
 1

Language Examples of ADT: C++

•Based on C struct type and Simula 67 classes
•All of the class instances of a class share a single copy of the member functions
•Each instance of a class has its own copy of the class data members
•Instances can be static, stack dynamic, or heap dynamic

•Information Hiding
–Private clause for hidden entities
–Public clause for interface entities
–Protected clause for inheritance

•Constructors:

– Functions to initialize the data members of instances
– Can include parameters to provide parameterization of the objects
– Name is the same as the class name

 2

•Destructors
– Functions to cleanup after an instance is destroyed;
– Name is the class name, preceded by a tilde (~)

An Example in C++

class Classic_Example {
public:
// Data and methods accessible to any user of the class
protected:
// Data and methods accessible to class methods,
// derived classes, and friends only
private:
// Data and methods accessible to class
// methods and friends only
};

 3

class stack {
 private:
 int *stackPtr, maxLen, topPtr;
 public:
 stack() { // a constructor
 stackPtr = new int [100];
 maxLen = 99;
 topPtr = -1;
 };
 ~stack () {delete [] stackPtr;};
 void push (int num) {…};
 void pop () {…};
 int top () {…};
 int empty () {…};
}

•Friend functions or classes - provide access to private members of some
unrelated units or functions

 4

Friend Classes
Inside a class, you can indicate that other classes (or simply functions) will have direct
access to protected and private members of the class.

friend class aClass;

Example:

class Node
{
 private:
 int data;
 int key;
 // ...

 friend class BinaryTree; // class BinaryTree can now access data
 // directly
};

 5

In the BinaryTree class, you can treat the key and data fields as though they were public:

class BinaryTree
{
 private:
 Node *root;

 int find(int key);
};

int BinaryTree::find(int key)
{
 // check root for NULL...
 if(root->key == key)
 {
 // no need to go through an accessor function
 return root->data;
 }
 // perform rest of find

 6

Friend Functions

A class can grant access to its internal variables on a more selective basis--restricting access to only
a single function.

friend return_type class_name::function(args);

Example:

class Node
{
 private:
 int data;
 int key;
 // ...

 friend int BinaryTree::find(); // Only BinaryTree's find function has access
};

 7

Class Data Members

• Data members may be objects of built-in types, as well as user-defined ADT.

class Node
 {
 private:
 void *pData;
 Node *pNext;

 public:
 Node(void *_pData)
 {
 pData = _pData;
 pNext = NULL;
 } // end constructor

 Node *Next() { return(pNext); }
 void SetNext(Node *pNode) { pNext = pNode; }
 void *Data() { return(pData); }

 }; // end Node

 8

Language Examples: Java
•Similar to C++, except:

–All user-defined types are classes
– Rather than having private and public clauses in its class definition, in Java

access control modifiers can be attached to methods and variable definitions.

Import java.io.*;
class StackClass {
 private int [] stackRef;
 private int [] maxLen, topIndex;

public StackClass() {
 stackRef = new int [100];
 maxLen = 99;
 topPtr = -1; };
public void push (int num) {…};
public void pop () {…};
 public int top () {…};
 public boolean empty () {…};
}

 9

Parameterized Abstract Data Types
•Parameterized ADTs allow designing an ADT that can store any type elements
•Also known as generic classes
•C++ and Ada provide support for parameterized ADTs

#include <iostream>

template <class ElemType>
class Stack {
private:

ElemType *stackPtr;
 int topElem; // invariant: -1 <= topElem <= size - 1

 public:
 Stack() {
 stackPtr = new ElemType[100];

 topElem = -1; // no elements in stack yet

}

~Stack() { delete stackPtr;}

void push(ElemType e) {
if (topElem >= size - 1) {

cout « "Error: stack is full.\n" ; }
else {

 topElem++;
 tr[topElem] = e;}

void pop() {
if (topElem == -1) {

cout « "Error: stack is empty.\n" ;
} else {

 topElem--;}}
ElemType top() {
// pre: topElem > -1
return stackPtr[topElem];
}

}

 10

•Java 5.0 provides a restricted form of parameterized ADTs

ArrayList <Integer> myArray = new ArrayList <Integer>();
or

Public void drawAll(ArrayList<? Extends Shape> things)
•C# does not currently support parameterized classes

 11

Encapsulation Constructs

•Large programs have two special needs:
 – Some means of organization, other than simply division into subprograms

- Some means of recompilation (compilation units that are smaller than the
whole program)

•Obvious solution: a grouping of subprograms that are logically related into a unit
that can be separately compiled (compilation units)

•Such collections are called encapsulation

Encapsulation in C

•Files containing one or more subprograms can be independently compiled
•The interface to such a file, including data, type, and function declaration, is
placed in a header file
•#include preprocessor specification

 12

Encapsulation in C++
•Similar to C
•Addition of friend functions that have access to private members of the friend
class

Naming Encapsulations

A large program may create a naming problem:
How can independently working developers create names for their variables,
methods, and classes without accidentally using names already in use by some
other programmer developing a different part of the same software system?

•Large programs define many global names; need a way to divide into logical
groupings.

 13

•C++ Namespaces
–Can place each library in its own namespace and qualify names used outside with
the namespace

namespace MyList {

class ListNode {

// define class here

class LinkedList {

// define class here

Code outside of the namespace can refer to names defined inside the namespace using scope
resolution, i.e.:
MyList::LinkedList *1 = new MyList::LinkedList;

So a large program can have multiple classes called LinkedList.

–C# also includes namespaces

 14

•Java Packages

 In Java, a package is a collection of classes.

• Every class is part of some package.
• You can specify the package using a package declaration:

package name ;

• Multiple files can specify the same package name.
• You can access public classes in another (named) package using:

package-name.class-name

You can access the public fields and methods of such classes using:

package-name.class-name.field-or-method-name

You can avoid having to include the package-name using:

import package-name.*; or

import package-name.class-name;

- Java packages are also useful for avoiding name clashes.

 15

Summary
•The concept of ADTs and their use in program design was a milestone in the
development of languages
•Two primary features of ADTs are the packaging of data with their associated
operations and information hiding
•C++ data abstraction is provided by classes
•Java’s data abstraction is similar to C++
• C++ and Ada allow parameterized ADTs
•C++, C#, and Java provide naming encapsulation

	An Example in C++
	Friend Classes
	Friend Functions
	Encapsulation in C++
	Naming Encapsulations
	Summary

