
 1

Activation Records
The storage (for formals, local variables, function results etc.) needed for execution of a

subprogram is organized as an activation record.

An Activation Record for “Simple” Subprograms

.

Activation Record for a Language with Stack-Dynamic Local Variables

Dynamic link: points to the top of an activation record of the caller

 2

Activation Record for Recursion

Allocation of activation records can be:

• on the heap

– used in Modula-3, LISP, Scheme, ...

• on the stack

– used in C, C++, Java, C#, Pascal, Ada, ...

 3

Subprogram in C

• the lifetime of local variables is contained within one activation (except for static

variables)

• locals can be allocated at activation time and deallocated when the activation ends

• activation records can be allocated on a stack

Memory layout for C programs:

 4

Shows the Activation Record during the first and second execution of printx():

#include <stdio.h>

int x = 4;

void printx(void) {printf("%d\n", x);}

void foo(int y) {

int x = 4;

x = x + x * y;

printx();

}

void main() {

int z = 3;

printx();

foo(z);

}

 5

Nested Subprograms

•Some non-C-based static-scoped languages (e.g., Fortran 95, Ada, JavaScript)

use stack-dynamic local variables and allow subprograms to be nested

•All variables that can be non-locally accessed reside in some activation record

instance of enclosing scopes in the stack

•A reference to a non-locally variable in a static-scoped language with nested

subprograms requires a two step access process:

 1.Find the correct activation record instance

 2.Determine the correct offset within that activation record instance

 6

Static Scoping of Nested subprograms

 In this approach, a new pointer, called a static link, is added to the

activation record.

• The static link in an activation record instance for subprogram A points to the

bottom of the activation record instances of A's static parent

 7

program MAIN_2; //Example Pascal Program

 var X : integer;

 procedure BIGSUB; Activation Records at Position 1

 var A, B, C : integer;

 procedure SUB1;

 var A, D : integer;

 begin { SUB1 }

 A := B + C; <----------------1

 end; { SUB1 }

 procedure SUB2(X : integer);

 var B, E : integer;

 procedure SUB3;

 var C, E : integer;

 begin { SUB3 }

 SUB1;

 E := B + A: <-------------2

 end; { SUB3 }

 begin { SUB2 }

 SUB3;

 A := D + E; <----------------3

 end; { SUB2 }

 begin { BIGSUB }

 SUB2(7);

 end; { BIGSUB }

 begin

 BIGSUB;

 end; { MAIN_2 }

•Call sequence for MAIN_2 ?

 8

•A static chain is a chain of static links that connects certain activation record

instances

•The static chain from an activation record instance connects it to all of its static

ancestors

Sub3 Sub2 BigSub Main2

Finding the correct activity record instance of a nonlocal variable using static links is

relatively straightforward.

Point 1:

 To access nonlocal variable B? C?

After Sub1 complete its execution, the activation record instance for Sub1 is removed from

the stack, and control return to Sub3.

Point 2: to access E? B? A?

 9

Blocks

•Blocks are user-specified local scopes for variables. It is legal to declare variables

within blocks contained within other blocks.

• An example in C

void SquareTable(int lower, int upper){

 int n;

 for (n = lower; n <= upper; n++) {

 int square;

 square = n * n;

 printf("%8d%8d\n", n, square); }

 }

(a) When does square get allocated and deallocated?

The memory is allocated and deallocated on each pass through the inner block.

(b) How should the memory diagram be drawn?

 10

Implementing Blocks

1.Treat blocks as parameter-less subprograms that are always called from the same

location.

– Every block has an activation record; an instance is created every time the block is

executed

void main(){

 int x, y, z;

 while (…){

 int a, b, c;

 ……

 while (…){

 int d, e;

 …… }

 }

 while (…) {

 int f, g;

 …… } ……}

2. Since the maximum storage

required for a block can be

statically determined, this amount

of space can be allocated after the

local variables in the activation

record

 11

Implementing Dynamic Scoping

One way that local variables and non-local references can be

implemented in a dynamic-scoped language:

•Deep Access: non-local references are found by searching the activation record

instances on the dynamic chain

void sub3(){

 int x, y;

 x = u+v;}

void sub2(){

 int w, x;}

void sub1(){

 int v, w;}

void main(){

 int v, u;}

main calls sub1

sub1 calls sub1

sub1 calls sub2

sub2 calls sub3

sub1

Access u in sub3?

Access v in sub3?

Access x in sub3?

 12

Show the stack with all activation record instances, including static and dynamic chains, when execution

reaches position 1 in the following skeletal program.

program MAIN;

 var X : integer;

procedure Bigsub is

 procedure A is

 procedure B is

 begin --- of B

 …… 1

 end; ---- of B

 procedure C is

 begin --- of C

 ……

 B

 end; --- of C

 begin --- of A

 ……

 C;

 end; --- of A

 begin ---- of Bigsub

 ……

 A;

 end --- of Bigsub

begin

 BIGSUB;

end; { MAIN } ari: activation record instances

return (to C)

dynamic link

static link

return (to A)

dynamic link

static link

return (to BIGSUB)

dynamic link

static link

return

dynamic link

static link

.

.

stack

ari for
BIGSUB

ari for A

ari for C

ari for B

 13

Show the stack with all activation record instances when execution reaches position 1
program MAIN;

 var X : integer;
procedure Bigsub is

 procedure A(flag : Boolean) is

 procedure B is

 begin --- of B

 ……

 A(false)

 end; ---- of B

 begin --- of A

 if flag

 then B;

 else C;

 end; --- of A

 procedure C is

 procedual D is

 …… 1

 end; --- of D

 ……

 D;

 end; ----- of C

begin ---- of Bigsub

 A(true) ;

end --- of Bigsub

begin

 BIGSUB;

 end; { MAIN }

dynamic link

static link

return (to C)

dynamic link

static link

return (to A)

dynamic link

static link

ari for D

ari for C

ari for A

return (to A)

ari for B

ari for A

dynamic link

static link

return (to caller)

stack

ari for
BIGSUB

parameter (flag)

dynamic link

static link

 return (BIGSUB)

parameter (flag)

dynamic link

static link

 return (to B)

 14

Chapter 11 Abstract Data Types and Encapsulation Constructs

 Abstract Data Type

o Iterators of Collection ADT

 Parameterized Abstract Data Types

 Encapsulation Constructs

 Naming Encapsulations

Abstract Data Types

Abstract data type (ADT) is a set of data and the set of operations that can be performed

on the data.

Built-in ADTs

boolean

– Values: true and false

– Operations: and, or, not, etc.

integer

– Values: Whole numbers between MIN and MAX values

– Operations: add, subtract, multiply, divide, etc.

 15

arrays

– Values: Homogeneous elements, i.e., array of X. . .

– Operations: initialize, store, retrieve, copy, etc.

User-defined ADTs invokes operations on the data

Allows us to extend the programming language with new data types.

 stack, symbol table, account, polynomial, matrix…

 - The choice of what ADT to create depends on the application

 Compiler writing: tables, stacks, …

 Banking: accounts, customers, …

 Mathematical computing: matrices, sets, polynomials, …

- The choice of operations of the ADT depends on how you want to manipulate the

data

 Bank accounts: open, close, make a deposit, make a withdrawal, check the balance,

…

 16

- Repesentation of data: the data as represented in the computer

• Array is better for:

–Accessing a randomly desired element

• Linked list is better at:

–Inserting

–Deleting

–Dynamic resizing

 17

- Using ADT, we don’t need to care about the representation of objects (linked list,

array, ets), we want to hide all the details about how dates are represented and

access the object through the methods.

 Call operations

Program

 Result

The advantages of ADT

- extend the programming language with new data type.

- valuable during problem modification and maintenance.

 Data

Representation

 of Data

 Add ()

 Set ()

Get ()

Find ()

Display()

 18

ADT for Stack and Queue

Stack

 push: add info to the data structure

 pop: remove the info MOST recently added

 initialize, test if empty

Queue

 put: add info to the data structure

 get: remove the info LEAST recently added

 initialize, test if empty

Could use EITHER array or "linked list" to implement EITHER stack or queue.

 19

Iterator

A generalization of the iteration mechanism available in most programming languages.

 Provide a way to access each item in a collection ADT (Arraylist, List, Tree, etc)

The code of iterator contains a looping structure like follows,

for each item i produced by iterator A

 do perform some action on i

To iterate through List L:

import java.util.*

Iterator it = L.iterator(); //create the Iterator

while (it.hasNext()) { // see if finished

Object ob = it.next(); // get the next item

…

}

 20

Iterators support abstraction by hiding how elements are produced.

 The user don’t need to know the data type, and the collection type, vector, array or

list, the user only choose a suitable iterator to access every element of the collection.

 Iterator is defined as an interface in Java, it returns a generator object.

 The generator’s type is a subtype of Iterator. Different kinds of generator may use

the same Iterator interface but different generators and different hasNext() and

next() methods.

public interface Iterator {

 public boolean hasNext ();

 // Returns true if there are no more elements else returns false

 public Object next () throws NoSuchElementException;

 // If there are more results to yield, returns. The next result and modifies the state of

this to record the yield. Otherwise, throws NoSuchElementException

 21

Specifying Iterators

public class IntSet {

 public Iterator elements ()

 // Returns a generator that will produce all elements of this (as Integers), each exactly once,

 // in arbitrary order.

Using Iterators

public static int setSum (IntSet s) {

Iterator g = s.elements ();

 int sum = 0;

 while (g.hasNext())

 sum = sum + ((Integer) g.next()) . intValue;

 return sum;}

 g

 22

public static int max (Iterator g) throws EmptyException, NullPointerException {

//if g is null throw NullPointerException; if g is empty, throws EmptyException; else consumes all

element of g and returns the largest int in g.

try {

 int m= ((Integer)g.next()).intValue();

 while (g.hasNext()) {

int x= g.next();

 if (m<x) m=x;;}

 return m; }

Catch (NoSuchElementException e)

{ throw new EmptyException (“Comp.max); }}}

 23

Inner class in Java

(1) In Java, an inner class is a class nested within another class:

 class C {

 class D {

 }

 }

(2) Objects of the inner class are attached to objects of the outer class

You can't have an instance of the inner class without an instance to the outer one. This reference will

keep the outer class instance around as long as the inner class instance exists. An instance of an inner

class can only live attached to an instance of the outer class:

 C c = new C()

 D d = c.new D()

(3) The inner class is considered part of the implementation of the outer class, it has access to

all of the outer class's instance variables and methods.

 24

Implementing Iterators

To implement an iterator, one needs to write its code and define a class for its generator.

 An Iterator’s implementation requires a class for the associated generator

 The generator class is a static inner class: it is nested inside the class containing the iterator and

can access the private information of its containing class

 The generator class defines a subtype of the Iterator interface

Public class IntSet {

 private Vector els;

 public Iterator elements () { return new IntGenerator (this); }

 // inner class

 private static class IntGenerator implements Iterator {

 private IntSet s; // the IntSet being iterated

 private int n; // index of the next element to consider

 IntGenerator (IntSet is) {

 s = is;

 n = 0;

 }

public boolean hasNext () { return n < els.size(); }

public Object next () throws NoSuchElementException {

 if (n < s.els.size()) {

 Integer result = s.els.get(n);

 n++;

 return result;

 } else

 throw NoSuchElementException(“IntSet.elements”);}

} // s can access the private variable els from its outer class.

