
 1

Why Studying Programming Languages?

• Learn how to describe or define programming languages.

 Syntax: how the form or structure of the expressions, statements, and program units
 (main program, method/function, etc) are formed.

 Semantics: what the meaning of the expressions, statements, and program units.

• Examine carefully and evaluate the underlying features of programming languages.

e.g. control structures, data structures, and data abstractions.

• Gain experience with languages other than C and Java. (Fortran, C++, Ada, Lisp,
etc.).

• Improved background for choosing appropriate languages.

• Increase ability to learn new languages.

 2

Programming Domains
• Scientific applications
– Large number of floating point computations
– Fortran

• Business applications
– Produce reports, use decimal numbers and characters
– COBOL

• Artificial intelligence
– Symbols rather than numbers manipulated
– LISP

• Systems programming
– Need efficiency because of continuous use
– C, C++

• Web Software
– HTML, PHP, Java

 3

Language Evaluation Criteria

Evaluate features of languages, focusing on their impact on the software development
process, including maintenance.

• Readability: the ease with which programs can be read and understood.

- Control structures (Chap. 8)
- Data types and structures (Chap. 6)

• Writability: the ease with which a language can be used to create programs.
- Support for subprograms (Chap. 9 & 10)
- Support data abstractions and encapsulation constructs (Chap. 11)
- Expressions and assignment statements (Chap. 7)

• Reliability:
- Type checking (Chap5)
- Exception handling. (Chap. 14)

• Cost:
 - Training programming to use the language
 - Language closeness to the particular application.
 - The cost of maintaining program.

 4

Evolution of Programming Languages

The Early Years

• Plankalkül – 1945
– Never implemented
– published only in 1972
– Advanced data structures: floating point, arrays, records

• FORmulaTRANslator
– I (1957), II(1958), IV(1962),77, 90
– First implemented language
– Focus on scientific applications
-- Arrays, floating point, counting loops

 5

Languages of the Sixties

Algol 60 (1960)
• block structure
• call-by-value, call-by-name
• records
• recursion
• dynamic arrays: the size of the array is set at the time storage is allocated to the array.
• BNF syntax
 – All subsequent procedural languages based on it
 – Algorithm publication language for over 40 years

COBOL (1960):
• Business oriented:
– Elaborate reports, decimals,
• Very English like
• Still in use today

 6

LISP (LISt Processing language):
• Functional programming
– No need for variables or assignment
– Control via recursion and conditional expressions
• Still the dominant language for AI

Languages of the Seventies

Pascal: simplified/improved Algol
Prolog
C: systems programming

Smalltalk
• First full implementation of an object-oriented language (data abstraction, inheritance,
and dynamic type binding)
• Pioneered the graphical user interface everyone now uses

 7

Languages of Eighties and Beyond

Ada:
– Packages, exceptions

C++:
• Developed at Bell Labs
• Evolved from C and SIMULA 67
• Also has exception handling
• A large and complex language, in part because it supports both procedural and OO
programming

Java:
• Developed at Sun in the early 1990s
• Based on C++
– Significantly simplified (does not include struct, union, pointer arithmetic)
– Supports only OOP
– Has references, but not pointers.

 8

Chapter 3: Describing Syntax and Semantics

• Introduction
• Formal methods of describing syntax (BNF)
• Parse tree

The programmer must be able to determine how the expressions, statements, and program
units of a language are formed, and their intended effect when executed.

How can we describe programming languages?

• Syntax: how the form or structure of the expressions, statements, and program units

(main program, method/function, etc) are formed.
• Semantics: what the meaning of the expressions, statements, and program units.

 while (<boolean_expr>) <statement>

 9

• Syntax analysis:
 1. Lexical level: Lexical analyzer
gathers characters of the source program
into lexical units (tokens).
 2. Syntactic level: Syntactic
analyzer constructs parse trees that
represent the syntactic structure.
 - Determine whether the given
programs are syntactically correct.

• Semantic analysis and intermediate

code generator:
- checks for errors like type

checking, division by zero.
- Produce a program between the

source and machine language.
• Code generator: translates the

intermediate code to machine code.

 10

Lexical Level

The descriptions of the lowest level of syntactic units including numeric literals,
operators, etc. (e.g., *, sum, begin).
 -These small units are called Lexemes.

A token of a language is a category of its lexemes.

 Identifiers: Names representing data items, functions and procedures, etc.

 Keywords: Names chosen by the language designer to represent particular
 language constructs which cannot be used as identifiers.

 Operators: Special “keywords” used to identify operations to be performed on
 operands, e.g. maths operators.
 Punctuations: such as (or ;
 Literals: direct values,
 _ Numeric, e.g. 1, -123, 3.14, 6.02e23.
 _ Character, e.g. ‘a’.
 _ String, e.g. “Some text”.

 11

Example: return -x;

 Lexemes tokens

return keyword
 - operator
 x identifier

 ; punctuation

The lexical structure ignores some characters such as whitespace and comments.

 if (x = 0)
 y=y+1; // y is increased by one

Identifiers:

Keywords:

Punctuations:
Operator:
Literals:

 12

Syntactic Level

The syntactic level describes the way that program statements are constructed from
tokens.

• Precisely defined in terms of a context free grammar.

 - The best known examples are BNF (Backus Naur Form) or EBNF (Extended Backus
 Naur Form).

Formal Methods of Describing Syntax

• Backus-Naur Form (BNF)
 – Most widely known method for describing programming language syntax

• Extended BNF
 –Improves readability and writability of BNF

 13

Backus-Naur Form (BNF)

– Invented by John Backus to describe Algol 58
– A metalanguage used to describe another language

BNF Fundamentals

• Non-terminals: acts as a placeholder for other symbols that describe the language.

• Terminals: lexemes or tokens

The notation for BNF we will use is:

• Angle brackets, <...>, for a non-terminal.
• Vertical bar, ...|..., for choice.
• Parenthesis, (...), for grouping.

 14

A BNF grammar is simply a collection of rules.

 <while_stmt> → while (<logic_expr>) <stmt>

• A rule has a left-hand side (LHS) and a right-hand side (RHS), and consists of terminal
and nonterminal symbols
• An nonterminal symbol can have more than one RHS

<stmt> → <single_stmt> | begin <stmt_list> end

• A grammar is a finite nonempty set of rules
 <program> → <stmts>
 <stmts> → <stmt> | <stmt> ; <stmts>
 <stmt> → <var> = <expr>
 <var> → a | b | c | d
 <expr> → <term> + <term> | <term> - <term>
 <term> → <var> | const

• Syntactic lists are described using recursion
 <ident_list> → ident | ident, <ident_list>

 15

Derivation

• A derivation is a repeated application of rules, starting with the start symbol and ending
with a sentence (all terminal symbols)

 <program> => <stmts>
 => <stmt>
 => <var> = <expr>
 => a =<expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

BNF rules are used to generate sentences. A language is the set of all sentences that can
be generated by the rules.

 <program> → <stmts>
 <stmts> → <stmt> | <stmt> ; <stmts>
 <stmt> → <var> = <expr>
 <var> → a | b | c | d
 <expr> → <term> + <term> | <term> -
 <term>
 <term> → <var> | const

 16

A derivation of a program in this language follow:

<program> => begin <stmt_list> end
=> begin <stmt>;<stmt_list> end
=> begin <var>=<expression>;<stmt_list> end
=> begin A=<expression>;<stmt_list> end
=> begin A=<var>+<var>;<stmt_list> end
=> begin A=B+<var>;<stmt_list> end
=> begin A=B+C;<stmt_list> end
=> begin A=B+C;<stmt> end

=> begin A=B+C;<var>=<expression> end
=> begin A=B+C; B=<expression> end
=> begin A=B+C; B=<var> end

=> begin A=B+C; B=C end

 17

Leftmost derivation: the leftmost nonterminal is the one that is expanded.
Rightmost derivation: the rightmost nonterminal is the one that is expanded.

EExxaammpplleess:: RRiigghhttmmoosstt ddeerriivvaattiioonn ffoorr nnuumm++nnuumm**nnuumm

<<EE>> -->> <<EE>> ++ <<TT>> || <<TT>>|| <<EE>> -- <<TT>>
<<TT>> -->> <<TT>> ** <<FF>> || <<FF>>|| <<TT>>//<<FF>>
<<FF>> -->> ((<<EE>>)) || iidd|| --<<EE>>|| nnuumm

EE ==>> EE ++ TT
 ==>> EE ++ TT ** FF
 ==>> EE ++ TT ** nnuumm
 ==>> EE ++ FF ** nnuumm
 ==>> EE ++ nnuumm ** nnuumm
 ==>> TT ++ nnuumm ** nnuumm
 ==>> FF ++ nnuumm ** nnuumm
 ==>> nnuumm ++ nnuumm ** nnuumm

 18

BNF is “Context Free” Language

Context-free languages can be described by grammars in which

o The left hand side is a nonterminal
o The right hand side is an arbitrary string of terminals and nonterminals.

For example, the language "anbn" (n > 0) can be described by the rules:

 <S> → a b | a <S> b

 19

Extended BNF

Adds three extensions to BNF:

1. Bracket notation indicates an optional part of the RHS.

<if> → if (<expression>) <statement> [else <statement>]

2. Curly brackets {} indicates a sequence of 0 or more occurrences of the subsequence.

<decl> → <type> <variable> {, <variable>};

3. Parentheses and followed by a * indicates 0 or more occurrences, or a +, indicating 1
or more occurrence.

 <decl>→ <type> <variable> (, <variable>)*;

If two RHSs are the same except for one constituent, EBNF allows that constituent to be
shown in parentheses with an infix | operator.

 <expression> → <variable> | <expression> (* | +) <variable>

 20

Example:
 <identifier> → <alphabetic> { <alphanumeric> }
 <alphanumeric> → <alphabetic> | <numeric> | '_'
 <alphabetic> → 'a'-'z' | 'A'-'Z'
 <numeric> → '0'-'9'

The grammar defines a language, that is a set of valid sentences, for example:
 a a1 aFoobar A_FOO but not: @ 1a a$nake _A_BAR

Converting EBNF To BNF
• EBNF
 <expr> → <term> {(+ | -) <term>}
 <term> → <factor> {(* | /) <factor>}
• BNF
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>

 21

Parse Tree

A hierarchical representation of a derivation

The BNF or EBNF notation can be used to describe valid parse trees.

 <exp> → <identifier>
 | <literal>
 | <unary> <exp>
 | <exp> <binary> <exp>
 <binary> → '<' | '>' | '+' | '-'
 <unary> → '-'

This generates a language including:
 x+1 x+y+z 1+2-3 ...

From the grammar we can generate a parse tree.

 22

Example: x + y + z is parsed:

<exp> => <exp> <binary> <exp>
<exp> → <identifier>
 | <literal>
 | <unary> <exp>
 | <exp> <binary> <exp>
 <binary> → '<' | '>' | '+' | '-'
 <unary> → '-'

<exp>=> <exp><binary><exp>
 => <identifier><binary> <exp>
 => x <binary> <exp>
 => x + <exp>
 => x + <exp> <binary> <exp>
 => x + <identifier><binary> <exp>
 => x + y <binary> <exp>
 => x + y + <exp>
 => x + y + < identifier >
 => x + y + z

Every internal node of a parse tree is a
nonterminal symbol.
Every leaf is a terminal symbol.

 23

 a = b + const is parsed

 <program>

 <stmts>

 <stmt>

 <var> <expr>

 <term>

 <var> const
 |
 b

a

=

+ <term>

<program> → <stmts>
<stmts> → <stmt> | <stmt> ; <stmts>
<stmt> → <var> = <expr>
<var> → a | b | c | d
<expr> → <term> + <term> | <term> -
 <term>
<term> → <var> | const

	Programming Domains
	Language Evaluation Criteria

	Languages of the Sixties
	Languages of the Seventies
	Smalltalk
	Chapter 3: Describing Syntax and Semantics
	Lexical Level
	Syntactic Level
	<T> -> <T> * <F> | <F>| <T>/<F>
	E => E + T
	Extended BNF

