Stack-Based Buffer Overflow Attacks

Stack: A data structure that is used to store information associated with function calls on the

computer.

void sample_function(void) <

{
char buffer(10];

printf ("Happy Happy!\n");

return;
} \@ We now return to

the main procedure.

Execution i
starts here. > maln(i

The flow transitions to
the function here.

sample_function() ;
printf("Hello World!\n");

i

Bottorm of Memory

RETURN POINTER

Top of Memory

| Fill Direction

Stack-based Buffer Overflow?

Example: Putting 10 litres of stuff into a bag that will only hold 5 litter.

void sample_function (char sslring)
{

The local variable “buffer”
char buffer[16]; « 4 can hold 16 characters,

strcpy (buffer, string); 1-\® The strcpy function will
return; load characters into
) buffer until it finds the
end of the strin?. . but
ol

nger

the string is far
void main () than the buffer!
{
char buffer[256]; Make a buffer that can
ik B = _ ! hold 256 characters,
i
for(i=0; 1i<255; i++) < C) Shove the character 'A'’
big buffer[i]='A"'; into big_buffer...

255 times!

sample_function (big_buffer); 1—@ Send the|big buffer to
the function.

e Strcpy doesn’t check the the size of string
e System allow strcpy to write far beyond where it is supposed to.

| Fill Direction

Bottormm of Memory

RETURN POINTER

Top of Memory

What happens to the stack when we do this?

It gets messed up.

e \When the function finished executed the function, the return pointer is popped off. The

address of next instruction will be “AAAA..... :
e Most likely, this is a bogus memory location, and the program will crash.

	Stack-Based Buffer Overflow Attacks
	Stack: A data structure that is used to store information associated with function calls on the computer.

