
Reference Manual

Avalon Bus Specification

2

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Document Version: 2.3
Document Date: July 2003

http://www.altera.com

ii Altera Corporation
MNL-AVABUSREF-2.3

Copyright Avalon Bus Specification Reference Manual

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents
and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor
products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

Altera Corporation
About this Manual
This manual provides comprehensive information about the Altera®
AvalonTM Bus.

Table 1 shows the reference manual revision history.

How to Find
Information

■ The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click the binoculars toolbar icon to open the Find dialog
box.

■ Bookmarks serve as an additional table of contents.
■ Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
■ Numerous links, shown in green text, allow you to jump to related

information.

Table 1. Reference Manual Revision History

Date Description

July 2003 Corrected timing diagrams.

May 2003 Minor edits and additions.

January 2003 Revised the “Avalon Read Transfer with Latency” and “Avalon
Interface to Off-Chip Devices” sections.

July 2002 Minor edits and additions. Replaced Excalibur logo on cover
with Altera logo - version 1.2

April 2002 Updated PDF - version 1.1

January 2002 Initial PDF - version 1.0
 iii

About this Manual Avalon Bus Specification Reference Manual
How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http://www.altera.com.

For technical support on this product, go to
http://www.altera.com/mysupport. For additional information about
Altera products, consult the sources shown in Table 2.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Table 2. How to Contact Altera

Information Type USA & Canada All Other Locations

Technical support http://www.altera.com/mysupport/ http://www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

Product literature http://www.altera.com http://www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

FTP site ftp.altera.com ftp.altera.com
iv Altera Corporation

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp.altera.com
ftp.altera.com

Avalon Bus Specification Reference Manual About this Manual
Typographic
Conventions

This manual uses the typographic conventions shown in Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix _n, e.g., reset_n.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation v

Table of Contents
About this Manual .. iii
How to Find Information .. iii
How to Contact Altera .. iv
Typographic Conventions ..v

Avalon Bus Specification ...9
General Description ...9
Features Overview ...10
Terms and Concepts ..11

Bus Cycle ...11
Bus Transfer ..11
Streaming Transfer ..12
Read Transfer with Latency ...12
SOPC Builder Software & Generation of the Avalon Bus ..12
System Module ...12
Avalon Bus Module ...13
Avalon Peripherals ..16

Peripherals inside the System Module ...17
Peripherals outside the System Module ...17

Master Port ..17
 Slave Port ..18
Master-Slave Pair ...18
PTF File & SOPC Builder Parameters & Switches ..18

Avalon Bus Transfers ..19
Master Interface versus Slave Interface ..19
Avalon Bus Timing ..20
Avalon Bus Signals ..21
Simultaneous Multi-Master Avalon Bus Considerations ..23

Avalon Slave Transfers ...23
Avalon Signals for Slave Transfers ..24
 Slave Read Transfers on the Avalon Bus ...26

Fundamental Slave Read Transfer ..26
Slave Read Transfer with Fixed Wait States ..28
Slave Read Transfer with Peripheral-Controlled Wait States32
Slave Read Transfer with Setup Time ...34

Slave Write Transfers on the Avalon Bus ...36
Fundamental Slave Write Transfer ...36
Slave Write Transfer with Fixed Wait States ...39
Slave Write Transfer with Peripheral-Controlled Wait States41
Altera Corporation vii

Table of Contents Avalon Bus Specification Reference Manual
Slave Write Transfer with Setup and Hold Time ..43
Avalon Master Transfers ...45

Avalon Signals for Master Transfers ...46
Fundamental Master Read Transfers on the Avalon Bus ..48
Fundamental Master Write Transfer on the Avalon Bus ...50

Advanced Avalon Bus Transfers ...54
Avalon Read Transfers with Latency ..54

Slave Read Transfer with Fixed Latency ..56
Slave Read Transfer with Variable Latency ...58
Master Read Transfer with Latency ..62

Streaming Transfer ..66
Streaming Slave Transfers ..66

Streaming Slave Read Transfer 67
Streaming Slave Write Transfer 70

Streaming Master Transfers ...73
Avalon Bus Control Signals ..76

Interrupt Request Signal ...76
Reset Control Logic ..76
Begin Transfer Signal ..77

Avalon Interface to Off-Chip Devices ...78
Avalon Tristate Signals for Slave Transfers ...78
Avalon Tristate Slave Read Transfer without Latency ...81
Avalon Tristate Slave Read Transfer with Fixed Latency ..83
Avalon Tristate Slave Write Transfer ..85

Avalon Bus Address Alignment Options ...88
Address Alignment Overview ...88
Choosing the Address Alignment Assignment for Avalon Peripherals89
Native Address Alignment: 32-Bit Master Port ..90

 Slave Port Between 1 & 8 Bits ..90
Slave Port Between 9 & 16 Bits ...91
Slave Port Between 17 & 31 Bits ...93

Native Address Alignment: 16-Bit Master Port ..93
Slave Port Between 1 & 8 Bits ...93
Slave Port Between 9 & 16 Bits ...94

Native Alignment Considerations in Multi-Master System Modules94
Dynamic Bus Sizing ...96

8-bit Slave Port with Dynamic Bus Sizing ..97
16-bit Slave Port with Dynamic Bus Sizing ..98
32-Bit Slave Port with Dynamic Bus Sizing ...99

Connection to External Devices ...100

Index ...103
viii Altera Corporation

Altera Corporation
Avalon Bus Specification
General
Description

The Avalon bus is a simple bus architecture designed for connecting on-
chip processors and peripherals together into a system–on–a–
programmable chip (SOPC). The Avalon bus is an interface that specifies
the port connections between master and slave components, and specifies
the timing by which these components communicate.

The principal design goals of the Avalon bus were:

■ Simplicity – Provide an easy-to-understand protocol with a short
learning curve.

■ Optimized resource utilization for bus logic – Conserve logic elements
(LEs) inside the Programmable Logic Device (PLD).

■ Synchronous operation – Integrate well with other user logic that
coexists on the same PLD, while avoiding complex timing analysis
issues.

Basic Avalon bus transactions transfer a single byte, half-word, or word
(8, 16, or 32 bits) between a master and slave peripheral. After a transfer
completes, the bus is immediately available on the next clock for another
transaction, either between the same master-slave pair, or between
unrelated masters and slaves. The Avalon bus also supports advanced
features, such as latency-aware peripherals, streaming peripherals and
multiple bus masters. These advanced transfer modes allow multiple
units of data to be transferred between peripherals during a single bus
transaction.

The Avalon bus supports multiple bus masters. This multi-master
architecture provides great flexibility in the construction of SOPC
systems, and is amenable to high bandwidth peripherals. For example, a
master peripheral may perform Direct Memory Access (DMA) transfers,
without requiring a processor in the data path to transfer data from the
peripheral to memory.
 9

Avalon Bus Specification Avalon Bus Specification Reference Manual
Avalon masters and slaves interact with each other based on a technique
called slave-side arbitration. Slave-side arbitration determines which
master gains access to a slave, in the event that multiple masters attempt
to access the same slave at the same time. Slave-side arbitration offers two
benefits:

1. The details of arbitration are encapsulated inside the Avalon bus.
Therefore, the master and slave interfaces are consistent, regardless
of the number of masters and slaves on the bus. Each bus master
interfaces to the Avalon bus as if it were the only master on the bus.

2. Multiple masters can perform bus transactions simultaneously, as
long as they do not access the same slave during the same bus cycle.

Avalon has been designed to accommodate the system–on–a –
programmable chip (SOPC) environment. The Avalon bus is an active, on-
chip bus architecture, which consists of logic and routing resources inside
a PLD. Some principles of the Avalon architecture are:

1. The interface to peripherals is synchronous to the Avalon clock.
Therefore, no complex, asynchronous handshaking/acknowledge
schemes are necessary. The performance of the Avalon bus (and the
overall system) can be measured using standard, synchronous
timing analysis techniques.

2. All signals are active LOW or HIGH, which facilitates immediate
turn-around of the bus. Multiplexers (not tri-state buffers) inside the
Avalon bus determine which signals drive which peripheral.
Peripherals are never required to tri-state their outputs, even when
the peripheral is deselected.

3. The address, data and control signals use separate, dedicated ports,
which simplifies the design of peripherals. A peripheral does not
need to decode address and data bus cycles, and does not need to
disable its outputs when it is not selected.

Avalon also includes a number of features and conventions to support
automatic generation of systems, busses, and peripherals by the SOPC
Builder software.

Features
Overview

Up to 4GBytes Address Space—Memory and peripherals may be mapped
anywhere within the 32-bit address space.

Synchronous Interface—All Avalon signals are synchronized to the Avalon
bus clock. This simplifies the relevant timing behavior of the Avalon bus,
and facilitates integration with high-speed peripherals.
10 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Separate Address, Data and Control Lines—Separate, dedicated address and
data paths provide the easiest interface to on-chip user logic. Peripherals
do not need to decode data and address bus cycles.

Built-in Address Decoding—The Avalon bus automatically generates Chip
Select signals for all peripherals, greatly simplifying the design of Avalon
peripherals.

Multiple Master Bus Architecture—Multiple master peripherals can reside
on the Avalon bus. The Avalon bus automatically generates arbitration
logic.

Wizard-based Configuration—Easy-to-use graphical wizards guide the user
through Avalon bus configuration (adding peripherals, specifying
master/slave relationships, defining the memory map). The Avalon bus
architecture is generated automatically based on user input from the
wizard interface.

Dynamic Bus Sizing—The Avalon bus automatically handles the details of
transferring data between peripherals with mismatched data widths,
allowing peripherals of various widths to interface easily.

Terms and
Concepts

Many of the terms and concepts relating to SOPC design are entirely new,
or substantially different from traditional, off-chip bus architectures. The
designer needs to understand this context in order to understand the
Avalon bus specification. The following terms and concepts create a
conceptual framework upon which the Avalon bus specification is built.
They are used throughout this document.

Bus Cycle

A bus cycle is a basic unit of one bus clock period, which is defined from
rising-edge to rising-edge of the Avalon master clock. Bus signal timing is
referenced to the bus cycle clock.

Bus Transfer

An Avalon bus transfer is a read or write operation of a data object, which
may take one or more bus cycles. The transfer sizes supported by the
Avalon bus include byte (8-bit), half-word (16-bit) and word (32-bit).
Altera Corporation 11

Avalon Bus Specification Avalon Bus Specification Reference Manual
Streaming Transfer

Streaming transfers create an open channel between a streaming master
and streaming slave to perform successive data transfers. This channel
allows data to flow between the master-slave pair as data becomes
available. The master does not have to continuously access status registers
in the slave peripheral to determine whether the slave can send or receive
data. Streaming transfers maximize throughput between a master-slave
pair, while avoiding data overflow or underflow on the slave peripheral.
This is especially useful for DMA transfers.

Read Transfer with Latency

Read transfer with latency increase the bandwidth efficiency to
synchronous peripherals that require several cycles of latency for the first
access, but can return data every bus cycle thereafter. Latent transfers
allow a master to issue a read request, move on to an unrelated task, and
receive the data later. The unrelated task can be issuing another read
transfer, even though data from the previous transfer hasn’t yet returned.
This is beneficial for instruction fetch operations and DMA transfers, in
which access to sequential addresses is the norm. In these cases, the CPU
or the DMA master may prefetch expected data, thereby keeping the
synchronous memory active and reducing the average access latency.

SOPC Builder Software & Generation of the Avalon Bus

SOPC Builder is a system generation and integration tool developed by
Altera. SOPC Builder generates the system module, which is the on-chip
circuitry that comprises the Avalon bus, master peripherals, and slave
peripherals. SOPC Builder has a graphical user interface for adding
master and slave peripherals to the system module, configuring the
peripherals, and then configuring the Avalon bus to connect peripherals
together. With this information, SOPC Builder automatically creates and
connects HDL modules, that implements all or part of the user’s PLD
design.

f See the SOPC Builder Data Sheet for more information about the system
module.

System Module

Consider the structure of a user-defined system on a programmable chip,
part of which is automatically generated by SOPC Builder. The entire
system is implemented on an Altera PLD, as shown inFigure 1.
12 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Figure 1. System Module Integrated with User Logic into an Altera PLD

For purposes of this document, system module refers to the portion
of the design that was automatically generated by SOPC Builder. The
system module contains at least one Avalon master peripheral and
the entire Avalon bus module. The system module usually contains
several Avalon slave peripherals, such as UARTs, timers or PIOs.
The logic external to the system module may contain custom Avalon
peripherals and other custom logic unrelated to the system module.

The system module must be connected to the designer’s PLD design.
The ports on the system module will vary, depending on which
peripherals are included in the system module and which settings
were made in SOPC Builder. These ports may include direct
connections to the Avalon bus, and user-defined ports to peripherals
inside the system module.

Avalon Bus Module

The Avalon bus module is the backbone of an system module. It is
the main path of communication between peripherals components in
an SOPC design. The Avalon bus module is the sum of all control,
data and address signals and arbitration logic that connect together
the peripheral components making up the system module. The
Avalon bus module implements a configurable bus architecture,
which changes to fit the interconnection needs of the designer’s
peripherals.

PCI_ctrl

PCI_addr
PCI_data

Data

Instr

System Module

Signals
to

on-chip
user
logic

Signals
to

off-chip
devices

User
logic
areaPCI

bridge

Custom
peripheral

Off-chip
memory

A
va

lo
n

B
us

 M
od

ul
e

Nios
CPU

PIO

Custom
peripheral

Altera PLD
Altera Corporation 13

Avalon Bus Specification Avalon Bus Specification Reference Manual
The Avalon bus module is generated automatically by SOPC
Builder, so that the system designer is spared the task of connecting
the bus and peripherals together. The Avalon bus module is very
rarely used as a discrete unit, because the system designer will
almost always use SOPC Builder to automate the integration of
processors and other Avalon bus peripherals into a system module.
The designer’s view of the Avalon bus module usually is limited to
the specific ports that relate to the connection of custom Avalon
peripherals.

The Avalon bus module (an Avalon bus) is a unit of active logic that
takes the place of passive, metal bus lines on a physical PCB. (See
Figure 2). In this context, the ports of the Avalon bus module could
be thought of as the pin connections for all peripheral devices
connected to a passive bus. This manual defines only the ports,
logical behavior and signal sequencing that comprise the interface to
the Avalon bus module. It does not specify any electrical or physical
characteristics of a physical bus.

Figure 2. Avalon Bus Module Block Diagram - An Example System

The Avalon bus module provides the following services to Avalon
peripherals connected to the bus:
14 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
■ Data-Path Multiplexing—Multiplexers in the Avalon bus module
transfer data from the selected slave peripheral to the
appropriate master peripheral.

■ Address Decoding—Address decoding logic produces chip-select
signals for each peripheral. This simplifies peripheral design,
because individual peripherals do not need to decode the
address lines to generate chip-select signals.

■ Wait-State Generation—Wait-state generation extends bus
transfers by one or more bus cycles, for the benefit of peripherals
with special synchronization needs. Wait states can be
generated to stall a master peripheral in cases when the target
slave peripheral cannot respond in a single clock cycle. Wait
states can also be generated in cases when read-enable and
write-enable signals have setup or hold time requirements.

■ Dynamic Bus Sizing—Dynamic bus sizing hides the details of
interfacing narrow peripherals to a wider Avalon bus, or vice
versa. For example, in the case of a 32-bit master read transfer
from a 16-bit memory, dynamic bus sizing would automatically
execute two slave read transfers to fetch 32 bits of data from the
16-bit memory device. This reduces the logic and/or software
complexity in the master peripheral, because the master does
not have to worry about the physical nature of the slave
peripheral.

■ Interrupt-Priority Assignment—When one or more slave
peripherals generate interrupts, the Avalon bus module passes
the (prioritized) interrupts to appropriate master peripherals,
along with the appropriate interrupt request (IRQ) number.

■ Latent Transfer Capabilities—The logic required to perform
transfers with latency between master-slave pairs is contained
inside the Avalon bus module.

■ Streaming Read and Write Capabilities—The logic required to
allow streaming transfers between master-slave pairs is
contained inside the Avalon bus module.
Altera Corporation 15

Avalon Bus Specification Avalon Bus Specification Reference Manual
Avalon Peripherals

An Avalon peripheral on the Avalon bus is a logical device—either
on-chip or off-chip—that performs some system-level task, and
communicates with other system components through the Avalon
bus. Peripherals are modular system components, and may be added
or removed at design time, depending on the requirements of the
system.

Avalon peripherals can be memories and processors, as well as
traditional peripheral components, such as a UART, PIO, timer or
bus bridge. Any user logic can also be an Avalon peripheral, as long
as it provides address, data and control signal interfaces to the
Avalon bus as described in this document. A peripheral connects to
specific ports on the Avalon bus module allocated for that
peripheral. The peripheral may also have user-defined ports in
addition to the Avalon address, data and control signals. These
signals connect to custom logic external to the system module.

The roles of Avalon peripherals are classified as either a master or
slave. A master peripheral is a peripheral that can initiate bus
transfers on the Avalon bus. A master peripheral has at least one
master port (“Master Port” on page 17) which connects to the Avalon
bus module. A master peripheral may also have a slave port (“Slave
Port” on page 18), which allows the peripheral to receive bus
transfers initiated by other master peripherals on the Avalon bus. A
slave peripheral is a peripheral that only accepts bus transfers from
the Avalon bus, and cannot initiate bus transfers. Slave peripherals,
such as memory devices or UARTs, usually have only one slave port,
which connects to the Avalon bus module.

In the SOPC environment, it is important to make the distinction
between the following types of peripherals, which may be either
Avalon bus masters or slaves.
16 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Peripherals inside the System Module

If SOPC Builder finds a peripheral in a peripheral library, or if the
designer specifies the location of a custom peripheral design file,
then SOPC Builder automatically connects the peripheral to the
Avalon bus module. Such a peripheral is referred to as a peripheral
inside the system module, and is treated as a piece of the system
module. The details of connecting the address, data and control ports
to the Avalon bus module are hidden from the user. Any additional
non-Avalon ports on the peripheral are presented to the outside
world as ports on the system module. These ports may connect
directly to physical device pins, or may connect to the ports of other
on-chip modules.

Peripherals outside the System Module

An Avalon bus peripheral can also exist external to the system
module. This peripheral is referred to as a peripheral outside the
system module. A designer may chose to leave the module outside
the system module for several reasons:

■ The peripheral may exist physically outside the PLD.
■ The peripheral may require some glue logic to connect it to the

Avalon bus signals.
■ The peripheral design may not be complete at the time the

system module is generated.

In this case, the appropriate Avalon bus module signals are
presented to the outside world (and to the specific peripheral) as
ports on the system module.

Master Port

A master port is the collection of ports on a master peripheral used
to initiate transfers on the Avalon bus. The master port connects
directly to the Avalon bus module. In practice, a master peripheral
may have one or more master ports, as well as a slave port. The
interdependence of these master and slave ports is dependent on the
peripheral design. However, individual bus transfers on these
master or slave ports always conform to this document. Throughout
this document, a master transfer refers to an Avalon bus transfer
from the perspective of a single master port.
Altera Corporation 17

Avalon Bus Specification Avalon Bus Specification Reference Manual
 Slave Port

A slave port is the collection of ports on a peripheral to accept Avalon
bus transfers from the master port on another Avalon peripheral.
The slave port connects directly to the Avalon bus module. Master
peripherals may also have a slave port, which allows the peripheral
to accept transfers from other masters on the Avalon bus.
Throughout this document, a slave transfer refers to an Avalon bus
transfer from the perspective of a single slave port.

Master-Slave Pair

A master-slave pair is the combination of a master port and a slave
port that are connected via the Avalon bus module. Structurally,
these master and slave ports connect to their appropriate ports on the
Avalon bus module. Effectively, the master port’s control and data
signals pass through the Avalon bus module, and interact with the
slave port. Connections between master and slave ports (thus
creating master-slave pairs) are specified in SOPC Builder.

PTF File & SOPC Builder Parameters & Switches

The configuration of the Avalon bus and peripherals can be specified
using the wizard-based SOPC Builder graphical user interface (GUI).
Through this GUI the user specifies various parameters and
switches, which are then used to generate a system PTF file. The PTF
file is a text file that fully defines:

■ Parameters that define the structure and/or functionality of the
Avalon bus module.

■ Parameters for each peripheral that define its structure and/or
functionality.

■ The master/slave role of each peripheral.
■ The ports (such as read enable, read data, write enable, write

data) present on each peripheral.
■ The arbitration mechanism for each slave port that can be

accessed by multiple master ports.

The PTF file is then passed to an HDL generator that creates the
actual register transfer level (RTL) description of the system module.

f See the SOPC Builder Data Sheet and the SOPC Builder PTF File
Reference Manual for additional information about the system PTF
files.
18 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Avalon Bus
Transfers

The Avalon bus specification defines the signals and timing required
to transfer data between a master port and a slave port via the
Avalon bus module. The signals that comprise the interface between
the Avalon bus module and the peripheral are different, depending
on the type of transfer. Foremost, the interface is different for master
transfers and slave transfers, giving rise to the distinct definitions of
a slave port and a master port. Furthermore, the exact type and
number of signals required will vary, based on assignments made in
the system PTF file.

The Avalon bus specification offers a variety of options to tailor the
bus signals and timing to the needs of different types of peripherals.
Fundamental Avalon bus transfers move a single unit of data per bus
transfer between a master-slave pair. The bus transfer can be
extended with wait states to accommodate slow peripherals.
Streaming transactions along with simultaneous multi-master
capabilities accommodate high-bandwidth peripherals. Peripherals
can also use a combination of transaction types. The sequencing of
signals for all Avalon slave transfers are derived from the
fundamental slave read transfer and fundamental slave write
transfer. Likewise, the fundamental master read and master write
transfers are the basis for all Avalon master transfers.

Master Interface versus Slave Interface

When discussing Avalon bus transfers, it is important to pay
attention to which side of the bus is the focus: the master port
interface or the slave port interface. The signals output from a master
port on the Avalon bus module may be very different from the
corresponding signals that are input into the slave port on the target
peripheral.

The signal activity on the slave side is always the result of a master
peripheral initiating a bus transfer, but the actual slave port input
signals do not come directly from the master port. The Avalon bus
module relays the signals from the master port, and custom-tailors
the signals (e.g., inserts wait states; arbitrates between contending
masters) to the needs of the slave peripheral.

For this reason, the discussion of Avalon bus transfers is separated
into master transfer types and slave transfer types. Most designers
will be interested only in slave transfers, because the custom
peripherals they design (if any) will most likely be slave peripherals.
In this case, the designer considers only the signaling between the
Avalon bus module and the custom peripheral. The discussion of
master transfers is only relevant in the event that a designer creates
a master peripheral.
Altera Corporation 19

Avalon Bus Specification Avalon Bus Specification Reference Manual
Avalon Bus Timing

The Avalon bus is a synchronous bus interface, clocked by a master
Avalon bus clock. All bus transfers occur synchronous to the Avalon
bus clock. All bus transfers initiate on a rising clock edge, and
terminate after valid data is captured on (or before) a subsequent
rising clock edge.

A synchronous bus interface does not necessarily mean that all
Avalon bus signals are registered. Notably, the Avalon chipselect
signal is combinatorial, based on the outputs of registers that are
synchronous to the Avalon bus clock, clk. Therefore, peripherals
must not be edge sensitive to Avalon signals, because Avalon signals
may transition multiple times before they stabilize. As with any
synchronous design, Avalon bus peripherals must function only in
response to signals that are stable at the rising edge of clk, and
output stable signals at the rising edge of clk.

It is possible to interface asynchronous peripherals such as off-chip,
asynchronous memory to the Avalon bus module, but there are a few
design considerations. Due to the synchronous operation of the
Avalon bus module, Avalon signals toggle only at intervals equal to
the period of the Avalon bus clock. Also, if an asynchronous
peripheral’s outputs are connected directly to the Avalon bus
module, the designer must make sure that the output signals are
stable before the rising edge of clk.

The Avalon bus specification makes no attempt to dictate how
signals transition between clock edges. Toggling signals are
triggered by the Avalon bus clock, and that signals must stabilize
before the clock edge when they are captured. For this reason, the
Avalon bus timing diagrams in this document are devoid of explicit
timing information. The exact timing of signals toggling and
stabilizing between clock edges will vary, depending upon the
characteristics of the Altera PLD selected to implement the system.
By the same token, there is no inherent maximum performance of the
Avalon bus. After synthesis and place-and-route of the system
module for a specific device, the designer must perform standard
timing analysis on the system module to determine the maximum
speed at which Avalon bus transfers can be performed.
20 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Avalon Bus Signals

Because the Avalon bus is an on-chip bus architecture synthesized
from HDL files, special attention must be given to the connections
between the Avalon bus module and Avalon peripherals. The
situation is very different from a passive, off-chip bus architecture in
which all peripherals share access to a pre-defined and constant
group of physical metal wires. In the case of the Avalon bus, SOPC
Builder must know exactly what Avalon ports are present on each
peripheral so that it can connect the peripherals to Avalon bus
module. Furthermore, it must know the name of each port and the
role of each port. The name and role for each port on an Avalon
peripheral is declared in the system PTF file.

The Avalon bus specification does not mandate the existence of any
port on an Avalon peripheral. It only defines the possible types of
signals (such as address, data, clock) that can exist on a peripheral.
Each port on a peripheral is assigned a valid Avalon signal type,
which determines the port’s role. A port may also be user-defined, in
which case SOPC Builder does not connect the port to the Avalon bus
module. Fundamentally, the Avalon signal types are classified as
either slave port signals or master port signals. Therefore, the signal
types used by a peripheral are determined first and foremost by the
master/slave role of the port. Each master or slave port may have up
to one of each signal type. The set of signal types used by an
individual master or slave port is dependent on the design of the
peripheral. For example, the design for an output-only PIO slave
peripheral would define only ports for write transfers (the output
direction), but no ports for read transfers. Such a peripheral also
probably would have no use for an Interrupt Request (IRQ) output,
even though an IRQ output is an allowed signal type for a slave port.

The Avalon bus specification does not dictate a naming convention
for the ports on an Avalon peripheral. The role of each port is well
defined, but the name of the port is defined by the peripheral design.
The port may be named the same as its signal type, or it may be
named differently to comply with a system-wide naming
convention. The discussion of Avalon bus transfers in the following
sections refers to Avalon signals as, for example, the readdata
signal or the irq signal. The name of the signal type has been used
here as the port name, but the actual names given to ports on
peripherals in the System Module may be different.
Altera Corporation 21

Avalon Bus Specification Avalon Bus Specification Reference Manual
Table 1 shows a partial list of the signal types available to an Avalon
slave port as an example. The signal direction is from the perspective
of the peripheral. For example, the clock signal clk (listed as an
input) is an input to the slave peripheral, but it is an output from the
Avalon bus module.

The signal types listed in Table 1 are active high. However, the
Avalon bus also offers the negated version of each signal type. By
appending “_n” to the signal type name (e.g., irq_n, read_n) in
the PTF declaration, the corresponding port is declared active low.
This is useful for many off-chip peripherals that use active-low logic.

The Avalon bus signals and their operation is the same, whether a
peripheral is implemented inside the system module or outside the
system module. In the inside case, SOPC Builder automatically
connects the peripheral’s master or slave port to the Avalon bus
module. In the outside case, the designer must manually connect the
master or slave port to the system module. In either case, the Avalon
bus signals behave the same.

Table 1. Partial List of Avalon Slave Signals

Signal Type Width Direction Required Description

clk 1 in no Global clock signal for the system module
and Avalon bus module. All bus transactions
are synchronous to clk. Only asynchronous
slave ports can omit clk.

address 1 - 32 in no Address lines from the Avalon bus module.

read 1 in no Read request signal to slave. Not required if
the slave never outputs data to a master. If
used, readdata must also be used.

readdata 1 – 32 out no Data lines to the Avalon bus module for read
transfers. Not required if the slave never
outputs data to a master. If used, read signal
must also be used.

write 1 in no Write request signal to slave. Not required if
the slave never receives data from a master.
If used, writedata must also be used.

writedata 1 – 32 in no Data lines from the Avalon bus module for
write transfers. Not required if the slave never
receives data from a master. If used, write
signal must also be used.

irq 1 out no Interrupt request. Slave asserts irq when it
needs to be serviced by a master.
22 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
f For additional System Builder and PTF file information see the SOPC
Builder Data Sheet. and the SOPC Builder PTF File Reference Manual.

Simultaneous Multi-Master Avalon Bus Considerations

The Avalon bus accommodates multiple master ports connected to
the Avalon bus module. However, no special signals external to the
Avalon bus module are used to implement simultaneous multi-
master Avalon bus functionality. Slave-side arbitration logic inside
the Avalon bus module arbitrates conflicts when multiple master
peripherals attempt to access the same slave peripheral at the same
time. The arbitration scheme is entirely hidden from Avalon bus
peripherals. Therefore, the protocol for Avalon bus transfers—as
perceived by master and slave ports—is the same, whether
arbitration is used or not.

In other words, slave ports are not aware that multiple masters have
simultaneously requested a bus transfer. Likewise, a master
peripheral that is forced to wait by the arbitration logic is not aware
of the other victorious master. The master port simply sees its wait-
request signal asserted, and knows that it must wait until the target
slave is ready to proceed with the bus transfer. Hiding the details of
arbitration inside the Avalon bus module greatly simplifies
peripheral design, because any Avalon peripheral can be used both
in single-master and multi-master architectures.

f See AN 184: Simultaneous Multi-Mastering with the Avalon Bus for
more information.

Avalon Slave
Transfers

The following sections discuss bus transfers between a slave port
and the Avalon bus. From an abstract, system-level viewpoint,
master peripherals exchange data with slave peripherals. However,
from the viewpoint of a slave peripheral, data is transferred between
the peripheral’s slave port and the Avalon bus module. In the
following discussion of bus transfers with slave ports, it is assumed
that a master peripheral somewhere on the Avalon bus has
successfully initiated a transfer on the master side of the Avalon bus
module. As a result, the Avalon bus module then initiates the
transfer with the appropriate slave port. The interface between the
Avalon bus module and the slave port is the exclusive focus of this
section.
Altera Corporation 23

Avalon Bus Specification Avalon Bus Specification Reference Manual
Avalon Signals for Slave Transfers

Table 2 below lists the signal types that interface a peripheral’s slave
port to the Avalon bus module. The signal direction is from the
perspective of the slave port. Not all of the signal types listed in
Table 2 will be present on all peripherals, depending on the
peripheral design and the ports declared in the PTF file. Table 2 gives
a brief description of which signals are required and under what
circumstances

Table 2. Avalon Slave Port Signals (Part 1 of 2)

Signal Type Width Direction Required Description

clk 1 in no Global clock signal for the system module and
Avalon bus module. All bus transactions are
synchronous to clk. Only asynchronous slave
ports can omit clk.

reset 1 in no Global reset signal. Implementation is peripheral-
specific.

chipselect 1 in yes Chip select signal to the slave. The slave port
should ignore all other Avalon signal inputs unless
chipselect is asserted.

address 1 - 32 in no Address lines from the Avalon bus module.

begintransfer 1 in no Asserted during the first bus cycle of each new
Avalon bus transfer. Usage is peripheral-specific.

byteenable 0, 2, 4 in no Byte-enable signals to enable specific byte lane(s)
during transfers to memories of width greater than
8 bits. Implementation is peripheral-specific.

read 1 in no Read request signal to slave. Not required if the
slave never outputs data to a master. If used,
readdata must also be used.

readdata 1 – 32 out no Data lines to the Avalon bus module for read
transfers. Not required if the slave never outputs
data to a master. If used, read signal must also be
used.

write 1 in no Write request signal to slave. Not required if the
slave never receives data from a master. If used,
writedata must also be used.

writedata 1 – 32 in no Data lines from the Avalon bus module for write
transfers. Not required if the slave never receives
data from a master. If used, write signal must
also be used.
24 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
In the following discussions of Avalon slave transfers, the read,
write and byteenable signals are used in their active-low form,
which is similar to the traditional convention of using active-low
read enable, write enable and byte enable signals. Note the
following:

■ These signals appear in the form read_n, write_n and
byteenable_n.

■ Any port of an Avalon signal type may be used with active high
or low polarity, based on the port’s declaration in the PTF file.

readdatavalid 1 out no Used only by slaves with variable latency. Marks
the rising clock edge when the slave asserts valid
readdata.

waitrequest 1 out no Used to stall the Avalon bus module when slave
port is not able to respond immediately.

readyfordata 1 out no Signal for streaming transfers. Indicates that the
streaming slave can receive data.

dataavailable 1 out no Signal for streaming transfers. Indicates that the
streaming slave has data available.

endofpacket 1 out no Signal for streaming transfers. May be used to
indicate an “end of packet” condition to the master
port. Implementation is peripheral-specific.

irq 1 out no Interrupt request. Slave asserts irq when it needs
to be serviced by a master.

resetrequest 1 out no A reset signal allowing a peripheral to reset the
entire system module.

Table 2. Avalon Slave Port Signals (Part 2 of 2)

Signal Type Width Direction Required Description
Altera Corporation 25

Avalon Bus Specification Avalon Bus Specification Reference Manual
 Slave Read Transfers on the Avalon Bus

In the discussions of read transfers below, it is important to realize
that under realistic circumstances, bus transfers are not isolated
events. They typically happen in continuous succession. For
example, a slave read transfer may immediately precede or follow an
unrelated write transfer. During the read transfer, the target
peripheral’s read_n and chipselect signals are necessarily
asserted, as shown in the timing diagrams. However, after the read
transfer terminates, chipselect and read_n may remain asserted
if another bus transfer with this slave port follows on the next bus
cycle. The timing diagrams below show undefined values on the
slave port signals before and after the read transfer. Fundamental
slave read transfers have no latency.

Fundamental Slave Read Transfer

The fundamental slave read transfer is the basis for all Avalon slave
read transfers. All other slave read transfer modes use a super set of
the fundamental signals, and implement a variation of the
fundamental slave read timing. The fundamental slave read transfer
is initiated by the Avalon bus module, and transfers one unit of data,
the full width of the peripheral’s data port, from the slave port to the
Avalon bus module. Fundamental slave read transfers have no
latency.

Example 1 shows an example of the fundamental read transfer. In
the fundamental Avalon read transfer, the bus transfer starts on a
rising clock edge, no wait states are incurred, and the read transfer
completes on the next rising clock edge. For the transfer to complete
in a single bus cycle, the target peripheral must immediately and
asynchronously output the contents of the addressed location to the
Avalon bus module.

On the first rising edge of clk, the Avalon bus passes the address,
byteenable_n, and read_n signals to the target peripheral. The
Avalon bus module decodes address internally, generates a chip
select and drives the combinatorial chipselect signal to the slave
port. Once chipselect is asserted, the slave port drives out its
readdata as soon as it is available. Finally, the Avalon bus module
captures the readdata on the next rising edge of the clock.
26 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 1. Fundamental Slave Read Transfers

fundamental Slave Read Transfer

Example 1 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Registered outputs address and read_n from Avalon bus to slave are valid
(C) Avalon bus decodes address & asserts valid chipselect to slave.
(D) Slave port returns valid data during the first bus cycle.
(E) Avalon bus captures readdata on the next rising edge of clk, and the read transfer ends here. The next bus cycle could be

the start of another bus transfer.

This fundamental read transfer with zero wait states is appropriate
only for truly asynchronous peripherals. The target peripheral must
present data to the Avalon bus immediately when the peripheral is
selected and/or the address changes. For the transfer to work
properly, readdata’s output must be valid and stable by the next
rising clock edge.

This Example Demonstrates Relevant PTF Parameters

Read transfer from an asynchronous peripheral

Zero wait states Read_Wait_States = “0”

Zero setup Setup_Time = “0”

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
M

as
te

r P
or

t
Pe

rip
he

ra
l

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

Control

Data

Address

read_n

chipselect

readdata
Altera Corporation 27

Avalon Bus Specification Avalon Bus Specification Reference Manual
Synchronous peripherals that register the input or output ports
cannot use the fundamental slave read transfer with zero wait states.
Most on-chip peripherals will use a synchronous interface that
requires at least one clock to capture data. This necessitates at least
one wait state during the read transfer unless the peripheral is
latency aware. See “Avalon Read Transfers with Latency” on page 54
for more information.

The byte enable lines byteenable_n may be connected to the
peripheral’s slave port. Interpretation of byteenable_n is
peripheral dependent for slave read transfers. In the simplest case,
the slave port ignores byteenable_n, and always drives all byte
lanes whenever read_n is asserted. The Avalon bus module
captures the full bit width of the readdata port every read transfer.
Therefore, if an individual byte lane is not enabled during a read
transfer, the value returned to the Avalon bus module is undefined,
which may or may not affect the master that ultimately receives the
data.

When chipselect is deasserted, all other input signals should be
ignored. The slave port outputs may be driven or left undefined
when the slave port is not selected. The chipselect signal driven
to the target peripheral may be combinatorial, based on registered
address values. Furthermore, a low-to-high edge on chipselect or
a high-to-low edge on read_n cannot be used as a start read transfer
trigger, because such an edge is not guaranteed.

Slave Read Transfer with Fixed Wait States

The ports used for a slave read transfer with fixed wait states are
identical to those used for a fundamental read transfer. The
difference is in the timing of signals only. Slave read transfers with
wait states are useful for peripherals that cannot present data within
a single clock cycle. For example, with one fixed wait state specified,
the Avalon bus module presents a valid address and control, but
waits for one clock cycle before capturing the peripheral’s data.
Fixed wait states for a peripheral are declared in the PTF file. They
are fixed because the Avalon bus module waits a fixed number of bus
cycles every read transfer.
28 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 2 shows an example slave read transfer with one wait state.
The Avalon bus module presents address, byteenable_n,
read_n and chipselect during the first bus cycle. Because of the
wait state, the peripheral does not have to present readdata within
the first bus cycle; the first bus cycle is the first (and only) wait state.
The slave port may capture address and control signals at any time.
On-chip, synchronous peripherals will probably capture address
and control on the rising edge of clk at the start of the second bus
cycle (the end of the wait state). During the second bus cycle, the
target peripheral presents its readdata to the Avalon bus module.
On the third and final rising clock edge, the Avalon bus module
captures readdata from the slave port, and completes the transfer.

Example 2. Slave Read Transfer with One Fixed Wait State (Part 1 of 2)

This Example Demonstrates Relevant PTF Parameters

Read transfer from a synchronous peripheral

1 fixed wait state Read_Wait_States = “1”

No setup time Setup_Time = “0”

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
M

as
te

r P
or

t
Pe

rip
he

ra
l

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

Control

Data

Address

read_n

chipselect

readdata
Altera Corporation 29

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 2: Slave Read Transfer with One Fixed Wait State (Part 2 of 2)

Example 2 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Registered outputs address and read_n from Avalon bus to slave are valid
(C) Avalon bus decodes address & asserts chipselect.
(D) Rising edge of clk marks the end of the first and only wait-state bus cycle. If the slave port is synchronous, it probably captures

address, read_n & chipselect on this rising edge of clk.
(E) Peripheral presents valid readdata during the second bus cycle.
(F) Avalon bus module captures readdata on the rising edge of clk, and the read transfer ends here. The next bus cycle could

be the start of another bus transfer

Read transfers with a single wait state are frequently used for
synchronous, on-chip peripherals. Sound PLD design methodology
dictates that the interface between modules should be synchronized
with registers. Adding a wait state makes the transfer more
amenable to PLD design, because the peripheral can capture
synchronous signals address, byteenable_n, read_n and
chipselect on the rising edge of clk after chipselect is
asserted. The target peripheral then has at least one full bus cycle to
present data back to the Avalon bus module. For higher bandwidth
with pipelined read transactions, see “Avalon Read Transfers with
Latency” on page 54.
30 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 3 on shows a read transfer with multiple fixed wait states.
This case is almost identical to Example 2 on page 29, except that the
Avalon Bus now waits for more than one bus cycle before sampling
the readdata from the slave peripheral.

Example 3. Slave Read Transfer with Multiple Fixed Wait States

Example 3 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Registered outputs address and read_n from Avalon bus to slave are valid
(C) Avalon bus decodes address then asserts chipselect.
(D) Rising edge of clk marks the end of the first wait-state bus cycle. If the slave port is synchronous, it probably captures

address, read_n & chipselect on this rising edge of clk.
(E) Rising edge of clk marks the end of the second (and last) wait state.
(F) Peripheral presents valid readdata sometime during the third cycle.
(G) Avalon bus module captures readdata on the rising edge of clk, and the read transfer ends here. The next bus cycle could

be the start of another bus transfer.

This Example Demonstrates Relevant PTF Parameters

Read transfer from a synchronous peripheral

2 fixed wait states Read_Wait_States = “2”

No setup time Setup_Time = “0”

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
M

as
te

r P
or

t
Pe

rip
he

ra
l

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

Control

Data

Address

read_n

chipselect

readdata
Altera Corporation 31

Avalon Bus Specification Avalon Bus Specification Reference Manual
Slave Read Transfer with Peripheral-Controlled Wait States

Peripheral-controlled wait states allow a target peripheral to stall the
Avalon bus module for as many bus cycles as required to present
data. Using this transfer mode, a peripheral can take a variable
amount of time to present data to the Avalon bus module.

Example 4 on page 33 shows slave read transfer with peripheral-
controlled wait states. The peripheral-controlled wait state mode
uses the waitrequest signal, which is an output from the slave
port. After read_n is asserted to the slave port, the slave port must
return waitrequest within the first bus cycle if it wishes to extend
the read transfer. When asserted, waitrequest stalls the Avalon
bus module and prevents it from capturing readdata. The Avalon
bus module will capture readdata on the next rising edge of clk
after waitrequest is deasserted.

The Avalon bus module does not have a time-out feature to limit
how long the slave port can stall. When the Avalon bus module is
stalled, somewhere in the system module there is a master peripheral
that is stalled as well, waiting for the requested data to come back
from the addressed slave peripheral. A slave port could permanently
“hang” the master port. Therefore, the peripheral designer must
ensure that a slave peripheral does not assert waitrequest
indefinitely.
32 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 4. Slave Read Transfer with Peripheral-Controlled Wait States

Example 4 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Registered outputs address and read_n from Avalon bus to slave are valid
(C) Avalon bus decodes address then asserts chipselect.
(D) Slave port asserts waitrequest before the next rising edge of clk.
(E) Avalon bus module samples waitrequest at the rising edge of clk. waitrequest is asserted. so readdata is not captured

on this clock edge.
(F-G)With waitrequest asserted throughout, an infinite number of bus cycles elapse.
H) Slave port presents valid readdata.
(I) Slave port deasserts waitrequest.
(J) Avalon bus module captures readdata on the next rising edge of clk, and the read transfer ends here. The next bus cycle

could be the start of another bus transfer.

This Example Demonstrates Relevant PTF Parameters

Read transfer from synchronous peripheral

More than one peripheral-controlled wait state Read_Wait_States = "peripheral_controlled"

No setup Setup_Time =”0”

Pe
rip

he
ra

l
clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

ControlControl

DataData

AddressAddress

read_n

chipselect

readdatareaddata

waitrequestwaitrequest

wait
request
wait
request
Altera Corporation 33

Avalon Bus Specification Avalon Bus Specification Reference Manual
When peripheral-controlled wait states are specified, the following
restrictions apply to other bus transfer modes. These restrictions
apply only to transfers with this specific slave port, not to any other
peripheral connected to the Avalon bus module.

If peripheral-controlled wait states are specified, setup and hold wait
states cannot be used. In almost all cases, a peripheral that can
generate the waitrequest signal will be on-chip and synchronous
causing setup and hold time considerations unnecessary.

Slave Read Transfer with Setup Time

The Avalon bus module automatically accommodates setup time
requirements for each slave port, based on declarations made in the
PTF file. The master peripheral that initiates the read transfer does
not need to consider the setup and hold requirements of each slave
port. The ports used for a read transfer with setup time are identical
to those used for a fundamental read transfer. The difference is in the
timing of signals only.

Setup time is generally used for off-chip peripherals that require
address and chipselect signals to be stable for a period of time
before the read enable signal is asserted. A nonzero setup time of N
means that, after address, byteenable_n and chipselect
signals are presented to the slave port, there is a delay of N bus cycles
before read_n is asserted. Note that chipselect is not affected by
the setup time. If the peripheral requires a setup time for both
read_n and chipselect, then the designer must manually add the
appropriate logic (one AND gate) to the interface.

The total number of bus cycles to complete the bus transfer depends
on setup and wait-state bus cycles. For example, a peripheral with
Setup_Time=”2” and Read_Wait_States=”3” will take 6 bus
cycles to complete the transfer:

■ 2 setup bus cycles plus
■ 3 wait-state bus cycles plus
■ 1 bus cycle to capture data
34 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 5 shows a slave read transfers with one bus cycle of setup
and one fixed wait state.

Example 5. Slave Read Transfer with Setup Time

Example 5 Time Reference Description
(A) First bus cycle on the rising edge of clk.
(B) Registered output address and byteenable_n from the Avalon bus module are valid. read_n remains deasserted.
(C) Avalon bus module decodes address then asserts chipselect.
(D) Rising edge of clk defines the end of the setup–time bus cycle (Tsu), and the start of the wait-state bus cycle.
(E) Avalon bus module asserts read_n
(F) Rising edge of clk marks the end of the wait-state bus cycle.
(G) Peripheral presents valid readdata.
(H) Avalon bus module captures readdata at the rising edge of clk, and the read transfer ends here. The next bus cycle could

be the start of another bus transfer.

This Example Demonstrates Relevant PTF Parameters

Read transfer from synchronous peripheral

1 bus cycle of setup time Setup_Time = “1”

1 fixed wait state Read_Wait_States = “1”

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
M

as
te

r P
or

t
Pe

rip
he

ra
l

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

Control

Data

Address

read_n

chipselect

readdata
Altera Corporation 35

Avalon Bus Specification Avalon Bus Specification Reference Manual
When setup time is specified for a peripheral on the Avalon bus, the
following restrictions apply to other bus transfer modes. These
restrictions apply only to this slave port, not to other peripherals
connected to the Avalon bus module.

If a peripheral is capable of both read and write bus transfers, and
setup time is specified, then the same setup time is applied to both
read and write transfers. Setup time cannot be used if the slave port
uses peripheral-controlled wait states.

Slave Write Transfers on the Avalon Bus

In the discussions of write transfers below, it is important to realize
that under realistic circumstances, bus transfers are not isolated
events. For example, a write transfer may immediately precede or
follow an unrelated read transfer. During the write bus transfer, the
target peripheral’s chipselect and write_n signals are
necessarily asserted, as shown in the timing diagrams. However,
after the write transfer terminates, chipselect and write_n may
remain asserted if another transfer with this slave port follows on the
next bus cycle. Therefore, the timing diagrams below show unknown
values on the slave port signals before and after the write transfer.

Fundamental Slave Write Transfer

The fundamental slave write transfer is the basis for all Avalon write
transfers. All other slave write transfer modes use a super set of the
fundamental signals, and implements a variation of the fundamental
timing. The fundamental slave write transfer is initiated by the
Avalon bus module, and transfers one unit of data from the Avalon
bus module to the slave port. Fundamental slave write transfers have
no latency.
36 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 6 shows the fundamental slave write transfer. There are
zero wait states, and no setup-time or hold-time wait states. The
Avalon bus module presents address, writedata,
byteenable_n, and write_n, and then asserts chipselect. The
slave port captures the address, data and control on the next rising
clock edge, and the write transfer terminates immediately. The entire
transfer takes only one bus cycle. The slave peripheral may then take
additional clock cycles to actually process the write data after the
transfer terminates. If the peripheral cannot sustain consecutive
write transfers on every bus cycle, then additional design
considerations are required to generate wait states.

Example 6. Fundamental Slave Write Transfer

Example 6 Time Reference Description
(A) Write transfer starts on the rising edge of clk.
(B) Registered writedata, address, byteenable_n and write_n signals from the Avalon bus module are valid.
(C) Avalon bus module decodes address and asserts valid chipselect to slave.
(D) Avalon bus module captures writedata, address, write_n, byteenable and chipselect on the rising edge of clk,

and the transfer terminates. Another read or write transfer may follow on the next bus cycle.

This Example Demonstrates Relevant PTF Parameters

A single write transfer to a synchronous peripheral

No fixed wait state Write_Wait_States = “0”

No setup time Setup_Time = “0”

No hold time Hold_Time = “0”

Pe
rip

he
ra

l

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

ControlControl

DataData

AddressAddress
write_n

chipselect

writedata
wait
request
wait
request
Altera Corporation 37

Avalon Bus Specification Avalon Bus Specification Reference Manual
The fundamental write transfer is only appropriate for synchronous
peripherals, which includes many on-chip peripherals, such as PIOs
and timers for the Nios® processor. The timing for a fundamental
write transfer is not appropriate for asynchronous peripherals,
because all output signals including write_n and chipselect are
all deasserted at the same time. This would cause a race condition in,
for example, an off-chip asynchronous memory. For such a memory,
the Avalon bus module provides several hold time options, which
are discussed in subsequent sections.

The byte enable lines byteenable_n may be connected to the
peripheral’s slave port, and may be used to write a specific byte lane
when writedata is wider than one byte wide. byteenable_n is a
bus with one bit for every byte lane in writedata. byteenable_n
is usually necessary for slave write transfers to off-chip, 16-bit or 32-
bit memory devices that are word addressable. When writing a
single byte of data, address specifies only an appropriate word or
half-word address, while byteenable_n specifies exactly which
byte(s) to write. Some example cases of byteenable_n are specified
below in Table 3, assuming the slave port is a 32-bit external
memory.

When chipselect is deasserted, all slave port input signals should
be ignored. The slave port’s outputs may be driven or left undefined
when the slave port is not selected. Note that the chipselect signal
from the Avalon bus module may be combinatorial, and therefore
may glitch, based on transitions on the address port. Furthermore,
a low-to-high edge on chipselect or a high-to-low edge on
write_n cannot be used as a start write transfer trigger, because
such an edge is not guaranteed to be clean. If this is not taken into
consideration, the slave port will interpret erroneous write
operations into unknown locations specified by an undefined
address.

Table 3. Byte Enable Usage for 32-bit Slave

byteenable_n[3:0] Write action

0000 Write full 32-bits

1100 Write lower 2 bytes

0011 Write upper 2 bytes

1110 Write byte 0 only

1011 Write byte 2 only
38 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Slave Write Transfer with Fixed Wait States

The ports used for a write transfer with fixed wait states are identical
to those used for a fundamental write transfer. The only difference is
in the timing of signals. For example, with one fixed wait state
specified, the Avalon bus module waits for one additional clock cycle
before deasserting the address, data and control signals. Wait states
are specified by declarations made in the PTF file. They are fixed
because the Avalon bus module inserts the same number of wait
states for every bus transfer.

Write transfers with wait states are typically used for peripherals
that cannot capture data from the Avalon bus module in a single bus
cycle. In this transfer mode, the Avalon bus module presents
address, writedata, byteenable_n, write_n and
chipselect during the first bus cycle, exactly like the start of a
fundamental write transfer. During the wait states, these signals are
held constant. The slave port eventually captures data from the
Avalon bus module within the fixed number or wait states. The
transfer then terminates, and the Avalon bus module deasserts all
signals at the same time.
Altera Corporation 39

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 7 shows an example of a slave write transfer with one wait
state.

Example 7. Slave Write Transfer with One Fixed Wait State

Example 7 Time Reference Description
(A) Write transfer cycle starts on the rising edge of clk.
(B) Registered writedata, address, byteenable_n, and write_n signals from Avalon bus module are valid.
(C) Avalon bus module decodes address and asserts valid chipselect to slave.
(D) First (and only) wait state bus cycle ends at the rising edge of clk. All signals from Avalon bus module remain constant.
(E) Peripheral captures writedata, address, byteenable_n, write_n, and chipselect on or before the rising edge of

clk, and the write transfer terminates.

This Example Demonstrates Relevant PTF Parameters

Write transfer with wait states to a synchronous slave peripheral

One fixed wait state Write_Wait_States = “1”

No setup time Setup_Time = “0”

No hold time Hold_Time = “0”

Pe
rip

he
ra

l

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

ControlControl

DataData

AddressAddress
write_n

chipselect

writedata
wait
request
wait
request
40 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Slave Write Transfer with Peripheral-Controlled Wait States

Peripheral-controlled wait states allow a target peripheral to stall the
Avalon bus module for as many bus cycles as required to capture
writedata. This feature is useful for peripherals that may require
an indefinite number of bus cycles to capture the write data,
depending on conditions that vary from transfer to transfer.

The peripheral-controlled wait state mode uses the waitrequest
signal, which is an output from the slave port. The Avalon bus
module presents address, writedata, byteenable_n, write_n
and chipselect during the first bus cycle, exactly like the start of a
fundamental write transfer. If the slave port needs extra time to
capture the data, then it must assert waitrequest before the next
rising clock edge. When asserted, waitrequest stalls the Avalon
bus module, and forces it to hold address, writedata,
byteenable_n, write_n and chipselect constant. After the
slave deasserts waitrequest, the bus transfer terminates on the
next rising clock edge.

The Avalon bus module does not have a time-out feature to limit
how long the slave peripheral can stall. When the Avalon bus
module is stalled, somewhere in the system module there is a master
peripheral that is stalled as well, waiting for the slave port to capture
the write data. A slave peripheral could permanently hang a master
peripheral. Therefore, the peripheral designer must ensure that a
slave port does not assert waitrequest indefinitely.
Altera Corporation 41

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 8 shows an example of a slave write transfer with a
peripheral-controlled wait state.

Example 8. Slave Write Transfer with Peripheral-Controlled Wait States

Example 8 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Registered outputs address, writedata, byteenable_n and write_n signals from Avalon bus module to slave are

valid.
(C) Avalon bus module decodes address, then asserts chipselect.
(D) Peripheral asserts waitrequest before the next rising edge of clk.
(E) Avalon bus module samples waitrequest at the rising edge of clk. If waitrequest is asserted, the bus cycle becomes

a wait state, and address, writedata, byteenable_n, write_n and chipselect remain constant.
(F-G)With waitrequest asserted throughout, an arbitrary unlimited number of bus cycles elapse.
(H) Eventually the slave port captures writedata.
(I) Slave port deasserts waitrequest.
(J) The write transfer ends on the next rising edge of clk. The next bus cycle could be the start of another bus transfer.

This Example Demonstrates Relevant PTF Parameters

Write transfer to synchronous peripheral

More than one peripheral-controlled wait state Write_Wait_States = "peripheral_controlled"

No setup time Setup_Time =”0”

No hold time Hold_Time = “0”

Pe
rip

he
ra

l

clk

address, byteenable_n

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

Control

Data

Address
write_n

chipselect

writedata

waitrequestwait
request

Pe
rip

he
ra

l

Sl
av

e
Po

rt
42 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
When peripheral-controlled wait states are specified, the following
restrictions apply to other bus transfer modes. These restrictions
apply only to this slave port, not to other slave ports connected to the
Avalon bus module.

If peripheral-controlled wait states are specified, setup and hold wait
states cannot be used. In almost all cases, a peripheral that can
generate the waitrequest signal will be on-chip and synchronous
that causes setup and hold time considerations unnecessary.

Slave Write Transfer with Setup and Hold Time

The Avalon bus module automatically accommodates setup and
hold time requirements for each slave port, based on declarations
made in the PTF file. The master peripheral that initiates the write
transfer does not need to consider the setup and hold requirements
of each slave port. The ports used for a write transfer with setup and
hold time are identical to those used for a fundamental write
transfer. The difference is in the timing of signals only.

Setup and hold time are generally used for off-chip peripherals that
require address, byteenable_n, writedata, and chipselect
to remain stable for some amount of time before and/or after the
write_n pulse. A nonzero setup time of M means that, after
address, byteenable_n, writedata and chipselect signals
are presented to the slave peripheral, there is a delay of M bus cycles
before write_n is asserted. Likewise, a nonzero hold time of N
means that, after write_n is deasserted, address, byteenable_n,
writedata and chipselect remain constant for N more bus
cycles. Note that chipselect is not affected by the setup or hold
time. If the peripheral requires a setup or hold time for both
write_n and chipselect, then the designer must manually add
the appropriate logic (one AND gate) to the slave port interface.

The total number of bus cycles to complete the bus transfer depends
on setup, wait-state and hold bus cycles. For example, a peripheral
with Setup_Time = ”2” and Write_Wait_States = ”3” and
Hold_Time = ”2” will take 8 bus cycles to complete the transfer:

■ 2 setup bus cycles plus
■ 3 wait-state bus cycles plus
■ 2 hold bus cycles plus
■ 1 bus cycle to capture data
Altera Corporation 43

Avalon Bus Specification Avalon Bus Specification Reference Manual
A slave port does not have to use both setup and hold time at the
same time; transfers with only setup or only hold time are
acceptable. Example 9 shows a write transfer with both a setup and
a hold time requirement.

Example 9. Slave Write Transfer with Setup & Hold Times

Example 9 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Registered outputs address, byteenable_n and writedata signals from Avalon bus module are valid, write_n

remains deasserted.
(C) Avalon bus module decodes address, then asserts chipselect.
(D) Rising edge of clk marks the end of the setup bus cycle.
(E) Avalon bus module asserts write_n.
(F) Avalon bus module deasserts write_n after the next rising edge of clk, address, byteenable_n, writedata and

chipselect remain constant as the hold-time bus cycle begins.
(G) Avalon bus module deasserts address, byteenable_n, writedata and chipselect on the next rising edge of clk

and the write transfer terminates.

This Example Demonstrates Relevant PTF Parameters

Write transfer to synchronous peripheral

No fixed wait state Write_Wait_States = “0”

1 bus cycle of setup time Setup_Time = “1”

1 bus cycle of hold time Hold_Time = “1”

Pe
rip

he
ra

l

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

ControlControl

DataData

AddressAddress
write_n

chipselect

writedata
wait
request
wait
request
44 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
When setup and/or hold time is specified for a slave port on the
Avalon bus, the following restrictions apply to other bus transfer
modes. These restrictions apply only to this slave port, not to other
peripherals connected to the Avalon bus module.

If a setup time is specified for a slave peripheral, then the same setup
time is applied to both read transfers and write transfers. Setup and
hold time cannot be used if the slave port uses peripheral-controlled
wait states.

Avalon Master
Transfers

The following sections discuss bus transfers between a master port
and the Avalon bus. From an abstract, system-level viewpoint,
master peripherals exchange data with slave peripherals. However,
from the viewpoint of a master peripheral, data is transferred
between the peripheral’s master port and the Avalon bus module
only. If the master peripheral does not access a defined address in an
existing slave peripheral with a slave port connected to the Avalon
bus module, an undefined behavior will result. However, the
existence of the slave peripheral does not affect the master port
interface to the Avalon bus module. It is the Avalon bus module that
accepts a transfer from the master port. The Avalon bus module—
not the master port—then initiates a slave transfer with the
appropriate slave port, and terminates the slave transfer. Therefore,
in the following discussions the interface between the master port
and the Avalon bus module is the exclusive focus of this discussion.

Compared to the numerous Avalon slave transfer modes, master
transfer modes are few and simple. The following discussions
assume that the Avalon master peripheral is a synchronous, on-chip
module, which is almost always true for Avalon master peripherals.
This eliminates the need to consider the myriad requirements of
interfacing to off-chip devices. In the event that the master peripheral
must reside off-chip—especially in the case that the master address
and/or data lines share a tri-state bus—an on-chip bridge module is
required to relay the off-chip master’s signals to an on-chip Avalon
master port.

There is essentially one golden rule of master transactions: Assert all
signals to initiate the bus transfer, and then wait until the Avalon bus
module deasserts waitrequest. With this one rule and the
fundamental slave read and write transfers in mind, the master port
interface is readily understood.
Altera Corporation 45

Avalon Bus Specification Avalon Bus Specification Reference Manual
It is important to realize that under realistic circumstances, bus
transfers are not isolated events. They typically happen in
continuous succession. For example, a master port may initiate a
read transfer from a slave port immediately before or after a write
transfer to an unrelated peripheral. During the read bus transfer, the
master port’s read enable signal is necessarily asserted. However,
after the read transfer terminates, the read enable may remain
asserted if another read transfer will be initiated on the next bus
cycle.

Avalon Signals for Master Transfers

Table 4 below lists the signal names that interface a peripheral’s
master port to the Avalon bus module and gives a brief description
of which ports are required and under what circumstances. Not all of
the signals listed in Table 4 are present on all peripherals, depending
on the peripheral design and the ports declared in the peripheral’s
PTF file.

Table 4. Avalon Master Port Signals (Part 1 of 2)

Signal Type Width Direction Required Description

clk 1 in yes Global clock signal for the system module and
Avalon bus module. All bus transactions are
synchronous to clk.

reset 1 in no Global reset signal. Implementation is peripheral-
specific.

address 1 - 32 out yes Address lines from the Avalon bus module. All
Avalon masters are required to drive a byte
address on their address output port.

byteenable 0, 2, 4 out no Byte-enable signals to enable specific byte lane(s)
during transfers to memories of width greater than
8 bits. Implementation is peripheral-specific.

read 1 out no Read request signal from master port. Not
required if master never performs read transfers. If
used, readdata must also be used.

readdata 8, 16, 32 in no Data lines from the Avalon bus module for read
transfers. Not required if the master never
performs read transfers. If used, read must also
be used.

write 1 out no Write request signal from master port. Not
required if the master never performs write
transfers. If used, writedata must also be used.
46 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
In the following discussions of Avalon master transfers, the read,
write and byteenable signals are used in their active-low form, which
is similar to the traditional convention of using active-low read
enable, write enable and byte enable signals. Note the following:

■ These signals appear in the form read_n, write_n and
byteenable_n.

■ Any port of an Avalon signal type may be used with active high
or low polarity, based on the port’s declaration in the PTF file.

writedata 8, 16, 32 out no Data lines to the Avalon bus module for write
transfers. Not required if the master never
performs write transfers. If used, write must also
be used.

waitrequest 1 in yes Forces the master port to wait until the Avalon bus
module is ready to proceed with the transfer.

irq 1 in no Interrupt request has been flagged by one or more
slave ports.

irqnumber 6 in no The interrupt priority of the interrupting slave port.
Lower value has higher priority.

endofpacket 1 in no Signal for streaming transfers. May be used to
indicate an end of packet condition from the slave
to the master port. Implementation is peripheral-
specific.

readdatavalid 1 in no Signal for read transfers with latency and is for a
master only. Indicates that valid data from a slave
port is present on the readdata lines. Required if
the master is latency-aware.

flush 1 out no Signal for read transfers with latency. Master can
clear any pending latent read transfers by
asserting flush.

Table 4. Avalon Master Port Signals (Part 2 of 2)

Signal Type Width Direction Required Description
Altera Corporation 47

Avalon Bus Specification Avalon Bus Specification Reference Manual
Fundamental Master Read Transfers on the Avalon Bus

In the fundamental master read transfer, the master initiates the bus
transfer on a rising clock edge by presenting valid address and read
request signals to the Avalon bus module. Ideally, the read data
returns from the Avalon bus module before the next rising clock
edge, and the read transfer terminates in one bus cycle. If the read
data is not ready by the next rising clock edge, the Avalon bus
module asserts a wait request and stalls the master port until data
has been fetched from the addressed slave port. The fundamental
master read transfer has no latency.

1 See “Advanced Avalon Bus Transfers” on page 54 for
master read transfer with latency and streaming master
transfer information.

The master read transfer starts on the rising edge of clk.
Immediately after the first rising edge of clk, the master asserts the
address and read_n signals. If the Avalon bus module cannot
present readdata within the first bus cycle, it asserts
waitrequest before the next rising edge of clk. If the master sees
waitrequest asserted on the rising edge of clk, then it waits. The
master must hold all outputs constant until the next rising clock edge
after waitrequest is deasserted. After waitrequest is
deasserted, the master port then captures readdata on the next
rising edge of clk, and deasserts address and read_n. The master
may initiate another transfer immediately during the next bus cycle.
48 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 10 shows which waitrequest is never asserted by the
Avalon bus module. The read transfer ends in one bus cycle.

1 Even though waitrequest is never asserted, it is still an
active signal in the fundamental master read transfer.

Example 10. Master Read Transfer with No Wait State

Example 10 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Master port asserts valid address, byteenable_n and read_n.
(C) Valid readdata returns from Avalon bus module during first bus cycle.
(D) Master port captures readdata on the next rising edge of clk and deasserts all its outputs. The read transfer ends here and

the next bus cycle could be the start of another bus transfer.

A fundamental read transfer with zero wait states is generally only
achievable when the addressed slave peripheral is asynchronous
with no latency.

Pe
rip

he
ra

l

clkclk

addressaddress

M
at

er
 P

or
t

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

A
va

lo
n

B
us

M
od

ul
e

ControlControl

Data

Address

byteenable_nbyteenable_n

read_nread_n

waitrequestwaitrequest

readdatareaddata
Altera Corporation 49

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 11 shows when waitrequest is asserted by the Avalon
bus module for an indefinite number of bus cycles. If N is the number
of bus cycles that the Avalon bus module asserts waitrequest,
then the total bus transfer will take (N + 1) bus cycles.

Example 11. Master Read Transfer with Wait States

Example 11 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Master asserts valid address, byteenable_n and read_n.
(C) Avalon bus module asserts waitrequest before the next rising edge of clk.
(D) Master port sees waitrequest at the rising edge of clk. This bus cycle becomes a wait state.
(E-F) As long as waitrequest is asserted, master holds all outputs constant.
(G) Valid readdata returns from Avalon bus module.
(H) Avalon bus module deasserts waitrequest.
(I) Master port captures readdata on the next rising edge of clk and deasserts all outputs. The read transfer ends here, and the

next bus cycle could be the start of another bus transfer.

The Avalon bus module does not offer a time-out feature to the
master port. The master port must stall for as long as waitrequest
remains asserted.

If the master port uses the byteenable_n signal, all
byteenable_n lines must be asserted during master read transfers.
A master port can use byteenable_n to specify individual byte
lanes during master write transfers to wide peripherals, but
byteenable_n is not used for master read transfers and must be
asserted.

Fundamental Master Write Transfer on the Avalon Bus

The fundamental master write transfer is used for almost all write
transfers to a peripheral with no latency. The master initiates the bus
transfer on a rising clock edge, by presenting address, data, and
write request signals. Ideally, the target peripheral captures the data
on the next rising clock edge, and the write transfer terminates in one
bus cycle. If the target peripheral’s slave port cannot capture data
during the first bus cycle, the Avalon bus module stalls the master
port until the slave port captures the data.
50 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
The master write transfer starts on the rising edge of clk.
Immediately after the first rising edge of clk, the master asserts the
address, writedata and write_n signals. If the data cannot be
captured by the next rising clock edge, the Avalon bus module
asserts waitrequest during the first bus cycle. The master must
keep address, writedata and write_n asserted constantly until
the next rising clock edge after waitrequest is deasserted. After
waitrequest is deasserted, the master port deasserts address,
readdata and read_n on the next rising edge of clk. The master
may initiate another master transfer during the next bus cycle.
Altera Corporation 51

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 12 shows an example of a fundamental master write
transfer. In this example, the Avalon bus module does not assert
waitrequest and the transfer terminates in one bus cycle.

Example 12. Fundamental Master Write Transfer

Example 12 Time Reference Description
(A) Write transfer starts on the rising edge of clk.
(B) Master asserts valid address, byteenable_n, writedata, and write_n.
(C) waitrequest is not asserted at the rising edge of clk, so write transfer terminates. Another read or write transfer may follow

on the next bus cycle.

Pe
rip

he
ra

l

Pe
rip

he
ra

l

clkclk

addressaddress

M
at

er
 P

or
t

Sl
av

e
Po

rt

A
va

lo
n

B
us

M
od

ul
e

ControlControl

DataData

AddressAddress

byteenable_nbyteenable_n

write_nwrite_n

waitrequestwaitrequest

writedatawritedata
52 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
A write transfer with zero wait states is generally only achievable
when the target peripheral is a synchronous peripheral with no
latency. Example 13 shows an example in which waitrequest is
asserted by the Avalon bus module for two bus cycles. The entire
write transfer takes three bus cycles.

Example 13. Fundamental Master Write Transfer with Two Wait Requests

Example 13 Time Reference Description
(A) Write transfer on the rising edge of clk.
(B) Master asserts valid address, data and write_n.
(C) waitrequest is asserted at the rising edge of clk, so this bus cycle becomes the first wait state. Master holds all outputs

constant.
(D) waitrequest is asserted at the rising edge of clk again, so this becomes the second wait state. Master holds all outputs

constant.
(E) Avalon bus module deasserts waitrequest.
(F) waitrequest is not asserted a the rising edge of clk, so master deasserts all outputs, and the write transfer terminates.

Another read or write transfer may follow on the next bus cycle.

A master port may use the byte enable signal byteenable_n to
write to specific byte lanes. When present, byteenable_n is a bus
of 2- or 4-bits wide with one bit for every byte lane in writedata.
byteenable_n is usually necessary for write transfers to off-chip
16-bit or 32-bit memory devices that are word addressable. Some
example cases of 32-bit master byteenable_n usage are specified
in Table 5.

Table 5. Byte Enable Usage for 32-bit Master

byteenable_n[3:0] Write action

0000 Write full 32-bits

1100 Write lower 2 bytes

0011 Write upper 2 bytes

1110 Write byte 0 only

1011 Write byte 2 only
Altera Corporation 53

Avalon Bus Specification Avalon Bus Specification Reference Manual
To write a single byte, the master port should present the byte
address rounded down to the nearest master word size and then
assert the byteenable_n [byte address - master_word_address]
signal to the byteenable pin. If a master port does not have a
byteenable pin, the Avalon bus module permanently enables all
byte lanes for all write transfers from this master port.

As an example, a 32-bit master writing a byte to address 0xE would
assert 0xC on its address and assert byteenable[3]. A 64-bit master
would have address 0x8 and assert byteenable[7] to write a byte
to the same location.

Advanced Avalon
Bus Transfers

This section describes advanced Avalon bus transfers including bus
transfers with latency, streaming transfers, and Avalon bus control
signals.

Avalon Read Transfers with Latency

Avalon read transfers with latency increase the bandwidth for
synchronous peripherals that require several cycles of latency for the
first access, but can return data every bus cycle thereafter. There is no
Avalon write transfer with latency, because Avalon write transfers
do not require an acknowledge signal to return from the slave port.
Latent transfers allow a master to issue a read request, move on to an
unrelated task, and receive the data later. This process is often
referred to as “posted reads.” The unrelated task could be issuing
another read transfer, even though data from the first transfer has
not returned yet. This scenario is useful for CPU instruction fetch
transfers and DMA read transfers. In these cases, the CPU or the
DMA master may pre-fetch expected data, thereby keeping the
synchronous memory active and reducing the average access time.

The duration of a read transfer with latency can be divided into two
distinct phases, the address phase and the data phase. The key to
transfers with latency is the decoupling of the transfer’s address and
data phases by providing an extra control signal readdatavalid to
indicate that valid data has returned from the readdata port.
54 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
The logic that controls the address and data phases is like two semi-
independent ports. An address port initiates the transfer during the
address phase, and a data port fulfills the transfer by delivering the
data during the data phase. The address and data ports operate
independently, except the data port only returns data requested by
the address port. Issuing address and control signals to initiate a
transfer and capturing the resultant data are conducted
independently, and possibly simultaneously. After the Avalon bus
module captures an address, the master is free to perform other
operations, including issuing more read transfers on its master port.
Later (or immediately) during the data phase, the slave port returns
valid readdata and the appropriate master’s readdatavalid is
asserted.

Latency and wait states are different, but both can occur during a
single transfer.

■ Wait states—A slave peripheral’s wait states determine the
length of the address phase (i.e., how many clock cycles are
required to capture the address), which determines the
maximum throughput. For example, if a slave port requires one
wait state to present valid data, then at best, the port can
complete only one transfer per two clock cycles.

■ Latency—Latency determines the length of the data phase (i.e.,
how many clock cycles required for valid data to return), but
does not affect the address phase. For example, when accessing
a latent slave port with no wait states, a latency-aware master
can issue a new read transfer on every clock cycle. The master
port can maintain maximum throughput, even though it may
wait a few clock cycles of latency for the first valid readdata to
return.

1 SOPC Builder automatically generates an Avalon bus
module that seamlessly connects any combination of latent
or non-latent masters with latent or non-latent slaves.

Master and slave peripherals do not need to know the latency
capabilities of the peripherals with which they communicate; the
Avalon bus module makes transfers with latency work whenever
possible. Therefore, designers can create general-purpose latency-
aware master and slave peripherals without a priori knowledge of the
overall system architecture or latency.
Altera Corporation 55

Avalon Bus Specification Avalon Bus Specification Reference Manual
Slave Read Transfer with Fixed Latency

A slave port with fixed latency must be declared with a nonzero
Read_Latency assignment in the system PTF file. An Avalon slave
port with nonzero latency takes one or more bus cycles to produce
data after address and control signals have been captured from the
Avalon bus module. After the slave port captures the address, the
Avalon bus module may immediately initiate a new transfer, even
before valid readdata has returned from the previous transfer.
Recall that non-latent Avalon slave transfers never terminate until
the slave has presented valid readdata to the Avalon bus module.
Therefore, non-latent slaves can have only one pending transfer at a
time. Slave ports with nonzero read latency may have multiple
transfers pending at any given time.

The slave read transfer with latency has two distinct phases: the
address phase and the data phase. The timing and sequence of
signals during the address phase is identical to that of non-latent
Avalon bus transfers, except for the readdata signal. During the
address phase, the slave port may use setup time and wait states,
including peripheral-controlled wait states. After any setup and/or
wait states, the slave port must capture address by the last rising
clock edge of the transfer. Recall that for read transfers with no
latency, valid readdata is always asserted on this last rising edge of
clk. For transfers with latency, readdata is not asserted during the
address phase. Immediately after the address phase completes, the
Avalon bus module can initiate a new transfer.

During the data phase, the peripheral processes the address over
multiple clock cycles and then produces readdata after a fixed
latency. If the peripheral’s read latency is N, the slave port must
present valid readdata on the Nth rising edge of clk after the edge
at which address was captured. This latency is fixed; the slave port
is absolutely obliged to assert valid readdata N bus cycles after it
captures address. For example, if the slave port has a read latency
of 1 (i.e., the PTF file declares Read_Latency = 1), the slave port
presents valid data on the next (i.e., the first) rising edge of clk after
capturing address. The data phase and the bus transfer end after
the slave presents readdata.
56 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 14 shows several data transfers between the Avalon bus
module and a latent slave port with a PTF assignment of
Read_Latency = 2. This slave port uses peripheral-controlled
wait states. Slave read transfers with nonzero latency are not
guaranteed to have sequential address locations. For example, if
there are multiple masters in the system, the slave port does not have
control (nor awareness) of the order the Avalon bus module grants
access to the masters. A slave port with nonzero read latency can be
accessed by master ports that are not latency-aware, and this case
does not require any special design considerations. The Avalon bus
module accommodates this case by simply forcing the master port to
wait until the slave port returns valid data for each transfer. This
situation limits the specific master-slave pair to performing a single
transfer at a time.

Example 14. Slave Read Transfer with Latency (Part 1 of 2)

This Example Demonstrates Relevant PTF Parameters

Two bus cycles of latency Read_Latency = “2”

Peripheral-controlled wait states Read_Wait_States = “peripheral_controlled”

Pe
rip

he
ra

l

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

ControlControl

DataData

AddressAddress

read_n

chipselect

readdatareaddata

waitrequestwaitrequest

wait
request
wait
request
Altera Corporation 57

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 14: Slave Read Transfer with Latency (Part 2 of 2)

Example 14 Time Reference Description
(A) Avalon bus module initiates a read transfer by presenting chipselect, read_n and address for the address phase of the

new transfer.
(B) The slave port has asserted waitrequest so the previous bus cycle becomes a wait state. The Avalon bus module holds

chipselect, read_n and address constant.
(C) The slave port deasserts waitrequest and captures address at the rising edge of clk. The address phase ends and the

data phase starts here.
(D) First latency cycle ends this rising edge of clk.
(E) Second latency cycle ends on rising edge of clk. The slave data port presents valid readdata, and the transfer ends here.

This edge of clk also marks the beginning of a new read transfer.
(F) Avalon bus module asserts address, read_n and chipselect for the next read transfer.
(G) Avalon bus module issues another read transfer during the next bus cycle, before the data from the last transfer returns.
(H) Avalon bus module captures readdata after two latency cycles.
(I) Avalon bus module captures readdata after two latency cycles.

Slave Read Transfer with Variable Latency

The Avalon interface allows for slave ports that return valid
readdata after a variable number of clock cycles. Slave read
transfers with variable latency are similar to slave read transfers with
fixed latency, and the same concept of address phase and data phase
applies. Slave ports with variable latency use an additional signal
readdatavalid to mark when valid data is presented to the
Avalon bus module. Slave ports that use the one-bit output signal
readdatavalid have variable latency by definition.

Slave ports with variable latency must not declare a nonzero
Read_Latency assignment in the system PTF file. A nonzero
Read_Latency assignment would declare the port to have fixed
latency. Slave ports with variable latency also must declare a
nonzero Maximum_Pending_Read_Transactions assignment in
the system PTF file. A pending read transfer is a transfer in progress
that has completed the address phase (i.e., the slave port has
captured the address from the Avalon bus module), for which the
corresponding readdata result has not yet returned. Slave ports
can only accept up to a fixed, predeclared number of pending
transactions, as defined by the
Maximum_Pending_Read_Transactions assignment.
58 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
After the address phase, a slave peripheral with variable read latency
can take an arbitrary number of clock cycles to return valid
readdata. When the peripheral is ready to return valid data, it
asserts readdata and readdatavalid simultaneously for one
clock cycle. The data phase and the entire transfer end on the next
rising clock edge, at which time the Avalon bus module captures
readdata and readdatavalid. The slave port must return
readdata in the order that it accepted the addresses.

Slave ports with variable latency must return readdata at least one
clock cycle after capturing address from the Avalon bus module. In
other words, slave ports with variable latency cannot present
readdata asynchronously, to be captured on the next clock edge
immediately after the Avalon bus module asserts address. This
timing would be identical to a slave read transfer with no wait states
and no latency.

If a slave port can reach its declared maximum number of pending
transfers, peripheral-controlled wait states are required. The slave
peripheral must assert its waitrequest output and stall any new
read transfers if it is already processing the declared maximum
number of pending read transactions. Typically, the peripheral logic
designer does not need to keep track of the number of pending read
transactions explicitly. The appropriate behavior for stalling arises if
the slave peripheral simply asserts waitrequest when its internal
read-request buffer or FIFO is full. The designer must, however,
inspect the slave peripheral’s logic and determine the largest number
of pending transactions it will process at one time. This number
determines the value of the slave’s
Maximum_Pending_Read_Transactions assignment.

Example 15 on page 60 shows several slave read transfers between
the Avalon bus module and a slave port with variable latency and a
PTF assignment of Maximum_Pending_Read_Transactions = 2.
This slave port uses peripheral-controlled wait states. Slave read
transfers with variable latency are not guaranteed to have sequential
address locations. For example, if there are multiple masters in the
system, the slave port does not have control (nor awareness) of the
order the Avalon bus module grants access to the masters. A slave
port with variable read latency can be accessed by master ports that
are not latency-aware, and this case does not require special design
considerations. The Avalon bus module accommodates this case by
simply forcing the master port to wait until the slave port returns
valid data for each transfer. This situation limits the specific master-
slave pair to performing a single transfer at a time.
Altera Corporation 59

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 15. Slave Read Transfers with Variable Latency (Part 1 of 2)

Example 15 Time Reference Description (Part 1 of 2)
(A) The Avalon bus module asserts address, read_n, and chipselect, initiating a read transfer. Assume that the peripheral

has no pending transfers at this point.
(B) The slave peripheral is not asserting waitrequest and therefore captures address1 on this rising edge of clk.
(C) The slave peripheral is not asserting waitrequest and therefore captures address2 on this rising edge of clk.
(D) The slave port has reached its maximum number of allowed pending transfers, and does not have valid data to return. The

peripheral asserts waitrequest before the next rising edge of clk, causing the Avalon bus module to continue asserting
address, read_n, and chipselect. The peripheral asserts waitrequest through two bus cycles until it can return data
for the first pending transfer.

(E) The peripheral drives valid readdata (data1) and asserts readdatavalid, completing the data phase for the first
pending transfer. The peripheral deasserts waitrequest because it can accept another pending transfer on the next rising
edge of clk. The peripheral is not obliged to deassert waitrequest just because there are fewer than the maximum number
of transfers pending. A peripheral can assert waitrequest to stall any transfers.

(F) The Avalon bus module captures data1 on this rising edge of clk. The slave peripheral captures address3 on this rising
edge of clk.

(G) The Avalon bus module captures data2 on this rising edge of clk, because the slave peripheral is asserting
readdatavalid. (data2 required 4 clock cycles of latency to return.) The Avalon bus module asserts address, read_n,
and chipselect, and the peripheral captures address4.

This Example Demonstrates Relevant PTF Parameters

Variable latency Read_Latency = 0

Maximum of 2 pending read transfers Maximum_Pending_Read_Transactions = “2”

Peripheral-controlled wait states Read_Wait_States = “peripheral_controlled”

readdata
valid

Pe
rip

he
ra

l
clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

Control

Data

Address

read_n

chipselect

readdata

waitrequest

wait
request

readdatavalid
60 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 15 Time Reference Description (Part 1 of 2)

(H) The Avalon bus module captures data3 on this rising edge of clk, because the slave peripheral is asserting
readdatavalid. (Note that data3 required 2 cycles of latency to return.) The Avalon bus module is asserting address,
read_n, and chipselect, and the peripheral captures address5.

(I) The Avalon bus module captures data4 on this rising edge of clk, because the slave peripheral is asserting
readdatavalid. The Avalon bus module has deasserted chipselect, ending the sequence of read transfers.

(J) The Avalon bus module does not capture data on this edge of clk because the slave peripheral has deasserted
readdatavalid.

(K) The Avalon bus module captures data5 on this rising edge of clk, completing the data phase for the final pending read
transfer.

Slave ports must return valid data for every transfer that is initiated;
a slave cannot “cancel” a transfer once it is initiated. Further, the
peripheral cannot refuse a transfer. Once the Avalon bus module
initiates the slave read transfer by asserting address and read_n,
the slave port must return valid data and complete the transfer. Slave
ports only have control over when they return data. The slave
peripheral can stall the Avalon bus module for as long as necessary
to capture the new address. Additionally, latency-aware slave
peripherals can take an arbitrary number of clock cycles to produce
valid readdata.

The Avalon bus module can initiate a slave write transfer even if the
slave peripheral is processing one or more pending read transfers.
The slave is still responsible for returning data for all pending read
transfers. If the slave peripheral cannot handle a write transfer while
it is processing pending read transfers, the slave port can assert its
waitrequest and stall the write operation until the pending read
transfers have completed.

If a slave port accepts a write transfer to the same address as a
currently pending read transfer, the result of the pending read
transfer is peripheral-dependent. The slave port could return the
data at the address prior to the write operation, or the slave port
could return the data at the address after the write operation.
Designers of Avalon slave ports with latency must specify the
behavior of their logic under this circumstance. “The outcome is
undefined,” is an acceptable specification.

When variable latency is specified for a slave port, the following
restrictions apply to other bus transfer modes:

■ Slave ports with variable latency cannot be used with fixed wait
states.

■ Slave ports of bus type “avalon_tristate” cannot have
variable read latency.
Altera Corporation 61

Avalon Bus Specification Avalon Bus Specification Reference Manual
■ Slave ports of bus type “avalon_tristate” cannot have a
readdatavalid output port.

1 These restrictions apply only to this slave port, not to other
peripherals connected to the Avalon bus module.

Master Read Transfer with Latency

A master peripheral that uses the one-bit input signal
readdatavalid is latency-aware by definition. A latency-aware
master peripheral can initiate a new master read transfer before it
receives valid data from a previous transfer. Recall that Avalon
master read transfers without latency never terminate until the
master has captured data from the Avalon bus module. Therefore,
non-latent masters can have only one pending transfer at a time.
Latency-aware master ports may have an arbitrary number of read
transfers pending at any given time.

The latency-aware master read transfer has two distinct phases: the
address phase and the data phase. The timing and sequence of
signals during the address phase is identical to that of non-latent
Avalon transfers, except for the readdata signal. The master
address port must present read and (if necessary) address and
byteenable, and must hold these signals constant as long as its
waitrequest input is asserted. The address phase ends on the first
rising edge of clk that waitrequest is not asserted. Recall that for
read transfers with no latency, valid readdata is always available
on this last rising edge of clk. For transfers with nonzero latency,
readdata may not be returned immediately after the address
phase. Valid readdata is returned sometime later when the Avalon
bus module asserts readdatavalid. Immediately after the address
phase completes, the master address port can initiate another read or
write transfer.

There are two rules for latency-aware Avalon master ports:

■ Once you initiate a transaction, heed the waitrequest signal.
■ For every read transfer that is initiated, the Avalon bus module

asserts readdatavalid for one clock cycle only. The master
port must capture valid readdata on the same rising edge of
clk when readdatavalid is asserted.
62 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
The Avalon bus module always returns valid readdata in the order
that it was requested by the master. At any time while the master
address port actively issues addresses, the master data port may be
capturing valid data from the current or a previous transfer, or may
be waiting for the Avalon bus module to present valid data. The
Avalon bus module asserts readdatavalid when it presents valid
readdata. The master data port must capture readdata on the
rising clock edge that readdatavalid is asserted. This clock cycle
is the only time that readdata is guaranteed to be valid. Therefore,
if a condition arises in which the master cannot immediately process
incoming readdata, the master peripheral must have a FIFO buffer
connected to the readdata input port to guarantee that data from
the Avalon bus module is not lost.

All latency-aware Avalon master ports have variable latency. The
number of clock cycles of latency is not fixed for a latency-aware
master port. The Avalon bus module makes no guarantees about
when valid readdata will return, only that data will return in the
order it was requested. Therefore, the master data port must be
designed to accept an arbitrary number of latency cycles, regardless
of the fixed latency of any target slave ports, including zero-latency
transfers. The Avalon bus module may introduce latency cycles
beyond those cycles required by a slave port with latency. For
example, extra latency is usually introduced when a peripheral is
accessed through an Avalon tri-state bridge. The tri-state bridge
includes internal registers that introduce latency, while improving
system fMAX and simplifying the connection to off-chip devices.

A latency-aware master can access a non-latent slave port without
special design considerations. From the master port’s perspective,
the latency is zero. readdata is presented immediately on the rising
edge of clk that the address phase ends, which is the same as a
Avalon bus transfer with no latency. There are no special design
requirements for simultaneous multi-master transfers. If multiple
masters coexist in a system and issue read transfers to latent and/or
non-latent slave ports, the Avalon bus module appropriately
performs arbitration, and guarantees that each master receives its
requested data in order. This behavior includes the case in which a
master port issues address to one slave port, while capturing
readdata from a different slave port.
Altera Corporation 63

Avalon Bus Specification Avalon Bus Specification Reference Manual
There may be cases in which the master peripheral determines that it
does not need the data from a transfer it has already issued. In such
cases, the master port can use the flush signal to clear any pending
read transfers. For example, a latency-aware master port for fetching
CPU instructions may issue several read transfers to pre-fetch
instructions, but if a branch instruction is encountered, all pending
pre-fetched instructions become irrelevant. The master’s data port
can assert flush on a rising edge of clk to clear all pending
transfers. readdatavalid is deasserted until the next new read
transfer’s data is ready on the readdata port. The Avalon bus
module can capture a new value on address at the same time that
flush is asserted. The data corresponding to this address becomes
the next valid data to return on readdata.
64 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 16 shows data transfers with latency between the Avalon
bus module and a latency-aware master port. There is no pattern to
why and when waitrequest and readdatavalid are asserted in
this example; however, the example shows that no matter what the
timing, the master port must respond appropriately to both
waitrequest and readdatavalid. In this example, the second-
to-last transfer is flushed using the flush signal. However, the
unwanted data could have appeared on readdata if the latency for
that transfer was shorter.

Example 16. Master Read Transfer with Latency

Example 16 Time Reference Description
(A) Master initiates a read transfer by presenting address and read_n for the address phase of the new transfer.
(B) Avalon bus module has asserted waitrequest so the master port waits and holds address and read_n constant for

another bus cycle.
(C) waitrequest is not asserted, so the Avalon bus module captures address at the rising edge of clk. readdatavalid

is not asserted, so master does not capture readdata.
(D) The Avalon bus module captures a new address at the rising edge of clk. readdatavalid is not asserted, so master does

not capture readdata.
(E) The Avalon bus module captures a new address at the rising edge of clk (making a total of three pending transfers).

readdatavalid is asserted, so the master captures valid readdata.
(F) readdatavalid is not asserted, so the master does not capture valid readdata.
(G) readdatavalid is not asserted, so master does not capture readdata.
(H) readdatavalid is asserted, so master captures valid readdata.
(I) Master presents address and read_n for a new read transfer.
(J) readdatavalid is not asserted, so master does not capture readdata. flush is asserted, so Avalon bus module flushes

the pending transfer. Avalon bus module captures the new address.
(K) readdatavalid is asserted, so master captures valid readdata. No more transfers are pending.

Pe
rip

he
ra

l

Pe
rip

he
ra

l
clkclk

addressaddress

readdatareaddata

M
at

er
 P

or
t

Sl
av

e
Po

rt

A
va

lo
n

B
us

M
od

ul
e

ControlControl

DataData

AddressAddressbyteenable_nbyteenable_n

waitrequestwaitrequest

readatavalidreadatavalid

read_nread_n

flushflush
Altera Corporation 65

Avalon Bus Specification Avalon Bus Specification Reference Manual
Streaming Transfer

Streaming transfers create an open channel between a streaming
master and streaming slave to perform successive data transfers.
This channel allows data to flow between the master-slave pair as
data becomes available, without requiring the master to
continuously access status registers in the slave peripheral to
determine whether the slave can send or receive data. Streaming
transfers maximize throughput between a master-slave pair, while
avoiding data overflow or underflow on the slave peripheral.

In the streaming transfer mode, simple flow control signals are
presented from slave to master, such that whenever the slave has
new data (or can accept new data), the Avalon bus module
automatically transfers the data. The streaming transfer mode
eliminates the bandwidth overhead required for the master to check
status registers, because the master does not need to access and
compare slave status registers for each transfer. This reduces the
design complexity of master peripherals with limited intelligence,
such as DMA controllers, which may have only simple flow control
signals and a counter to transfer data between a slave peripheral and
incremental locations in a slave memory.

Streaming Slave Transfers

The slave interface for streaming peripherals introduces three signals
in addition to those used for fundamental slave transfers:
readyfordata, dataavailable, and endofpacket. A
streaming slave port is defined as a slave port that uses one or more
of these signals.The slave indicates that it is ready to accept a write
transfer from the Avalon bus module by asserting readyfordata.
The slave indicates that it can produce data for a read transfer from
the Avalon bus module by asserting dataavailable. When
deasserted, these signals force the Avalon bus module (and also the
streaming master port that initiated the transfer) to wait until the
slave is ready to proceed.

This behavior in which the Avalon bus module initiates a transfer
only when dataavailable or readyfordata is asserted applies
only to the case of a transfer between a streaming master port and a
streaming slave port. A transfer from a non-streaming master port
may be issued to a slave port at any time, regardless if the slave port
is streaming or not. For example, the Avalon bus module may issue
a slave transfer from a non-streaming master (CPU) to a streaming
slave port, even while another transfer from a streaming master
(DMA controller) is waiting because dataavailable is deasserted.
66 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
During any transfer, a streaming slave port can assert the
endofpacket signal, which is passed through the Avalon bus
module to the master peripheral so that it can respond. The
interpretation of the endofpacket signal is dependent on the
design, and the master peripheral must be aware of how to respond
appropriately. endofpacket does not guarantee that the Avalon
bus module will stop the stream of transfers to the slave port. For
example, endofpacket may be used as a packet delineator, so the
master peripheral knows where packets start and end in a longer
stream of data. Alternately, endofpacket could be designed to
interrupt the stream of transfers, and force the master to come back
at a later time to continue any further read or write transfers.

Streaming Slave Read Transfer

A streaming slave peripheral indicates that it is can accept a read
transfer by asserting dataavailable. The Avalon bus module will
never initiate a read transfer when dataavailable is deasserted.
When dataavailable is asserted, the Avalon bus module can start
a read transfer by asserting chipselect at a rising edge of clk,
similar to any other Avalon read transfer. The timing and sequencing
of the read_n, byteenable_n and readdata signals follow the
same order as a normal slave read transfer. Based on declarations in
the system PTF file, the transfer may use setup time and/or wait
states, including peripheral-controlled wait states.

After a transfer terminates, if the peripheral cannot produce more
data for subsequent read transfers, it must deassert
dataavailable so that the Avalon bus module does not attempt to
initiate another read transfer on the next rising edge of clk. When
the peripheral deasserts dataavailable, the Avalon bus module is
forced to deassert chipselect, read_n, address and
byteenable_n to this slave port. Therefore, the Avalon bus module
cannot begin another read transfer with this slave port until the
peripheral asserts dataavailable again. If a streaming master
port initiates a read transfer (or continues to initiate consecutive read
transfers) while the slave port’s dataavailable is deasserted, the
master port is simply forced to wait until the slave port can transfer
data again.
Altera Corporation 67

Avalon Bus Specification Avalon Bus Specification Reference Manual
The function of endofpacket is not specified in the Avalon bus
specification; the signal is simply passed through the Avalon bus
module to the master port. The following guidelines are not part of
the Avalon bus specification, but may help ensure that the master
port can capture endofpacket from the slave port. The slave port
should assert endofpacket at the same time as it asserts valid
readdata, so that the master can capture endofpacket together
with readdata. The slave port may deassert endofpacket for each
transfer, or the peripheral may assert endofpacket indefinitely and
wait for a master to reset it.

Example 17 on page 69 shows a streaming slave read transfer. In this
example, assume that an Avalon streaming master peripheral
initiates a sequence of streaming transfers, starting while the slave
port has dataavailable asserted. Furthermore, assume that the
master continues initiating read transfers in immediate succession.
At some time during the sequence, the slave port deasserts
dataavailable, forcing the Avalon bus module (and the master
port) to wait. Later the slave port asserts dataavailable again,
and the Avalon bus module continues the sequence of slave read
transfers. In this example, note that data is read from a constant slave
address that presents new data on each transfer.

This is common operation for a register-controlled peripheral, such
as a UART or SPI. Example 17 on page 69 shows the slave port
asserting endofpacket on the last unit of data before it deasserts
dataavailable. This is not a requirement; endofpacket has no
inherent relationship to dataavailable nor to how the master
peripheral responds. The sequence of transfers finishes with the
Avalon bus module deasserting chipselect and read_n while
dataavailable is still asserted, meaning that the master port, not
the slave, has chosen to end the sequence of transfers.
68 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 17. Streaming Slave Read Transfer (Part 1 of 2)

Example 17 Time Reference Description (Part 1 of 2)
(A) First bus cycle on the rising edge of clk.
(B) Registered outputs address and read_n from the Avalon bus to slave are valid.
(C) Avalon bus module decodes address, then asserts chipselect.
(D) Slave port asserts valid readdata before the next rising edge of clk. The Avalon bus module captures readdata on the

next rising edge of clk.
(E) For each bus cycle that chipselect and read_n remain asserted, the slave port produces valid readdata. (In this

example, address remains constant, but this may not be the case for all peripheral designs).
(F) The slave port may asset endofpacket at any time while it asserts valid readdata. (In this example, the slave deasserts

endofpacket after one bus cycle, but this may be different depending on the peripheral designs.
(G) The streaming slave deasserts dataavailable, forcing the Avalon bus module to postpone any subsequent streaming reads.

Note that read_n and chipselect are still asserted, indicating that the streaming master port is still waiting for the transfer
to terminate.

(H) The Avalon bus module deasserts address, read_n and chipselect in response to dataavailable.
(I) At some point later, the slave port asserts dataavailable.

This Example Demonstrates Relevant PTF Parameters

Slave port accepting streaming read transfer

No fixed wait state Read_Wait_States = “0”

No setup time Setup_Time = “0”

Pe
rip

he
ra

l

Pe
rip

he
ra

l

clk

address, byteenable_n

Sl
av

e
Po

rt

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

Control

Data

Address
read_n

chipselect

readdata

dataavailable

endofpacket
endof

packet
Altera Corporation 69

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 17 Time Reference Description (Part 2 of 2)

(J) In response to dataavailable, the Avalon bus module reasserts address, read_n and chipselect. (If there were
no pending streaming transfer, these signals would remain undefined).

(K) A new streaming read transfer begins on the rising edge of clk.
(L-M)The slave port asserts valid readdata before the rising edge of clk for every bus cycle that chipselect and read_n

remain asserted.
(N) The Avalon bus module deasserts read_n and chipselect, indicating that for now – there are no pending streaming

transfers
(O) In this example dataavailable remains asserted, indicating that another streaming transfer may begin at any later bus cycle.

Streaming Slave Write Transfer

A streaming slave peripheral indicates that it is can accept a write
transfer by asserting readyfordata. The Avalon bus module will
never initiate a write transfer when readyfordata is deasserted.
When readyfordata is asserted, the Avalon bus module can start
a write transfer by asserting chipselect and address at a rising
edge of clk, similar to any other Avalon read transfer. The timing
and sequencing of the write_n, byteenable_n and writedata
signals follow the same order as a normal slave read transfer. Based
on declarations in the system PTF file, the transfer may use setup
time, hold time and/or wait states, including peripheral-controlled
wait states.

After a transfer terminates, if the peripheral cannot capture more
data on subsequent write transfers, it must deassert readyfordata
so that the Avalon bus module does not initiate another write
transfer on the next rising edge of clk. When the peripheral
deasserts readyfordata, the Avalon bus module is forced to
deassert chipselect, write_n, address and byteenable_n to
this slave port. Therefore, the Avalon bus module cannot begin
another write transfer with this slave port until the peripheral asserts
readyfordata again. If a streaming master port initiates a write
transfer (or continues to initiate consecutive write transfers) while
the slave port’s readyfordata is deasserted, the master port is
simply forced to wait until the slave port can capture data again.
70 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
The function of endofpacket is not specified in the Avalon bus
specification; the signal is simply passed through the Avalon bus
module to the master port. The following guidelines are not part of
the Avalon bus specification, but may help ensure that the master
port can capture endofpacket from the slave port. The slave port
should assert endofpacket as soon as possible after it captures
writedata from the Avalon bus module. The slave port must assert
endofpacket before chipselect is deasserted in order for the
master port to capture endofpacket during the same bus transfer.
The slave port may deassert endofpacket for each transfer, or the
peripheral may assert endofpacket indefinitely and wait for a
master to reset it. If the streaming slave peripheral requires hold time
(a very rare case), then endofpacket should be held valid until the
Avalon bus module deasserts chipselect (even after write_n is
deasserted).

Figure 18 shows an example of a streaming slave write transfer. In
this example, assume that an Avalon streaming master peripheral
initiates a sequence of streaming transfers, starting while the slave
port has readyfordata asserted. Furthermore, assume that the
master continues initiating write transfers in immediate succession.
At some time during the sequence, the slave port deasserts
readyfordata, forcing the Avalon bus module (and the master
port) to wait. Later the slave port asserts readyfordata again, and
the Avalon bus module continues the sequence of slave write
transfers.

1 In this example, data is written to a constant slave address.
This is common operation for a register-controlled
peripheral, such as a UART or SPI.

Example 18 shows the slave port asserting endofpacket during the
sequence of write transfers. The interpretation is dependent on the
design of the master and slave peripherals; endofpacket has no
inherent relationship to readyfordata nor to how the master
peripheral responds. The sequence of transfers finishes with the
Avalon bus module deasserting chipselect and write_n while
readyfordata is still asserted, meaning that the master port, not
the slave, has chosen to end the sequence of transfers.
Altera Corporation 71

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 18. Streaming Slave Write Transfer (Part 1 of 2)

Example 18 Time Reference Description (Part 1 of 2)
(A) First bus cycle starts on the rising edge of clk
(B) Registered outputs address, write_n and writedata from Avalon bus to slave are valid.
(C) Avalon bus module decodes address, then asserts chipselect.
(D) If necessary, the slave asserts endofpacket before the last rising edge of clk for the current bus transfer. In this example,

the slave deasserts endofpacket after one bus cycle, but this may be different depending on the peripheral design.
(E) The slave port captures writedata and endofpacket on the rising edge of clk.
(F-G)For each bus cycle that chipselect and write_n remain asserted, the Avalon bus module produces a valid writedata,

and the slave port must capture on the following rising edge of clk. In this example, address is held constant, but this may
not be the case for all peripheral designs.

(H) The streaming slave deasserts readyfordata, forcing the Avalon bus module to postpone any subsequent streaming writes.
Note that write_n, chipselect and writedata are still asserted, indicating that the streaming master port is still waiting
for the transfer to terminate. In response, the Avalon bus module deasserts address, write_n, chipselect and
writedata.

This Example Demonstrates Relevant PTF Parameters

Slave port accepting streaming write transfer

No fixed wait state Write_Wait_States = “0”

No setup time Setup_Time = “0”

No hold time Hold_Time = “0”

Pe
rip

he
ra

l

clk

address, byteenable_n

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
Sl

av
e

Po
rt

M
as

te
r P

or
t

A
va

lo
n

B
us

M
od

ul
e

Control

Data

Address
write_n

chipselect

writedata

readyfordata

endofpacket
endof

packet

clk

address

write_n

chipselect

writedata

readyfordata

endofpacket

address address

data1 data2 data3 data4 data4 data5

A B C D E F G H I J L MK
72 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 18 Time Reference Description (Part 2 of 2
(I) At some point later, the slave port asserts readyfordata again.
(J) In response to readyfordata, the Avalon bus module reasserts address, write_n, chipselect and writedata.

Note that if there were no pending streaming transfer, these signals would remain undefined. A new streaming write transfer
begins on the next rising edge of clk.

(K-L)The slave port captures writedata on the rising edge of clk. For each bus cycle that chipselect and write_n remain
asserted, the Avalon bus module presents valid writedata.

(M) The Avalon bus module deasserts write_n and chipselect, indicating that for now, there are no pending streaming
transfers. In this example readyfordata remains asserted, indicating that another streaming transfer may begin at any later
bus cycle.

Streaming Master Transfers

The interface for streaming master peripherals is almost identical to
the interface used for normal Avalon master transfers. The streaming
master interface introduces only one extra signal, endofpacket,
which may or may not be necessary depending on the peripheral
design. The timing and sequencing of the write_n, read_n,
address, writedata, readdata, byteenable_n and other
signals follow the same order as a normal master transfer. A
streaming master is defined as a master port that has the
“Do_Stream_Reads” or ”Do_Stream_Writes” or both parameters
declared in the PTF file.

If the Avalon bus module requires the master to wait at any time, the
Avalon bus module asserts the waitrequest signal, and the master
port must obey. There are several reasons why the master may have
to wait. For example, another master may be accessing the target
slave port; the slave port may be requesting wait states; the
streaming slave port may not be able to present or accept new data;
and so on. The cause of waitrequest does not concern the master
port, because in any event, the master port cannot abort a transfer
once it has started. The master port must only abide by
waitrequest. Logic inside the Avalon bus module hides the details
from the master port, which simplifies the peripheral design for
streaming master peripherals.

If present, the endofpacket signal is passed from the slave port to
the master port during each transfer. The master port captures
endofpacket on the last rising clock edge of the transfer, for both
master read and write transfers. The interpretation of the
endofpacket signal is dependent on the peripheral design. For
example, endofpacket may be used as a packet delineator, so the
master peripheral knows where packets start and end in a longer
stream of data. Alternately, based on the value of endofpacket, the
master peripheral could be designed to determine whether or not to
initiate another transfer.
Altera Corporation 73

Avalon Bus Specification Avalon Bus Specification Reference Manual
The Avalon bus module does not offer a time-out feature to the
master port, regardless if the peripheral is streaming or not. The
master port must stall for as long as waitrequest remains asserted,
and there is no way to abort the transfer. Therefore, if the master
needs a method to conditionally transfer data to or from the slave
only when the slave is ready, the master-slave pair must employ
some convention that uses either the endofpacket signal or a status
register inside the slave peripheral, or both.

The function of endofpacket is not specified in the Avalon bus
specification; the signal is simply passed from the slave port to the
master port through the Avalon bus module. The following
guidelines are not part of the Avalon bus specification, but may help
ensure that the master port can capture endofpacket from the
slave port at a well-defined time. The master port may capture the
endofpacket signal on the last rising edge of clk for the current
transfer. This is the clock edge for which the Avalon bus module has
deasserted waitrequest, and the master port is ready to terminate
the transfer. When and why the slave port deasserts endofpacket
depends on the design of the peripheral. However, note that the
master port only sees a valid endofpacket signal during a
streaming transfer while addressing the appropriate slave port.
74 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 19 shows an example of a streaming master read followed
by a streaming master–write transfer in which both waitrequest
and endofpacket are asserted at some time the during transfer.

Example 19. Streaming Master Read Followed by a Streaming Master Write Transfer

r

Example 19 Time Reference Description
(A) First bus cycle starts on the rising edge of clk.
(B) Master port asserts address, write_n and valid writedata.
(C) Avalon bus module asserts waitrequest before the next rising edge of clk, forcing the master port to wait.
(D) waitrequest is asserted at the rising edge of clk, so master port holds address, write_n and writedata constant.
(E) Avalon bus module deasserts waitrequest.
(F) Avalon bus module captures writedata on the rising edge of clk.
(G) Streaming master port keeps address and write_n asserted and asserts a new writedata. Note that address does not

have to remain constant, depending on the peripheral design.
(H) If necessary, master port captures endofpacket on the last rising edge of clk of the current transfer. Master port terminates

streaming write transfer by deasserting address, write_n and writedata.
(I) Master port immediately begins a read transfer during the next bus cycle by asserting read_n and a valid address.
(J) Avalon bus module asserts waitrequest to indicate that it cannot return valid data on the next rising edge of clk.
(K) Eventually the Avalon bus module deasserts waitrequest and presents valid readdata. In this example the Avalon bus

module asserts endofpacket, but interpretation is left to the streaming master peripheral.
(L) Master port captures readdata and endofpacket, if necessary on the rising edge of clk.
(M) Master port keeps address and read_n asserted for another streaming read transfer, so the Avalon bus module presents

valid readdata.
(N) Master port deasserts read_n and address, and the transfer terminates.

Pe
rip

he
ra

l

Pe
rip

he
ra

l

clkclk

addressaddress

M
at

er
 P

or
t

Sl
av

e
Po

rt

A
va

lo
n

B
us

M
od

ul
e

ControlControl

DataData

Address

byteenable_nbyteenable_n

write_nwrite_n

waitrequestwaitrequest

writedatawritedata

endofpacketendofpacket

streaming
control

read_nread_n

readdatareaddata
Altera Corporation 75

Avalon Bus Specification Avalon Bus Specification Reference Manual
Avalon Bus Control Signals

The Avalon bus module provides some control signals with system-
level functionality, which, may not be directly related to the
functionality of individual data transfers.

Interrupt Request Signal

Most microprocessor systems require interrupt generation and
prioritization logic. The system module implements this service for
peripherals and processors connected to the Avalon bus module.

Each slave port may use an irq output signal, that can be asserted
whenever the peripheral wishes to generate an interrupt. The
Avalon bus specification does not define why or when irq should
be asserted. The timing of the irq signal has no relationship to any
bus transfer, and irq may be asserted at any time. In most practical
cases, the slave should assert irq and keep it asserted until a master
port explicitly resets the interrupt request. An interrupt priority is
assigned to each slave port that uses irq. The IRQ priorities for each
slave port are specified in the system PTF file. Lower IRQ values
have higher interrupt priority with IRQ 0 having the highest possible
priority.

Master ports may use two input signals to handle interrupt requests:
irq and irqnumber. The irq output signals from all slave ports in
the system module are ORed together and passed to the master port,
such that when any slave port generates an interrupt, irq on the
master port(s) is asserted. Logic inside the Avalon bus module
presents the encoded value (0 to 63) of the IRQ with highest priority
on the 6-bit irqnumber port. If multiple masters use the irq and
irqnumber signals, each master receives the same values on irq
and irqnumber. The Avalon bus specification does not specify
when or how the master peripheral(s) in the system module should
respond to the irq signal. In most practical cases, a master must
respond to the IRQ and then manually reset the IRQ in the slave that
generated it.

Reset Control Logic

The system module has a single reset input port, that user logic
external to the system module can use to reset the system module
and any peripherals it contains. This global reset signal is combined
with other reset logic inside the system module, and then distributed
to all Avalon peripherals that choose to use the signal type reset.
Each Avalon peripheral may interpret (or ignore) reset based on
peripheral design requirements.
76 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Inside the system module, three conditions may cause the reset
signal to be asserted:

■ The PLD has been reconfigured—Immediately after the PLD
completes configuration, the Avalon bus module detects this
state, and asserts the reset signal on all Avalon peripherals for
at least one clock cycle.

■ The global reset input on the system module has been asserted

■ An Avalon slave port has asserted its resetrequest signal
(defined below).

In general, peripherals that perform operations spanning multiple
clock cycles should enter a well-defined reset state whenever reset
is asserted. The timing of the reset signal has no relationship to any
bus transfer, and reset could be asserted at any time.

Slave ports can use the resetrequest signal to force the entire
system module to reset. resetrequest is useful for functions like
watchdog timers, that—if not serviced within a guaranteed amount
of time— can reset the entire system. Why and when a peripheral
should assert resetrequest is not defined in the Avalon bus
specification. Note that resetrequest is not a request signal like
an IRQ that can be serviced at some later time. resetrequest
causes the Avalon bus module to immediately assert the reset
signal on all Avalon peripherals that use the reset signal, and does
not allow other Avalon peripherals to finish pending operations
before acknowledging the reset.

Begin Transfer Signal

The begintransfer input signal on the slave port offers an easy-
to-understand indicator that a new Avalon slave transfer has been
initiated. Avalon peripherals, by definition, abide by the Avalon bus
specification, and must generate and accept Avalon bus signals in
the appropriate sequence. It may be difficult for logic not directly
related to the Avalon interface (including the designer’s own brain)
to determine exactly when an Avalon slave transfer begins, because
the address, read enable, write enable, and chipselect signals do
not necessarily change at the start of each transfer. The Avalon bus
module asserts the begintransfer signal during the first bus cycle
of each Avalon slave transfer. Usage is peripheral-specific.
Altera Corporation 77

Avalon Bus Specification Avalon Bus Specification Reference Manual
begintransfer can be a helpful debugging signal for clarification
when simulating Avalon transfers. begintransfer can also
simplify the design of less intelligent peripheral functionality, such
as clear-on-read operations, set–on–write operations, or other
operations that does not require the logic to perform all aspects of
Avalon transfers.

Avalon Interface to
Off-Chip Devices

This section describes the Avalon tristate interface that allows direct
connection of off-chip devices to the Avalon bus module via I/O pins
on the PLD. The PTF assignment
Bus_Type = “avalon_tristate” is used to specify that an off-
chip peripheral uses the Avalon tristate interface. Most systems
require an interface to some form of off-chip memory device. Off-
chip memory devices often share address and data bus lines on the
physical printed circuit board (PCB). This necessitates an interface
with bidirectional data pins that can be tristated to allow other bus
agents to drive the data lines without causing signal contention. The
Avalon tristate interface specifies an adequate interface to connect
simple off-chip slave devices such as flash, SRAM, and synchronous
SRAM (SSRAM) via device I/O pins. Some Avalon transfer modes
are not available to off-chip devices.

The scope of the Avalon tristate interface is limited to off-chip slave
peripherals. The off-chip slave peripheral can use peripheral-
controlled wait states or constant setup, hold, and wait states. The
peripheral can use constant latency, but it cannot use variable
latency. The Avalon tristate interface does not extend to off-chip
master peripherals. Designers can accommodate off-chip masters by
creating a user-defined peripheral (implemented on-chip) that acts
as a bridge between the Avalon interface and the protocol used by
the off-chip device. Such bridges tend to be complex and specific to
an application. They are not nearly as ubiquitous as simple external
slave memory devices, and therefore the Avalon bus specification
does not attempt to cover these cases.

Avalon Tristate Signals for Slave Transfers

Table 6 lists the signal types that interface an off-chip slave device to
the Avalon bus module. The signal direction is from the perspective
of the slave device. Not all of the signal types listed in Table 6 are
necessary on all peripherals, depending on the peripheral design and
the ports declared in the peripheral’s PTF file. Table 6 gives a brief
description of which signals are required and under what
circumstances.
78 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Table 6. Avalon Tristate Slave Port Signals

Signal Type Width Direction Required Description

clk 1 in no Global clock signal for the SOPC module and
Avalon bus module. All bus transactions are
synchronous to clk. Only asynchronous slave
ports can omit clk.

reset 1 in no Global reset signal. Implementation is
peripheral-specific.

chipselect 1 in no Chip select signal to the slave. The slave port
should ignore all other Avalon signal inputs
unless chipselect is asserted.

address 1 - 32 in no Address lines from the Avalon bus module.
address always carries a byte-address
value.

data 8, 16, 32 bidirectional yes Data lines to/from the Avalon bus module for
write and read transfers. If used, the read or
write signal must also be used. An Avalon
tristate peripheral is defined by the presence
of the data port.

read 1 in no Read request signal to slave. Not required if
the slave never outputs data to a master.

outputenable 1 in no Off-chip devices can only drive active data
when outputenable is asserted. Equivalent
to read signal on slaves with no latency.

write 1 in no Write request signal to slave. Not required if
the slave never receives data from a master.

byteenable 1, 2, 3, 4 in no Byte-enable signals to enable specific byte
lane(s) during transfers to memories of width
greater than 8 bits. Implementation is
peripheral-specific.

writebyteenable 1,2,3,4 in no Logical AND of write and byteenable
signals. Useful control signal for certain types
of memory peripherals, especially off-chip
SSRAM.

irq 1 out no Interrupt request. Slave asserts irq when it
needs to be serviced by a master.

begintransfer 1 out no Asserted during the first bus cycle of each new
Avalon bus transfer. Usage is peripheral-
specific.
Altera Corporation 79

Avalon Bus Specification Avalon Bus Specification Reference Manual
Like the non-tristate Avalon interface, all signal types are available
active-low by appending “_n”, such as chipselect_n and
write_n.

The Avalon tristate interface uses the bidirectional port data instead
of separate readdata and writedata ports. During write transfers
the data port is driven by the Avalon bus module, and the slave
device captures data. During read transfers, the slave device drives
the data port, and the Avalon bus module captures data. The data
port is bidirectional, slave peripherals (and the Avalon bus module)
must drive the data lines only at specific times.

The Avalon tristate interface introduces the notion of shared ports.
Sharing ports is useful to reduce the number of I/O pins required to
interface the Avalon bus to external devices. The PTF assignment
Is_Shared is used to declare that a port type be shared. A shared
port of a given type can be connected to (shared by) multiple off-chip
slave devices. The data port is always shared. For example, when the
Avalon bus module data is connected to I/O pins on the PLD, these
data pins may connect to several off-chip peripheral devices. Other
ports can be shared optionally, such as address, read, and write.
If one or more other peripherals use a port of the same type and the
other peripherals’ port is also declared to be shared, then SOPC
Builder multiplexes the shared ports onto the same device I/O pins.
An Avalon tristate slave peripheral must respond to shared signals
only at specific times, defined by chipselect and outputenable.

Peripherals using the Avalon tristate interface must use the
chipselect port. An off-chip slave peripheral must accept
transfers only when its chipselect is asserted. chipselect is
never a shared signal, and a unique chipselect signal is driven to
each off-chip peripheral.

The Avalon tristate interface introduces the signal type
outputenable for slave read transfers. To avoid signal contention
on the data lines, off-chip slave peripherals must drive their data
output pins only when outputenable is asserted. outputenable
is used mainly for off-chip memory devices with latency, such as
SSRAM that drive the data lines several clock cycles after a read
transfer is initiated.
80 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Avalon Tristate Slave Read Transfer without Latency

The Avalon tristate slave read transfer without latency is most
commonly used when interfacing asynchronous off-chip memory
devices, such as SRAM and flash, to the Avalon bus module. The
signals and timing for the fundamental Avalon tristate slave read
transfer is nearly identical to the (non-tristate) fundamental Avalon
slave read transfer. The only difference is the behavior of the
bidirectional data port. The slave device can drive its data lines
only when outputenable is asserted. At all other times, the slave
must tristate data. Fixed setup and wait states—including
peripheral-controlled wait states—are supported, and the timing is
identical to the non-tristate cases.

Most board designs connect the Avalon chipselect_n signal
directly to the chip select pin (e.g., CSn) on an external memory
device, and connect the Avalon read_n signal directly to the output
enable pin (e.g., OEn). The Avalon signal outputenable_n could
also be used to drive the output enable pin (e.g., OEn) on an external
device. However, for slave transfers with no latency, the
outputenable_n signal is identical to read_n.

Some memory devices have a combined R/Wn (i.e., read when high,
write when low) pin. The Avalon tristate write_n signal behaves in
this manner, and can be connected to a R/Wn pin. write_n is only
asserted during write transfers, and remains deasserted (i.e., “read”)
at all other times.

Example 20 shows an Avalon tristate slave read transfer using a
fixed setup time and fixed wait states. In this example, the address
and bidirectional data ports are shared. The diagram shows the
tristate behavior for a specific peripheral’s data port, however, the
data lines may be active at any given time due to the transfer activity
of a different peripheral sharing the data and address signals.
write_n is shown here for reference; it is deasserted (i.e., read
mode) throughout the transfer. Active-low logic has been chosen for
read_n, chipselect_n and write_n to reflect conventions used
by most external memory devices. clk is shown for timing reference
only.
Altera Corporation 81

Avalon Bus Specification Avalon Bus Specification Reference Manual
Example 20. Tristate Slave Read Transfers with Fixed Setup Time & Wait States

Example 20 Time Reference Description:
(A) The Avalon bus module drives address and asserts chipselect_n.
(B) After one bus cycle of setup delay, the Avalon bus module asserts read_n (equivalent to outputenable_n in this

example).
(C) The slave peripheral drives data in response to read_n. data may or may not be valid at this point. In this example, it is

undefined.)
(D) The Avalon bus module keeps address asserted through one bus cycle of wait state.
(E) The slave peripheral drives valid data some time before the final rising clock edge of the transfer.
(F) The Avalon bus module captures data at this rising edge of clk, and the transfer ends.
(G) The slave peripheral tristates its data port in response to read_n (now deasserted).

This Example Demonstrates Relevant PTF Parameters

Avalon tristate slave read transfer from asynchronous off-chip peripheral Bus_Type = “avalon_tristate”

1 bus cycle of setup time Setup_Time = “1”

1 fixed wait state Read_Wait_States = “1”
82 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Avalon Tristate Slave Read Transfer with Fixed Latency

The Avalon tristate slave read transfer with latency is most
commonly used when connecting off-chip synchronous memory
devices, such as SSRAM and ZBT SRAM, to the Avalon bus module.
Variable latency is not supported for off-chip devices.

The signals and timing for the Avalon tristate slave read transfer
with fixed latency is nearly identical to the (non-tristate) Avalon
slave read transfer with fixed latency. The only difference is the
behavior of the bidirectional data port. The slave device can drive
its data lines only when outputenable is asserted. At all other
times, data must be tristated. Because valid data returns after
several cycles of latency, outputenable is asserted after the
address phase of the transfer. Fixed setup, hold, and wait states are
supported, and the timing is identical to the non-tristate cases.

Most board designs connect the Avalon chipselect_n signal
directly to the chip select or chip enable pin (e.g., CSn or CEn) on an
external memory device. Some synchronous memory devices
require a chip select signal to be asserted only during the address
phase, while other devices require the chip select to be asserted until
the entire transfer completes. The Avalon tristate interface
accommodates this variance with the PTF assignment
Active_CS_Through_Read_Latency. When
Active_CS_Through_Read_Latency = 1, chipselect is
asserted during the entire read transfer. In this case, chipselect
mirrors the outputenable signal. When
Active_CS_Through_Read_Latency = 0, chipselect is
asserted only during the address phase. In this case, chipselect
mirrors the read signal.

Some synchronous memory devices have a combined R/Wn (i.e.,
read when high, write when low) pin. The Avalon tristate signal
write_n behaves in this manner, and can be connected directly to a
R/Wn pin. write_n is asserted only during write transfers, and
remains deasserted (i.e., in read mode) at all other times.
Altera Corporation 83

Avalon Bus Specification Avalon Bus Specification Reference Manual
Unlike Avalon tristate read transfers without latency, the
outputenable signal is not identical to the read signal. For read
transfers with latency, read is asserted during the address phase,
but is deasserted through the data phase. Later, outputenable is
asserted before the final rising clock edge of the transfer, causing the
peripheral device to drive its data pins. After one transfer
completes, outputenable may remain asserted as data returns
from further pending read transfers. outputenable is deasserted
when there are no more pending read transfers. Even after
outputenable is deasserted, the data lines may be active with
signals for a write transfer, or with signals intended for some other
peripheral that shares the data lines. Therefore, it is critical for the
slave peripheral to tristate its data lines any time outputenable is
deasserted.

Example 21 shows several Avalon tristate slave read transfers with a
fixed latency of 2 clock cycles. In this example, the address and
bidirectional data ports are shared. The signals outputenable_n,
chipselect_n, and write_n are active low to reflect the
conventions used by most external memory devices. write_n is
used as a R/Wn mode select pin and is shown for reference; it remains
deasserted throughout the operation.

Example 21. Tristate Slave Read Transfers with Fixed 2-Clock Cycle Latency (Part 1 of 2)

This Example Demonstrates Relevant PTF Parameters

Avalon tristate slave read transfer from synchronous off-chip peripheral Bus_Type = “avalon_tristate”

Read latency of 2 clock cycles Read_Latency = “2”

chipselect must be asserted throughout the complete read transfer Active_CS_Through_Read_Latency = “1”

No setup time Setup_Time = “0”

No wait states Read_Wait_States = “0”
84 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 21. Tristate Slave Read Transfers with Fixed 2-Clock Cycle Latency (Part 2 of 2)

Example 21 Time Reference Description
(A) The Avalon bus module asserts chipselect_n, address, and read_n, initiating read transfer 1. At this time

outputenable_n is also asserted, i.e., the slave device is free to drive the data lines at any time. In this example, the device
does not drive data, and the lines remain tristated.

(B) The slave device captures address and read_n on this rising edge of clk. The data phase begins, and the slave device must
produce valid data two clock cycles later.

(C) read_n is deasserted on this rising edge of clk, inserting an idle bus cycle. chipselect remains asserted because of the
PTF setting Active_CS_Through_Read_Latency = “1”, i.e., chipselect must remain asserted until all pending
read transfers have completed.

(D) The slave device drives valid data (readdata1) at some point before the final rising clock edge of the data phase.
(E) The Avalon bus module captures readdata1 at this rising edge of clk. The Avalon bus module asserts chipselect_n,

address, and read_n, initiating transfer 2.
(F) The Avalon bus module asserts chipselect_n, address, and read_n at this rising edge of clk, initiating transfer 3. The

data lines are undefined because of the previous idle bus cycle. Because outputenable_n is asserted, the slave device
could be driving the data lines. In this example, the device does not drive data, and the lines remain tristated.

(G) The Avalon bus module captures readdata2 at the rising edge of clk. The Avalon bus module asserts chipselect_n,
address, and read_n at this rising edge of clk, initiating transfer 4.

(H) The Avalon bus module deasserts read_n ending the sequence of read transfers. chipselect remains asserted until all
pending read transfers have completed.

(I) The Avalon bus module captures readdata3 at this rising edge of clk.
(J) The Avalon bus module captures readdata4 at this rising edge of clk.
(K) There are no more pending transfers, and the Avalon bus module deasserts outputenable_n, which forces the slave device

to tristate its data lines.

Avalon Tristate Slave Write Transfer

The Avalon tristate slave write transfer is used when connecting the
Avalon bus module to off-chip writeable memory devices, such as
SRAM, SSRAM, and flash. The signals and timing for the
fundamental Avalon tristate slave write transfer are nearly identical
to the non-tristate fundamental Avalon slave write transfer. The only
difference is the usage of the bidirectional data port instead of the
writedata input port. Fixed setup, hold, and wait states are
supported, as well as peripheral-controlled wait states, and the
timing is identical to the non-tristate cases. Like non-tristate Avalon
write transfers, there is no write transfer with latency mode.

clk

address

chipselect_n

read_n

outputenable_n

write_n

data

address1 address2 address3 address4

readdata1 readdata2 readdata3 readdata4

A B C D E F G H I J K
Altera Corporation 85

Avalon Bus Specification Avalon Bus Specification Reference Manual
Even if a slave peripheral does not perform a transfer, the data port
(and other shared ports) may be driven by unrelated peripherals at
any given time. Therefore, the off-chip device must capture data
only when chipselect is asserted, and the device must never drive
data during a write transfer.

Board designs can connect the Avalon write_n signal directly to a
write enable pin (e.g., WEn). Some synchronous memory devices
have a combined R/Wn (i.e., read when high, write when low) pin.
The Avalon tristate signal write_n behaves in this manner, and can
be connected directly to a R/Wn pin. write_n is asserted only
during write transfers, and remains deasserted (i.e., read mode) at all
other times. In addition, some synchronous memory devices use
byte-enable signals during write transfers to specify which byte lanes
to write (e.g., BWn1, BWn2, BWn3, and BWn4). The Avalon port
writebyteenable is the logical AND of the write and
byteenable signals, and can be connected directly to such BWn
pins.

The Avalon tristate interface does not support latent write transfers.
However, Avalon tristate slave write transfers can write data
successfully to off-chip synchronous memory devices, such as
SSRAM and ZBT RAM. For example, hold states can be used to keep
data asserted several clock cycles after write is deasserted. The
Avalon bus module waits for any pending read transfers with
latency to complete before initiating a new write transfer. This
prevents any possible signal contention on the data lines due to
latent read data colliding with write data. As a result, the Avalon
tristate interface may not achieve the maximum possible bandwidth
for synchronous memory devices when performing back-to-back
read-write transfer sequences. However, the most commonly
required high-bandwidth cases of continuous back-to-back read
transfers with latency or continuous back-to-back write transfers are
supported.

Example 22 on page 87 shows an Avalon tristate slave write transfer
using fixed setup time and fixed hold time. In this example, the
address and bidirectional data ports are shared. The signals
write_n, chipselect_n, and outputenable_n are active low to
reflect conventions used by most external memory devices.
outputenable_n is shown for reference. outputenable_n is
deasserted, and the peripheral must never drive its data lines
throughout the write transfer. clk is shown for timing reference
only.
86 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Example 22. Avalon Tristate Slave Write Transfer with Fixed Setup & Hold Time

Example 22 Time Reference Description
(A) Avalon bus module drives address, valid data, and asserts chipselect_n.
(B) After one bus cycle of setup delay, the Avalon bus module asserts write_n for one bus cycle (i.e., no wait states).
(C) Avalon bus module deasserts write_n, but keeps address and data asserted for one bus cycle of hold time.
(D) The write transfer completes on this rising edge of clk.

This Example Demonstrates Relevant PTF Parameters

Avalon tristate slave write transfer to asynchronous off-chip peripheral Bus_Type “avalon_tristate”

1 bus cycle of setup time Setup_Time = “1”

1 bus cycle of hold time Hold_Time = “1”
Altera Corporation 87

Avalon Bus Specification Avalon Bus Specification Reference Manual
Avalon Bus
Address Alignment
Options

The following sections describe the Avalon bus address alignment
options.

Address Alignment Overview

The Avalon bus module accommodates master and slave peripherals
of varying, unmatched data widths. For example, 32-bit master ports
can access 8-bit slave ports, and 16-bit master ports can access 32-bit
slave ports. Whenever master-slave pairs of unmatched data widths
exist together in a system, the issue of address alignment comes up.
This situation is not specific to the Avalon bus; the issue arises for all
microprocessor systems.

In the discussion of data transfers between master and slave ports of
differing data widths, it is necessary to make the distinction of which
peripheral has the wider data port. The following discussions
describes the master and slave ports in a master-slave pair as being
wide or narrow to indicate that one port has more or fewer data bits
than the other.

In the case of a wide master accessing a narrow slave port, the
question becomes: What happens to the most significant bits (MSBs)
when a wide master reads from (or writes to) a narrow slave? The
Avalon bus offers two approaches to handling this situation:

■ Native Address Alignment—With native address alignment, a
single transfer on the master port corresponds to exactly one
transfer on the slave port. For example, when a 32-bit master
reads from a 16-bit slave port, the Avalon bus module returns a
32-bit unit of data, but only the least significant 16 bits contain
valid data from the slave port. The MSBs may be zero or
undefined. This is the “master knows best” scenario, typical to
many embedded systems. However, the software or hardware
design that controls the master port must be aware of the
physical data widths and addressing schemes of all relevant
slaves. This adds complexity to the design of the master
peripheral.

■ Dynamic Bus Sizing—With dynamic bus sizing, when a wide
master reads from a narrow slave port, the slave side of the
Avalon bus module performs several read transfers—as many
as required to fill the master data width with narrow slave units
of data. For example, when a 32-bit master reads from an 8-bit
slave, the Avalon bus module returns a 32-bit word filled with
four valid bytes of data from the slave. Dynamic bus sizing
abstracts the physical details of the slave port, and enables each
master to perform data transfers as if the slave were always the
88 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
same width as the master. Dynamic bus sizing simplifies
software design for the master port, by eliminating the need for
software to splice together data from a narrow slave peripheral.

1 In general —memory peripherals use dynamic bus sizing—
all other peripherals use native address alignment.

There are also cases in which a narrower (i.e., 16-bit) master port
connects to a wider (i.e., 32-bit) slave port. The Avalon bus module
also accommodates these cases. The Avalon bus module
automatically fetches a full 32-bit word from the slave port, and
presents the appropriate half-word to the 16-bit master. The logic
required to multiplex the 32-bit data is always integrated into the
Avalon bus module in the event that a 16-bit master port connects to
a wider slave port.

“Choosing the Address Alignment Assignment for Avalon
Peripherals” on page 89 describes the considerations for assigning
native or dynamic bus sizing. Later sections describe how a master
perceives a slave in both the native and dynamic cases. “Connection
to External Devices” on page 100 describes the physical design
considerations of how to connect the address and data ports on a
peripheral to the system module.

Choosing the Address Alignment Assignment for Avalon
Peripherals

Address alignment assignments are declared in the system PTF file.
Each slave port connected to the Avalon bus module is assigned an
address alignment setting of either native or dynamic. Address
alignment assignments are not made for master ports. Masters
always receive master-width units of data; the address alignment of
the slave port determines how the master perceives this data.

Peripherals used as program or data memory should be assigned
dynamic bus sizing. From a system-level perspective, dynamic bus
sizing offers three benefits:

■ 32-bit and 16-bit processors can use inexpensive 8-bit or 16-bit
memory for data and instruction storage. Without dynamic bus
sizing, it would be impossible for a processor to execute code
from a memory that is narrower than the instruction width.

■ The physical width of memory is transparent to the software.
Altera Corporation 89

Avalon Bus Specification Avalon Bus Specification Reference Manual
■ Software takes fewer instructions and executes faster, because
software does not have to perform any read-and-shift
operations to patch together wider units of data.

In the event that a microprocessor needs to access only a single byte
in memory, the processor can use byte or half-word operations to
read or store to the appropriate byte. In most cases, however, the
processor wishes to transfer a full-width unit of data. There are few,
if any, scenarios in which a processor would benefit from not having
dynamic bus sizing.

Native address alignment is appropriate for all other types of slave
peripheral. Dynamic bus sizing is not suitable for slave peripherals
that are controlled by registers mapped into memory space. The
operation of the peripheral is directly affected by read or write
transfers to specific control registers. A processor generally accesses
a peripheral’s control registers one register at a time. It is desirable
for the processor to have complete control over read and write
transfers to individual registers, without incidentally accessing
unrelated registers in incremental address space.

There may be cases in which a peripheral contains both control
registers and memory space. In these rare cases, there are two
solutions for assigning the appropriate address alignment. First, in
reality, such a peripheral is probably designed specially for a specific
embedded system, in which case the designer should design the
peripheral to match the master port’s data width. If the slave port is
not narrower than the master, address alignment is not an issue.
Second, if the peripheral design already exists and cannot be
redesigned to match the master width, then interface logic should be
designed to incorporate two Avalon slave interfaces. One slave port
with native address alignment would then address the peripheral’s
register space, and the other slave port with dynamic bus sizing
would address the memory space.

Native Address Alignment: 32-Bit Master Port

The following discussion defines how a 32-bit master port perceives
data in narrower slave peripherals. Separate discussions are given
for slave peripherals of 1 to 8, 9 to 16, and 16 to 32 bits.

 Slave Port Between 1 & 8 Bits

In the case of a 32-bit master transferring data to an 8-bit slave
peripheral, only the least significant 8 bits of the 32-bit word is valid
data, but the unused upper 24 bits also consume address space.
90 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Consider a hypothetical 8-bit slave peripheral connected via the
Avalon bus module to a 32-bit master, a Nios processor. The example
peripheral has 5 internal 8-bit registers, as shown in Table 7.

Suppose this slave peripheral is assigned native address alignment,
and it is mapped to some base address “BASE”. The result of a 32-bit
master reading from this 8-bit peripheral with native alignment is
shown in Table 8.

Note to Table 8:
(1) In this table, uu means undefined.

In the event of a read transfer, the valid data from any native-aligned
8-bit (or narrower) peripheral appears in the least significant bits
(LSBs) of the 32-bit value presented to the master. The higher-order
bits are undefined. In the event of a 32-bit write transfer to a narrow
peripheral, data in the upper bits will be ignored. For example, if a
32-bit master writes the value 0xFEDCBA98 to a 4-bit slave, the value
written to the slave is 0x8.

Slave Port Between 9 & 16 Bits

In the case of a 32-bit master transferring data to a peripheral
between 9 and 16-bits, the least significant bits of the 32-bit word are
valid data, but the higher-order bits also consume address space.

Table 7. Example 8-bit Slave Peripheral with Five Registers

Register Internal Address Register Name

0 aa

1 bb

2 cc

3 dd

4 ee

Table 8. 32-Bit Transfer to 8-Bit Peripheral with Native Alignment

Master Address Master Perceives Data As (1)

BASE+ 0x00 0xuu uu uu aa

BASE+ 0x04 0xuu uu uu bb

BASE+ 0x08 0xuu uu uu cc

BASE+ 0x0C 0xuu uu uu dd

BASE+ 0x10 0xuu uu uu ee
Altera Corporation 91

Avalon Bus Specification Avalon Bus Specification Reference Manual
Consider a hypothetical 16-bit slave peripheral connected via the
Avalon bus module to a 32-bit master, a Nios processor. The example
peripheral has 5 internal 16-bit registers, as shown in Table 9.

Suppose this slave peripheral is assigned native address alignment,
and it is mapped to some base address BASE. The result of a 32-bit
master reading from this 16-bit peripheral with native alignment is
shown in Table 10.

Note to Table 10:
(1) In this table, uu means undefined.

In the event of a read transfer, the valid data from any native-aligned
16-bit (or narrower) peripheral appears in the LSBs of the 32-bit
value presented to the master. The higher-order bits are undefined.

In the event of a 32-bit write transfer to a narrow peripheral, data in
the upper bits is ignored. For example, if a 32-bit master writes the
value 0xFEDCBA98 to a 12-bit slave, the value written to the slave is
0xA98.

Table 9. Example 16-Bit Slave Peripheral with Five Registers

Peripheral Internal Address 16-Bit Register Name

0 aaaa

1 bbbb

2 cccc

3 dddd

4 eeee

Table 10. 32-Bit Transfer to 16-Bit Peripheral with Native Alignment

Master Address Master Perceives Data As (1)

BASE+ 0x00 0x uu uu aaaa

BASE+ 0x04 0x uu uu bbbb

BASE+ 0x08 0x uu uu cccc

BASE+ 0x0C 0x uu uu dddd

BASE+ 0x10 0x uu uu eeee
92 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
Slave Port Between 17 & 31 Bits

In the case of a 32-bit master transferring data to a native-aligned
peripheral between 17 and 31 bits, the least significant bits of the 32-
bit word are valid data. If the slave is a full 32-bits wide, then it is not
narrower than the master port, and address alignment has no affect
on the consideration of the peripheral’s address space.

In the event of a read transfer, the valid data from any native-aligned
31-bit (or narrower) peripheral appears in the LSBs of the 32-bit
value presented to the master. The higher-order bits are undefined.

In the event of a 32-bit write transfer to a narrow peripheral, data in
the upper bits will be ignored. For example, if a 32-bit master writes
the value 0xFEDCBA98 to a 24-bit slave, the value written to the
slave is 0xDCBA98.

Native Address Alignment: 16-Bit Master Port

The following discussion defines how a 16-bit master port perceives
data in narrower slave peripherals. Separate discussions are given
for slave peripherals of 1 to 8 and 9 to 16 bits.

Slave Port Between 1 & 8 Bits

In the case of a 16-bit master transferring data to an 8-bit slave
peripheral, only the least significant 8 bits of the 16-bit half-word is
valid data, but the unused upper 8 bits also consume address space.

Consider again the hypothetical 8-bit slave peripheral (see Table 7 on
page 91) connected via the Avalon bus module to a 16-bit master.
Suppose this slave peripheral is assigned native address alignment,
and it is mapped to some base address “BASE.” The result of the 16-
bit master reading from this 8-bit peripheral with native alignment is
shown in Table 11 on page 94.
Altera Corporation 93

Avalon Bus Specification Avalon Bus Specification Reference Manual
Note:
(1) In this table, uu means undefined.

In the event of a read transfer, the valid data from any native-aligned
8-bit (or narrower) peripheral appears in the LSBs of the 16-bit value
presented to the master. The higher-order bits are undefined.

In the event of a 16-bit write transfer to a narrow peripheral, data in
the upper bits will be ignored. For example, if a 16-bit master writes
the value 0xBA98 to a 4-bit slave, the value written to the slave is 0x8.

Slave Port Between 9 & 16 Bits

In the case of a 16-bit master transferring data to a native-aligned
slave port between 9 and 15 bits, the least significant bits of the 16-bit
half-word are valid data. If the slave port is 16-bits wide, then it is not
narrower than the master port, and address alignment has no affect
on the consideration of the peripheral’s address space.

In the event of a read transfer, the valid data from any native-aligned
15-bit (or narrower) peripheral appears in the least significant bits
(LSBs) of the 16-bit value presented to the master. The higher-order
bits are undefined. In the event of a 16-bit write transfer to a narrow
peripheral, data in the upper bits will be ignored. For example, if a
16-bit master writes the value 0xBA98 to a 12-bit slave, the value
written to the slave is 0xA98.

Native Alignment Considerations in Multi-Master System
Modules

Multiple master peripherals may connect to the Avalon bus module.
The address alignment of the slave ports has little or no effect on the
simultaneous multi-master behavior of the Avalon bus.

Table 11. 16-Bit Transfers to 8-Bit Peripheral with Native Alignment

Master Address Master Perceives Data As (1)

BASE+ 0x00 0xuu aa

BASE+ 0x02 0xuu bb

BASE+ 0x04 0xuu cc

BASE+ 0x06 0xuu dd

BASE+ 0x08 0xuu ee
94 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
It may occur to a designer to consider how address space is perceived
from the perspective of the multiple masters. Consider the case of
two 32-bit master ports that can address a common 16-bit slave port
with native address alignment. In the case of master ports of
identical widths, both masters perceive the address space identically,
and no special considerations are necessary.

Now consider the case of two masters, a 32-bit master and a 16-bit
master that both address the hypothetical 16-bit peripheral (see
Table 9) mapped at address BASE. In almost all cases with multiple
masters of different widths connected to the Avalon bus module, no
special considerations are necessary in designing the two masters.
However, this case could present a conceptual hurdle for the
designer when considering how each master perceives its
corresponding address space. The address spaces are shown in
Table 12.

Note: to Table 12
(1) In this table, uu means undefined.

At first sight, it may be unsettling to discover that the address space
is perceived differently, depending on the width of the master
peripheral. For example, the 32-bit master perceives the half-word at
BASE+4 to be 0xbbbb, while the 16-bit master perceives the half-
word at BASE+4 to be 0xcccc. Discussion of this memory
inconsistency is more academic than practical. For several reasons,
this inconsistency will not pose problems in real-world systems. The
discussion can be broken into two fundamental cases:

■ The slave peripheral is a memory device—Memory devices should
be assigned dynamic, not native, address alignment. Dynamic
bus sizing will make the address spaces consistent for all
masters accessing the memory.

■ The slave peripheral is controlled by memory-mapped control
registers—In the case of register-controlled peripherals, it is

Table 12. Masters of Different Width Accessing a 16-Bit Slave Peripheral Note (1)

32-Bit Master Address 32-Bit Master Perceives Data 16-Bit Master Address 16-Bit Master Perceives Data

BASE+ 0x00 0x uu uu aaaa BASE+ 0x00 0xaaaa

BASE+ 0x04 0x uu uu bbbb BASE+ 0x02 0xbbbb

BASE+ 0x08 0x uu uu cccc BASE+ 0x04 0xcccc

BASE+ 0x0C 0x uu uu dddd BASE+ 0x06 0xdddd

BASE+ 0x10 0x uu uu eeee BASE+ 0x08 0xeeee
Altera Corporation 95

Avalon Bus Specification Avalon Bus Specification Reference Manual
assumed that the software (or hardware logic) that controls the
master port has an understanding of how the slave peripheral
works. If not, the master simply could not interface to the slave
peripheral. Therefore, when there are any special usage
requirements (including addressing considerations) for the
slave peripheral, the peripheral driver software must be coded
to handle these considerations.

1 In neither case will the address space inconsistency surprise
an unsuspecting designer and cause erroneous addressing
errors.

Dynamic Bus Sizing

When a wide master port addresses a narrow slave port that is
assigned dynamic bus sizing, a single master transfer with the slave
port results in multiple slave transfers to gather a full, master-width
unit of valid data. As a side effect, this eliminates the presence of
unusable or undefined bits in the master’s perceived address space.
Therefore, software does not have to work around memory that
contains unusable bits.

For example, a 32-bit master read transfer from an 8-bit slave
memory results in four slave read transfers from the 8-bit memory.
The Avalon bus module mediates between the master port and the
slave port, so each peripheral sees standard Avalon read transfers.
The master port perceives a memory peripheral that—after several
wait states—returns a full 32-bits of data every transfer. The slave
port perceives four separate read transfers. Logic internal to the
Avalon bus module forces the master port to wait during the four
slave reads, and then presents the combined 32-bit result to the
master port all at once.

The following discussion defines how a wide master port perceives
data in a narrower slave peripheral with dynamic bus sizing. This
comprises two cases: The case of a 32-bit or 16-bit master port
accessing an 8-bit slave port, and the case of a 32-bit master port
accessing a 16-bit slave port. Dynamic bus sizing is conceptually
identical in the 32-bit master and 16-bit master scenarios, so these
scenarios are treated together.

Dynamic bus sizing is used for program data and instruction
memory, which tends to come in standard sizes of 8, 16, and 32 bits.
Therefore, this discussion focuses solely on these practical cases.
96 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
1 Narrow dynamic writes to peripherals with no byte enables
(for example, a Nios processor doing an 8-bit write to an
EPXA DPRAM PLD interface) results in undetermined
system behavior.

8-bit Slave Port with Dynamic Bus Sizing

Consider an 8-bit slave peripheral like the one shown in Table 7 on
page 91, except this time imagine the peripheral has 10 locations, aa
to jj. Suppose this slave peripheral is now assigned dynamic bus
sizing, and is mapped to some base address BASE. For each 32-bit
master transfer, the Avalon bus module performs four slave
transfers to four sequential locations on the slave port. Likewise, for
each 16-bit master transfer, the Avalon bus module performs two
slave transfers to two sequential locations on the slave port. From the
perspective of the master and the slave, the nature of the transfers is
no different from normal Avalon transfers.

The result of reading from this peripheral with dynamic bus sizing is
shown in Table 13.

Note: to Table 13
(1) In this table, uu means undefined.

In most realistic cases, 8-bit memory peripherals will not end at an
uneven word boundary, so an undefined value from a dynamically
address-aligned slave is rare.

1 Note that both the 32-bit master and the 16-bit master
perceive their address spaces identically; there is no
inconsistency as in the native address alignment case. For
example, both masters perceive the half-word at BASE+2 to
be 0xddcc.

Table 13. 32-Bit Master Transfer & 16-Bit Transfer with 16-Bit Slave Peripheral with Dynamic Bus Sizing
Note (1)

32-Bit Master Address 32-Bit Master Perceives Data 16-Bit Master Address 16-Bit Master Perceives Data

BASE+ 0x00 0x dd cc bb aa BASE+ 0x00 0x bb aa

BASE+ 0x02 0x dd cc

BASE+ 0x04 0x hh gg ff ee BASE+ 0x04 0x ff ee

BASE+ 0x06 0x hh gg

BASE+ 0x08 0x uu uu jj ii BASE+ 0x08 0x jj ii
Altera Corporation 97

Avalon Bus Specification Avalon Bus Specification Reference Manual
There is no way for the 32-bit master to read from only one 16-bit
location, such as only aa, or only ee. A master read transfer will
always cause multiple slave read transfers to sequential addresses in
the slave’s address space. This is the reason why dynamic bus sizing
is poorly suited to register-controlled slave peripherals.

Discussion of transfers with a memory that is narrower than 8 bits
may be of questionable practical value, but the functionality of
dynamic bus sizing is well defined. For a read transfer, the Avalon
bus module captures 8 bits for every slave read transfer. The bits that
do not exist on the slave port are undefined. The master peripheral
must be aware of how to work around these undefined bits. For a
write transfer, the bits in the 16- or 32-bit word that correspond to
nonexistent bits in the slave peripheral are simply ignored.

Dynamic bus sizing affects write transfers differently, depending on
the size of the data unit to be written. The master port indicates to the
Avalon bus module the byte locations it wishes to write, by using the
byte enable (byteenable_n) outputs. There is one byte enable line
for each byte lane in the master data port. According to
byteenable_n, the Avalon bus module initiates as many slave
write transfers as necessary to write the appropriate bytes into the 8-
bit slave memory.

16-bit Slave Port with Dynamic Bus Sizing

Consider a 16-bit slave peripheral like the one shown in Table 9
above, with five locations, aaaa to eeee. Suppose this slave peripheral
is now assigned dynamic bus sizing, and is mapped to some base
address BASE. For each 32-bit master transfer, the Avalon bus
module performs two slave transfers to two sequential locations on
the slave port. From the perspective of the master and slave ports, the
nature of the transfers is no different from normal Avalon transfers.
The case of a 16-bit master is no longer relevant, because the master
and slave ports match in width. The result of reading from this
peripheral with dynamic bus sizing is shown in Table 14.

Table 14. 32-Bit Master Transfer & 16-Bit Masters Transfer with 16-Bit Slave Peripheral with Dynamic Bus
Sizing

32-Bit Master Address 32-Bit Master Perceives Data 16-Bit Master Address 16-Bit Master Perceives Data

BASE+ 0x00 0x bbbb aaaa BASE+ 0x00 0x aaaa

BASE+ 0x02 0x bbbb

BASE+ 0x04 0x dddd cccc BASE+ 0x04 0x cccc

BASE+ 0x06 0x dddd

BASE+ 0x08 0x uuuu eeee BASE+ 0x08 0x eeee
98 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
In this table uuuu means the value is undefined. In most realistic
cases, 16-bit memory peripherals will not end at an uneven word
boundary, so an undefined value from a dynamically address-
aligned slave is rare.

1 Both the 32-bit master and the 16-bit master perceive their
address spaces identically; there is no inconsistency as in
the native address alignment case. For example, both
masters perceive the half-word at BASE+2 to be 0xbbbb.

There is no way for the 32-bit master to read from only one 16-bit
location, such as only aaaa, or only dddd. A master read transfer will
always cause multiple slave read transfers to sequential addresses in
the slave’s address space. This is the reason why dynamic bus sizing
is poorly suited to register-controlled slave peripherals.

Discussion of transfers with a memory that is between 8 and 16 bits
may be of questionable practical value, but the functionality of
dynamic bus sizing is well defined. For a read transfer, the Avalon
bus module captures 16 bits for every slave read transfer. The bits
that do not exist on the slave port are undefined. The master
peripheral must be aware of how to work around these undefined
bits. For a write transfer, the bits in the 32-bit word that correspond
to nonexistent bits in the slave peripheral are simply ignored.

Dynamic bus sizing affects write transfers differently, depending on
the size of the data unit to be written. The master port indicates to the
Avalon bus module the byte locations it wishes to write by using the
byte enable (byteenable_n) outputs. There is one byte enable line
for each byte lane in the master data port. According to
byteenable_n, the Avalon bus module initiates as many slave
write transfers as necessary to write the appropriate bytes into the
16-bit slave memory.

32-Bit Slave Port with Dynamic Bus Sizing

If the slave port is 32-bits wide, then its width matches the width of
a 32-bit master port, and no addressing considerations are necessary.

In the case that the slave port is between 17 and 31 bits wide,
dynamic bus sizing behaves exactly the same as native address
alignment
Altera Corporation 99

Avalon Bus Specification Avalon Bus Specification Reference Manual
Connection to
External Devices

For systems using only peripherals inside the system module, the
system designer does not have to consider the details of connecting
Avalon peripherals to the Avalon bus. However, most systems
require interfaces to off-chip memory devices. The system designer
must manually connect peripherals outside the system module
(including off-chip devices) to Avalon bus ports. Furthermore, many
systems drive Avalon signals off chip via a tri-state bus so that
multiple off-chip devices can be addressed through the same
physical address and data pins. This connection method is much like
a traditional bus architecture, with bus signals routed to physical
lines on the PCB. In such systems, it is not always obvious how to
connect the address pins of a peripheral outside the system module
to an address port on the Avalon bus module. The situation can
become especially complicated when using multiple, off-chip
peripherals of both dynamic and native address alignment, and with
varying bit widths.

In the following discussion, A[0] refers to the least significant
address line of the slave device. Every slave device’s A[0] pin is not
necessarily wired to the least significant line of the Avalon address
port. Furthermore, the connection depends on the slave’s address-
alignment option declared in the PTF file. Recall that memory
peripherals should always use dynamic bus sizing, and that the
Avalon address port is byte-addressable. Table 15 lists how to
connect A[0] of the off-chip device to the Avalon address port.

Table 15. Connecting the Avalon Bus Module to External Devices

Alignment Master Width Slave Width A[0] on Slave Is Connected to Byte Address Bit Number

native 32 32 2

native 32 16 2

native 32 8 2

native 16 32 -- Not Applicable --

native 16 16 1

native 16 8 1

dynamic 32 32 2

dynamic 32 16 1

dynamic 32 8 0

dynamic 16 32 2

dynamic 16 16 1

dynamic 16 8 0
100 Altera Corporation

Avalon Bus Specification Reference Manual Avalon Bus Specification
When connecting narrow slave devices to a wider Avalon data port,
the slave device’s least significant data pin should always connect to
the least significant bit of the Avalon data port.
Altera Corporation 101

Avalon Bus Specification Reference Manual
102 Altera Corporation

Altera Corporation
Index
A

Address alignment
dynamic

16-bit slave port 98
8-bit slave port 97

native 94
16-bit master port 93
32-bit master port 90

options 88
overview 88
peripherals assignments 89

address signal
master port 46
slave port 22, 24

Avalon bus
address decoding 15
connecting external devices to 100
data-path multiplexing 15
dynamic bus sizing 15
features 10
general description 9
interrupt-priority assignment 15
latent transfer capabilities 15
module 13
signals 21
streaming read and write capabilities 15
terms and concepts 11
timing 20
transfers 19
wait-state generation 15

B

begintransfer signal, slave port 24, 77
Bus

cycle 11
sizing, dynamic 96, 99
transfer 11

byteenable signal
master port 46
slave port 24

C

chipselect signal, slave port 24
clk signal

master port 46
slave port 22, 24

Control signals 76

D

dataavailable signal, slave port 25
Devices, external 100

E

endofpacket signal
master port 47
slave port 25

F

flush signal, master port 47

I

Interface to off-chip devices 78
Interfaces, master vs. slave 19
Interrupt request signal 76
irq signal

master port 47
slave port 22, 25

irqnumber signal, master port 47

L

Latency, read transfers with 12, 54
 103

Index Avalon Bus Specification Reference Manual
M

Master port signals
address 46
byteenable 46
clk 46
endofpacket 47
flush 47
irq 47
irqnumber 47
read 46
readdata 46
readdatavalid 47
reset 46
waitrequest 47
write 46
writedata 47

O

off-chip devices 78

P

Peripherals 16
inside System Module 17
outside System Module 17

Ports
master 17
master-slave pair 18
slave 18

PTF file 18

R

read signal
master port 46
slave port 22, 24

Read transfers, slave. See Transfers, slave.
readdata signal

master port 46
slave port 22, 24

readdatavalid 25
readdatavalid signal, master port 47
readyfordata signal, slave port 25
reset signal 76

master port 46

slave port 24
resetrequest signal, slave port 25

S

Signals 21
control 76
interrupt request 76
reset 76

Simultaneous multi-master, considerations 23
Slave port

16-bit with dynamic address alignment 98
32-bit with dynamic bus sizing 99
8-bit with dynamic address alignment 97
between 1 and 8 bits 90, 93
between 17 and 31 bits 93
between 9 and 16 bits 91, 94

Slave port signals
address 22, 24
begintransfer 24, 77
byteenable 24
chipselect 24
clk 22, 24
dataavailable 25
endofpacket 25
irq 22, 25
read 22, 24
readdata 22, 24
readyfordata 25
reset 24
resetrequest 25
waitrequest 25
write 22, 24
writedata 22, 24

SOPC Builder
Avalon bus generation and 12
parameters and switches 18

Streaming transfers. See Transfers, streaming.
System modules

description 12
multi-master 94

T

Timing 20
Transfers 19
104 Altera Corporation

Avalon Bus Specification Reference Manual Index
advanced 54
fundamental master read 48
fundamental master write 50
master 45

read with latency 62
signals for 46

read with latency 12, 54
slave 23

read 26
read fundamental 26
read with fixed latency 56
read with fixed wait states 28
read with setup time 34
read with variable latency 58
read with wait states 32
signals for 24
write 36
write fundamental 36
write with fixed wait states 39
write with setup and hold time 43
write with wait states 41

streaming 12, 66
master 73
slave 66
slave read 67
slave write 70

tristate signals
slave transfers 78

Tristate slave port signals 79
Tristate slave read transfer

fixed setup time & wait states 82
Tristate slave read transfer without latency 81

W

waitrequest signal
master port 47
slave port 25

write signal
master port 46
slave port 22, 24

Write transfers, slave. See Transfers, slave.
writedata signal

master port 47
slave port 22, 24
Altera Corporation 105

	About this Manual
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	Table of Contents
	Avalon Bus Specification
	General Description
	Features Overview
	Terms and Concepts
	Bus Cycle
	Bus Transfer
	Streaming Transfer
	Read Transfer with Latency
	SOPC Builder Software & Generation of the Avalon Bus
	System Module
	Avalon Bus Module
	Avalon Peripherals
	Peripherals inside the System Module
	Peripherals outside the System Module

	Master Port
	Slave Port
	Master-Slave Pair
	PTF File & SOPC Builder Parameters & Switches

	Avalon Bus Transfers
	Master Interface versus Slave Interface
	Avalon Bus Timing
	Avalon Bus Signals
	Simultaneous Multi-Master Avalon Bus Considerations

	Avalon Slave Transfers
	Avalon Signals for Slave Transfers
	Slave Read Transfers on the Avalon Bus
	Fundamental Slave Read Transfer
	Slave Read Transfer with Fixed Wait States
	Slave Read Transfer with Peripheral-Controlled Wait States
	Slave Read Transfer with Setup Time

	Slave Write Transfers on the Avalon Bus
	Fundamental Slave Write Transfer
	Slave Write Transfer with Fixed Wait States
	Slave Write Transfer with Peripheral-Controlled Wait States
	Slave Write Transfer with Setup and Hold Time

	Avalon Master Transfers
	Avalon Signals for Master Transfers
	Fundamental Master Read Transfers on the Avalon Bus
	Fundamental Master Write Transfer on the Avalon Bus

	Advanced Avalon Bus Transfers
	Avalon Read Transfers with Latency
	Slave Read Transfer with Fixed Latency
	Slave Read Transfer with Variable Latency
	Master Read Transfer with Latency

	Streaming Transfer
	Streaming Slave Transfers
	Streaming Master Transfers

	Avalon Bus Control Signals
	Interrupt Request Signal
	Reset Control Logic
	Begin Transfer Signal

	Avalon Interface to Off-Chip Devices
	Avalon Tristate Signals for Slave Transfers
	Avalon Tristate Slave Read Transfer without Latency
	Avalon Tristate Slave Read Transfer with Fixed Latency
	Avalon Tristate Slave Write Transfer

	Avalon Bus Address Alignment Options
	Address Alignment Overview
	Choosing the Address Alignment Assignment for Avalon Peripherals
	Native Address Alignment: 32-Bit Master Port
	Slave Port Between 1 & 8 Bits
	Slave Port Between 9 & 16 Bits
	Slave Port Between 17 & 31 Bits

	Native Address Alignment: 16-Bit Master Port
	Slave Port Between 1 & 8 Bits
	Slave Port Between 9 & 16 Bits

	Native Alignment Considerations in Multi-Master System Modules
	Dynamic Bus Sizing
	8-bit Slave Port with Dynamic Bus Sizing
	16-bit Slave Port with Dynamic Bus Sizing
	32-Bit Slave Port with Dynamic Bus Sizing

	Connection to External Devices

	Index

