
 1

Chapter 8 Statement-Level Control Structure

To make programs more flexible and powerful:

– Some means of selecting among alternative control flow paths.
• Selection statement (conditional statements)
• Unconditional statement

– Some means of repeating execution of certain collection of statements.
• Iterative statement

Selection Statements
 • Provides the means of choosing between two or more paths of execution

 • Two general categories:
 – Two-way selectors
 – Multiple-way selectors

 2

Two-Way Selection Statements

General form:

 if control_expression
 then clause
 else clause

 if (sum == 0)
 if (count == 0)
 result = 0;
 else result = 1; <== which if gets the else?

• Java/C/C++/C# rule is else matches nearest if

To force an alternative semantics, compound statements may be used:
• usually surrounded by braces ({ ... }), but some languages use begin ... end

or other bracketing keywords.

 if (sum == 0) {
 if (count == 0)
 result = 0;
 }
 else result = 1;

 3

• Perl requires that all then and else clauses to be compound

• Ada solution – closing special words

 – Advantage: readability

 if ... then if ... then
 if ... then if ... then

 else end if
 ... else
 end if ...
 end if end if

 4

Multiple-Way Selection Statements

•Allow the selection of one of any number of statements or statement groups

In the C-based languages:

if (test1) statement1
else if (test2) statement2
...
else if (testn) statementn
else default-statement

• The C, C++, and Java switch

switch (expression)
{
 case value1 :
 statement-list1
 case value2 :
 statement-list2
 case value3 :
 statement-list3
 case ...
 default:
}

sswwiittcchh
aanndd
ccaassee

aarree
rreesseerrvvee

dd

IIff eexxpprreessssiioonn
mmaattcchheess vvaalluuee11,,
ccoonnttrrooll jjuummppss
ttoo hheerree

 5

Given the following switch statement where x is an int,

switch (x)
{
 case 3 : x = x+1;
 case 4 : x = x+2;
 break;
 case 5 : x = x+3;
 case 6 : x=x+1;
 case 7 : x = x+2;
 case 8 : x=x-1;
 case 9 : x=x+1 ;
}

 (1) x = 4 ?
(2) x = 3 ?
(3) x = 7 ?

Put break statements after the group of statements that we want to be executed for a
specific condition.

Otherwise the remainder statements will be executed until the end of the switch selective
block or a break statement is reached.

 6

•The Ada case statement

1. Constant lists can include
 – Subranges e.g., 10..15
 – Boolean OR operators
 for example, 1..5 | 7 | 15..20

2. Lists of constants must be exhaustive
 – Often accomplished with others clause
 – This makes it more reliable

case k is
 when 1 => j := 1;
 when 4 | 40 => j := 4;
 when 50..59 => j := 50;
 when others =>
 put ("Error in case, k =");
 put (k);
 new_line;
end case;

 7

Iterative Statements
Causes a statement or collection of statements to be executed zero, or more times
– Counter controlled loops (for)
– Logically controlled loops (while, do-while)
– Iteration based on data structures (iterator)

Counter controlled loops (for)

• C Syntax for ([expr_1] ; [expr_2] ; [expr_3]) statement

–The expressions can be whole statements, or even statement sequences, with the
statements separated by commas

•The first expression is evaluated once, but the other two are evaluated with each
iteration.
 for (i = 5, j = 10 ; i + j < 20; i++, j++)
 printf("\n i + j = %d", (i + j));

–If the second expression is absent, it is an infinite loop

 8

• C++ and Java
–Differs from C: The initial expression can include variable definitions (scope is from
the definition to the end of the loop body)
• Pascal’s for statement
 for variable := initial (to|downto) final do statement
program next_example;
const
 MAX_STUDENTS = 100;
var
 i: integer;
 grades: array [1..MAX_STUDENTS] of char;
 num: 1..MAX_STUDENTS;
begin
 write('Enter number of students: ');
 readln(num);
 assert((num > 0) and (num <= MAX_STUDENTS));
 for i := 1 to num do
 begin
 write('Enter grade for student ', i: 3, ': ');
 readln(grades[i])
 end;
end;

 9

Iterating over Collections and Arrays with Enhanced for
In the Java 5.0, a new kind of for statement was created especially for collections
and arrays.
public class ForEachDemo {
 public static void main(String[] args) {
 int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076, 2000, 8,
 622, 127 };
 for (int element : arrayOfInts) {

System.out.print(element + " ");
 }
 }
}

Iterative Statements: Logically-Controlled Loops

•General forms:
 while (ctrl_expr) do
 loop body loop body
 while (ctrl_expr)
•Pascal has separate pre-test and post-test logical loop statements (while-do and
repeat-until)
•FORTRAN 77 and 90 have neither
•Perl has pre-test logical loop, while and until, but no post-test logical loop

 10

Loop Forever
loops forever, until an exit statement is executed within its body.

In C, it may be simulated by

while (true) statement
or

for (;;;) statement

while (true) {
 input := read(file);
 if (input == eof) exit;
 process(input);}

Loops Based on Data Types

Ada's for statement has the format

for variable in discrete_range loop
 statements
end loop;

Where discrete_range is subrange of an integer or enumeration type.

for d in Mon .. Fri loop
 printSchedule(d);
end loop;

 11

Iterative Based on Data Structures

•Control mechanism is a call to an iterator function that returns the next element in
some chosen order, if there is one; else loop is terminate.

•C's for statement can be used to build a user-defined iterator:
suppose the nodes of a binary tree are to be processed. If the tree root is pointed by
a variable named root.

 for (p=root; p==NULL; traverse(p)){
 }

•C#’s foreach statement iterates on the elements of arrays and other collections:

Strings[] strList = {“Bob”, “Carol”, “Ted”};
foreach (Strings name in strList)
 Console.WriteLine (“Name:”, name);

 12

Iterators in Java

Java supports iterator() method in most of its “container” classes – this
method returns an iterator over the elements of the given collection.

iterator

• An iterator object has a hasNext method that returns true if there is at least one more item to process
• The next method returns the next item

The syntax for iterating over the elements in a Vector is as follows

 Vector vec = new Vector;
 // Populate it... Then later, iterate over its elements
 Iterator it = vec.iterator ();
 while (it.hasNext ()) {
 Object o = it.next ();
 }

 13

Unconditional Branching
• Transfers execution control to a specified place in the program
• Well-known mechanism: goto statement
• Major concern: Readability
• Some languages do not support goto statement (e.g., Module-2 and Java)
• C, C++, C# offers goto statement (can be used in switch statements)

 14

Tutorial of C++ (part2: control structures)

Conditional structure: if and else
if (x > 0)
 cout << "x is positive";
else if (x < 0)
 cout << "x is negative";
else cout << "x is 0";

Iteration structures (loops)

The while loop
#include <iostream>
using namespace std;
int main (){
 int n;
 cout << "Enter the starting number > ";
 cin >> n;
 while (n>0) {
 cout << n << ", ";
 --n;
 }
 cout << "FIRE!\n";
 return 0;}

Enter the starting number
> 8
8, 7, 6, 5, 4, 3, 2, 1,
FIRE!

 15

The do-while loop
do statement while (condition);
#include <iostream>
using namespace std;

int main (){
 unsigned long n;
 do {
 cout << "Enter number (0 to
end): ";
 cin >> n;
 cout << "You entered: " << n
<< "\n";
 } while (n != 0);
 return 0;
}

Enter number (0 to end): 12345
You entered: 12345
Enter number (0 to end): 160277
You entered: 160277
Enter number (0 to end): 0
You entered: 0

The for loop
for (initialization; condition; increase) statement;

for (n=0, i=100 ; n!=i ; n++, i--)
{
 // whatever here...}

 16

Jump statements.

The break statement

#include <iostream>
using namespace std;
int main (){
 int n;
 for (n=10; n>0; n--) {
 cout << n << ", ";
 if (n==3) {
 cout << "countdown
aborted!";
 break; }
 }
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, countdown
aborted!

The continue statement
The continue statement causes the program to skip the rest of the loop in the
current iteration as if the end of the statement block had been reached, causing it
to jump to the start of the following iteration.

 17

#include <iostream>
using namespace std;

int main (){
 for (int n=10; n>0; n--) {
 if (n==5) continue;
 cout << n << ", ";
 }
 cout << "FIRE!\n";
 return 0;
}

10, 9, 8, 7, 6, 4, 3, 2, 1, FIRE!

The goto statement

 #include <iostream>
using namespace std;

int main (){
 int n=10;
 loop:
 cout << n << ", ";
 n--;
 if (n>0) goto loop;
 cout << "FIRE!\n";
 return 0;}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
FIRE!

 18

The exit function
Terminate the current program with a specific exit code.

void exit (int exitcode);

The exitcode is used by some operating systems and may be used by calling programs. By
convention, an exit code of 0 means that the program finished normally and any other value
means that some error or unexpected results happened.

The selective structure: switch.

switch (expression){
 case constant1:
 group of statements 1;
 break;
 case constant2:
 group of statements 2;
 break;
 .
 .
 default:
 default group of statements
}

	Selection Statements
	Multiple-Way Selection Statements
	Iterating over Collections and Arrays with Enhanced for
	Ada's for statement has the format
	Iterators in Java

	Unconditional Branching
	Conditional structure: if and else
	Iteration structures (loops)
	The while loop
	The do-while loop
	The for loop

	Jump statements.
	The break statement
	The continue statement
	The goto statement
	The exit function

	The selective structure: switch.

