Language Examples of ADT: C++

-Based on C struct type and Simula 67 classes

- All of the class instances of a class share a single copy of the member functions
-Each instance of a class has its own copy of the class data members

-Instances can be static, stack dynamic, or heap dynamic

- Information Hiding

-Private clause for hidden entities
-Public clause for interface entities
- Protected clause for inheritance

- Constructors:
- Functions to initialize the data members of instances
- Can include parameters to provide parameterization of the objects
- Name is the same as the class name

- Destructors
- Functions to cleanup after an instance is destroyed;
- Name is the class name, preceded by a tilde (~)

An Example in C++

class Classic_Example {

public:

/[Data and methods accessible to any user of the class
protected:

/[Data and methods accessible to class methods,

// derived classes, and friends only

private:

/[Data and methods accessible to class

// methods and friends only

}

class stack {
private:
int *stackPtr, maxLen, topPtr;
public:
stack() { // a constructor
stackPtr = new int [100];
maxLen
topPtr
}3
~stack () {delete [] stackPtr;};
void push (int num) {..};
void pop) {.};
int top O {.};
int empty () {.};

9;
_1;

- Friend functions or classes — provide access to private members of some
unrelated units or functions

Friend Classes

Inside a class, you can indicate that other classes (or simply functions) will have direct
access to protected and private members of the class.

class Node
{
. private:

int data;
int key;
/...

friend class BinaryTree; // class BinaryTree can now access data
/[directly

In the BinaryTree class, you can treat the key and data fields as though they were public:

class BinaryTree

{
. private:
Node *root;

| int find(int key); |
¥

int BinaryTree::find(int key)
{
./l check root for NULL...
if(root->key == key)
{
// no need to go through an accessor function
return root->data;

}

Il perform rest of find

Friend Functions

A class can grant access to its internal variables on a more selective basis--restricting access to only
a single function.

 class Node |
1
. private:
int data;

int key;

...

friend int BinaryTree::find(); // Only BinaryTree's find function has access

Class Data Members

e Data members may be objects of built-in types, as well as user-defined ADT.

class Node

{
private:
void *pData;
Node *pNext;
public:
Node(void * pData)
{
pData = _pData;
pNext = NULL;

} // end constructor

Node *Next() { return(pNext); }

void SetNext(Node *pNode) { pNext = pNode; }
void *Data() { return(pData); }

}:; // end Node

Language Examples: Java
-Similar to C++, except:

-All user-defined types are classes

- Rather than having private and public clauses in its class definition, in Java
access control modifiers can be attached to methods and variable definitions.

Import java.io.™;
class StackClass {
private int [] stackRef;
private int [] maxLen, toplndex;

public StackClass() {
stackRef = new int [100];
maxLen = 99;
topPtr = -1; };
public void push (int num) {.};
public void pop O {.};
public int top O {.}:
public boolean empty () {.};

}

Parameterized Abstract Data Types

- Parameterized ADTs allow designing an ADT that can store any type elements
-Also known as generic classes

-C++ and Ada provide support for parameterized ADTs

: : void push(ElemType e) {
#include <iostream> if (topElem >= size - 1) {
template <class ElemType> cout « "Error: stack is full.\n" ; }
class Stack { else {
private: topElem++;
ElemType *stackPtr; ~ tr[topElem] = e;}
int topElem; // invariant: -1 <= topElem <= size - 1 void pop() {
public: if (topElem ==-1) {
Stack() { cout « "Error: stack is empty.\n" ;
stackPtr = new ElemType[100]; Yelse{
_ topElem--;}}
topElem=-1; // no elements in stack yet ElemType top() {
1 Il pre: topElem > -1
return stackPtr[topElem];
~Stack() { delete stackPtr;} }

}

-Java 5.0 provides a restricted form of parameterized ADTs

ArrayList <Integer> myArray = new ArrayList <Integer>();
or

Public void drawAll(ArrayList<? Extends Shape> things)
- C# does not currently support parameterized classes

10

Encapsulation Constructs

-Large programs have two special needs:
- Some means of organization, other than simply division into subprograms
- Some means of recompilation (compilation units that are smaller than the
whole program)
-Obvious solution: a grouping of subprograms that are logically related into a unit
that can be separately compiled (compilation units)

-Such collections are called encapsulation

Encapsulation in C

-Files containing one or more subprograms can be independently compiled

- The interface to such a file, including data, type, and function declaration, is
placed in a header file

#include preprocessor specification

11

Encapsulation in C++

-Similar to C

- Addition of friend functions that have access to private members of the friend
class

Naming Encapsulations

A large program may create a naming problem:

How can independently working developers create names for their variables,
methods, and classes without accidentally using names already in use by some
other programmer developing a different part of the same software system?

-Large programs define many global names; need a way to divide into logical
groupings.

12

-C++ Namespaces
-Can place each library in its own namespace and qualify names used outside with
the namespace

namespace MyList {
class ListNode {

/I define class here
class LinkedList {

/I define class here

Code outside of the namespace can refer to names defined inside the namespace using scope
resolution, i.e.:

MyList::LinkedList *1 = new MyL.ist::LinkedList;

So a large program can have multiple classes called LinkedList.

-C# also includes namespaces

13

-Java Packages

In Java, a package is a collection of classes.

. Every class is part of some package.
. You can specify the package using a package declaration:

package name ;

. Multiple files can specify the same package name.
. You can access public classes in another (named) package using:

package-name.class-name

You can access the public fields and methods of such classes using:

package-name.class-name.field-or-method-name
You can avoid having to include the package-name using:

import package-name.*; or

import package-name.class-name;

- Java packages are also useful for avoiding name clashes.

14

Summary

- The concept of ADTs and their use in program design was a milestone in the
development of languages

- Two primary features of ADTs are the packaging of data with their associated
operations and information hiding

-C++ data abstraction is provided by classes

-Java’s data abstraction is similar to C++

- C++ and Ada allow parameterized ADTs

-C++, C#, and Java provide naming encapsulation

15

	An Example in C++
	Friend Classes
	Friend Functions
	Encapsulation in C++
	Naming Encapsulations
	Summary

