics
	<Exp> (<Exp> + <Exp> | <Term> �<Term> (<Term> * <Term> | Num

	Associativity
	Previous grammar is unambiguous regarding the precedence of * and +, but still has ambiguities of another kind.
	It allows two different derivation trees for the string 2 + 3 + 5, one corresponding to the structure (2 + 3) + 5 and one corresponding to the structure 2 + (3 + 5).
	Another Example
	<Exp> (Num | <Exp> - <Exp>
	<Exp> (Num | <Exp> - Num
	<Exp> (Num | <Exp> ^ <Exp>
	<Exp> (Num | Num ^ <Exp>

	Example:
	position := initial + rate * 60
	Next, we want to determine that this is a structurally correct statement. This is the main province of syntax analysis or parsing. The result of parsing is a parse tree
	Exercise 1. A grammar of binary numbers
	Answer 1. A grammar of binary numbers
	Exercise 2 Parse trees
	Answer 2. Parse trees

