
 1

COE808 Lab2

Prelab preparation

Before coming to the lab you should:

1. Read the lab. The most recent version can be found at the URL:

 www.ee.ryerson.ca/~courses/coe808

 2. Try to prepare any questions you may have about the lab.

To get started you must perform the following operations.

1. Create your lab2 sub-directory with the command:

 mkdir lab2
2. Change to your lab2 directory with the command:

 cd lab2

In this lab you must use Netbeans as IDE

Netbeans tutorial: http://netbeans.org/kb/docs/java/quickstart.html

Exercise 1 (40 marks)

Goals for this exercise:

1. Explore some of the properties of the pre-defined String class.

2. Read lines of keyboard input with a Scanner object.

Strings: Strings are represented as objects of the String class, which is defined in the

java.lang package. Strings can be created in several ways, of which we consider two:

 String name = "Jean Valjean";

or by using a constructor in the String class that takes a string as a parameter and creates

a unique String object with the same value. For example:

 String protagonist = new String(name);

Now, both variables name and protagonist are references to String objects which have the

same value, "Jean Valjean".

In this exercise, we wish to explore the common, very useful String instance methods

described in the table below. The String object to which the method is being applied is

referred to as this String in the descriptions:

 2

METHOD DESCRIPTION EXAMPLE

Boolean

equals(String

string2)

returns true or false depending upon

whether this String and the String

parameter have the same value

String x = "123", y= "12" +

"3";

x.equals(y) returns the value

true.

int length() returns the length of this String object

String greeting = "Bonjour";

greeting.length() returns the

value 7.

char charAt(int

position)

returns the character (type char) in this

String at index position. Position is a

non-negative integer less than the

length of this String.

String greeting = "Bonjour";

greeting.charAt(5) returns the

value 'u'

int indexOf(String

string2)

returns the index of the first

occurrence of the string string2 in this

String object. Returns -1 if string2 not

found.

String greeting = "Bonjour",

word = "jou";

greeting.indexOf(word)

returns 3.

String

substring(int start)

returns the substring of this String

object starting from start through to the

end of the String object.

String name = "Sheryl

Crow";

name.substring(7) returns the

string "Crow"

String

substring(int start,

int end)

returns the substring of this String

object starting from start through, but

not including, index end of this String

object.

String name = "Sheryl

Crow";

name.substring(3,8) returns

the string "ryl C"

String

toUpperCase()

return this String converted to upper

case.

"Hi Jane!".toUpperCase()

returns the string "HI JANE!"

String

toLowerCase()

return this String converted to lower

case.

"Hi Jane!".toLowerCase()

returns the string "hi jane!"

Part I

1. In Netbeans, save your program as "Project1" on your lab2 directory. Name your

new class “StringDemo” and save it to your directory.

import java.util.Scanner;

/**

 * Here we will explore some of the methods of the String class.

 * We will distinguish == and equals.

 * We will also use the Scanner class to read a whole line of input.

 */

public class StringDemo

{

 public static void main (String[] args){

 String str1 = "It was the best of times.";

 3

 String str2 = str1;

 String str3 = "It was the best of times.";

 String str4 = "Of times it was the best.";

 System.out.println("str1=" + str1);

 System.out.println("str2=" + str2);

 System.out.println("str3=" + str3);

 System.out.println("str4=" + str4);

 System.out.println();

 System.out.println("The length of str1 is " + str1.length());

 System.out.println("Index of 'b' in str1 is: " + str1.indexOf('b'));

 System.out.println("Index of 'x' in str1 is: " + str1.indexOf('x'));

 System.out.print("The substring of str1 from ");

 System.out.println("position 7 to position 14 is: " + str1.substring(7,15));

 System.out.println("str1 in upper case is: " + str1.toUpperCase());

 if (str1==str2)

 System.out.println("str1 and str2 refer to the same object.");

 if (str1!=str3)

 System.out.println("str1 and str3 do NOT refer to the same object.");

 if (str1.equals(str3))

 System.out.println("str1 and str3 contain the same characters.");

 if (!str1.equals(str4))

 System.out.println("str1 and str4 do NOT contain the same characters.");

 Scanner in = new Scanner(System.in);

 System.out.println("Enter a line:");

 String user1 = in.nextLine();

 System.out.println("Enter a second line:");

 String user2 = in.nextLine();

 if (user1.equals(user2))

 System.out.println("Your strings are the same.");

 // An object returned can be immediately used to call another method

 // or be used as a parameter:

 else if (user1.toUpperCase().equals(user2.toUpperCase()))

 System.out.println(" If you ignore case, your strings are the same.");

 else

 System.out.println("Your strings are different.");

 System.out.println("Done");

 }// end of main method

} // end of class

Compile and run the main program, type the two lines of input requested into the terminal

window (remembering to press the Enter key both times), and analyze the output. Try to

understand the effect of each method call.

Part II Design, compile and run Java programs to accomplish each of the following

tasks. The program can just include a main method like the program in part I. In fact

you can modify the program in part I if you like. Each part can be in a separate method

or you can put it all in the main program. Be sure to include prompts for each line of

input requested:

(A) Read a sentence (string) from a line of input, and print whether it represents a

declarative sentence (i.e. ending in a period), interrogatory sentence (ending in a

 4

question mark), or an exclamation (ending in exclamation point) or is not a sentence

(anything else).

(B) Read a name from a line of input (first and last separated by a space) and print last

name first followed by a comma followed by the first name. For example, if the input is

"Marcel Proust", the output is "Proust, Marcel".

(C) Read a string and print the characters in reverse order. For example, if the input

string is "Mine is a sad tale, said the mouse.", the output string would be ".esuom eht dias

,elat das a si eniM".

Exercise 2 (30 marks)

In Netbean, save your program as "Project2" on your lab2 directory. Create new classes.
Save these classes to your directory and study it to see how it works.

Consider the following hierarchy of classes, with various details to be filled in:

// Person.java: abstract base class

public abstract class Person {

 public abstract double getWages(); // abstract, so omit body

 }

 // Employee.java: the class Employee

 public class Employee extends Person {

protected String name; // in the form "Last, First"

protected String address;

// constructor

 public Employee(String n, String a) { // first name, then address

 // Fill in for Part a.
 }

// convert the point into a String representation

 public String toString() {

 return "[" + name + ", " + address + "]";

 }

 public double getWages() { // must be either faculty or staff for wages

 return 0.0;

 }

}

// Faculty.java: the class Faculty

public class Faculty extends Employee { // inherits from Employee

 5

 protected double salary;

 // Constructor

 public Faculty(double s, String n, String a) { // salary, name, address

 // Fill in for Part b.
 }

 // convert the Faculty class to a String

 public String toString() {

 // Fill in for Part c.
 }

 public double getWages() {

 return salary;

 }

}

// Staff.java: the class Staff

public class Staff

 // Fill in for Parts d., e., f.
}

// Persons.java: test the Person-Employee-Faculty-Staff hierarchy

public class Persons {

 public static void main (String[] args) {

 Person[] persons = new Person[3];

 persons[0] = // Fill in for Part g.

 persons[1] = // Fill in for Part g.

 persons[2] = // Fill in for Part g.

 printPersons(persons);

 System.out.println();

 }

 public static void printPersons(Person[] s) {

 for (int i = 0; i < s.length; i++)

 System.out.println(s[i]);

 }

}

a. Fill in the constructor for Employee above.

b. Fill in the constructor for Faculty above, using the Employee constructor

with super.

 6

c. Fill in the toString method for Faculty above, using the Employee toString

with super.

d. Write a Staff class that inherits from Employee (that is, extends Employee).

The Staff class should have data fields double hourlyRate and int

hoursWorked. getWages method of the Staff class will return

hourlyRate*hoursWorked.

e. Write a constructor for Staff that takes parameters the two new ones above,

followed by the name and address.

f. Write a toString method for Staff above, using the Employee toString with

super.

g. In the Persons class above, create new objects of each of the three kinds:

 Employee (with name "Nobody, Nonce", and address "120 Worry

Lane")

 Faculty (with salary 2020, name "Blow, Joe", and address "222

Center St.")

 Staff (with hourly rate 7.5, hours worked 40, name "Bonkers,

Bruce", and address "1 Prime Ave").

Exercise 3 (30 marks)

Consider the grammar

<P>  <S>$ (P is the start symbol)

<S>  b<M>b

<M>  (<L>

<M>  a

<L>  <M> a)

Design a recursive descent parser for this grammar. In Netbeans, save your program as

"Project3" on your lab2 directory. The parser class must be named as “GrammarTest”.

The example sentence to be parsed is

b ((a a) a) b $

Submitting your lab

(1) Zip your lab2 assignment within your coe808 directory

zip –r lab2 lab2

(2) Attach your lab1.zip file and send e-mail to GA, Mr. Naimul Mefraz Khan, subject of

your e-mail must be lab1 followed by your name and student id.

e-mail: n77khan@ryerson.ca

