
Chapter 10 Implementing Subprograms

• The General Semantics of Calls and Returns
• Implementing “Simple” Subprograms
• Implementing Subprograms with Stack-Dynamic Local Variables
• Nested Subprograms
• Blocks
• Implementing Dynamic Scoping

The General Semantics of Calls and Returns of Simple Subprograms

Simple subprograms: subprograms cannot be nested and all local variables are
static.

• Early versions of Fortran were examples of languages that had this kind of
subprograms.

 1

Implementing “Simple” Subprograms: Call Semantics
•Save the execution status of the caller
•Carry out the parameter-passing process
•Pass the return address to the callee
•Transfer control to the callee

Implementing “Simple” Subprograms: Return Semantics
•If pass-by-result parameters are used, move the current values of those
parameters to their corresponding actual parameters
•If it is a function, move the functional value to a place the caller can get it
•Restore the execution status of the caller
•Transfer control back to the caller

A simple subprogram consists of two separate parts:

• The actual code which is constant.
• The noncode part (local variables and data that can change) which also has

fixed size.

 2

• The format, or layout, of the noncode part of an executing subprogram is
called an activation record

An Activation Record for “Simple” Subprograms

.

• An activation record instance is a concrete example of an activation record
(the collection of data for a particular subprogram activation)

• There can be only one active record instance of a given simple subprogram at

a time: do not support recursion,

 3

Activation record instances (A main program and three subprograms A, B and C)

 4

Implementing Subprograms with Stack-Dynamic Local Variables

•More complex activation record
– The compiler must generate code to cause allocation and de-allocation of
activation records
– Recursion must be supported since advantage of stack-dynamic local variable is
support for recursion (adds the possibility of multiple simultaneous activations
records of a subprogram)

 5

Typical Activation Record for a Language with Stack-Dynamic Local Variables

Dynamic link: points to the top of an activation record of the caller

• In static-scoped languages, this link is used in the destruction of current

activation record when the procedure completes its execution.

The collection of dynamic links in the stack at a given time is called the dynamic chain

 6

Unlike simple subprogram, an activation record instance is dynamically created
when a subprogram is called.
• Every recursive or non-recursive subprogram creates a new instance of an activation

record on the stack.

An Activation Record Example:
C Function

void sub(float total, int part){
 int list[5];
 float sum;
 …}

 7

An Example Without Recursion

void A (int x) {
int y; A call sequence:

main calls B
B calls A
A calls C

… <----------------------- point 2
 C(y);
…}

void B (float r) {
int s, t;
… <----------------------- point 1
 A(s);
…}

void C (int q) {
…… <----------------------- point 3
}

void main () {
float p;
…
 B(p);
…}

8

Activation records for position 1, 2 and 3 (ARI: activation record instance)

 Position 1 Position 2 Position 3

• Local variables can be accessed by their offset from the beginning of the activation record. This

When C’s execution ends, its ARI is removed, and the dynamic link is used to reset the stack
top pointer. A similar process takes place when functions A and B terminates.

 9

local_offset of variables

Reference to local variables can be represented in the code as offset from the beginning of the
activation record of the local scope. Such an offset is called a local_offset.

• The first local variable declared has an offset of two (return address and dynamic link) plus the
number of parameters.

local_offset of s in B is 3
local_offset of t in B is 4
local_offset of y in A is 3

• The local_offset of a variable in an activation record can be determined at compile time, using the

order, type, and sizes of variables declared in the subprogram associated with the activity record.

 10

An Example With Recursion

The following example C program uses recursion to compute the factorial
functions.

 int factorial (int n) {
 <-----------------------------1
 if (n <= 1) return 1;
 else return (n * factorial(n - 1));
 <-----------------------------2
 }

 void main() {
 int value;
 value = factorial(3);
 <-----------------------------3
 }

 11

The activation record format has an additional entry for the returned
value of the function

 12

The Activation Records for the three times that execution reaches position 2

 13

Recall the code that the function multiplies the current value of the
parameter n by the value returned by the recursive call to the function.

int factorial (int n) {
 <-----------------------------1
 if (n <= 1) return 1;
 else return (n * factorial(n - 1));
 <-----------------------------2
 }

14

 15

	Early versions of Fortran were examples of languages that had this kind of subprograms.
	An Activation Record for “Simple” Subprograms
	
	
	Activation record instances (A

	A main program and three subprograms A, B and C)
	
	– Recursion must be supported since advantage of
	Every recursive or non-recursive subprogram creates a new instance of an activation record on the stack.

	The Activation Records for the three times that execution reaches position 2

