
RL-RTX

The RTX kernel is a real time operating system (RTOS) that enables you to create applications that
simultaneously perform multiple functions or tasks. This is very useful in embedded applications.
While it is certainly possible to create real-time programs without an RTOS (by executing one or
more tasks in a loop), there are numerous scheduling, maintenance, and timing issues that an
RTOS like RTX can solve for you.

An RTOS enables flexible scheduling of system resources like CPU and memory, and offers ways to
communicate between tasks. The RTX kernel is a powerful RTOS that is easy to use and works with
microcontrollers that are based on the ARM7™TDMI, ARM9™, or Cortex™-M3 CPU core.

RTX programs are written using standard C constructs and compiled with the RealView® Compiler.
The RTX.H header file defines the RTX functions and macros that allow you to easily declare tasks
and access all RTOS features.

The topic Create New RTX Application provides a step-by-step introduction that explains you how
to create RTX applications.

Copyright © Keil, An ARM Company. All rights reserved.

Page 1

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Overview

The RTX kernel is an easy to use Real Time eXecutive for microcontrollers that are based on ARM
CPU cores. It provides a set of C functions and C macros that allow you to build real time
applications using tasks that run quasi-parallel on the CPU.

This section provides basic information about the RTX kernel, lists timing information, and explains
the concepts of quasi-parallel task exection.

Copyright © Keil, An ARM Company. All rights reserved.

Page 2

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Product Description

The RTX kernel provides basic functionality to start and stop concurrent tasks (processes). It
provides additional functions for interprocess communication. You can use the communication
functions to synchronize different tasks, manage common resources (like peripherals or memory
regions), and pass complete messages between tasks.

Copyright © Keil, An ARM Company. All rights reserved.

Page 3

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Basic Functions

You can use the basic functions to start up the Real Time Executive, to start and stop tasks, and to
pass control from one task to another (round-robin scheduling). You can assign execution priorities
to tasks. When there is more than one task in the ready list, the RTX kernel uses the execution
priorities to select the next task to run (preemptive scheduling).

Copyright © Keil, An ARM Company. All rights reserved.

Page 4

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Interprocess Communications

The RTX kernel provides several ways for interprocess communication. These are:

 Event flags
The primary means of implementing a task synchronization are the event flags. Each task
has 16 event flags assigned to it. Hence, you can make a task selectively wait for 16
different events. You can make a task wait for more than one flag at the same time. In this
case, you can either make the task wait for all the selected flags (AND-connection), or make
the task wait for any one of the selected flags (OR-connection).

Event flags can be set either by tasks or by ARM interrupt functions. You can thus
synchronize an external asynchronous event to an RTX kernel task by making the ARM
interrupt function set a flag that the task is waiting for.

 Semaphores
If more than one task needs to access a common resource, special means are required in a
real time multitasking system. Otherwise, accesses by different tasks might interfere and
lead to inconsistent data, or a peripheral element might function incorrectly.

Semaphores are the primary means of avoiding such access problems. Semaphores (binary
semaphores) are software objects containing a virtual token. The kernel gives the token to
the first task that requests it. No other task can obtain the token until it is released back
into the semaphore. Since only the task that has the token can access the common
resource, it prevents other tasks from accessing and interfering with the common resource.

The RTX kernel puts a task to sleep if the requested token is not available in the
semaphore. The kernel wakes the task up and puts it in the ready list as soon as the token
is returned to the semaphore. You can also use a time out to ensure that the task does not
sleep indefinitely.

 Mutexes
An alternative way to avoid synchronization and memory access problems is to use mutual
exclusion locks (mutexes). These are software objects that a task can use to lock the
common resource, so that only the task that locks it can access the common resource. The
kernel blocks all other tasks that request the mutex lock until the task that locked the
mutex unlocks it.

 Mailboxes
Tasks can pass messages between each other using mailboxes. This is usually the case
when implementing various high level protocols like TCP-IP, UDP, and ISDN.

The message is simply a pointer to the block of memory containing a protocol message or
frame. It is the programmer's responsibility to dynamically allocate and free the memory
block to prevent memory leaks.

The RTX kernel puts the waiting task to sleep if the message is not available . The kernel
wakes the task up as soon as another task sends a message to the mailbox.

Copyright © Keil, An ARM Company. All rights reserved.

Page 5

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Product Specification

RTX Kernel Library is implemented in several versions:

 ARM7™/ARM9™ version
 Cortex™-M0/M1 version
 Cortex™-M3 version
 Cortex™-M4 version
 Cortex™-R4 version

A different implementation for Cortex™-M devices is mainly because this core has extended RTOS
features, which allows more robust and fail-proof RTX Kernel implementation.

Main concept differences are:

 ARM7™/ARM9™ version uses the system task manager to control task switches of all user
tasks. It is executed in System Mode.

 Cortex™-M version uses system calls that are all executed as SVC System Supervisor Calls.

Copyright © Keil, An ARM Company. All rights reserved.

Page 6

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Technical Data
Description ARM7™/ARM9™ Cortex™-M
Defined Tasks Unlimited Unlimited
Active Tasks 250 max 250 max
Mailboxes Unlimited Unlimited
Semaphores Unlimited Unlimited
Mutexes Unlimited Unlimited
Signals / Events 16 per task 16 per task
User Timers Unlimited Unlimited
Code Space <4.2 Kbytes <4.0 Kbytes
RAM Space for Kernel 300 bytes +

80 bytes User Stack
300 bytes +
128 bytes Main Stack

RAM Space for a Task TaskStackSize + 52 bytes TaskStackSize + 52 bytes
RAM Space for a Mailbox MaxMessages * 4 + 16 bytes MaxMessages * 4 + 16 bytes
RAM Space for a Semaphore 8 bytes 8 bytes
RAM Space for a Mutex 12 bytes 12 bytes
RAM Space for a User Timer 8 bytes 8 bytes
Hardware Requirements One on-chip timer SysTick timer
User task priorities 1 - 254 1 - 254
Context switch time <5.3 µsec @ 60 MHz <2.6 µsec @ 72 MHz
Interrupt lockout time <2.7 µsec @ 60 MHz Not disabled by RTX

Note
 Unlimited means that the RTX kernel does not impose any limitations on the number.

However, the available system memory resources limit the number of items you can create.
 The default configuration of the RTX kernel allows 10 tasks and 10 user timers. It also

disables stack checking by default.
 In the RTX kernel, Event is simply another name for signal.
 RAM requirements depend on the number of concurrently running tasks.
 The code and RAM size was calculated for MicoLib runtime library.

Copyright © Keil, An ARM Company. All rights reserved.

Page 7

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Timing Specifications

Function
ARM7™/ARM9™

(cycles)
Cortex™-M

(cycles)
Initialize system (os_sys_init), start task 1721 1147
Create task (no task switch) 679 403
Create task (switch task) 787 461
Delete task (os_tsk_delete) 402 218
Task switch (by os_tsk_delete_self) 458 230
Task switch (by os_tsk_pass) 321 192
Set event (no task switch) 128 89
Set event (switch task) 363 215
Send semaphore (no task switch) 106 72
Send semaphore (switch task) 364 217
Send message (no task switch) 218 117
Send message (switch task) 404 241
Get own task identifier (os_tsk_self) 23 65
Interrupt latency <160 0

Note
 The table for ARM7™/ARM9™ RTX Kernel library is measured on LPC2138 (ARM7), code

execution from internal flash with zero-cycle latency.
 The table for Cortex™-M RTX Kernel library is measured on LPC1768 (Cortex-M3), code

execution from internal flash with zero-cycle latency.
 The RTX Kernel for the test is configured for 10 tasks, 10 user timers and stack checking

disabled.
 Interrupt latency in ARM7™/ARM9™ includes the ISR prolog generated by the compiler.
 The RTX Kernel library for Cortex™-M3/M4 does not disable interrupts. Interrupt latency is

the same as without the RTX kernel. Interrupt latency for Cortex™-M0/M1 is <20 cycles.

Copyright © Keil, An ARM Company. All rights reserved.

Page 8

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

How To Use

The Real-Time eXecutive (RTX) kernel is based on the idea of parallel tasks (processes). In the RTX
kernel, the task that a system must fulfill is split up into several smaller tasks that run concurrently.
There are many advantages to using the RTX kernel:

 Real world processes are usually made up of several concurrent activities. This pattern can
be represented in software by using the RTX kernel.

 You can make different activities occur at different times, for example just at the moment
when they are needed. This is possible because each activity is packed into a separate
task, which can be executed on its own.

 You can prioritize the tasks.
 It is easier to understand and manage smaller pieces of code than one large piece of

software.
 Splitting up the software into independent parts reduces the system complexity, reduces

errors, and even facilitates testing.
 The RTX kernel is scalable, and additional tasks can easily be added at a later time.
 The RTX kernel offers services needed in many real-time applications, for example good

handling of interrupts, periodical activation of tasks, and time-limits on wait functions.

Copyright © Keil, An ARM Company. All rights reserved.

Page 9

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Your First RTX Application

This section demonstrates an example of using the RTX kernel for a simple application. The example
is located in the folder \Keil\ARM\RL\RTX\Examples\RTX_ex1. The application must perform two
activities. The first activity must continuously repeat 50 ms after the second activity completes. The
second activity must repeat 20 ms after the first activity completes.

Hence, you can implement these activities as two separate tasks, called task1 and task2:

1. Place the code for the two activities into two separate functions (task1 and task2). Declare
the two functions as tasks using the keyword __task (defined in RTL.H) which indicates a
RTX task.

2.
3. __task void task1 (void) {

4. place code of task 1 here

5. }

6.
7. __task void task2 (void) {

8. place code of task 2 here

9. }

10. When the system starts up, the RTK kernel must start before running any task. To do this,
call the os_sys_init function in the C main function. Pass the function name of the first task
as the parameter to the os_sys_init function. This ensures that after the RTX kernel
initializes, the task starts executing rather than continuing program execution in the main
function.

In this example, task1 starts first. Hence, task1 must create task2. You can do this using
the os_tsk_create function.

__task void task1 (void) {

 os_tsk_create (task2, 0);

 place code of task 1 here

}

__task void task2 (void) {

 place code of task 2 here

}

void main (void) {

 os_sys_init (task1);

}

11. Now implement the timing requirements. Since both activities must repeat indefinitely, place
the code in an endless loop in each task. After the task1 activity finishes, it must send a
signal to task2, and it must wait for task2 to complete. Then it must wait for 50 ms before it
can perform the activity again. You can use the os_dly_wait function to wait for a number
of system intervals. The RTX kernel starts a system timer by programming one of the on-chip
hardware timers of the ARM processors. By default, the system interval is 10 ms and timer 0
is used (this is configurable).

You can use the os_evt_wait_or function to make task1 wait for completion of task2, and
you can use the os_evt_set function to send the signal to task2. This examples uses bit 2
(position 3) of the event flags to inform the other task when it completes.

task2 must start 20 ms after task1 completes. You can use the same functions in task2 to
wait and send signals to task1. The listing below shows all the statements required to run
the example:

12.
13. /* Include type and function declarations for RTX */

14. #include "rtl.h"

15.

Page 10

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

16. /* id1, id2 will contain task identifications at run-time */

17. OS_TID id1, id2;

18.
19. /* Forward declaration of tasks. */

20. __task void task1 (void);

21. __task void task2 (void);

22.
23. __task void task1 (void){

24. /* Obtain own system task identification number */

25. id1 = os_tsk_self();

26.
27. /* Create task2 and obtain its task identification number */

28. id2 = os_tsk_create (task2, 0);

29.
30. for (;;) {

31. /* ... place code for task1 activity here ... */

32.
33. /* Signal to task2 that task1 has compelted */

34. os_evt_set(0x0004, id2);

35.
36. /* Wait for completion of task2 activity. */

37. /* 0xFFFF makes it wait without timeout. */

38. /* 0x0004 represents bit 2. */

39. os_evt_wait_or(0x0004, 0xFFFF);

40.
41. /* Wait for 50 ms before restarting task1 activity. */

42. os_dly_wait(5);

43. }

44. }

45.
46. __task void task2 (void) {

47. for (;;) {

48. /* Wait for completion of task1 activity. */

49. /* 0xFFFF makes it wait without timeout. */

50. /* 0x0004 represents bit 2. */

51. os_evt_wait_or(0x0004, 0xFFFF);

52.
53. /* Wait for 20 ms before starting task2 activity. */

54. os_dly_wait(2);

55.
56. /* ... place code for task2 activity here ... */

57.
58. /* Signal to task1 that task1 has compelted */

59. os_evt_set(0x0004, id1);

60. }

61. }

62.
63. void main (void) {

64. /* Start the RTX kernel, and then create and execute task1. */

65. os_sys_init(task1);

66. }

Page 11

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

67. Finally, to compile the code and link it with the RTX library, you must select the RTX
operating system for the project. From the main menu, select Project —> Options for
Target. Select the Target tab. Select RTX Kernel for the Operating system. Build the project
to generate the absolute file. You can run the object file output from the linker either on
your target or on the µVision Simulator.

Copyright © Keil, An ARM Company. All rights reserved.

Page 12

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Theory of Operation

The RTX kernel uses and manages your target system's resources. This section describes the
resources and how they are managed by the RTX kernel.

Many aspects of the RTX kernel can be configured on a project by project basis. This is mentioned
where applicable.

Copyright © Keil, An ARM Company. All rights reserved.

Page 13

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Timer Tick Interrupt

The RTX kernel for ARM7™ and ARM9™ uses one of the standard ARM timers to generate a periodic
interrupt. RTX kernel for Cortex™-M uses common SysTick timer. This interrupt is called the RTX
kernel timer tick. For some of the RTX library functions, you must specify timeouts and delay
intervals in number of RTX kernel timer ticks.

The parameters for the RTX kernel timer are selected in the RTX_Config.c configuration file. Each
ARM microcontroller family provides a different peripherals that are supported with different
RTX_Config.c files.

For example, the RTX_Config.c file for NXP LPC2100/LPC2200 allows to use Timer 0 or Timer 1 for
the RTX kernel timer.

The timer clock value specifies the input clock frequency and depends on CPU clock and APB clock.
For a device with CPU clock 60 MHz and VPB divider 4 the peripheral clock is 15MHz and therefore
the value is set to 15000000.

The time tick value specifies the interval of the periodic RTX interrupt. The value
10000 us configures timer tick period of 0.01 seconds.

Copyright © Keil, An ARM Company. All rights reserved.

Page 14

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

System Task Manager

The task manager is a system task that is executed on every timer tick interrupt. It has the
highest assigned priority and does not get preempted. This task is basically used to switch
between user tasks.

The RTX tasks are not really executed concurrently. They are time-sliced. The available CPU time is
divided into time slices and the RTX kernel assigns a time slice to each task. Since the time slice is
short (default time slice is set to 10 ms) it appears as though tasks execute simultaneously.

Tasks execute for the duration of their time-slice unless the task's time-slice is given up explicitly by
calling the os_tsk_pass or one of the wait library functions. Then the RTX Kernel switches to the
next task that is ready to run. You can set the duration of the time-slice in the RTX_Config.c
configuration file.

The task manager is the system tick timer task that manages all other tasks. It handles the task's
delay timeouts and puts waiting tasks to sleep. When the required event occurs, it puts the waiting
tasks back again into the ready state. This is why the tick timer task must have the highest priority.

The task manager runs not only when the timer tick interrupt occurs, but also when an interrupt
calls one of the isr_ functions. This is because interrupts cannot make the current task wait, and
therefore interrupts cannot perform task switching. However, interrupts can generate the event,
semaphore or mailbox message (using an isr_ library function) that a higher priority task is waiting
for. The higher priority task must preempt the current task, but can do so only after the interrupt
function completes. The interrupt therefore forces the timer tick interrupt, which runs when the
current interrupt finishes. The forced tick timer interrupt starts the task manager (clock task)
scheduler. The task scheduler process all the tasks and then puts the highest ready task into the
running state. The highest priority task can then continue with its execution.

Note
 The tick timer task is an RTX system task and is therefore created by the system.
 The RTX library for Cortex™-M uses extended RTOS features of Cortex™-M devices. All RTX

system functions are executed in svc mode.

Copyright © Keil, An ARM Company. All rights reserved.

Page 15

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Task Management

Each RTX task is always in exactly one state, which tells the disposition of the task.

State Description
RUNNING The task that is currently running is in the RUNNING state. Only one task at a time

can be in this state. The os_tsk_self() returns the Task ID (TID) of the currently
executing task.

READY Tasks which are ready to run are in the READY state. Once the running task has
completed processing, RTX selects the next ready task with the highest priority and
starts it.

WAIT_DLY Tasks which are waiting for a delay to expire are in the WAIT_DLY State. Once the
delay has expired, the task is switched to the READY state. The os_dly_wait()
function is used to place a task in the WAIT_DLY state.

WAIT_ITV Tasks which are waiting for an interval to expire are in the WAIT_ITV State. Once
the interval delay has expired, the task is switched back to the READY State. The
os_itv_wait() function is used to place a task in the WAIT_IVL State.

WAIT_OR Tasks which are waiting for at least one event flag are in the WAIT_OR State.
When the event occurs, the task is switched to the READY state. The
os_evt_wait_or() function is used to place a task in the WAIT_OR state.

WAIT_AND Tasks which are waiting for all the set events to occur are in the WAIT_AND state.
When all event flags are set, the task is switched to the READY state. The
os_evt_wait_and() function is used to place a task in the WAIT_AND state.

WAIT_SEM Tasks which are waiting for a semaphore are in the WAIT_SEM state. When the
token is obtained from the semaphore, the task is switched to the READY state.
The os_sem_wait() function is used to place a task in the WAIT_SEM state.

WAIT_MUT Tasks which are waiting for a free mutex are in the WAIT_MUT state. When a
mutex is released, the task acquire the mutex and switch to the READY state. The
os_mut_wait() function is used to place a task in the WAIT_MUT state.

WAIT_MBX Tasks which are waiting for a mailbox message are in the WAIT_MBX state. Once
the message has arrived, the task is switched to the READY state. The
os_mbx_wait() function is used to place a task in the WAIT_MBX state.
Tasks waiting to send a message when the mailbox is full are also put into the
WAIT_MBX state. When the message is read out from the mailbox, the task is
switched to the READY state. In this case the os_mbx_send() function is used to
place a task in the WAIT_MBX state.

INACTIVE Tasks which have not been started or tasks which have been deleted are in the
INACTIVE state. The os_tsk_delete() function places a task that has been started
(with os_tsk_create()) into the INACTIVE state.

Copyright © Keil, An ARM Company. All rights reserved.

Page 16

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Idle Task

When no task is ready to run, the RTX kernel executes the idle task os_idle_demon. The idle task
is simply an endless loop. For example:

 for (;;);

ARM devices provide an idle mode that reduces power consumption by halting program execution
until an interrupt occurs. In this mode, all peripherals, including the interrupt system, still continue
to work.

The RTX kernel initiates idle mode in the os_idle_demon task (when no other task is ready for
execution). When the RTX kernel timer tick interrupt (or any other interrupt) occurs, the
microcontroller resumes program execution.

You can add your own code to the os_idle_demon task. The code executed by the idle task can be
configured in the RTX_Config.c configuration file.

Note
 The idle task os_idle_demon is an RTX kernel system task and is therefore created by the

system.
 Do not use idle mode if you are using the JTAG interface for debugging. Some ARM devices

may stop communicating over the JTAG interface when idle.

Copyright © Keil, An ARM Company. All rights reserved.

Page 17

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

System Resources

RTX kernel tasks are identified by their Task Control Block (TCB). This is a dynamically allocated
block of memory where all task control and status variables are located. TCB is allocated at runtime
when the task is created with the os_tsk_create or os_tsk_create_user function call.

The size of the TCB memory pool is defined in the RTX_Config.c configuration file, and it depends
on the number of concurrent running tasks. This is not necessarily the number of defined tasks
since multiple instances of a task are supported by the RTX kernel.

The RTX kernel also allocates the task its own stack. The stack is allocated at runtime after the TCB
has been allocated. The pointer to the stack memory block is then written into the TCB.

Copyright © Keil, An ARM Company. All rights reserved.

Page 18

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Scheduling Options

RTX allows you to build an application with three different kernel-scheduling options. These are:

 Pre-emptive scheduling
Each task has a different priority and will run until it is pre-empted or has reached a
blocking OS call.

 Round-Robin scheduling
Each task has the same priority and will run for a fixed period, or time slice, or until has
reached a blocking OS call.

 Co-operative multi-tasking
Each task has the same priority and the Round-Robin is disabled. Each task will run until it
reached a blocking OS call or uses the os_tsk_pass() call.

The default scheduling option for RTX is Round-Robin Pre-emptive. For most applications, this is the
most useful option.

Copyright © Keil, An ARM Company. All rights reserved.

Page 19

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Pre-emptive Scheduling

RTX is a pre-emptive multitasking operating system. If a task with a higher priority than the
currently running task becomes ready to run, RTX suspends the currently running task.

A preemptive task switch occurs when:

 the task scheduler is executed from the system tick timer interrupt. Task scheduler
processes the delays of tasks. If the delay for a task with a higher priority has expired,
then the higher priority task starts to execute instead of currently running task.

 an event is set for a higher priority task by the currently running task or by an interrupt
service routine. The currently running task is suspended, and the higher priority task starts
to run.

 a token is returned to a semaphore, and a higher priority task is waiting for the semaphore
token. The currently running task is suspended, and the higher priority task starts to run.
The token can be returned by the currently running task or by an interrupt service routine.

 a mutex is released and a higher priority task is waiting for the mutex. The currently
running task is suspended, and the higher priority task starts to run.

 a message is posted to a mailbox, and a higher priority task is waiting for the mailbox
message. The currently running task is suspended, and the higher priority task starts to
run. The message can be posted by the currently running task or by an interrupt service
routine.

 a mailbox is full, and a higher priority task is waiting to post a message to a mailbox. As
soon as the currently running task or an interrupt service routine takes a message out from
the mailbox, the higher priority task starts to run.

 the priority of the currently running task is reduced. If another task is ready to run and has
a higher priority than the new priority of the currently running task, then the current task is
suspended immediately, and the higher priority task resumes its execution.

The following example demonstrates one of the task switching mechanisms. Task job1 has a higher
priority than task job2. When job1 starts, it creates task job2 and then enters the os_evt_wait_or
function. The RTX kernel suspends job1 at this point, and job2 starts executing. As soon as job2
sets an event flag for job1, the RTX kernel suspends job2 and then resumes job1. Task job1 then
increments counter cnt1 and calls the os_evt_wait_or function, which suspends it again. The
kernel resumes job2, which increments counter cnt2 and sets an event flag for job1. This process of
task switching continues indefinitely.

#include <rtl.h>

OS_TID tsk1,tsk2;

int cnt1,cnt2;

__task void job1 (void);

__task void job2 (void);

__task void job1 (void) {

 os_tsk_prio (2);

 os_tsk_create (job2, 1);

 while (1) {

 os_evt_wait_or (0x0001, 0xffff);

 cnt1++;

 }

}

__task void job2 (void) {

 while (1) {

 os_evt_set (0x0001, job1);

 cnt2++;

 }

}

Page 20

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

void main (void) {

 os_sys_init (job1);

 while (1);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 21

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Round-Robin Scheduling

RTX can be configured to use Round-Robin Multitasking (or task switching). Round-Robin allows
quasi-parallel execution of several tasks. Tasks are not really executed concurrently but are
time-sliced (the available CPU time is divided into time slices and RTX assigns a time slice to each
task). Since the time slice is short (only a few milliseconds) it appears as though tasks execute
simultaneously.

Tasks execute for the duration of their time-slice (unless the task's time slice is given up). Then, RTX
switches to the next task that is ready to run and has the same priority. If no other task with the
same priority is ready to run, the currently running task resumes it execution. The duration of a time
slice can be defined in the RTX_config.c configuration file.

The following example shows a simple RTX program that uses Round-Robin Multitasking. The two
tasks in this program are counter loops. RTX starts executing task 1, which is the function named
job1. This function creates another task called job2. After job1 executes for its time slice, RTX
switches to job2. After job2 executes for its time slice, RTX switches back to job1. This process
repeats indefinitely.

#include <rtl.h>

int counter1;

int counter2;

__task void job1 (void);

__task void job2 (void);

__task void job1 (void) {

 os_tsk_create (job2, 0); /* Create task 2 and mark it as ready */

 while (1) { /* loop forever */

 counter1++; /* update the counter */

 }

}

__task void job2 (void) {

 while (1) { /* loop forever */

 counter2++; /* update the counter */

 }

}

void main (void) {

 os_sys_init (job1); /* Initialize RTX Kernel and start task 1 */

 for (;;);

}

Note
 Rather than wait for a task's time slice to expire, you can use one of the system wait

functions or the os_tsk_pass function to signal to the RTX kernel that it can switch to
another task. The system wait function suspends the current task (changes it to the
WAIT_xxx state) until the specified event occurs. The task is then changed to the READY
state. During this time, any number of other tasks can run.

Copyright © Keil, An ARM Company. All rights reserved.

Page 22

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Cooperative Multitasking

If you disable Round-Robin Multitasking you must design and implement your tasks so that they
work cooperatively. Specifically, you must call the system wait function like the os_dly_wait()
function or the os_tsk_pass() function somewhere in each task. These functions signal the RTX
kernel to switch to another task.

The following example shows a simple RTX program that uses Cooperative Multitasking. The RTX
kernel starts executing task 1. This function creates task 2. After counter1 is incremented once, the
kernel switches to task 2. After counter2 is incremented once, the kernel switches back to task 1.
This process repeats indefinitely.

#include <rtl.h>

int counter1;

int counter2;

__task void task1 (void);

__task void task2 (void);

__task void task1 (void) {

 os_tsk_create (task2, 0); /* Create task 2 and mark it as ready */

 for (;;) { /* loop forever */

 counter1++; /* update the counter */

 os_tsk_pass (); /* switch to 'task2' */

 }

}

__task void task2 (void) {

 for (;;) { /* loop forever */

 counter2++; /* update the counter */

 os_tsk_pass (); /* switch to 'task1' */

 }

}

void main (void) {

 os_sys_init(task1); /* Initialize RTX Kernel and start task 1 */

 for (;;);

}

The difference between the system wait function and os_tsk_pass is that the system wait function
allows your task to wait for an event, while os_tsk_pass switches to another ready task
immediately.

Note
 If the next ready task has a lower priority than the currently running task, then calling

os_tsk_pass does not cause a task switch.

Copyright © Keil, An ARM Company. All rights reserved.

Page 23

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Priority Inversion

The RTX Real Time Operating system employs a priority-based preemptive scheduler. The RTX
scheduler assings each task a unique priority level. The scheduler ensures that of those tasks that
are ready to run, the one with the highest priority is always the task that is actually running.

Because tasks share resourcs, events outside the scheduler's control can prevent the highest
priority ready task from running when it should. If this happens, a critical deadline could be missed,
causing the system to fail. Priority inversion is the term of a scenario in which the highest-priority
ready task fails to run when it should.

Resource sharing

Tasks need to share resources to communicate and process data. Any time two or more tasks
share a recource, such as a memory buffer or a serial port, one of them will usually have a higher
priority. The higher-priority task expects to be run as soon as it is ready. However, if the
lower-priority task is using their shared resource when the higher-priority task becomes ready to
run, the higher-priority task must wait for the lower-priority task to finish with it.

Priority inheritance

To prevent priority inversions, the RTX Real Time OS employs a Priority inheritance method. The
lower-priority task inherit the priority of any higher-priority task pending on a resource they share.
For a short time, the lower-priority task runs at a priority of a higher-priority pending task. The
priority change takes place as soon as the high-priority task begins to pend. When the
lower-priority task stops using a shared resource, it's priority level returns to normal.

The RTX mutex objects (Mutual Exclusive Lock objects) employ the Priority inheritance.

Copyright © Keil, An ARM Company. All rights reserved.

Page 24

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Stack Management

The Stack Management of the RTX kernel is designed for optimal memory usage. The RTX kernel
system needs one stack space for the task that is currently in the RUNNING state:

 Local Stack: stores parameters, automatic variables, and function return addresses. On the
ARM device, this stack can be anywhere. However, for performance reasons, it is better to
use the on-chip RAM for the local stack.

When a task switch occurs:

 the context of the currently running task is stored on the local stack of the current task
 the stack is switched to that of the next task
 the context of the new task is restored
 the new task starts to run.

The Local Stack also holds the task context of waiting or ready tasks.

The other stack spaces need to be configured from the ARM startup file. All tasks run in user mode.
The task scheduler switches the user/system mode stack between tasks. For this reason, the
default user/system mode stack (which is defined in the startup file) is used until the first task is
created and started. The default stack requirements are very small, so it is optimal to set the
user/system stack in the startup file to 64 bytes.

Copyright © Keil, An ARM Company. All rights reserved.

Page 25

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

User Timers

User Timers are simple timer blocks that count down on every system timer tick. They are
implemented as single shot timers. This means you cannot pause and restart these timers.
However, you can create and kill the user timers dynamically at runtime. If you do not kill a user
timer before it expires, the RTX kernel calls the user provided callback function, os_tmr_call(), and
then deletes the timer when it expires.

A timeout value is defined when the timer is created by the os_tmr_create() function.

The RTX kernel calls the callback function with the argument info. The user provides this argument
when creating the user timer. The RTX kernel stores the argument in the timer control block. When
the timer expires, this argument is passed back to the user in the os_tmr_call() function. If the
user kills the timer before the timeout value expires, the RTX kernel does not call the callback
function.

You can customize the callback function os_tmr_call() in the RTX_Config.c configuration file.

Note
 The callback function, os_tmr_call, is called from the system task scheduler. It is

recommended to make your os_tmr_call() function as small and fast as possible because
the callback function blocks the RTX task scheduler for the length of time it executes.

 The function os_tmr_call behaves the same way as standard interrupt functions. It is
allowed to call the isr_ functions to set an event, send a semaphore, or send a message to
other tasks. You cannot call the os_ library functions from os_tmr_call().

Copyright © Keil, An ARM Company. All rights reserved.

Page 26

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Interrupt Functions

RTX can work with interrupt functions in parallel. However, it is better to avoid IRQ nesting. Good
programming techniques use short interrupt functions that send signals or messages to RTOS
tasks. With this practice, interrupt nesting becomes unimportant. This avoids common problems
with nested interrupts where the user mode stack usage becomes unpredictable.

The following figure shows how interrupts should be handled with tasks in the RTX kernel system.
An IRQ function can send a signal or message to start a high priority task.

Interrupt functions are added to an ARM application in the same way as in any other non-RTX
projects.

Note
 The FIQ interrupts are never disabled by the RTX kernel.
 You cannot call the isr_ library functions from the FIQ interrupt function.

The following example shows how to use interrupts with the RTX kernel. The interrupt function,
ext0_int, sends an event to process_task and exits. The task process_task processes the external
interrupt event. In this example, process_task is simple and only counts the number of interrupt
events.

#define EVT_KEY 0x0001

OS_TID pr_task;

int num_ints;

/*--

 * External 0 Interrupt Service Routine

---/

void ext0_int (void) __irq {

 isr_evt_set (EVT_KEY, pr_task); /* Send event to 'process_task'

*/

 EXTINT = 0x01; /* Acknowledge Interrupt

*/

 VICVectAddr = 0;

}

/*--

Page 27

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 * Task 'process_task'

---/

__task void process_task (void) {

 num_ints = 0;

 while (1) {

 os_evt_wait_or (EVT_KEY, 0xffff);

 num_ints++;

 }

}

/*--

 * Task 'init_task'

---/

__task void init_task (void) {

 PINSEL1 &= ~0x00000003; /* Enable EINT0

*/

 PINSEL1 |= 0x00000001;

 EXTMODE = 0x03; /* Edge triggered lo->hi transition

*/

 EXTPOLAR = 0x03;

 pr_task = os_tsk_create (process_task, 100);

 VICVectAddr14 = (U32)eint0_int; /* Task started, Enable interrupts

*/

 VICVectCntl14 = 0x20 | 14;

 os_tsk_delete_self (); /* Terminate this task

*/

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 28

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuring RTX Kernel

The RTX kernel is easy to customize for each application you create. This section describes how you
can configure the RTX kernel's features for your applications. It contains:

 Basic RTX Configuration
 Advanced RTX Configuration.

Copyright © Keil, An ARM Company. All rights reserved.

Page 29

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Basic RTX Configuration

The RTX kernel must be configured for the embedded applications you create. All configuration
settings are found in the RTX_Config.c file, which is located in the \Keil\ARM\Startup directory.
RTX_Config.c is configured differently for the different ARM devices. Configuration options in
RTX_Config.c allow you to:

 Specify the number of concurrent running tasks
 Specify the number of tasks with user-provided stack
 Specify the stack size for each task
 Enable or disable the stack checking
 Enable or disable running tasks in privileged mode
 Specify the CPU timer number used as the system tick timer
 Specify the input clock frequency for the selected timer
 Specify the timer tick interval
 Enable or disable the round-robin task switching
 Specify the time slice for the round-robin task switching
 Define idle task operations
 Specify the number of user timers
 Specify code for the user timer callback function
 Specify the FIFO Queue size
 Specify code for the runtime error function

There is no default configuration in the RL-RTX library. Hence, you must add the RTX_Config.c
configuration file to each project you create.

To customize the RTX kernel's features, you must change the configurable settings in RTX_Config.c
.

Copyright © Keil, An ARM Company. All rights reserved.

Page 30

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Tasks

The following #define(s) specify how the RTX kernel tasks are configured:

 OS_TASKCNT specifies the maximum number of tasks that can be active at the same time.
This includes tasks in any state (running, waiting, or ready) other than the INACTIVE state.

This information is used by the RTX kernel to reserve the memory pool for the task control
variables. This number can be higher than the number of defined tasks in your application
(one task can run in multiple instances) or lower if it is guaranteed that the number of
created and running tasks will never exceed OS_TASKCNT.

#define OS_TASKCNT 6

 OS_PRIVCNT specifies the number of tasks with user-provided stack.

By default, the RTX kernel allocates a fixed size stack to each task. However, the stack
requirement can vary widely between tasks. For example, if a task's local variables include
large buffers, arrays, or complex structures, then the task requires a lot more stack. If such
a task tries to use more stack than the allocated stack, it might overwrite the stack of
neighboring tasks. This is because the fixed size stacks of the tasks are part of the common
system stack and are contiguous. This leads to malfunctioning of the RTX kernel and is likely
to cause a system crash. An intuitive solution to this problem is to increase the fixed stack
size. However, this increases the stack size of every other task that might not need the
extra stack. To avoid this wastage of valuable resource, a better solution is to allocate a
separate user-provided stack for tasks that require a lot more stack.

The term user-provided, in this case, means that the memory space for the task's stack is
provided by the user when the task is created. It is not automatically assigned by the
kernel. The RTX kernel uses OS_PRIVCNT to optimize the memory usage. The kernel will not
reserve stack space for the tasks with a user-provided stack.

#define OS_PRIVCNT 0

Note
 In addition to OS_TASKCNT user tasks, the system creates one system task os_idle_demon

. This task is always required by the RTX kernel. Total number of concurrent running tasks is
OS_TASKCNT+1 (number of user tasks plus one system task).

Copyright © Keil, An ARM Company. All rights reserved.

Page 31

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Stack Size

The stack usage of a particular task depends on its amount of local automatic variables and the
number of subroutine levels. Interrupt functions do not use the stack of the interrupted task.

 OS_STKSIZE specifies the amount of RAM allocated for the stack of each task. Stack size is
defined in U32 (unsigned int). However, Configuration Wizard converts the specified size
and displays it in bytes. Stack size with the following define is 400 bytes.

 #define OS_STKSIZE 100

On the full context task switch, the RTX kernel stores all ARM registers on the stack. Full
task context storing requires 64 bytes of stack.

 The Cortex-M4 with Hardware Floating Point, needs additional 136 bytes on stack for

storing VFP registers. This means the total size of the full context store for Cortex-M4 with
FP is 200 bytes.

 The Cortex-M4 tasks, where the Floating Point arithmetics is not used, do not store the
additional VFP registers on context save. This means, they do not need additional 136 bytes
on the stack. The full context store for tasks with no Floating Point calculations is still 64
bytes.

Copyright © Keil, An ARM Company. All rights reserved.

Page 32

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Stack Checking

It is possible that the stack is exhausted because of many nested subroutine calls or an extensive
use of large automatic variables.

If Stack Checking is enabled, the kernel can detect the stack exhaustion problem and execute the
system error function. The application will hang in an endless loop inside the error function with
parameter err_code set to OS_ERR_STK_OVF. You can identify the task id with isr_tsk_get()
function. Check the Active Tasks debug dialog for the task name.

The solution to this problem is to increase the stack size for all tasks in the configuration file. If
only one task requires a big stack and RAM is limited, you can create this task with a user-provided
stack space.

 OS_STKCHECK enables the Stack Checking algorithm. It must be set to 1 to enable it or 0
to disable it. It is enabled by default.

 #define OS_STKCHECK 1

 Enabled Stack Checking slightly decreases the kernel performance because on every task

switch the kernel needs to execute additional code for stack checking.
 On stack overflow a runtime system error function is called.

Copyright © Keil, An ARM Company. All rights reserved.

Page 33

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Run in Privileged Mode

RTX Library version for Cortex™-M devices allows to select the running mode of all user tasks. User
tasks may run in two modes:

 Unprivileged - Protected mode or
 Privileged - Unprotected mode.

In privileged mode user may access and configure the system and control registers like NVIC
interrupt controller etc. This is however not allowed from unprivileged mode. An access to NVIC
registers from unprivileged mode will result in Hard Fault.

 OS_RUNPRIV enables running of all tasks in Privileged mode. It must be set to 1 to enable
it or 0 to disable it. It is disabled by default.

 #define OS_RUNPRIV 1

You can enable the privileged mode for old projects. The existing code will run without any
modifications when RTX_Config.c configuration file is replaced with a new one and a project is
recompiled for a new Cortex™-M RTX Kernel library. Tasks are not protected in privileged mode and
you may configure the system for example the interrupts from any task.

Privileged mode is disabled by default. This allows all tasks to run in protected mode. The tasks are
not allowed to change system settings, change interrupts etc. The user has two options:

 run the configuration code in privileged mode as __svc function from the task
 run the configuration code before the kernel is started when the device is still running in

privileged mode.

 The RTX Kernel library for ARM7™/ARM9™ does not allow this option because of a different

concept.

Copyright © Keil, An ARM Company. All rights reserved.

Page 34

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Hardware Timer

The following #defines specify how the RTX kernel's hardware timer is configured:

 OS_TIMER specifies the on-chip timer used as a time-base for the real-time system. It
delivers a periodic interrupt that wakes up a time-keeping system task. The user can
choose which timer serves this purpose. Use 0 for Timer 0, or 1 for Timer 1.

 #define OS_TIMER 1

 OS_CLOCK specifies the input clock frequency for the selected timer. This value is
calculated as: f(xtal) / VPBDIV. Example is for 15 MHz at @ 60 MHz CPU clock and VPBDIV =
4

 #define OS_CLOCK 15000000

 OS_TICK specifies the timer tick interval in µsec. Recommended values are 1000 to 100000.
The resulting interval is from 1 ms to 100 ms. Default configuration is for 10 ms.

 #define OS_TICK 10000

Note
 Hardware Timer configuration is required only for ARM7™ and ARM9™ RTX Library version.

The Cortex™-M version uses a common SysTick timer for all Cortex™-M device variants.

Copyright © Keil, An ARM Company. All rights reserved.

Page 35

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Round-Robin Multitasking

The following #define specify how the RTX kernel Round-Robin Multitasking is configured:

 OS_ROBIN enables the Round-Robin Multitasking. It must be set to 1 to enable it or 0 to
disable it. It is enabled by default.

 #define OS_ROBIN 1

 OS_ROBINTOUT specifies the Round-Robin Timeout. This is the time-slice assigned to the
currently running task. After this time-slice expires, the currently running task is suspended
and the next task ready to run is resumed. It is specified in number of system timer ticks.

 #define OS_ROBINTOUT 5

Copyright © Keil, An ARM Company. All rights reserved.

Page 36

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

User Timers

You can create and kill user timers at runtime. You must specify the maximum number of running
user timers and also the code for the os_tmr_call() function.

 OS_TIMERCNT specifies the number of user timers that can be created and started. If user
timers are not used, set this value to 0. This information is used by RTX to reserve the
memory resources for timer control blocks.

 #define OS_TIMERCNT 5

 The callback function os_tmr_call() is called when the user timer expires. It is provided in
the RTX_Config.c configuration file as an empty function. You must modify it to suit your
needs.

Parameter info is the parameter passed to the os_tmr_create() function when the timer
was created.

/*--------------------------- os_tmr_call

-----------------------------------*/

void os_tmr_call (U16 info) {

 /* This function is called when the user timer has expired.

 */

 /* Parameter "info" is the parameter defined when the timer was

created. */

 /* HERE: include here optional user code to be executed on timeout.

 */

 info = info;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 37

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FIFO Queue Buffer

The isr_ library function, when called from the interrupt handler, stores the request type and
optional parameter to the ISR FIFO Queue buffer to be processed later, after the interrupt
handler exits.

The task manager is activated immediately after the IRQ handler has finished its execution to
process the requests stored to the FIFO Queue buffer. The size of this buffer needed, depends on
the number of isr_ functions, that are called within the interrupt handler.

For example, if there is only one interrupt handler in your project and calls one isr_evt_set(), the
FIFO Queue buffer size of 4 entries is sufficient. If there are more interrupts used in the project that
use the isr_ communication with RTX kernel or, one interrupt handler that calls several isr_ library
functions, the FIFO Queue buffer size needs to be increased. The interrupts, that do not use isr_
library functions are not counted here.

Default FIFO Queue buffer size is 16 entries. This should be enough for a typical RTX project.

 OS_FIFOSZ specifies the number of entries that can be stored to the FIFO Queue buffer.
Default size is 16 entries.

 #define OS_FIFOSZ 16

 On FIFO Queue buffer overflow a runtime system error function is called.
 See the Rtx_Config.c configuration file for the possible configuration settings.

Copyright © Keil, An ARM Company. All rights reserved.

Page 38

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Error Function

Some system error conditions can be detected during runtime. If RTX kernel detects a runtime
error, it calls the os_error() runtime error function.

void os_error (U32 err_code) {

 /* This function is called when a runtime error is detected. */

 OS_TID err_task;

 switch (err_code) {

 case OS_ERR_STK_OVF:

 /* Identify the task with stack overflow. */

 err_task = isr_tsk_get();

 break;

 case OS_ERR_FIFO_OVF:

 break;

 case OS_ERR_MBX_OVF:

 break;

 }

 for (;;);

}

The error code is passed to this function as a parameter err_code:

Error Code Description
OS_ERR_STK_OVF The stack checking has detected a stack overflow for the currently running

task.
OS_ERR_FIFO_OVF The ISR FIFO Queue buffer overflow is detected.
OS_ERR_MBX_OVF The mailbox overflow is detected for isr_mbx_send() function.

The runtime error function must contain an infinite loop to prevent further program execution. You
can use an emulator to step over infinite loop and trace into the code introducing a runtime error.
For the overflow errors this means you need to increase the size of the object causing an overflow.

Copyright © Keil, An ARM Company. All rights reserved.

Page 39

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Idle Task

When no tasks are ready to run, the RTX kernel executes the idle task with the name
os_idle_demon(). By default this task is an empty end-less loop that does nothing. It only waits
until another task becomes ready to run.

You may change the code of os_idle_demon() to put the CPU into a power-saving or idle
mode. Most RTX_Config.c files define the macro _idle_() that contains the code to put the CPU into
a power-saving mode.

Example:

/*--------------------------- os_idle_demon

---------------------------------*/

__task void os_idle_demon (void) {

 /* The idle demon is a system task. It is running when no other task is */

 /* ready to run (idle situation). It must not terminate. Therefore it */

 /* should contain at least an endless loop. */

 for (;;) {

 idle(); /* enter low-power mode */

 }

}

Note
 On some devices, the IDLE blocks debugging via the JTAG interface. Therefore JTAG

debuggers such as ULINK may not work when you are using CPU power-saving modes.
 For using power-saving modes, some devices may require additional configuration (such as

clock configuration settings).

Copyright © Keil, An ARM Company. All rights reserved.

Page 40

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Advanced RTX Configuration

RL-ARM provides several versions of the RTX_Config.c file for ARM7™/ARM9™ RTX Kernel library.
Each one configures the RTX kernel for a specific ARM device variant that RL-ARM supports. However
the ARM family of devices is growing quickly, and it is possible that RL-ARM does not contain the
configuration file for the device you use. In this case, you can take the RTX_Config.c file for the
NXP device as a template and modify it for your particular ARM device. This file is located in the
\Keil\ARM\Startup\Philips directory.

All hardware dependent definitions are extracted from the code and defined with macros. This
makes it possible to customize the configuration without modifying the code.

 RTX Kernel library for Cortex™-M has only one configuration file which is common for all

Cortex™-M device variants.

Copyright © Keil, An ARM Company. All rights reserved.

Page 41

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

HW Resources Required

In order to run the RTX kernel, the following hardware resources are required from an ARM device:

 Peripheral Timer for generating periodic ticks. It is better to use a peripheral timer with an
auto-reload function. RTX also supports timers with manual timer (or counter) reload.
However, this can generate jitter and inaccuracy in the long run. The RTX kernel needs a
count-up timer. If the timer used is a count-down timer, you need to convert the timer
value.

 Timer Interrupts to interrupt the execution of a task and to start the system task
scheduler.

 Forced Interrupts to force a timer interrupt when isr_ functions are used. If an isr_
function is called, the kernel forces the timer interrupt immediately after the interrupt ends.
The forced timer interrupt activates the task scheduler. It is possible that a task has
become ready. If this task has a higher priority than the currently running task, a task
switch must occur.

Copyright © Keil, An ARM Company. All rights reserved.

Page 42

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration Macros

All hardware related configuration options are described with configuration macros. Some of the
macros (for example OS_TID_ and OS_TIM_) are used only to simplify the code. They are not
used in all of the configuration files. Using configuration macros allows easy customization of the
configuration for the different peripheral timers supported by an ARM device.

The following configuration macros are introduced:
(examples are for Philips LPC21xx devices - Timer 0)

 OS_TRV macro specifies the timer reload value for the peripheral timer. Peripheral timer
counts up to a reload value, then then overflows to 0, and then generates a tick interrupt.
The reload value should be calculated to generate the desired interval length (for example
10 ms).

 #define OS_TRV ((U32)(((double)OS_CLOCK*(double)OS_TICK)/1E6)-1)

 OS_TVAL macro is used to read the current timer value for a count-up timer. The RTX
kernel uses it to check whether a timer interrupt is a periodic timer interrupt or a software
forced interrupt.

 #define OS_TVAL T0TC /* Timer Value */

For a countdown timer, you must convert the return value. This is an example for a 16-bit
count-down timer:

#define OS_TVAL (0xFFFF - T0VAL) /* Timer Value */

 OS_TOVF specifies a timer overflow flag. The RTX kernel uses it together with the OS_TVAL
macro to differentiate between the periodic timer interrupts and forced timer interrupts.

 #define OS_TOVF (T0IR & 1) /* Overflow Flag */

 OS_TREL() macro specifies a code sequence to reload a peripheral timer on overflow.
When a peripheral timer has an auto-reload functionality, this macro is left empty.

 #define OS_TREL() ; /* Timer Reload */

 OS_TFIRQ() specifies a code sequence to force a timer interrupt. This must be a software
triggered interrupt if the peripheral timer does not allow manual setting of an overflow flag.
If manual setting is possible, this macro should set a peripheral timer overflow flag, which
will cause a timer interrupt.

 #define OS_TFIRQ() VICSoftInt = OS_TIM_; /* Force Interrupt */

 OS_TIACK() is used to acknowledge an interrupt from the timer interrupt function to
release the timer interrupt logic.

 #define OS_TIACK() T0IR = 1; /* Interrupt Ack */ \

 VICSoftIntClr = OS_TIM_; \

 VICVectAddr = 0;

 OS_TINIT() macro is used to initialize the peripheral timer/counter, setup a timer mode,
and set a timer reload. Timer interrupts are also activated here by enabling a peripheral
timer interrupt. This code is executed from the os_sys_init() function.

 #define OS_TINIT() T0MR0 = OS_TRV; /* Initialization */ \

 T0MCR = 3; \

 T0TCR = 1; \

 VICDefVectAddr = (U32)os_def_interrupt; \

 VICVectAddr15 = (U32)os_clock_interrupt; \

 VICVectCntl15 = 0x20 | OS_TID_;

 OS_LOCK() macro disables timer tick interrupts. It is used to avoid interrupting the system
task scheduler. This macro should disable both the periodic timer interrupts and the forced
interrupts. This code is executed from the tsk_lock() function.

 #define OS_LOCK() VICIntEnClr = OS_TIM_; /* Task Lock */

Page 43

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 OS_UNLOCK() macro enables the timer tick interrupts. The code sequence specified here
should enable the periodic timer interrupts and the forced interrupts. This code is executed
from tsk_unlock() function.

 #define OS_UNLOCK() VICIntEnable = OS_TIM_; /* Task Unlock */

Copyright © Keil, An ARM Company. All rights reserved.

Page 44

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Library Files

RL-RTX includes four library files:

 RTX_ARM_L.LIB for microcontrollers based on ARM7TDMI™ and ARM9™ - Little Endian.
 RTX_ARM_B.LIB for microcontrollers based on ARM7TDMI™ and ARM9™ - Big Endian.
 RTX_CM1.LIB for microcontrollers based on Cortex™-M0 and Cortex™-M1 - Little Endian.
 RTX_CM1_B.LIB for microcontrollers based on Cortex™-M0 and Cortex™-M1 - Big Endian.
 RTX_CM3.LIB for microcontrollers based on Cortex™-M3 - Little Endian.
 RTX_CM3_B.LIB for microcontrollers based on Cortex™-M3 - Big Endian.
 RTX_CM4.LIB for microcontrollers based on Cortex™-M4 - Little Endian.
 RTX_CM4_B.LIB for microcontrollers based on Cortex™-M4 - Big Endian.
 RTX_CR4.LIB for microcontrollers based on Cortex™-R4 - Little Endian.
 RTX_CR4_B.LIB for microcontrollers based on Cortex™-R4 - Big Endian.

All RL-ARM libraries are located in the \Keil\ARM\RV31\LIB\ folder. Depending on the target
device selected for your project, the appropriate library file is automatically included into the link
process when the RTX kernel operating system is selected for your project.

The RTX_Lib_ARM.uvproj and RTX_Lib_CM.uvproj projects found in the \Keil\ARM\RL\RTX\
folder are used to build the RL-RTX libraries.

Note
 You should not explicitly include any of the RL-RTX libraries in your application. That is done

automatically when you use the µVision® IDE.

Copyright © Keil, An ARM Company. All rights reserved.

Page 45

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using RTX Kernel

To use RTX Kernel for ARM7™/ARM9™ or Cortex™-M based applications, you must be able to
successfully create RTX applications, compile and link them.

Copyright © Keil, An ARM Company. All rights reserved.

Page 46

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Writing Programs

When you write programs for RL-RTX, you can define RTX tasks using the __task keyword. You can
use the RTX kernel routines whose prototypes are declared in RTL.h.

Copyright © Keil, An ARM Company. All rights reserved.

Page 47

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Include Files

The RTX kernel requires the use of only the RTL.h include file. All library routines and constants are
defined in this header file. You can include it in your source files as follows:

#include <rtl.h>

Copyright © Keil, An ARM Company. All rights reserved.

Page 48

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Defining Tasks

Real-Time or multitasking applications are composed of one or more tasks that perform specific
operations. The RTX kernel supports a maximum of 255 tasks.

Tasks are simply C functions that have a void return type, have a void argument list, and are
declared using the __task function attribute. For example:

__task void func (void);

where
func is the name of the task.

The following example defines the function task1 as a task. This task increments a counter
indefinitely.

__task void task1 (void) {

 while (1) {

 counter0++;

 }

}

Note
 All tasks must be implemented as endless loops. A task must never return.
 The __task function attribute must prefix the task function declaration in RTX kernel

version 3.40 and newer.

Copyright © Keil, An ARM Company. All rights reserved.

Page 49

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Multiple Instances

The RTX kernel enables you to run multiple copies of the same task at the same time. These are
called multiple instances of the same task. You can simply create and run the same task several
times. This is often required when you design a protocol based stack (like ISDN D channel stack).

The following example shows you how the function task2 can run in multiple instances.

#include <rtl.h>

OS_TID tsk_1, tsk2_1, tsk2_2, tsk2_3;

int cnt;

__task void task2 (void) {

 for (;;) {

 os_dly_wait (2);

 cnt++;

 }

}

__task void task1 (void) {

 /* This task will create 3 instances of task2 */

 tsk2_1 = os_tsk_create (task2, 0);

 tsk2_2 = os_tsk_create (task2, 0);

 tsk2_3 = os_tsk_create (task2, 0);

 /* The job is done, delete 'task1' */

 os_tsk_delete_self ();

}

void main (void) {

 os_sys_init(task1);

 for (;;);

}

Note
 Each instance of the same task must have a unique task ID.

Copyright © Keil, An ARM Company. All rights reserved.

Page 50

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

External References

The semaphore and mailbox objects are referenced by the RTX kernel as typeless object pointers
and are typecast inside the specific RTX kernel module. For semaphores and task handles, this is
not a problem. The problem is when referencing the mailbox, which is declared using the macro
os_mbx_declare(). That is why the OS_MBX type is defined. You have to use the OS_MBX object
type identifier to reference mailboxes in external modules.

Here is an example of how the external RTX kernel objects are referenced:

extern OS_TID tsk1;

extern OS_SEM semaphore1;

extern OS_MUT mutex1;

extern OS_MBX mailbox1;

The following example shows you how to make a reference to a mailbox from a different C-module.

 C-Module with a mailbox1 declaration:

 #include <rtl.h>

 os_mbx_declare (mailbox1, 20);

 __task void task1 (void) {

 void *msg;

 os_mbx_init (mailbox1, sizeof (mailbox1));

 msg = alloc();

 /* set message content here */

 os_mbx_send (mailbox1, msg);

 ..

 }

 C-Module with a mailbox1 reference:

 #include <RTL.h>

 extern OS_MBX mailbox1;

 __task void task2 (void) {

 void *msg;

 ..

 os_mbx_wait (mailbox1, &msg, 0xffff);

 /* process message content here */

 free (msg);

 ..

 }

Copyright © Keil, An ARM Company. All rights reserved.

Page 51

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using a Mailbox

The RTX kernel message objects are simply pointers to a block of memory where the relevant
information is stored. There is no restriction regarding the message size or content. The RTX kernel
handles only the pointer to this message.

Sending 8-bit, 16-bit, and 32-bit values

Because the RTX kernel passes only the pointer from the sending task to the receiving task, we can
use the pointer itself to carry simple information like passing a character from a serial receive
interrupt routine. An example can be found in the serial.c interrupt driven serial interface module
for the Traffic example. You must cast the char to a pointer like in the following example:

 os_mbx_send (send_mbx, (void *)c, 0xffff);

Sending fixed size messages

To send fixed size messages, you must allocate a block of memory from the dynamic memory pool,
store the information in it, and pass its pointer to a mailbox. The receiving task receives the pointer
and restores the original information from the memory block, and then releases the allocated
memory block.

Fixed Memory block memory allocation functions

RTX has very powerful fixed memory block memory allocation routines. They are thread safe and
fully reentrant. They can be used with the RTX kernel with no restriction. It is better to use the
fixed memory block allocation routines for sending fixed size messages. The memory pool needs to
be properly initialized to the size of message objects:

 32-bit values: initialize to 4-byte block size.

 _init_box (mpool, sizeof(mpool), 4);

 any size messages: initialize to the size of message object.

 _init_box (mpool, sizeof(mpool), sizeof(struct message));

For 8-bit and 16-bit messages, it is better to use a parameter casting and convert a message value
directly to a pointer.

The following example shows you how to send fixed size messages to a mailbox (see the mailbox
example for more information). The message size is 8 bytes (two unsigned ints).

#include <rtl.h>

os_mbx_declare (MsgBox, 16); /* Declare an RTX mailbox */

U32 mpool[16*(2*sizeof(U32))/4 + 3]; /* Reserve a memory for 16

messages */

__task void rec_task (void);

__task void send_task (void) {

 /* This task will send a message. */

 U32 *mptr;

 os_tsk_create (rec_task, 0);

 os_mbx_init (MsgBox, sizeof(MsgBox));

 mptr = _alloc_box (mpool); /* Allocate a memory for the

message */

 mptr[0] = 0x3215fedc; /* Set the message content. */

Page 52

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 mptr[1] = 0x00000015;

 os_mbx_send (MsgBox, mptr, 0xffff); /* Send a message to a 'MsgBox' */

 os_tsk_delete_self ();

}

__task void rec_task (void) {

 /* This task will receive a message. */

 U32 *rptr, rec_val[2];

 os_mbx_wait (MsgBox, &rptr, 0xffff); /* Wait for the message to arrive.

*/

 rec_val[0] = rptr[0]; /* Store the content to 'rec_val'

*/

 rec_val[1] = rptr[1];

 _free_box (mpool, rptr); /* Release the memory block */

 os_tsk_delete_self ();

}

void main (void) {

 _init_box (mpool, sizeof(mpool), sizeof(U32));

 os_sys_init(send_task);

}

Sending variable size messages

To send a message object of variable size, you must use the memory allocation functions for the
variable size memory blocks. The RVCT library provides these functions in stdlib.h

note
 The fixed block memory allocation functions are fully reentrant. The variable length

memory allocation functions are not reentrant. Therefore the system timer interrupts need
to be disabled during the execution of the malloc() or free() function. Function tsk_lock()
disables timer interrupts and function tsk_unlock() enables timer interrupts.

Copyright © Keil, An ARM Company. All rights reserved.

Page 53

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SWI Functions

Software Interrupt (SWI) functions are functions that run in Supervisor Mode of ARM7™ and
ARM9™ core and are interrupt protected. SWI functions can accept arguments and can return
values. They are used in the same way as other functions.

The difference is hidden to the user and is handled by the RealView C-compiler. It generates
different code instructions to call SWI functions. SWI functions are called by executing the SWI
instruction. When executing the SWI instruction, the controller changes the running mode to a
Supervisor Mode and blocks any further IRQ interrupt requests. Note that the FIQ interrupts are not
disabled in this mode. When the ARM controller leaves this mode, interrupts are enabled again.

If you want to use SWI functions in your RTX kernel project, you need to:

1. Copy the SWI_Table.s file to your project folder and include it into your project.
This file is located in the \Keil\ARM\RL\RTX\SRC\ARM folder.

2. Declare a function with a __swi(x) attribute. Use the first SWI number, starting from 8,
that is free.

3.
4. void __swi(8) inc_5bit (U32 *cp);

5. Write a function implementation and convert the function name into a __SWI_x function
name. This name is referenced later by the linker from SWI_Table.s module.

6.
7. void __SWI_8 (U32 *cp) {

8. /* A protected function to increment a 5-bit counter. */

9. *cp = (*cp + 1) & 0x1F;

10. }

11. Add the function __SWI_x to the SWI function table in the SWI_Table.s module.

First import it from other modules:
12.
13. ; Import user SWI functions here.

14. IMPORT __SWI_8

then add a reference to it into the table:

; Insert user SWI functions here. SWI 0..7 are used by RTL Kernel.

 DCD __SWI_8 ; SWI 8 User Function

15. Your SWI function should now look like this:
16.
17. void __swi(8) inc_5bit (U32 *cp);

18. void __SWI_8 (U32 *cp) {

19. /* A protected function to increment a 5-bit counter. */

20. *cp = (*cp + 1) & 0x1F;

21. }

 SWI functions 0..7 are reserved for the RTX kernel.
 Do not leave gaps when numbering SWI functions. They must occupy a continuous range of

numbers starting from 8.
 SWI functions can still be interrupted by FIQ interrupts.

Copyright © Keil, An ARM Company. All rights reserved.

Page 54

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SVC Functions

Software Interrupt (SVC) functions are functions that run in Privileged Handler Mode of Cortex™-M
core. SVC functions can accept arguments and can return values. They are used in the same way as
other functions.

The difference is hidden to the user and is handled by the RealView C-compiler. It generates
different code instructions to call SVC functions. SVC functions are called by executing the SVC
instruction. When executing the SVC instruction, the controller changes the running mode to a
Privileged Handler Mode.

Interrupts are not disabled in this mode. In order to protect SVC function from interrupts, you need
to include the disable/enable intrinsic functions __disable_irq() and __enable_irq() in your code.

You may use SVC functions to access protected peripherals, for example to configure NVIC and
interrupts. This is required if you run tasks in unprivileged (protected) mode and you need to
change interrupts from the task.

If you want to use SVC functions in your RTX kernel project, you need to:

1. Copy the SVC_Table.s file to your project folder and include it into your project.
This file is located in the \Keil\ARM\RL\RTX\SRC\CM folder.

2. Declare a function with a __svc(x) attribute. Use the first SVC number, starting from 1, that
is free.

3.
4. void __svc(1) inc_5bit (U32 *cp);

5. Write a function implementation and convert the function name into a __SVC_x function
name. This name is referenced later by the linker from SVC_Table.s module. You need also
to disable/enable interrupts.

6.
7. void __SVC_1 (U32 *cp) {

8. /* A protected function to increment a 5-bit counter. */

9. __disable_irq();

10. *cp = (*cp + 1) & 0x1F;

11. __enable_irq();

12. }
13. Add the function __SVC_x to the SVC function table in the SVC_Table.s module.

First import it from other modules:
14.
15. ; Import user SVC functions here.

16. IMPORT __SVC_1

then add a reference to it into the table:

; Insert user SVC functions here. SVC 0 used by RTL Kernel.

 DCD __SVC_1 ; user SVC function

17. Your SVC function should now look like this:
18.
19. void __svc(1) inc_5bit (U32 *cp);

20. void __SVC_1 (U32 *cp) {

21. /* A protected function to increment a 5-bit counter. */

22. __disable_irq();

23. *cp = (*cp + 1) & 0x1F;

24. __enable_irq();

25. }

 SVC function 0 is reserved for the RTX kernel.
 Do not leave gaps when numbering SVC functions. They must occupy a continuous range of

numbers starting from 1.
 SVC functions can still be interrupted.

Page 55

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 RTX must be initialized before SVC functions are called.

Copyright © Keil, An ARM Company. All rights reserved.

Page 56

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Debugging

The µVision Simulator allows you to run and test your RTX kernel applications. RTX kernel
applications load just like non-RTX programs. No special commands or options are required for
debugging.

A kernel-aware dialog displays all aspects of the RTX kernel and the tasks in your program. The
simulator can be used also with your target hardware, if you are using a ULINK JTAG interface on
your target, to debug your application.

Note
 You can have source level debugging if you enter the following SET variable into the

debugger:

 SET SRC=C:\Keil\ARM\RL\RTX\SRC

Copyright © Keil, An ARM Company. All rights reserved.

Page 57

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

System Info

General information about the system resources and task usage is displayed by expanding the
System property in the RTX Tasks and System dialog. You can use it to optimize your RTX
application.

Select RTX Tasks and System from the OS Support item in the Debug menu to display this dialog.

Copyright © Keil, An ARM Company. All rights reserved.

Page 58

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Task Info

Detailed information about each running task is displayed when you expand the Tasks property in
the RTX Tasks and System dialog. Note that one task can run in multiple instances. All active tasks
are listed in this dialog.

Select RTX Tasks and System from the OS Support item in the Debug menu to display this dialog.

 ID is the Task Identification Value assigned when the task was started.
 Name is the name of the task function.
 Priority is the current task priority.
 State is the current state of the task.
 Delay is the delay timeout value for the task.
 Event Value specifies the event flags set for the task.
 Event Mask specifies the event flags mask for the events that the task is waiting for.
 Stack Load specifies the usage of the task's stack.

Copyright © Keil, An ARM Company. All rights reserved.

Page 59

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Event Viewer

The Event Viewer dialog displays a chronological view of each running task allowing you to
examine when tasks executed, and for how long, relative to all other tasks.

Select Event Viewer from the OS Support item in the Debug menu to display this dialog.

Note that when a cursor (red vertical line) is placed by clicking on the display, precise timing
between task events displays when the mouse cursor hovers over an event. Clicking an event
name allows the left and right arrow keys to move the cursor forward and backward in time for that
event.

Hovering the mouse over the Idle task displays minimum, maximum and average elapsed times for
the Idle task and the number of time the Idle task was called.

Copyright © Keil, An ARM Company. All rights reserved.

Page 60

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Usage Hints

Here are a few hints to help you if you run into problems when using the RTX kernel.

Function usage

 Functions that begin with os_ can be called from a task but not from an interrupt service
routine.

 Functions that begin with isr_ can be called from an IRQ interrupt service routine but not
from a task.

 Never call isr_ functions from FIQ (ARM7™, ARM9™) interrupt functions or from the task.
 Never call tsk_lock() or tsk_unlock() from an interrupt function.
 Before the kernel starts, never enable any IRQ interrupt that calls isr_ functions.

Because of a two different implementations of RTX Kernel Library further hints depend on the
Library version being used:

 ARM7™/ARM9™ Version
 Cortex™-M Version

Copyright © Keil, An ARM Company. All rights reserved.

Page 61

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ARM Version

Here are a few hints specific for ARM7™/ARM9™ library version.

Using IRQ interrupts

You can use IRQ interrupts with no limitation. RTX kernel uses only one timer interrupt to generate
periodic timer ticks and activate the task scheduler.

 IRQ interrupts are disabled by RTX for a very short time (a few µseconds maximum).
 RTX kernel uses Software Interrupts to protect a critical code section from interrupts.
 Software interrupts 0-7 are used by RTX and cannot be used in your application.
 RTX uses its own SWI Handler which is automatically linked from the library. If you include

another SWI handler (like that found in the SWI.S file) into your project, RTX could fail.
Remove any user-created SWI handler from your project to resolve the Data Abort.

 Check the IRQ stack size configured from the startup file if you see sporadic crashes of
your application. The IRQ stack usage depends on the complexity of your additional
interrupt functions.

Using FIQ interrupts

ARM7™/ARM9™ Fast Interrupts are not used by the RTX kernel. You may freely use FIQ interrupts
in you application in parallel with the kernel.

 FIQ interrupts are never disabled by RTX.
 You cannot call any kernel system function from the FIQ Interrupt Handler.

System Startup

RTX kernel uses a separate stack for each task it creates. The stack size is configured in the
configuration file. However, before the kernel is started by the os_sys_init() function, the stack
that is configured in the startup file STARTUP.S for the User Mode is used. When the RTX kernel is
up and running, the User Mode stack is used for the task manager - an RTX task scheduler.

Minimum stack sizes for RTX kernel configured in STARTUP.S are:

 Supervisor Mode 32 bytes (0x00000020)
 Interrupt Mode 64 bytes (0x00000040)
 User Mode 80 bytes (0x00000050)

Supervisor Mode stack is used when SWI functions are called. If you are using your own complex
__swi functions, you might also need to increase the size of this stack.

Interrupt Mode stack is used on timer tick interrupts. This interrupt activates the system task
scheduler. The scheduler uses the User/System Mode stack defined in STARTUP.S and runs in
System Mode. If you are using interrupts in your application, you should increase the size of the
Interrupt Mode stack. A stack size of 256 bytes is a good choice for a start. If the interrupt stack
overflows, the application might crash.

User Mode stack is used until the kernel is started. It is better to initialize the user application from
the first task which is created and started by the os_sys_init() function call.

You can initialize simple IO, like configure the port pins and enable AD converter, before the
os_sys_init() function is called. The init_IO() function must be small and must not use many local
variables because the User Mode stack can overflow otherwise.

void main (void) {

 /* Here a simple IO may be initialized. */

 init_IO ();

 os_sys_init (task1);

 for (;;);

}

It is better to do a complex initialization from the first task that starts. In this case, the stack for
this task is used, which is in general much bigger than User Mode stack.

Page 62

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

__task void task1 (void) {

 /* Here the interrupts and more complex IO may be initialized. */

 Init_CAN ();

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 63

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Cortex Version

Here are a few hints specific for Cortex™-M library version.

Using IRQ interrupts

You can use IRQ interrupts with no limitation. RTX kernel uses only one timer interrupt to generate
periodic timer ticks and activate the task scheduler.

 IRQ interrupts are never disabled by RTX Kernel.
 Software interrupt 0 is used by RTX and cannot be used in your application.
 RTX uses its own SVC Handler which is automatically linked from the library. If you include

another SVC handler (like that found in the SVC.S file) into your project, RTX could fail.
Remove any user-created SVC handler from your project to resolve the Hard Fault.

 Do not change default interrupt priority grouping (PRIGROUP = 0) in NVIC.
 Check the Main Stack size configured from the startup file if you see sporadic crashes of

your application. The RTX Kernel for Cortex™-M is implemented as a System Service Calls. All
SVC calls use a Main Stack.

System Startup

RTX kernel uses a separate stack for each task it creates. The stack size is configured in the
configuration file. However, before the kernel is started by the os_sys_init() function, the stack
that is configured in the startup file STARTUP.S for the Main Stack is used.

Stack size used by RTX kernel is configured in STARTUP.S. Minimum size is 128 bytes, however
256 bytes is recommended when interrupts are used.

Main stack is also used when SVC functions are called. If you are using your own complex __svc
functions, you might also need to increase the size of this stack.

You can initialize simple IO, like configure the port pins and enable AD converter, enable interrupts,
before the os_sys_init() function is called. The init_IO() function is executed in privileged mode. It
is recommended to configure peripherals in this function and use unprivileged mode for the tasks.

void main (void) {

 /* Here a simple IO may be initialized. */

 init_IO ();

 os_sys_init (task1);

 for (;;);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 64

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create New RTX Application

This section describes how to create a new application that uses the RTX kernel.

1. First, create a new project in the µVision IDE by selecting Project —> New Project.
2. In the Create New Project window, select a new directory for your project and enter a name

for your project.
3. In the Select Device for Target window, select your target ARM device and click OK. Allow

µVision to copy and add the device startup file to your project. This creates a basic µVision
project.

4. Now setup the project to use the RTX kernel. To do this, select Project —> Options for
Target. Then select RTX Kernel for the Operating system and click OK.

5. Copy the RTX_Config.c configuration file for your target device from the
\Keil\ARM\Startup\ directory. If the file does not exist for your specific device, then copy
the file from the Philips folder and modify it to suit your device.

6. Modify the device startup file to enable SWI_Handler function:
 Comment out the following line from the startup file:

 SWI_Handler B SWI_Handler

 Add the following line to the startup file:

 IMPORT SWI_Handler

This change prevents the code from sitting in a loop when a SWI interrupt occurs. The
change allows the right function to run when a SWI interrupt occurs.

7. Copy the retarget.c file to your project directory, and add it to your project. The main
purpose of this file is to avoid the use of semihosting SWIs. Thus the file must contain the
following:

8.
9. #include <rt_misc.h>

10.
11. #pragma import(__use_no_semihosting_swi)

12.
13. void _ttywrch(int ch) {

14. // Not used (No Output)

15. }

16.
17. void _sys_exit(int return_code) {

18. label: goto label; /* endless loop */

19. }

Depending on your application, you might have to retarget more functions. For example if
you use the RL-FlashFS library, you can obtain retarget.c from the
\Keil\ARM\RL\FlashFS\SRC\ directory. Now the project is setup to use the RTX kernel.

 For MicroLIB runtime library you do not need a retarget.c in your project.

20. Now you must configure the RTX kernel for the needs of your application by making the
required changes in the RTX_Config.c file.

21. Create the application source files if they do not already exist. Add these source files to
the project. You can do this in the project workspace of µVision by right clicking on the
Source Group and selecting Add Files to Group.

22. Build your application using Project —> Build Target.
23. If you project builds successfully, you can download it to your hardware or run it using the

µVision Simulator. You can also debug the application using Debug —> Start Debug
Session.

Copyright © Keil, An ARM Company. All rights reserved.

Page 65

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Function Overview

This section serves as a programmer's reference. It describes all system call functions in details.
The functions are ordered according to the following categories:

 Event Flag Management
 Mailbox Management
 Memory Allocation Functions
 Mutex Management
 Semaphore Management
 System Functions
 Task Management
 Time Management
 User Timer Management

The system functions description is divided into several sections:

Summary: Briefly describes the routine's effect, lists include file(s) containing its declaration
and prototype, illustrates the syntax, and describes any arguments.

Description: Provides a detailed description of the routine and how it is used.
Return Value: Describes the value returned by the routine.
See Also: Names related routines.
Example: Gives a function or program fragment demonstrating proper use of the function.

Copyright © Keil, An ARM Company. All rights reserved.

Page 66

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Event Flag Management Routines
Routine Attributes Description
os_evt_clr Clears one or more event flags of a task.
os_evt_get Retrieves the event flags that caused os_evt_wait_or to

complete.
os_evt_set Sets one or more event flags of a task.
os_evt_wait_and Waits for one or more event flags to be set.
os_evt_wait_or Waits for any one event flag to be set.
isr_evt_set Sets one or more event flags of a task.

note
 The event flag management routines enable you to send and wait for events from the other

tasks.

Copyright © Keil, An ARM Company. All rights reserved.

Page 67

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Mailbox Management Routines
Routine Attributes Description
os_mbx_check Determines the number of messages that can still be added to

the mailbox.
os_mbx_declare Creates a mailbox object.
os_mbx_init Initializes a mailbox so that it can be used.
os_mbx_send Sends a message to a mailbox.
os_mbx_wait Gets the next message from a mailbox, or waits if the mailbox is

empty.
isr_mbx_check Determines the number of messages that can still be added to

the mailbox.
isr_mbx_receive Gets the next message from a mailbox.
isr_mbx_send Sends a message to a mailbox.

note
 The mailbox management routines enable you to send and receive messages between

tasks using mailboxes.
 The os_mbx_declare routine is implemented as a macro.

Copyright © Keil, An ARM Company. All rights reserved.

Page 68

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Memory Allocation Routines
Routine Attributes Description
_declare_box Creates a memory pool of fixed size blocks with 4-byte alignment.
_declare_box8 Creates a memory pool of fixed size blocks with 8-byte alignment.
_init_box Initializes a memory pool with 4-byte aligned blocks.
_init_box8 Initializes a memory pool with 8-byte aligned blocks.
_alloc_box Reentrant Allocates a memory block from a memory pool.
_calloc_box Reentrant Allocates a memory block from a memory pool, and clears the

contents of the block to 0.
_free_box Reentrant Returns a memory block back to its memory pool.

note
 The memory allocation routines enable you to use the system memory dynamically by

creating memory pools and using fixed size blocks from the memory pools.
 The _init_box8, _declare_box and _declare_box8 routines are implemented as macros.

Copyright © Keil, An ARM Company. All rights reserved.

Page 69

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Mutex Management Routines
Routine Attributes Description
os_mut_init Initializes a mutex object.
os_mut_release Releases a mutex object.
os_mut_wait Waits for a mutex object to become available.

note
 The mutex management routines enable you to use mutexes to synchronize the activities of

the various tasks and to protect shared variables from corruption.
 The priority inheritance method is used in mutex management routines to eliminate

priority inversion problems.

Copyright © Keil, An ARM Company. All rights reserved.

Page 70

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Semaphore Management Routines
Routine Attributes Description
os_sem_init Initializes a semaphore object.
os_sem_send Sends a signal (token) to the semaphore.
os_sem_wait Waits for a signal (token) from the semaphore.
isr_sem_send Sends a signal (token) to the semaphore.

note
 The semaphore management routines enable you to use semaphores to synchronize the

activities of the various tasks and to protect shared variables from corruption.

Copyright © Keil, An ARM Company. All rights reserved.

Page 71

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

System Functions
Routine Attributes Description
tsk_lock Disables task switching.
tsk_unlock Enables task switching.

note
 The system functions enable you to control the timer interrupt and task switching.

Copyright © Keil, An ARM Company. All rights reserved.

Page 72

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Task Management Routines
Routine Attributes Description
os_sys_init Initializes and starts RL-RTX.
os_sys_init_prio Initializes and starts RL-RTX assigning a priority to the

starting task.
os_sys_init_user Initializes and starts RL-RTX assigning a priority and

custom stack to the starting task.
os_tsk_create Creates and starts a new task.
os_tsk_create_ex Creates, starts, and passes an argument pointer to a

new task.
os_tsk_create_user Creates, starts, and assigns a custom stack to a new

task.
os_tsk_create_user_ex Creates, starts, assigns a custom stack, and passes an

argument pointer to a new task.
os_tsk_delete Stops and deletes a task.
os_tsk_delete_self Stops and deletes the currently running task.
os_tsk_pass Passes control to the next task of the same priority.
os_tsk_prio Changes a task's priority.
os_tsk_prio_self Changes the currently running task's priority.
os_tsk_self Obtains the task ID of the currently running task.
isr_tsk_get Obtains the task ID of the interrupted task.

note
 The task management routines enable you to start the RTX kernel, create and delete

various types of tasks, and control their execution priorities.

Copyright © Keil, An ARM Company. All rights reserved.

Page 73

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Time Management Routines
Routine Attributes Description
os_dly_wait Pauses the calling task for a specified interval.
os_itv_set Enables the calling task for periodic wake up.
os_itv_wait Pauses the calling task until the periodic wake up interval expires.

note
 The time management routines enable you to pause and restart tasks using a timer.

Copyright © Keil, An ARM Company. All rights reserved.

Page 74

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

User Timer Management Routines
Routine Attributes Description
os_tmr_create Starts a countdown timer to call the os_tmr_call function.
os_tmr_kill Aborts a user defined timer.
os_tmr_call User customizable function that gets called when the user defined

timer expires.

note
 The user timer management routines enable you to use timers to control when a user

customizable function runs.

Copyright © Keil, An ARM Company. All rights reserved.

Page 75

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-FlashFS

RL-Flash File System (RL-FlashFS) is a software library that provides a common API to create,
save, read, and modify files on a Flash device. The library offers interface functions and handles the
low level file input and output operations. Developer can focus on the application needs rather than
concerning about the implemented file system. RL-FlashFS works with several ARM- and Cortex-M
processor-based devices, and can be used standalone or with the RTX-RTOS.

RL-FlashFS supports several media types, such as standard Secure Digital (SD), Secure Digital High
Capacity (SDHC), Multi Media Card (MMC), and Flash Memory Cards. The media are used in SD
Native mode or in SPI mode. Standard device sizes ranging from a few MBytes up to 32 GBytes are
supported. Files on Memory Cards are stored in the standard FAT12, FAT16, or FAT32 file format.
RL-FlashFS supports huge Flash sizes where Flash ROMs typically have several 64KB pages.

The file system depends on the memory device type used in the application. The following file
systems are supported:

 FAT File System
Supports the FAT12, FAT16, and FAT32 file system. This file system is used for memory card
devices (SD Cards), USB Memory sticks, and NAND Flash devices.

 Embedded File System
Is optimized for low density Flash devices (NOR Flash), SPI Flash, and RAM devices. This file
system is not FAT-compatible and cannot be used as USB mass storage device.

The picture relates the media type to the file system.

RL-FlashFS applications are written using standard C constructs and are compiled with the ARM
RealView® Compiler. To write applications using RL-FlashFS, link the source files to the project.

The following topics are included:

Embedded File System

Provides information about the memory organization, file allocation, and file data block
usage in the Embedded File System.

Technical Data

Provides an overview about the RL-FlashFS performance on various boards.

Configuring RL-FlashFS

Explains the configuration options for the supported media types.

Using RL-FlashFS

Explains how to create applications using RL-FlashFS.

Function Overview

Describes the functions and routines provided by RL-FlashFS.

Copyright © Keil, An ARM Company. All rights reserved.

Page 76

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Embedded File System

Embedded File System (EFS) describes the proprietary file system used in RL-FlashFS.

 Memory Organization of the Flash Device is optimized for maximum performance.
 Allocation Information are reduced to a minimum allowing small data overhead.
 File Data Fragments are of variable size and provide optimal file access times.

Copyright © Keil, An ARM Company. All rights reserved.

Page 77

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Memory Organization

The Memory Organization of a Flash Device is divided into Flash sectors. Flash sectors are named
blocks in RL-FlashFS. Typically, a blocks is a 64 KB memory page. Blocks can be devided into
memory cells, which are written sequencially. The memory cell size depends on the device
architecture and is 8- (byte), 16- (half word) or 32-bit wide (word).

Each Block contains its own allocation information written to the file allocation table located on top
of memory. The file name and file content are stored in lower memory regions. If the file size
exceeds a single block, then the file is stored across several blocks. Several smaller files are stored
into a single block.

When the file content is modified, the old file content is invalidated and a new memory block is
allocated. The Flash Block is erased when all the data stored in the Flash Block have been
invalidated.

Copyright © Keil, An ARM Company. All rights reserved.

Page 78

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Allocation Information

Allocation Information is stored at the top of a Flash Block and is written in descending order.
Each allocation information record consists of 8 bytes. Each file fragment has its own allocation
record. The first file fragment starts in Flash Block at offset 0. It is always assumed that the first file
block starts at the beginning of a Flash Block.

The file allocation information record has the following components:

 end is the end address of the file fragment.
 fileID is the file identification number and is associated with the file name.
 index is the file fragment ordering number, which starts at 0 for each file.

struct falloc {

 U32 end;

 U16 fileID;

 U16 index;

};

The file allocation information is written when:

 The file is opened for writing and RL-FlashFS creates a Filename information record.
 The file is closed and the file handle released.
 The file is flushed and the number of bytes from a file buffer is not a multiple of 4.
 The Flash Block is full and there is no more free space.

Copyright © Keil, An ARM Company. All rights reserved.

Page 79

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File Data Fragments

File Data Fragments are of variable size and are fully defined through the file allocation
information record.

To make optimum use of the Flash Block, create big file fragments to reduce the total number of
file fragments. It is not optimal to open a file for appending or writing a byte to it and close the file.
This approach creates huge file allocation information records, which consumes 12 bytes of Flash in
total; 8 bytes for the file allocation information and 4 bytes for the information. In addition, such an
approach creates slow access times to files.

Copyright © Keil, An ARM Company. All rights reserved.

Page 80

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Technical Data

The following table gives an overview about the RTX Flash File System performance on different
Evaluation Boards.

Board

Device

CPU Core

CPU Speed
[MHz]

Card Interface

Write
[KB/s]

Read
[KB/s]

AT91SAM9260-E
K

Atmel
AT91SAM9160

ARM9 96.1 SD4 at 25MHz 4785.0 5044.0

AT91SAM9261-E
K

Atmel
AT91SAM9161

ARM9 96.1 SD4 at 25MHz 4790.6 5069.3

AT91SAM9G20-E
K

Atmel
AT91SAM9G20

ARM9 99.1 SD4 at 25MHz 4899.5 5418.0

AT91SAM9RL-EK Atmel
AT91SAM9RL64

ARM9 100.0 SD4 at 25MHz 4096.0 5211.2

MCB2400 NXP LPC2468 ARM7 48.0 SD4 at 24MHz 4084.3 5525.9
MCB2300 NXP LPC2368 ARM7 48.0 SD4 at 24MHz 3946.3 5330.6
MCB2140 NXP LPC2148 ARM7 60.0 SPI at 7.5MHz 299.4 313.4
MCBSTR9 ST STR912 ARM9 48.0 SPI at 12MHz 355.2 357.1
MCBSTR750 ST STR750 ARM7 60.0 SPI at 15MHz 402.2 416.1
MCBSTM32 ST STM32 Cortex-M3 72.0 SPI at 18MHz 711.1 758.1
LM3S8962 Luminary

LM3S8962
Cortex-M3 50.0 SPI at 12.5MHz 537.8 607.6

LM3S6965 Luminary
LM3S6965

Cortex-M3 50.0 SPI at 12.5MHz 539.2 603.6

LM3S3768 Luminary
LM3S3768

Cortex-M3 50.0 SPI at 12.5MHz 539.5 603.8

Performance test procedure

 Initialize the Card for testing:
- Format the Card
- Open the file "Test.txt"
- Prewrite 4MB of file data with 0x55
- Close and Delete the file

 Write performance test:
- Open the file "Test.txt"
 Start the measurement timer
- Write 4MB of data in 4KB blocks
 Stop the measurement timer
- Close the file

 Read performance test:
- Open the file "Test.txt"
 Start the measurement timer
- Read 4MB of data in 4KB blocks
 Stop the measurement timer
- Close the file

 Test validity check:
- Open the file "Test.txt"
- Verify 4MB of data in 4KB blocks
- Close and Delete the file

Note
 SD Cards: SanDisk Extreme III (1GB) and Kingston (1GB) were used for testing.

Copyright © Keil, An ARM Company. All rights reserved.

Page 81

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuring RL-FlashFS

Configuring RL-FlashFS explains the configuration options and lists the library files needed to
create an application for Flash devices.

Configuration

Explains the configuration options available for several media types.

Source Files

Lists the library files, include files, and locations.

Copyright © Keil, An ARM Company. All rights reserved.

Page 82

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

Configuration options are set in the file File_Config.c. Depending on the device type, include one
of the following files to the project:

 Memory card drives, USB Flash drives, and NAND Flash drives need the system driver file,
which is located in the folder \ARM\RL\FlashFS\Driver.

 Embedded Flash drives and SPI Flash drives need the Flash Programming Algorithm,
which is located in the folder \ARM\RL\FlashFS\Flash.

RL-FlashFS supports multiple volums. A drive letter can be assigned to each device type.

Device Type Drive Letter
Flash F:
Memory Card M0: and M1:
NAND Flash N:
RAM Device R:
SPI Flash S:
USB Flash U0: and U1:

Configuration options in the file File_Config.c allow the developer to:

File System

 Specify Number of open files
 Specify CPU Clock Frequency [Hz]

The options are explained in File System.

Flash Drive

 Enable the Flash Drive
 Specify Base Address of the Flash Device
 Specify Device Size
 Specify Content of Erased Memory
 Specify Device Description file
 Enable Default Drive [F:]

The options are explained in Flash Drive.

SPI Flash Drive

 Enable the SPI Flash Drive
 Specify Device Size
 Specify Content of Erased Memory
 Specify Device Description file
 Enable Default Drive [S:]

The options are explained in SPI Flash Drive.

RAM Drive

 Enable Ram Drive
 Specify Device Size
 Specify Number of virtual Sectors
 Enable RAM Buffer Relocation
 Specify Base address of the RAM Buffer
 Enable Default Drive [R:]

The options are explained in RAM Drive.

Memory Card Drive 0

 Enable Memory Card Drive 0
 Specify Bus Mode
 Specify File System Cache size
 Enable Cache Buffer Relocation
 Specify Base address of the Cache Buffer
 Enable Default Drive [M0:]

The options are explained in Memory Card Drive.

Page 83

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Memory Card Drive 1

 Enable Memory Card Drive 1
 Specify Bus Mode
 Specify File System Cache size
 Enable Cache Buffer Relocation
 Specify Base address of the Cache Buffer
 Enable Default Drive [M1:]

The options are explained in Memory Card Drive.

USB Flash Drive 0

 Enable USB Flash Drive 0
 Specify File System Cache size
 Enable Default Drive [U0:]

The options are explained in USB Flash Drive.

USB Flash Drive 1

 Enable USB Flash Drive 1
 Specify File System Cache size
 Enable Default Drive [U1:]

The options are explained in USB Flash Drive.

NAND Flash Drive

 Enable NAND Flash Drive
 Specify Page size
 Specify Block Size
 Specify Device Size [blocks]
 Specify Page Caching
 Specify Block Indexing
 Enable Software ECC (error correction code)
 Specify File System Cache size
 Enable Cache Buffer Relocation
 Specify Base address of the Cache Buffer
 Enable Default Drive [N:]

The options are explained in NAND Flash Drive.

Copyright © Keil, An ARM Company. All rights reserved.

Page 84

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File System

File System options allow configuring RL-FlashFS to open multiple files at the same time. Each
opened file requires some memory resources for file buffering. Set the options manually or use the
Configuration Wizard.

The following options can be configured:

 Number of open files specifies the number of files, that can be open at the same time.

 #define N_FILES 8

 CPU Clock Frequency [Hz] determines the CPU clock frequency value in Hz. Set this value
equal to the Core Clock value.

 #define CPU_CLK 60000000

Copyright © Keil, An ARM Company. All rights reserved.

Page 85

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Flash Drive

Flash Drive options allow configuring RL-FlashFS to use Flash devices. Set the options manually or
use the Configuration Wizard. Add also the Flash Driver and Sector Layout description files to the
project.

The following options can be configured:

 Flash Drive enables support for a Flash Drive. The Flash drive is not used when this option
is disabled. It must be set to 1 to enable it and 0 to disable it.

 #define FL0_EN 1

 Base address specifies the device base address in the memory space of the processor.

 #define FL0_BADR 0x80000000

 Device Size specifies the size of the flash device to be used for storing files. Typically, this is
the whole size of the flash device, specified in bytes. It is allowed to specify only a part of
the device to be used for the Flash File System. The rest of the device might be used for the
application code. In this case, the function EraseChip must not be provided in the driver
control block. The value for the EraseChip function must be set to NULL.

 #define FL0_SIZE 0x0200000

 Content of Erased Memory specifies the initial content of the erased Flash Device. In most
cases, this value is set to 0xFF. Accepted values are 0xFF or 0x00.

 #define FL0_INITV 0xFF

 Device Description file specifies a file containing the Flash device sector layout description.
The file is named FS_FlashDev.h and is tailored to a specific Flash device. Several description
files are available in the folder \ARM\RL\FlashFS\Flash.

 #define FL0_HFILE "FS_FlashDev.h"

 Default Drive [F:] enables the Flash Drive as a default system drive. This drive is used,
when a drive letter is not specified in a filename.

 #define FL0_DEF 1

Copyright © Keil, An ARM Company. All rights reserved.

Page 86

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Sector Layout

The Sector Layout description file, FS_FlashDev.h, specifies the memory map of the device. Every
device has its own description file, which are located in the folder \ARM\RL\FlashFS\Flash.

To generate a new description file, copy the flash sector layout information from the Flash Device
datasheet. Specify a sector size in bytes and a sector base address relative to a Flash Device Start
address. The macro DSB converts this information into the RL-FlashFS compatible sector
description.

To improve the RL-FlashFS performance, the sector information is stored as a table in the code. The
RL-FlashFS scans this table when accessing files from the Flash Device.

The following example shows a Flash Sector layout configuration description for the Am29x800BT
Flash Device:

#define FLASH_DEVICE \

 DFB(0x10000, 0x000000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x010000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x020000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x030000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x040000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x050000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x060000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x070000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x080000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x090000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x0A0000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x0B0000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x0C0000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x0D0000), /* Sector Size 64kB */ \

 DFB(0x04000, 0x0E0000), /* Sector Size 16kB */ \

 DFB(0x08000, 0x0E4000), /* Sector Size 32kB */ \

 DFB(0x02000, 0x0EC000), /* Sector Size 8kB */ \

 DFB(0x02000, 0x0EE000), /* Sector Size 8kB */ \

 DFB(0x02000, 0x0F0000), /* Sector Size 8kB */ \

 DFB(0x02000, 0x0E2000), /* Sector Size 8kB */ \

 DFB(0x08000, 0x0F4000), /* Sector Size 32kB */ \

 DFB(0x04000, 0x0FC000), /* Sector Size 16kB */ \

#define FL_NSECT 22

Note
 The RL-FlashFS does not require that specified Flash sectors be continuous. Gaps are

allowed in the Device Memory space. The developer can reserve some Flash sectors for the
application code. Reserved sectors are not used for storing files. Simply do not include such
Flash sectors in the FLASH_DEVICE description table.

 It is not allowed to assign parts of a sector to the RL-FlashFS and the rest of that sector for
some other usage. When such a sector is erased by the RL-FlashFS, the whole sector is
erased, and not just a part of it.

 When a Flash Device usage is split between storing files and some other usage, do not
provide the function EraseChip in the Flash driver.

Copyright © Keil, An ARM Company. All rights reserved.

Page 87

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Flash Driver

The Flash driver implements low level flash programming routines to interface the Embedded
parallel Flash or SPI Data Flash memory. An interface to the RL-FlashFS is the flash driver control
block.

Driver control block

The structure EFS_DRV is defined in File_Config.h as follows:

/* Embedded Flash Device driver */

typedef struct {

 BOOL (*Init) (U32 adr, U32 clk);

 BOOL (*UnInit) (void);

 BOOL (*ReadData) (U32 adr, U32 sz, U8 *buf); /* Optional, NULL for

memory-mapped Flash */

 BOOL (*ProgramPage) (U32 adr, U32 sz, U8 *buf);

 BOOL (*EraseSector) (U32 adr);

 BOOL (*EraseChip) (void); /* Optional, NULL if not

existing */

} const EFS_DRV;

The Flash driver uses six low-level user-provided functions to control the Flash device:

 Init()
This function is called when the RL-FlashFS is initialized by the finit function.

 UnInit()
This function is called to uninitialize the embedded flash drive by the funinit function.

 ReadData()
This function is used to read data from a Flash Device.
Not provided (NULL) for parallel memory-mapped flash device.

 ProgramPage()
This function is used to program data into a Flash Device.

 EraseSector()
This function is called by the RL-FlashFS to erase a flash sector and from the fformat
function to format the device.

 EraseChip()
This function is used to global erase a flash device. It is called from the fformat function.

Every device has its own implementation of the Flash programming algorithms. These functions are
located in the file FS_FlashPrg.c in the folder \ARM\RL\FlashFS\Flash.

To generate a new flash algorithm module, check the Flash Device datasheet, write the code for the
functions above, and provide the Sector Layout description file.

As an alternative, existing ULINK Flash programming algorithms can be converted to be used with
the RL-FlashFS. Flash programming algorithms are located in the folder \ARM\Flash\device family
. The source files are named FlashDev.c and FlashPrg.c. Refer to Converting FlashDev.c and
Converting FlashPrg.c for detailed instructions.

Copyright © Keil, An ARM Company. All rights reserved.

Page 88

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Converting FlashDev.c

Here are instructions to convert existing device description files for various Flash Devices, which are
used by ULINK flash programming with RL-FlashFS. There are two macros which must be specified in
this file:

 the FLASH_DEVICE macro defines sector layout,
 the FL_NSECT macro defines the number of flash sectors.

The following example describes conversion for the Am29x800BT Flash Device:

1. Copy the FlashDev.c file from \Keil\ARM\Flash to a subfolder under
\Keil\ARM\RL\FlashFS\Flash with the same subfolder name. This is a device name.

2. Rename this file to FS_FlashDev.h
3. Delete following lines:
4.
5. #include "..\FlashOS.H" // FlashOS Structures

6.
7. struct FlashDevice const FlashDevice = {

8. FLASH_DRV_VERS, // Driver Version, do not modify!

9. "AM29x800BT Flash", // Device Name

10. EXT16BIT, // Device Type

11. 0x000000, // Device Start Address

12. 0x100000, // Device Size in Bytes (1MB)

13. 1024, // Programming Page Size

14. 0, // Reserved, must be 0

15. 0xFF, // Initial Content of Erased Memory

16. 100, // Program Page Timeout 100 mSec

17. 3000, // Erase Sector Timeout 3000 mSec

18.
19. // Specify Size and Address of Sectors

and lines at the bottom:

 SECTOR_END

};

20. Expand and Convert the Sector description and convert it to a macro FLASH_DEVICE.
21.
22. 0x10000, 0x000000, // Sector Size 64kB (14 Sectors)

This line needs to be expanded to 14 lines for 14 sectors using a DFB macro. Do not forget
a macro continuation sign \.

 DFB(0x10000, 0x000000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x010000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x020000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x030000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x040000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x050000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x060000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x070000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x080000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x090000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x0A0000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x0B0000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x0C0000), /* Sector Size 64kB */ \

 DFB(0x10000, 0x0D0000), /* Sector Size 64kB */ \

23. Repeat the expansion for each line from the file.

Page 89

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

24. Add an FL_NSECT macro with defined number of sectors.

If you have done everything correctly, your FS_FlashDev.h file should look like this.

Copyright © Keil, An ARM Company. All rights reserved.

Page 90

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Converting FlashPrg.c

Here are instructions to convert existing programming algorithm modules for various Flash Devices,
which are used by ULINK flash programming with RL-FlashFS. The functions from the original ULINK
programming algorithms are similar. Only some small modifications are required to convert it for use
with RL-FlashFS.

The following example describes the conversion for the Am29x800BT Flash Device:

1. Copy the FlashPrg.c file from \Keil\ARM\Flash to a subfolder under
\Keil\ARM\RL\FlashFS\Flash with the same subfolder name. This is a device name.

2. Rename this file to FS_FlashPrg.c
3. Change the include header file from:
4.
5. #include "..\FlashOS.H" // FlashOS Structures

to the RL-FlashFS definition header.

#include <File_Config.h>

6. Add the Flash driver control block definition:
7.
8. /* Embedded Flash Driver Interface functions */

9. static BOOL Init (U32 adr, U32 clk);

10. static BOOL UnInit (void);

11. static BOOL ProgramPage (U32 adr, U32 sz, U8 *buf);

12. static BOOL EraseSector (U32 adr);

13. static BOOL EraseChip (void); /* Optional function if

supported */

14.
15. /* Embedded Flash Device Driver Control Block */

16. EFS_DRV fl0_drv = {

17. Init,

18. UnInit,

19. NULL, /* =NULL, use FFS internal

ReadData */

20. ProgramPage,

21. EraseSector,

22. EraseChip

23. };

24. Replace the function headers and rename the interface functions to conform with Flash
driver conventions:

 Init() from original

 int Init (unsigned long adr, unsigned long clk, unsigned long fnc) {

to

static BOOL Init (U32 adr, U32 clk) {

The fnc parameter is not used by the Flash driver.
 UnInit() from original

 int UnInit (unsigned long fnc) {

to

static BOOL UnInit (void) {

The fnc parameter is not used by the Flash driver.
 EraseChip() from original

 int EraseChip (void) {

Page 91

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

to

static BOOL EraseChip (void) {

 EraseSector() from original

 int EraseSector (unsigned long adr) {

to

static BOOL EraseSector (U32 adr) {

 ProgramPage() from original

 int ProgramPage (unsigned long adr, unsigned long sz, unsigned char

*buf) {

to

static BOOL ProgramPage (U32 adr, U32 sz, U8 *buf) {

25. Modify the function return values for all Flash driver functions. Return __TRUE on success,
and __FALSE on failure.

26. Update the ProgramPage() function to allow unaligned buffer access. This in general
means to add __packed attribute to buffer access if it is not a byte access.

27.
28. /* 'buf' might be unaligned. */

29. M16(adr) = *(__packed U16 *)buf;

30. Keep the optional local functions (ie. Polling), which Flash driver functions still need.

Copyright © Keil, An ARM Company. All rights reserved.

Page 92

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SPI Flash Drive

SPI Flash Drive options allow configuring RL-FlashFS to use SPI Flash devices. Set the options
manually or use the Configuration Wizard. An SPI Flash Drive is accessed over the SPI bus.

The following options can be set:

 SPI Flash Drive enables support for an SPI Flash Drive. It is not used when this option is
disabled. It must be set to 1 to enable it and 0 to disable it.

 #define SF0_EN 1

 Device Size specifies the size of the SPI flash device to be used for storing files. Tipically,
this is the whole size of the SPI Flash device, specified in bytes. It is allowed to specify only
a part of the device for the Flash File System. The rest of the device might be used for other
purposes. In this case, do not provide the function EraseChip in the driver control block. The
value for the EraseChip function must be set to NULL.

 #define SF0_SIZE 0x0200000

 Content of Erased Memory specifies initial content for erased SPI Flash Devices. In most
cases, this value is set to 0xFF. Accepted values are 0xFF or 0x00.

 #define SF0_INITV 0xFF

 Device Description file specifies a file containing the description of the SPI Sector Layout.
The file is named FS_SPI_FlashDev.h and is tailored to a specific SPI Flash Device. Several
description files are available in the folder \ARM\RL\FlashFS\Flash.

 #define SF0_HFILE "FS_SPI_FlashDev.h"

 Default Drive [S:] enables the SPI Flash Drive as a default system drive. This drive is used,
when a drive letter is not specified in a filename.

 #define SF0_DEF 1

Note
 For enabled SPI Flash Drives, add the SPI Flash Driver, the SPI Sector Layout description

file, and the low-level routine SPI Driver to the project.

Copyright © Keil, An ARM Company. All rights reserved.

Page 93

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SPI Sector Layout

The SPI Sector Layout description file, FS_SPI_FlashDev.h, specifies the memory map of a SPI
Flash device. Every device has its own description file, which is located in the folder
\ARM\RL\FlashFS\Flash.

To generate a description file, copy the flash sector layout information from the Flash Device
datasheet, specify a sector size in bytes, and a sector base address relative to an SPI Flash
Device. The Macro DSB converts this information into the RL-FlashFS compatible sector description.

To improve the RL-FlashFS performance, the sector information is stored as a table in the code. The
RL-FlashFS scans this table when accessing files from the SPI Flash device.

The following example shows a Flash sector layout configuration for the Intel SPI Flash device
25F160S33 with 2MByte memory:

#define SPI_FLASH_DEVICE \

 DSB(0x10000, 0x000000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x010000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x020000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x030000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x040000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x050000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x060000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x070000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x080000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x090000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x0A0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x0B0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x0C0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x0D0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x0E0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x0F0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x100000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x110000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x120000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x130000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x140000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x150000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x160000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x170000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x180000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x190000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x1A0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x1B0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x1C0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x1D0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x1E0000), /* Sector Size 64kB */ \

 DSB(0x10000, 0x1F0000), /* Sector Size 64kB */ \

#define SF_NSECT 32

It is not optimal to define lots of small sectors (256 bytes or smaller). A more optimal solution for
the RL-FlashFS is to join several physical sectors into bigger virtual sectors. In this case, the
function EraseSector must be modified to erase a virtual sector, not a single physical sector.

Page 94

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 95

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SPI Flash Driver

The SPI Flash Driver implements flash programming interface functions. The interface to the
RL-FlashFS is the flash driver control block.

Driver control block

The structure EFS_DRV is defined in the file File_Config.h as follows:

/* Embedded Flash Device driver */

typedef struct {

 BOOL (*Init) (U32 adr, U32 clk);

 BOOL (*UnInit) (void);

 BOOL (*ReadData) (U32 adr, U32 sz, U8 *buf);

 BOOL (*ProgramPage) (U32 adr, U32 sz, U8 *buf);

 BOOL (*EraseSector) (U32 adr);

 BOOL (*EraseChip) (void); /* Optional, NULL if not

existing */

} const EFS_DRV;

The Flash driver uses six low-level user-provided functions to control the Flash device. The functions
are located in the file FS_SPI_FlashPrg.c of the folder \ARM\RL\FlashFS\Flash.

 Init()
This function is called when the RL-FlashFS is initialized by the function finit.

 UnInit()
This function is called to uninitialize the embedded flash drive by the function funinit.

 ReadData()
This function is used to read data from a Flash Device.

 ProgramPage()
This function is used to program data into a Flash Device.

 EraseSector()
This function is called by the RL-FlashFS to erase a flash sector and from the fformat
function to format the device.

 EraseChip()
This function is used to global erase a flash device. It is called from the function fformat.

To generate a new Flash algorithm module (FS_SPI_FlashPrg.c), check the Flash device datasheet
and implement the interface functions listed above.

Note
 In addition to this driver, the low-level SPI Driver is needed, which implements SPI serial

communication routines.
 The SPI Driver instance number might need changing, if the SD Card drive is running in SPI

mode. In this case, change the SPI driver index to spi1_drv or spi2_drv respectively.

Copyright © Keil, An ARM Company. All rights reserved.

Page 96

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RAM Drive

RAM Drive options allow configuring the RL-FlashFS to use RAM devices. Set the options manually
or use the Configuration Wizard.

The following options can be set:

 RAM Drive enables support for a RAM device. Set the option to 1 to enable it and 0 to
disable it.

 #define RAM0_EN 1

 Device Size specifies the size, in bytes, of the RAM device.

 #define RAM0_SIZE 0x040000

 Number of Sectors specifies the number of logical sectors for a RAM drive. The following
values are available: 8, 16, 32, 64, and 128. Select smaller values when storing a few
bigger files on the RAM drive. For example only one or two big log files. Bigger values
should be selected when storing lots of small files on the RAM drive. The default setting is
32.

 #define RAM0_NSECT 32

 Relocate Device Buffer allows to allocate RAM buffer at a specific address in the memory
space. It must be set to 1 to enable it and 0 to disable it. When disabled, the linker assigns
the address of the RAM buffer.

 #define RAM0_RELOC 1

 Base address specifies the starting address of the RAM buffer. This option is used when
the Relocate Device Buffer is enabled.

 #define RAM0_BADR 0x81010000

 Default Drive [R:] enables the RAM Drive as a default system drive. This drive is used,
when a drive letter is not specified in a filename.

 #define RAM0_DEF 1

When a RAM device is used with RL-FlashFS, the device is split automatically into logical sectors by
the configuration. As a consequence, RL-FlashFS does not need an extra description table
containing the sector layout.

Copyright © Keil, An ARM Company. All rights reserved.

Page 97

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Memory Card Drive

Memory Card Drive options allow configuring RL-FlashFS to use memory cards. Set the options
manually or use the Configuration Wizard.

The following options can be set:

 Memory Card Drive 0 enables support for SD/MMC Flash memory card device. Set this
option 1 to enable the device or 0 to disable the device.

 #define MC0_EN 1

 Bus Mode specifies the access mode for SD/MMC Flash memory card device. This option
should be set to 0 for SD-Native mode or to 1 for SPI mode.

RL-FlashFS can use SPI mode or SD/MMC native mode to initialize and control the memory
card drive.

 SPI mode - the required routines are in the low level SPI driver. It handles data transfer
on the SPI interface. In SPI mode the memory card control is handled in software.

 Native mode - can be used if a device has integrated a Multimedia Card Interface
peripheral. The required routines are in the low level MCI driver module. Native mode is
faster then SPI mode because the memory card control is handled in hardware.

The SPI driver or Native mode driver is not included in the RL-FlashFS library because it is
device dependent. Hence, copy the driver to the project folder and include it into the
project.

#define MC0_SPI 0 // 0=SD-Native; 1=SPI

 File System Cache defines the data caching and specifies the Cache Buffer size. When
SD/MMC Memory Card is controlled in SD-Native mode, data caching might increase the file
r/w speed. When caching is enabled, Multiple Sector Read and Multiple Sector Write
commands are used to control the SD/MMC memory card data read and write. Turn off the
data cache if the application is low on memory and the file read/write speed is not
important. The cache buffer size is specified in KBytes.

 #define MC0_CASZ 4

 Relocate Cache Buffer allows to allocate the RAM buffer at a specific address in the memory
space. It must be set to 1 to enable it and 0 to disable it. When disabled, the linker assigns
the address of the RAM buffer.

 #define MC0_RELOC 1

 Base address specifies the location address of the Cache Buffer. This option is active when

Page 98

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Relocate Cache Buffer is enabled.

 #define MC0_CADR 0x7FD00000

 Default Drive [M0:] enables the Memory Card Drive 0 as a default system drive. This drive
is used, when no drive letter is specified in a filename.

 #define MC0_DEF 1

The RL-FlashFS supports two Memory Card drives in the system. The identical options exist also for
Memory Card Drive 1. The drive label M is considered as M0. Both drives M0 and M1 can operate
at the same time without limitations.

Note
 If the application needs file time information refer to File Time Support.

Copyright © Keil, An ARM Company. All rights reserved.

Page 99

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MCI Driver

The MCI Driver implements low-level routines to interface the SD/MMC flash memory cards in
SD-Native mode. To make this possible, the host controller must have a Memory Card Interface
peripheral that supports SD/MMC Memory Card interfacing in native mode. The interface to the
RL-FlashFS is the MCI driver control block.

Driver control block

The structure MCI_DRV is defined in the file File_Config.h as follows:

typedef struct {

 BOOL (*Init) (void);

 BOOL (*UnInit) (void);

 void (*Delay) (U32 us);

 BOOL (*BusMode) (U32 mode);

 BOOL (*BusWidth) (U32 width);

 BOOL (*BusSpeed) (U32 kbaud);

 U32 (*Command) (U8 cmd, U32 arg, U32 resp, U32 *rp);

 BOOL (*ReadBlock) (U32 bl, U8 *buf, U32 cnt);

 BOOL (*WriteBlock) (U32 bl, U8 *buf, U32 cnt);

 BOOL (*SetDma) (U32 mode, U8 *buf, U32 cnt); /* NULL for local DMA or non

DMA */

 U32 (*CheckMedia) (void); /* Optional, NULL if not

existing */

} const MCI_DRV;

The MCI driver uses eleven low-level user-provided functions to control the Memory Card interface:

 Init()
This function is called when the RL-FlashFS is initialized by the finit function.

 UnInit()
This function is called to uninitialize the MCI interface by the funinit function.

 Delay()
This function is called to delay a program execution in the driver.

 BusMode()
This function is used to set the bus mode to push-pull or open-drain.

 BusWidth()
This function is used to set the bus width to 1-bit or 4-bit bus.

 BusSpeed()
This function is used to set the desired baud rate speed.

 Command()
This function is used to send SD/MMC Command.

 ReadBlock()
This function is used to read block(s) of data from SD/MMC memory card.

 WriteBlock()
This function is used to write block(s) of data to SD/MMC memory card.

 SetDma()
This function is used to set the DMA for data transfer.

 CheckMedia()
This function is used to check the SD/MMC media status (Card Inserted, Write Protected).

Implemented drivers

RL-FLashFS includes the following MCI drivers in the folder \ARM\RL\FlashFS\Drivers:

 MCI_LPC23xx.C - for NXP LPC23xx devices.
 MCI_LPC24xx.C - for NXP LPC24xx devices.
 MCI_LPC3xxx.C - for NXP LPC3000 devices.
 MCI_SAM3U.C - for Atmel AT91SAM3U devices.
 MCI_SAM9.C - for Atmel AT91SAM9 devices.
 MCI_SAM9G20.C - for Atmel AT91SAM9G20 devices.

Page 100

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 MCI_SAM9RL.C - for Atmel AT91SAM9RL devices.
 MCI_SAM9260.C - for Atmel AT91SAM9260 devices.
 MCI_SAM9261.C - for Atmel AT91SAM9261 devices.
 MCI_SAM3U.C - for Atmel ATSAM3U devices.
 SDIO_STM32F103.C - for ST STM32F103 devices.

Copy one of the provided driver modules and use it as a template for a new MCI interface driver.

note
 Copy the MCI driver to the project folder if a flash memory card is used in SD-Native mode.

An MCI driver is not required, if the MMC/SD card is used in SPI mode.

Copyright © Keil, An ARM Company. All rights reserved.

Page 101

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SPI Driver

The SPI Driver implements low-level routines to interface the SD/MMC Flash memory cards or SPI
data Flash memory. An interface to the RL-FlashFS is the SPI driver control block.

Driver control block

The structure SPI_DRV is defined in File_Config.h as follows:

typedef struct {

 BOOL (*Init) (void);

 BOOL (*UnInit) (void);

 U8 (*Send) (U8 outb);

 BOOL (*SendBuf) (U8 *buf, U32 sz);

 BOOL (*RecBuf) (U8 *buf, U32 sz);

 BOOL (*BusSpeed) (U32 kbaud);

 BOOL (*SetSS) (U32 ss);

 U32 (*CheckMedia) (void); /* Optional, NULL if not existing */

} const SPI_DRV;

The SPI driver uses eight low-level user-provided functions to control the SPI interface:

 Init()
This function is called when the RL-FlashFS is initialized by the finit function.

 UnInit()
This function is called to uninitialize the SPI interface by the funinit function.

 Send()
This function is used to send and read a byte on the SPI interface.

 SendBuf()
This function is used to send a block of data to the SPI interface.

 RecBuf()
This function is used to receive a block of data from the SPI interface.

 BusSpeed()
This function is used to set the desired baud rate speed.

 SetSS()
This function is used to enable or disable SPI Slave Select signal (drive it high or low).

 CheckMedia()
This function is used to check the SD/MMC media status (Card Inserted, Write Protected).

Implemented drivers

RL-FLashFS includes the following SPI drivers in the \Keil\ARM\RL\FlashFS\Drivers directory:

 SPI_LPC17xx.C - for NXP LPC17xx Cortex-M3 devices
 SPI_LPC214x.C - for NXP LPC214x ARM7 devices
 SPI_LPC29xx.C - for NXP LPC29xx ARM9 devices
 SPI_STR71x.C - for ST Microelectronics STR71x ARM7 devices
 SPI_STR75x.C - for ST Microelectronics STR75x ARM7 devices
 SPI_STR91x.C - for ST Microelectronics STR91x ARM9 devices
 SPI_STM32F103.C - for ST Microelectronics STM32F103 Cortex-M3 devices
 SPI_STM32F107.C - for ST Microelectronics STM32F107 Cortex-M3 devices
 SPI_LM3S37x8.C - for Luminary LM3S37x8 Cortex-M3 devices
 SPI_LM3S6965.C - for Luminary LM3S6965 Cortex-M3 devices
 SPI_LM3S8962.C - for Luminary LM3S8962 Cortex-M3 devices
 SPI_LM3S37x8.C - for Luminary LM3S37x8 Cortex-M3 devices
 SPI_SAM7X.C - for Atmel AT91SAM7X ARM7 devices
 SPI_EFM32_Gxxx.C - for EnergyMicro EFM32Gxxx Cortex-M3 devices

If RL-FlashFS does not contain the SPI driver for the device selected, create new SPI driver routines
and locate them in a single module. It is good practice to name the module according to the SPI
controller type.

Copy one of the provided driver modules and use it as a template for the new SPI interface driver.

Page 102

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note
 Some of the SD/MMC flash memory cards do not work without pullups on all communication

lines. For this reason you might need to connect 47K pullups to SSEL, MOSI, MISO and
SCK.

Copyright © Keil, An ARM Company. All rights reserved.

Page 103

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File Time Support

File Time Support is possible with RL-FlashFS. RL-FlashFS uses the standard FAT file system to
store data in Flash memory cards. The FAT file system stores the time when a file was created,
modified, or last accessed. RL-FlashFS is able to retrieve the current time and date.

If the system has a Real Time Clock (RTC) functionality, modify the provided RTC interface module to
allow RL-FlashFS to read the current time and date. Copy the Real Time Interface module fs_time.c
from the folder \ARM\RL\FlashFS\SRC to the project folder and customize the RTC functions:

 fs_get_time() - read the current Time
 fs_get_date() - read the current Date.

The customized functions can be used with the RL-FlashFS library. The linker will overwrite the
library RTC functions with the customized RTC functions. However, both RTC interface functions
must be provided in the project to replace the default library RTC functions.

Note
 A default RTC interface module is included in the RL-FlashFS library. This default

implementation returns a fixed time and a fixed date that has been coded into the library.

Copyright © Keil, An ARM Company. All rights reserved.

Page 104

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB Flash Drive

USB Flash Drive options allow configuring RL-FlashFS to use USB Flash devices. Set the options
manually or use the Configuration Wizard.

To following options can be set:

 USB Flash Drive 0 enables support for Mass Storage device. Set this option to 1 to enable
the device or 0 to disable the device.

 #define USB0_EN 1

 File System Cache enables or disables data caching and specifies the cache buffer size in
KBytes. Data caching might increase the file r/w speed several times. Turn off data caching if
the application is low on memory and the file read/write speed is not important.

 #define USB0_CASZ 8

 Default Drive [U0:] enables the USB Flash Drive 0 as a default system drive. This drive is
used, when a drive letter is not specified in a filename.

 #define USB0_DEF 1

RL-FlashFS supports two USB Flash drives in the system. Identical options exist also for USB Flash
Drive 1. The drive label U is considered as U0. Both drives U0 and U1 can operate at the same
time without limitations.

Note
 Add also the FAT Driver to the project.

Copyright © Keil, An ARM Company. All rights reserved.

Page 105

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FAT Driver

The FAT Driver implements low-level routines to interface the USB Flash drive. To make this
possible, the host controller must have a USB Host Interface peripheral and USB Host stack
running. An interface to the RL-FlashFS is the FAT driver control block.

Driver control block

The structure FAT_DRV is defined in the file File_Config.h as follows:

typedef struct {

 BOOL (*Init) (U32 mode);

 BOOL (*UnInit) (U32 mode);

 BOOL (*ReadSect) (U32 sect, U8 *buf, U32 cnt);

 BOOL (*WriteSect) (U32 sect, U8 *buf, U32 cnt);

 BOOL (*ReadInfo) (Media_INFO *cfg);

 U32 (*CheckMedia) (void); /* Optional, NULL if not existing */

} const FAT_DRV;

The MSD driver uses six low-level user-provided functions to control the USB Flash drive:

 Init()
This function is called when the RL-FlashFS is initialized by the finit function.

 UnInit()
This function is called to uninitialize the USB Flash Drive by the funinit function.

 ReadSect()
This function is used to read sectors from the FAT Drive.

 WriteSect()
This function is used to write sectors to the FAT Drive.

 ReadInfo()
This function is used to read configuration info from the FAT Drive.

 CheckMedia()
This function is used to check the FAT Drive media status.

Note
 The interface to the FAT module in RL-FlashFS library is a FAT Driver. Also the NAND Drive

and Memory Card Drive are interfaced to FAT layer via the FAT Driver. However, the FAT
Driver configuration of these drives is made internally in File_Config.c configuration.

Copyright © Keil, An ARM Company. All rights reserved.

Page 106

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NAND Flash Drive

NAND Flash Drive options allow configuring RL-FlashFS to use NAND Flash devices. Set the options
manually or use the Configuration Wizard.

To following options can be set:

 NAND Flash Drive enables support for NAND Flash device. Set the option to 1 to enable
NAND drive support. 0 disables the NAND drive.

 #define NAND0_EN 1

 Page size specifies the NAND Flash read/write page size. The page size is defined as the
sum of user plus spare area. Select the page size supported by the NAND Flash device. The
following standard page sizes are available:

Page Size Config Wizard Option
528 512 + 16 bytes
2112 2048 + 64 bytes
4224 4096 + 128 bytes
8448 8192 + 256 bytes

 #define NAND0_PGSZ 2112

 Block Size is a size of NAND Flash block. It is specified in number of flash pages. The
following block sizes are available:

Block Size Config Wizard Option
8 8 pages
16 16 pages
32 32 pages
64 64 pages
128 128 pages
256 256 pages

 #define NAND0_PGCNT 16

 Device Size specifies number of blocks that are available in NAND Flash device.

 #define NAND0_BLCNT 371

 Page Caching enables or disables the page data caching. The NAND page data caching
might increase the NAND Flash r/w speed a lot. When Page caching is enabled, the Flash

Page 107

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File System keeps recently accessed NAND flash pages in cache memory for faster access.

 #define NAND0_CAPG 8

 Block Indexing enables or disables the NAND Flash block indexing. When Block indexing is
enabled, the Flash File System keeps the Flash block index table in memory and does not
scan the NAND flash blocks.

 #define NAND0_CABL 16

 Use Software ECC enables or disables using of the software Error Correction Algorithms
from RL-FlashFS library. This option should be enabled, when the NAND Flash Driver does
not implement this functionality in hardware. Set the option to 1 to enable it. 0 disables the
option.

 #define NAND0_SWECC 0

 File System Cache enables or disables the data caching and specifies the Cache Buffer
size. The data caching might increase the file r/w speed several times. When Caching is
enabled, Flash File System uses Multiple Sector Read and Multiple Sector Write commands to
control the USB Flash data read and write. Cache buffer size is specified in KBytes. Turn off
the data cache if the application is low on memory and the file read/write speed is not
important.

 #define NAND0_CASZ 8

 Relocate Cache Buffer allows to allocate RAM buffer at a specific address in the memory
space. Set to the option to 1 to enable it. 0 disables the option. When disabled, the linker
assigns the address of the RAM buffer.

 #define NAND0_RELOC 1

 Base address specifies the base address of the RAM buffers. This option is used when the
Relocate Device Buffer is enabled.

 #define NAND0_CADR 0x80000000

 Default Drive [N:] enables the NAND Flash Drive as a default system drive. This drive is
used, when a drive letter is not specified in a filename.

 #define NAND0_DEF 1

Note
 For enabled NAND Flash Drive, add the NAND Driver to the project.

Copyright © Keil, An ARM Company. All rights reserved.

Page 108

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NAND Driver

The NAND Driver implements low-level routines to interface the NAND Flash drive. An interface to
the RL-FlashFS is the NAND driver control block.

Driver control block

The structure NAND_DRV is defined in File_Config.h as follows:

typedef struct {

 U32 (*Init) (NAND_DRV_CFG *cfg);

 U32 (*UnInit) (NAND_DRV_CFG *cfg);

 U32 (*PageRead) (U32 row, U8 *buf, NAND_DRV_CFG *cfg);

 U32 (*PageWrite) (U32 row, U8 *buf, NAND_DRV_CFG *cfg);

 U32 (*BlockErase) (U32 row, NAND_DRV_CFG *cfg);

} const NAND_DRV;

The NAND driver uses five low-level user-provided functions to control the NAND Flash drive:

 Init()
This function is called when the RL-FlashFS is initialized by the finit function.

 UnInit()
This function is called to uninitialize the NAND Flash Drive by the funinit function.

 PageRead()
This function is used to read a page from NAND Flash device.

 PageWrite()
This function is used to write a page to NAND Flash device.

 BlockErase()
This function is used to erase NAND Flash block.

Implemented drivers

RL-FLashFS includes the following NAND drivers in the folder \ARM\RL\FlashFS\Drivers:

 NAND_LPC32xx.C - for NXP LPC3200 devices.
 NAND_SAM3U.C - for Atmel AT91SAM3U devices.

Copy one of the provided driver modules and use it as a template for creating new NAND interface
driver.

note
 Copy the NAND driver to the project directory if a NAND Flash drive is used.

Copyright © Keil, An ARM Company. All rights reserved.

Page 109

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Page Data Layout

Page Data Layout explains the NAND driver configuration structure, default data organization in a
NAND Flash Device page and how this organization can be changed.

NAND_DRV_CFG structure

This structure is defined in File_Config.h as follows:

typedef struct {

 NAND_PG_LAY *PgLay; /* Page Layout Definitions

*/

 U16 NumBlocks; /* Number of blocks per device

*/

 U16 NumPages; /* Number of pages per block

*/

 U16 PageSize; /* Page size

*/

 U16 SectorsPerBlock; /* Number of sectors per block

*/

 U8 SectorsPerPage; /* Number of sectors per page

*/

 U8 AddrCycles; /* Device address cycles

*/

 U8 SwEccEn; /* Software ECC enabled

*/

 U8 DrvInst; /* Driver Instance definition

*/

} const NAND_DRV_CFG;

NAND flash device driver is provided with the device configuration structure which contains NAND
flash device configuration info:

 PgLay
Pointer to the page data layout definition structure. This structure is filled with default layout
definitions at FlashFS initialization.

 NumBlocks
Number of blocks per device, as defined in the NAND Flash Drive configuration.

 NumPages
Number of pages per block, as defined in the NAND Flash Drive configuration.

 PageSize
Device page size, as defined in the NAND Flash Drive configuration.

 SectorsPerBlock
Number of sectors per device block is derived from the device page size and number of pages per
block.

 SectorsPerPage
Number of sectors per device page is derived from device page size.

 AddrCycles
Number of address cycles required for NAND device addressing.

 SwEccEn
This variable is greater than zero if error correction code (ECC) encoding/decoding is enabled in
software:
0 = Software ECC disabled
1 = Hamming ECC algorithm enabled in software.

 DrvInst
Provides information about NAND flash drive instance number. This variable can be used to
determine NAND device chip select. If only one NAND drive is used, this value equals to zero.

NAND_PG_LAY structure

Page 110

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

This structure is defined in File_Config.h as follows:

typedef struct {

 U8 Pos_LSN; /* LSN position

*/

 U8 Pos_COR; /* Data in page corrupted marker

*/

 U8 Pos_BBM; /* Bad Block marker position

*/

 U8 Pos_ECC; /* First byte of ECC

*/

 U16 SectInc; /* Column increment till next sector

*/

 U16 SpareOfs; /* Spare area offset from begining

*/

 /* of the page

*/

 U16 SpareInc; /* Column increment till next spare

*/

} NAND_PG_LAY;

This structure contains basic configuration info:

 Pos_LSN
Position in spare area, where logical sector number (LSN) is placed. Usually, this is the first byte of
spare, therefore Pos_LSN has value zero. LSN is a 32-bit value.

 Pos_COR
Position of data corrupted marker in spare area. Usually, this byte is the fifth byte of spare and
Pos_COR has value four.

 Pos_BBM
Position of bad block marker (BBM) in spare area and is usually placed as the sixth byte of spare,
Pos_BBM has value 5.

 Pos_ECC
Position of the first byte of Error Correction Code (ECC) bytes in the spare area. First ECC byte is
default seventh byte of spare (Pos_ECC == 6). This value is used by flash translation layer only if
ECC is encoded and decoded in software.

 SectInc
Provides information about user data sector locations within page. If page contains multiple sectors,
first sector always starts at the begining of the page (byte zero). Second sector starts at SectInc,
third sector at SectInc + SectInc and so on.

 SpareOfs
Provides information about the location of the first spare area byte within page.

 SpareInc
Provides information about spare area locations within page. If page contains multiple sectors, first
byte of the first spare area is determined by reading SpareOfs value. Location of the first byte of the
second spare, can be determined by adding SpareInc value to the SpareOfs value.

Default page data layout (defined by SectInc, SpareOfs and SpareInc values) contains spare area
after each sector.

Default 16-byte spare area data organization (defined by Pos_LSN, Pos_BBM and Pos_ECC values):

Page 111

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Changing the default page data layout

NAND Flash device or controller peripheral can demand different page data layout in order to
automatically calculate and store redundant error correction information. Therefore, page data
layout can be changed through configuration structure which is provided to the NAND flash device
driver. To define page data layout other than default, NAND device driver can simply overwrite fields
in the NAND_PG_LAY structure when the Init function is called.

The spare area location for OneNAND device is after last sector in a page:

Page data layout example to support OneNAND devices:

static U32 Init (NAND_DRV_CFG *cfg) {

 /* Setup OneNAND Page Layout */

 cfg->PgLay->Pos_LSN = 2;

 cfg->PgLay->Pos_COR = 1;

 cfg->PgLay->Pos_BBM = 0;

 cfg->PgLay->Pos_ECC = 8;

 cfg->PgLay->SectInc = 512;

 cfg->PgLay->SpareOfs = 2048;

 cfg->PgLay->SpareInc = 16;

 /* Init NAND Driver Peripheral */

 /* ... */

 return RTV_NOERR;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 112

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Source Files

Source Files for creating applications with the RL-FlashFS library can be found in the folders:

Folder Name Description
\ARM\RV31\INC Contains include files, header files, and

configuration files.
\ARM\RV31\LIB Contains the library files FS_ARM_L.LIB and

FS_CM3.LIB.
\ARM\RL\FlashFS\Drivers Contains driver modules for MCI, MMC, NAND, and

SPI devices.
\ARM\RL\FlashFS\Config Contains configuration files, such as File_Config.c

and Retarget.c.
\ARM\RL\FlashFS\Flash\device family Contains Flash programming functions and device

description files.
\ARM\Boards\vendor\board\RL\FlashFS Contains example applications built with the

RL-FlashFS Library. Use the projects as templates
to create new applications.

RL-FlashFS include files in \ARM\RV31\INC:

File Name File Type Layer Description
absacc.h Header File All layers Header file to locating variables at absolute

addresses at C level. The file is included from the
file File_lib.c. Code changes are not required.

File_Config.h Header File All layers Header file with common definitions. Code
changes are not required.

File_lib.c Module All layers System configuration file outlining library
functions. Code changes are not required.

RTL.h Header File All layers Common header file with type definitions and
exporting library functions. Code changes are not
required.

RTX_lib.c Module All layers RTX Kernel configuration file exposing RTOS
functions. Needed when the RTX-RTOS is used in
the application. Code changes are not required.

RL-FlashFS library files in \ARM\RV31\LIB:

File Name File Type Layer Description
FS_ARM_L.lib Library All layers RL-FlashFS library for ARM7 and ARM9 devices -

Little Endian.
FS_CM3.lib Library All layers RL-FlashFS library for Cortex-M devices - Little

Endian.

RL-FlashFS interface files in \ARM\RL\FlashFS\Drivers:

File Name File Type Layer Description
MCI_device family Module and

include file
All layersMultimedia Card Interface driver files with device

specific definitions and functions. Code changes
are not required.

NAND_device family Module and
include file

All layersNAND Flash Interface driver files with device
specific definitions and functions. Code changes
are not required.

SDIO_device family Module and
include file

All layersMultimedia Card Interface driver files with device
specific definitions and functions. Code changes
are not required.

SPI_device family.c Module All layersSerial Peripheral Interface driver file with device
specific definitions and functions. Code changes
are not required.

RL-FlashFS configuration files in \ARM\RL\FlashFS\Config:

File Name File Type Layer Description
File_Config.c Module All layers Application and device configuration file. Code

changes can be entered manually or using the
µVision Configuration Wizard.

Retarget.c Module All layers Module exposing low-level I/O functions. Code
changes are not required.

RL-FlashFS Flash programming and device description files in \ARM\RL\FlashFS\Flash\
device family:

Page 113

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File Name File Type Layer Description
FS_FlashDev.h Header file All layers Device description file defining the memory layout

for devices using Embedded File System. Adapt
the code the application needs.

FS_FlashPrg.c Module All layers Module with Flash programming functions for
devices using the Embedded File System. Adapt
the code to the application needs.

FS_SPI_FlashDev.h Header file All layers Device description file for SPI devices outlining
the memory layout. Adapt the code the
application needs.

FS_SPI_FlashPrg.c Module All layers Module with Flash programming functions for SPI
devices. Adapt the code to the application needs.

IAP.s Module All layers Assembler file with IAP execution functions.
Adapt the code to the application needs.

Copyright © Keil, An ARM Company. All rights reserved.

Page 114

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using RL-FlashFS

Using RL-FlashFS shows how to create applications for managing files on Flash devices.
RL-FlashFS can be used stand-alone or with the RTX-RTOS. RL-FlashFS cannot be used with the
MicroLIB library.

The picture below explains the RL-FlashFS structure from a developer's perspective.

The logical picture block:

 System, File Management

Represents functions to manage the system, such as file formatting, creating, finding,
renaming, ...

 Standard File I/O

Represents functions to manage data in files, such as reading, writing, printing, ...

 ARM Standard Run-Time Library

Represents the library with functions to manage data in files.

 retarget.c

Page 115

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Represents the abstraction hardware layer with functions to input and output data on
various interfaces, such as screens, LCD displays, keyboards, SD Cards, ...

 File_Config.c

Represents the configuration file with options to define the media characteristics.

 RL-FlashFS Library

Represents the library with interface functions that handle low-level input and output file
operations. Through the media type selected in the File_Config.c, RL-FlashFS detects the
appropriate file system: FAT or EFS. RL-FlashFS implements a Flash Translation Layer (FTL)
for NAND Media.

 IOC - FAT Media API

Represents interface functions for FAT Media that allow accessing raw sectors.

 The lower blocks

Represent the supported media types and relates them to the file system.

This section includes the topics:

Using Flash Devices

Lists the configuration files needed for Flash devices (NOR Flash), and describes the steps
for configuring dedicated-, large-, and internal Flash devices.

Using RAM Devices

Explains the configuration of RAM devices.

Using Memory Card Devices

Explains the configuration of memory card devices, file naming conventions, hot insertion,
and root directory limitations.

Debugging

Explains the µVision debugger configuration and settings for debugging Flash devices.

Copyright © Keil, An ARM Company. All rights reserved.

Page 116

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Flash Device Applications

Flash Device Applications explains how to create applications for embedded Flash devices.

Include into the project and configure the following source files:

1. The library that matches the device core:
FS_CM3.lib - for Cortex-M devices.
FS_ARM_L.lib - for ARM7 or ARM9 devices.

2. The description files:
FS_FlashDev.h for the sector layout.
FS_FlashPrg.c with the Flash programming algorithm.

3. The configuration files:
File_Config.c to configure the device.
Retarget.c to configure the output.

4. The main file to initialize and connect the Flash device.
5.
6. #include <RTL.h>

7. #include "Em_File.h"

8.
9. int main (void) {

10. ...

11. init_comm (); // initialize

communication port

12. init_file (); // initialize Flash File

System

13.
14. while (1) {

15. ... // add the code

16. }

17. }

Applications can be created using existing µVision projects as templates. The projects are located in
the folder \ARM\Boards\vendor\board name\RL\FlashFS.

 Copy all files from any folder \ARM\Boards\Vendor\BoardName\RL\FlashFS\em_file to
a new folder and open the project *.uvproj with µVision. RTX projects are using the
RTX-RTOS, whereas simple Audio projects work without an RTOS. However, the
configuration does not differ.

 Open the file File_Config.c and configure the Flash device with the Configuration Wizard.
 Enable Flash Device and set the device characteristics.

Page 117

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Adapt the source files FS_FlashPrg.c that contain Flash programming algorithms.
 Modify the file usbd_user_adc.c to adapt the code to the application needs.

When used for the first time, file storage devices need to be formatted:

 Non-volatile devices like Flash Devices, EEPROMS, or ZEROPOWER RAMs only once - when
the system is started the first time.

 Standard RAM devices every time the system is started.

Note
 The configuration options are explained in Flash Drive.

Copyright © Keil, An ARM Company. All rights reserved.

Page 118

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using Dedicated Flash Devices

If you use a dedicated Flash Device for storing files, then you must setup the Device configuration
options, copy all three configuration files to your project directory, and include them in your project.

You should be aware of the following:

 Writing to Flash Memory is quite fast, typically around 10us/cell. It may still take some time
to write big files. This also depends on the File Buffer size. When this buffer is full,
RL-FlashFS writes the buffer content to a Flash memory.

 Erasing a Flash Sector is slow. Typically around 1sec/sector. During this time, the
RL-FlashFS is frozen running in a loop inside EraseSector() function and waiting for the
erase operation to finish.

Copyright © Keil, An ARM Company. All rights reserved.

Page 119

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using One Large Flash Device

A special configuration is required when a single Flash Device is used for storing files and
application code. The code can not be executed from a Flash device while it is being programmed.
For this reason, programming routines are relocated to RAM and executed within RAM while Flash is
being programmed or erased. The programming routines located in module FS_FlashPrg.c are
relocated at runtime and copied to RAM for execution.

In addition to a standard Flash Device configuration, the programming functions must:

 relocate to RAM using the function attribute __ram,
 be protected from interrupts for IRQ and FIQ interrupts. This is possible by using the

function attribute __swi or relocating your IRQ interrupt handler function to RAM also. You
should be careful if you are using FIQ interrupts as well.

Copyright © Keil, An ARM Company. All rights reserved.

Page 120

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using Internal Flash Devices

Using Internal Flash Memory of an ARM device for code execution and file storage is the same as
using an external flash which stores the code and files. However, there are differences when
comparing internal flash memory with external flash devices:

 In most cases, it is possible to program internal flash memory only with IAP function calls.
IAP functions are factory preprogrammed into the boot sector of Internal Flash Memory.

 Another limitation is that flash memory may be programmed only a complete page at a time.
A page starts at the page boundary address. A page size for Philips LPC2xxx devices is
512/1024/.. bytes. So to program only one byte requires reading a complete page from
Internal Flash Memory into the RAM buffer, modifying the particular byte, and then writing
back a complete page. This is handled by the ProgramPage function.

 IAP function calls also require an assembly interface function for C-function calls. This is why
an IAP.s assembly module must be included for NXP (formerly Philips) Internal Flash
programming algorithms.

There are preconfigured Flash Algorithms for NXP (formerly Philips) ARM devices in the
\Keil\ARM\RL\FlashFS\Flash folder. You may use them as a reference for your own driver.

Note
 If the device uses an Error Correction Code (ECC) to correct single bit flash errors, then

RL-FlashFS will not work. Such devices are, for example, NXP LPC213x and LPC214x
devices.

Copyright © Keil, An ARM Company. All rights reserved.

Page 121

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using RAM Devices

RL-FlashFS can be configured to store files also to a static RAM. The buffer for RAM drive is allocated
by the linker. You can allocate the buffer at a specific address in the memory space, if you enable
the Relocate Device Buffer in the File_Config.c configuration file.

Because the RAM content is undefined when the power is applied to the system, the Ram drive
must be formatted for usage.

All the drives, that are enabled in the File_Config.c configuration, may be used at the same time, in
parallel, with no limitations. Of course, all drives must be properly configured.

If the Ram drive is the only drive used in your project, you need to copy only the File_Config.c
configuration file to your project directory.

Copyright © Keil, An ARM Company. All rights reserved.

Page 122

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using Memory Card Devices

You can configure RL-FlashFS to store files in a standard SD/MMC flash memory card. All drives (
Flash drive, RAM drive, and MC drive) can be used at the same time with no limitations, as long as
each drive is properly configured. To configure the memory card drive, you must copy the
configuration file File_Config.c and the SPI interface driver SPI.c to your project directory.

The RL-FlashFS supports standard SD and MMC flash memory cards with sizes ranging from a few
MBytes up to 4 GBytes. The system can read or write to the Root directory of the drive and to any
subdirectories created. The root directory typically has 512 entries. This limitation applies to FAT12
and FAT16 file system only. This means that 512 files plus root subdirectories together may be
stored on the root directory of the drive. This limitation does not apply to the FAT32 file system.

RL-FlashFS fully support support directories, subdirectories and long filenames. The system can
handle standard 12-bit, 16-bit and 32-bit File Allocation Tables. When accessing files located in
subdirectories a complete path must be specified in the file reference. For example:

fopen ("logs\\work\\temp.log","r");

Before a memory card is removed from the system, all files that have been opened for writing have
to be closed. Flash File System uses a simple FAT Table Caching and Data Caching to speed-up
memory card data access. Data Cache Buffer size and location is configured in the configuration file.
If the files are not closed, modified data that is still in the FAT Cache is not written to the memory
card. This makes the affected FAT table invalid and corrupts the file system.

note
 All files opened for writing must be closed before the memory card is removed from the

socket. Otherwise, a FAT file system might be corrupted.

Copyright © Keil, An ARM Company. All rights reserved.

Page 123

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File Naming Convention

File system used for memory card has FAT implemented. When files are created the file system
determines if file being created should be written to media as short file name or long file name.

Rules for determining if file name will be created as short file name:

 file name contains 8 or less characters
 file extension contains 3 or less characters
 no SPACE characters in file name or file extension
 all characters are in same CASE

If file name does not satisfy the rules for short file name it will be created as long file name.

Examples of short file names:

 test.txt
 TEST.TXT

Examples of long file names:

 Test.txt
 tesT.txt
 test file.txt

note
 Short names are encoded in FAT as all upper case.

Copyright © Keil, An ARM Company. All rights reserved.

Page 124

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Hot Insertion

When the finit function is called at startup, it tries to initialize the memory card. However, Flash
Memory Cards also support hot insertion, which enables the memory card to be inserted when the
system is already up and running. When the memory card is inserted, the finit function must be
called to initialize the card before using the card. To detect the insertion of a memory card, the user
application can poll the state of the insertion switch. Alternatively, the application can try to
initialize the memory card periodically.

note
 If you want to detect hot insertion, your hardware must provide the insertion switch using a

general purpose I/O pin.

Copyright © Keil, An ARM Company. All rights reserved.

Page 125

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Root Directory Limitation

The root directory in FAT12 and FAT16 file system has a limited storage of 512 entries. This is a
limitation of the FAT file system, not the limitation of the SD Card.

This limitation means:

1. You can store a maximum of 512 files in the root folder, if the files are stored in short
filename format (old DOS 8.3 file format).

2. You can store maximum of 256 files, or less in the root folder, if the files are stored in long
filename format. How many filename records are used depends on how long the filename
is.

How to avoid this limitation

A simple workaround to avoid this limitation is to create a subdirectory in the root folder. Then
create all the files in this subdirectory. There is no limitation how many files can be created in the
subdirectory.

 The root directory limitation does not exist in FAT32 file system.
 Long filename entry has one short and several long filename entries allocated.

Copyright © Keil, An ARM Company. All rights reserved.

Page 126

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Debugging

The µVision Simulator allows you to run and test your RL-FlashFS application. It must be configured
to run from RAM. To simulate the target flash device, a special debugging script must be written.
Detailed information about each file from the directory of the RL-FlashFS displays when you select
the File tab. This dialog lists all stored files.

Select RTX Kernel from the Peripherals menu to display this dialog.

 ID is the File Identification Value.
 File Name is the name of this file.
 State is the current state of this file.
 File position is current file position pointer value.
 Drive is a drive where the file is stored.

Note
 You may have a source level debugging if you enter the following SET variable into the

debugger:

 SET SRC=C:\Keil\ARM\RL\FlashFS\SRC

 You must select the RTX Kernel Operating System for the project under: Options for Target
— Target — Operating System — RTX Kernel to enable the RL-FlashFS debug dialog.

Copyright © Keil, An ARM Company. All rights reserved.

Page 127

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Function Overview

This section summarizes all the routines in the RL-FlashFS product. The functions are ordered
according to the following categories:

 File I/O Routines
 File Maintenance Routines
 File Time Support Routines
 Flash Driver Routines
 FAT Driver Routines
 MCI Driver Routines
 SPI Interface Routines
 NAND Interface Routines
 IOC Media Interface Routines
 System Routines

The function format is same as that of the RL-RTX functions.

note
 The RL-FlashFS library does not contain all the functions that are part of the RL-FlashFS

product. The Library Reference section on each function mentions whether the function is in
the library or not. If a function you want to use is not in the library, you must do one of the
following:

 Include one of the provided RL-FlashFS source files that contains the function in your
project. You can further customize the function.

 Provide your own function if the RL-FlashFS source files do not contain the function you
require. This is usually the case when you want to use driver functions for a different
hardware.

Copyright © Keil, An ARM Company. All rights reserved.

Page 128

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File I/O Routines
Routine Description
fclose Closes the file stream.
feof Reports whether the end of stream has been reached.
ferror Reports whether there is an error in the file stream.
fflush Flushes the file stream.
fgetc Reads a character from the file stream.
fgets Reads a string from the file stream.
fopen Opens the file stream.
fprintf Writes a formatted string to the file stream.
fputc Writes a character to the file stream.
fputs Writes a string to the file stream.
fread Reads a number of bytes from the file stream.
fscanf Reads a formatted string from the file stream.
fseek Moves the file stream's in-file pointer to a new location.
ftell Gets the current location of the stream's in-file pointer.
fwrite Writes a number of bytes to the file stream.
rewind Moves the file stream's in-file pointer to the beginning of the file.
ungetc Stores a character into an input file stream.

note
 The File I/O routines provide several ways of reading and writing files.
 The File I/O Flash routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 129

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File Maintenance Routines
Routine Description
fanalyse Checks the drive for fragmentation.
fcheck Checks the consistency of the drive.
fdefrag Defragments the drive.
fdelete Deletes the specified file.
ffind Performs a pattern-matching search for filenames.
fformat Formats the drive.
ffree Calculates the free space in the drive.
frename Changes the name of the file.

note
 The File Maintenance routines enable you to perform file operations on the specified drive.
 The File Maintenance Flash routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 130

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File Time Support Routines
Routine Description
fs_get_date Returns the current date.
fs_get_time Returns the current time.

note
 The file time support routines enable the RL-FlashFS system to get the current time and

date when a file is created, modified, or accessed.
 The file time support routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 131

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Flash Driver Routines
Routine Description
Init Initializes the flash programming algorithm.
UnInit Uninitializes the flash programming algorithm.
ReadData Reads data from a flash memory.
ProgramPage Writes data to a flash memory.
EraseSector Erases a sector in flash memory.
EraseChip Globally erases a flash memory.

note
 The low level flash routines enable the RL-FlashFS system to write to or erase the flash

memory.
 The low-level flash routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 132

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FAT Driver Routines
Routine Description
Init Initializes the FAT Drive.
UnInit Uninitializes the FAT Drive.
ReadSect Reads sectors from FAT Drive.
WriteSect Writes sectors to FAT Drive.
ReadInfo Reads the configuration info from the FAT Drive.
CheckMedia Checks the FAT Drive media status (Card Inserted, Write Protected).

note
 The FAT Driver routines are the functions that the RL-FlashFS system uses to communicate

with a all drives that support FAT file system.
 The FAT Driver routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 133

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MCI Driver Routines
Routine Description
Init Initializes the MCI controller.
UnInit Uninitializes the MCI controller.
Delay Delays a program execution in the driver.
BusMode Sets the bus mode to push-pull or open-drain.
BusWidth Sets the bus width to 1-bit or 4-bit bus.
BusSpeed Set the desired baud rate speed for the MCI interface.
Command Sends SD/MMC command.
ReadBlock Reads data from SD/MMC memory card.
WriteBlock Writes data to SD/MMC memory card.
SetDma Sets the DMA for data transfer.
CheckMedia Checks the SD/MMC media status (Card Inserted, Write Protected).

note
 The MCI interface routines are the functions that the RL-FlashFS system uses to

communicate with a memory card in SD-Native mode.
 The MCI interface routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 134

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SPI Driver Routines
Routine Description
Init Initializes the SPI controller.
UnInit Uninitializes the SPI controller.
Send Send and receive a byte over the SPI interface.
SendBuf Sends a block of data to the SPI interface.
RecBuf Receives a block of data from the SPI interface.
BusSpeed Set the desired baud rate speed for the SPI interface.
SetSS Enables or disables SPI Slave Select signal.
CheckMedia Checks the SD/MMC media status (Card Inserted, Write Protected).

note
 The SPI interface routines are the functions that the RL-FlashFS system uses to

communicate with a memory card or SPI data flash device.
 The SPI interface routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 135

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NAND Driver Routines
Routine Description
Init Initializes the NAND Flash Device.
UnInit Uninitializes the NAND Flash Device.
PageRead Reads a page from NAND Flash Device.
PageWrite Writes a page to NAND Flash Device.
BlockErase Erases a flash block on NAND Flash Device.

note
 The NAND Driver routines are the functions that the RL-FlashFS system uses to communicate

with the NAND Flash drive.
 The NAND Driver routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 136

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

IOC Interface Routines
Routine Description
ioc_getcb Retrieves the Media Control Block.
ioc_init Initializes the FAT Media Device.
ioc_uninit Uninitializes the FAT Media Device.
ioc_read_sect Reads sectors from FAT Media Device.
ioc_write_sect Writes sectors to FAT Media Device.
ioc_read_info Reads the configuration info from the FAT Media Device.

note
 The IOC Media Interface routines are the functions that the RL-FlashFS system uses to

communicate with a all media devices that support FAT file system.
 The FAT Media Interface routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 137

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

System Functions
Routine Description
finit Initializes the RL-FlashFS system or drive
funinit Uninitializes the RL-FlashFS system or drive

note
 The RL-FlashFS system routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 138

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-TCPnet

RL-TCPnet is an implementation of the TCP/IP protocol stack. The focus of the stack is to reduce
memory usage and code size. This makes it suitable for use by small clients with limited resources,
such as embedded systems. The RL-TCPnet library is a ground-up implementation of software
routines for the ARM7™, ARM9™, Cortex™-M1 and Cortex™-M3 architectures.

Programs are written using standard C constructs and compiled with the ARM® RealView®
Compiler. To create applications, you must include a special header file and link the RL-TCPnet
library into your program.

Note
 RL-TCPnet is not included with the RealView MDK-ARM™ Microcontroller Development Kit. It

is available in the stand-alone product RL-ARM™, which also contains the RTX kernel (with
source code), Flash File System, CAN and USB drivers.

Copyright © Keil, An ARM Company. All rights reserved.

Page 139

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.keil.com/rl-arm/
http://www.processtext.com/abcchm.html

TCP Socket

The Transmission Control Protocol (TCP) runs on top of the Internet Protocol (IP). TCP is a
connection-oriented and reliable byte stream service. The term connection-oriented means that the
two applications using TCP must establish a TCP connection with each other before they can
exchange data.

TCP is a full duplex protocol. This means that each TCP connection supports a pair of byte streams,
one for each direction. It takes care of retransmitting any data which does not reach the final
destination due to errors. It also takes care of retransmitting if there is data corruption of the
received data.

TCP protocol delivers data (to the application) in the same sequence as they were transmitted.

Copyright © Keil, An ARM Company. All rights reserved.

Page 140

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Opening TCP Connection

RL-TCPnet is based on the client/server model of operation, and the TCP connection setup is based
on these roles as well. Both, the client and the server, prepare for the connection by performing an
open operation. However, there are two different kinds of open:

 Active Open: A client process using TCP takes the "active role" and initiates the connection
by actually sending a TCP message to start the connection (a SYN message).

 Passive Open: A server process, designed to use TCP, takes a more relaxed approach. It
performs a passive Open by contacting the TCP, which is like saying "I am here, and I am
waiting for clients that may wish to talk to me to send me a message on the following port
number". The Open is called passive because aside from indicating that the process is
listening, the server process does nothing.

A passive Open can, in fact, specify that the server is waiting for an Active Open from a specific client.
However, not all RL-TCPnet APIs support this capability.

Copyright © Keil, An ARM Company. All rights reserved.

Page 141

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

TCP Active Open

Embedded applications use TCP Active Open when trying to connect to a remote server, for
example to send an email. In this case, the TCPnet system is the initiator of the TCP connection.

To open an active TCP connection, the following steps must be taken:

1. Enable the TCP socket in the Net_Config.c configuration file.
2. Allocate a free TCP socket with the tcp_get_socket() function call.
3. Initiate the TCP connection by calling the tcp_connect() function.

Copyright © Keil, An ARM Company. All rights reserved.

Page 142

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

TCP Passive Open

Passive Open is used when running a server application, for example a Web Server. The TCP socket
opens in passive mode and waits for incoming connections.

Do the following steps to open a passive TCP connection:

1. Enable the TCP socket in the Net_Config.c configuration file.
2. Allocate a free TCP socket with the tcp_get_socket() function call.
3. Activate the TCP socket listen mode with the tcp_listen() function call.

RL-TCPnet can handle multiple connections on the same port. Several TCPnet applications such as:
Web server, FTP server, Telnet server, etc. are using this concept.

Copyright © Keil, An ARM Company. All rights reserved.

Page 143

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Sending TCP Data

The TCP protocol is a byte stream service. It does not know anything about the format of the data
being sent. It simply takes the data, encapsulates it into the TCP packet, and sends it to the
remote peer. The TCP socket then keeps the last packet in memory and waits for an acknowledge
from the remote peer.

If the packet is not acknowledged when the timeout expires, it resends the same packet. This
process is repeated a couple of times before the packet is either acknowledged or the TCP socket
aborts the connection.

The main goal is to keep it small and not resource hungry. For this reason, the TCP socket cannot
keep a large amount of data in the buffer waiting to be acknowledged. It only keeps the last
packet sent, in memory, until it is acknowledged. When the packet is acknowledged, it is released
from memory.

Copyright © Keil, An ARM Company. All rights reserved.

Page 144

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Example for Sending Data

In the following example, the basic concept is to send large amounts of data using a TCP socket.
This example sends 64 Kbytes to the remote IP address 192.168.0.100, which is listening on port
1000. The TCP socket is permanently allocated and is not released when the data is sent or when
the connection is closed.

1. Initialize the RL-TCPnet system and allocate a free TCP socket:
2.
3. #include <rtl.h>

4.
5. U8 tcp_soc;

6. U8 soc_state;

7. BOOL wait_ack;

8.
9. void main (void) {

10. init_ ();

11. tcp_soc = tcp_get_socket (TCP_TYPE_CLIENT, 0, 120, tcp_callback);

12. soc_state = 0;

13. Run the main thread of the RL-TCPnet system and call the send_data() function from an
endless loop:

14.
15. while (1) {

16. timer_poll ();

17. main_TcpNet ();

18. send_data ();

19. }

20. }

21. The send_data() function must be implemented as a state machine. It opens an Active TCP
connection, sends data, and closes the TCP connection in the end. When the soc_state is 0,
the connection is initiated:

22.
23. void send_data (void) {

24. static const U8 rem_IP[4] = {192,168,0,100};

25. static int bcount;

26. U32 max;

27. U8 *sendbuf;

28.
29. switch (soc_state) {

30. case 0:

31. tcp_connect (tcp_soc, rem_IP, 1000, 0);

32. bcount = 0;

33. wait_ack = __FALSE;

34. soc_state = 1;

35. return;

36. Next, state 1 is waiting for the TCP_EVT_CONNECT event. This event is received in the
tcp_callback() event callback function, which places the send_data process into state 2
(sending data state).

37. In state 2, allocate the maximum possible size of transmit buffer, fill it with some data,
and send it. The maximum possible transmit buffer is allocated to reduce the number of
packets and improve the transfer speed.

After the packet is sent, wait for the remote acknowledge before proceeding with the next
data packet.

 case 2:

Page 145

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 if (wait_ack == __TRUE) {

 return;

 }

 max = tcp_max_dsize (tcp_soc);

 sendbuf = tcp_get_buf (max);

 for (i = 0; i < max; i += 2) {

 sendbuf[i] = bcount >> 8;

 sendbuf[i+1] = bcount & 0xFF;

 if (bcount >= 32768) {

 soc_state = 3;

 break;

 }

 }

 tcp_send (tcp_soc, sendbuf, i);

 wait_ack = __TRUE;

 return;

38. State 3 is achieved when the data transfer is finished. Wait for the last packet to be
acknowledged and then close the TCP connection.

39.
40. case 3:

41. if (wait_ack == __TRUE) {

42. return;

43. }

44. tcp_close (tcp_soc);

45. soc_state = 4;

46. return;

47. }

48. }

49. The embedded application waits for the TCP socket to connect before starting to send data.
When the data packet is sent, the application waits for the acknowledge before creating
and sending the next data packet. Use the callback listener function to wait for the remote
acknowledge.

50.
51. U16 tcp_callback (U8 soc, U8 event, U8 *ptr, U16 par) {

52. /* This function is called on TCP event */

53.
54. switch (event) {

55. ..

56. case TCP_EVT_CONNECT:

57. /* Socket is now connected and ready to send data. */

58. soc_state = 2;

59. break;

60. case TCP_EVT_ACK:

61. /* Our sent data has been acknowledged by remote peer */

62. wait_ack = __FALSE;

63. break;

64. ..

65. }

66. return (0);

67. }

Note
 This assumes that the Network Interface Adapter is selected, enabled, and properly

Page 146

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

configured in the Net_Config.c configuration file.
 If the system runs out of TCP sockets, the application hangs in an endless loop in the

system error function with the error code ERR_TCP_ALLOC.

Copyright © Keil, An ARM Company. All rights reserved.

Page 147

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Multiple TCP Connections

It is often required for the server applications to be able to accept several TCP connections from
clients on the same port. Such applications are for example: Web server, FTP server, Telnet server
etc. The multiplex handling must be implemented in the session layer of the user application.

Because TCP socket is a connection-oriented service, it accepts only one concurrent connection.
The basic packet multiplexing is done in TCP Transport layer and the user application receives the
socket number as a parameter in the callback function.

The framework of the user application shall contain the following basic functions:

1. The user_init() function to initialize all user application sessions at startup.
2.
3. void user_init () {

4. USER_INFO *user_s;

5. int i;

6.
7. for (i = 0; i < user_num_sess; i++) {

8. user_s = &user_session[i];

9. user_s->Count = 0;

10. user_s->Flags = 0;

11. user_s->BCnt = 0;

12. user_s->Tout = 0;

13. user_s->File = NULL;

14. user_s->Script= NULL;

15. /* Allocate a TCP socket for the session. */

16. user_s->Socket = tcp_get_socket (TCP_TYPE_SERVER, TCP_TOS_NORMAL,

17. tcp_DefTout, user_listener);

18. user_s->State = USER_STATE_ERROR;

19. if (user_s->Socket != 0) {

20. if (tcp_listen (user_s->Socket, USER_SERVER_PORT) == __TRUE) {

21. user_s->State = USER_STATE_IDLE;

22. }

23. }

24. }

25. }

All user sessions are now initialized and each session has allocated it's own TCP socket. A
socket is listening on selected USER_SERVER_PORT port.

26. The user_listener() callback function for TCP socket. This callback function is common for all
TCP sockets allocated in this user application.

27.
28. static U16 user_listener (U8 socket, U8 event, U8 *ptr, U16 par) {

29. USER_INFO *user_s;

30. U8 session;

31. int i;

32.
33. session = user_map_session (socket);

34. if (session == 0)) {

35. return (__FALSE);

36. }

37. user_s = &user_session[session-1];

38. switch (event) {

39. case TCP_EVT_CONREQ:

40. if (user_s->State == USER_STATE_IDLE) {

Page 148

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

41. user_s->State = USER_STATE_RESERVED;

42. }

43. return (__TRUE);

44.
45. case TCP_EVT_ABORT:

46. user_kill_session (user_s);

47. return (__TRUE);

48.
49. case TCP_EVT_CONNECT:

50. user_s->State = USER_STATE_ACTIVE;

51. return (__TRUE);

52.
53. case TCP_EVT_CLOSE:

54. user_kill_session (user_s);

55. return (__TRUE);

56.
57. case TCP_EVT_ACK:

58. user_s->Count += user_s->BCnt;

59. user_s->BCnt = 0;

60. return (__TRUE);

61.
62. case TCP_EVT_DATA:

63. ..

64. return (__TRUE);

65. }

66. return (__FALSE);

67. }

68. The user_map_session() function to map the socket, which has generated a callback
event, to it's owner session.

69.
70. static U8 user_map_session (U8 socket) {

71. int i;

72.
73. for (i = 1; i <= user_num_sess; i++) {

74. if (user_session[i-1].Socket == socket) {

75. return (i);

76. }

77. }

78. return (0);

79. }

80. The user_kill_session() function to initialize the session to a default state, close any
eventually opened files and release any eventually allocated buffers.

81.
82. static void user_kill_session (USER_INFO *user_s) {

83.
84. user_s->State = USER_STATE_IDLE;

85. if (user_s->Flags & USER_FLAG_FOPENED) {

86. user_fclose (user_s->File);

87. user_s->File = NULL;

88. }

89. if (user_s->Script != NULL) {

90. free_mem (user_s->Script);

Page 149

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

91. user_s->Script = NULL;

92. }

93. user_s->Flags = 0;

94. user_s->Count = 0;

95. user_s->BCnt = 0;

96. user_s->Tout = 0;

97. }

98. The user_run_server() function to maintain the application jobs, timeouts, etc. This
function shall be frequently called from the main loop.

99.
100. void user_run_server () {
101. USER_INFO *user_s;
102. int i;
103.
104. for (i = 0; i < user_num_sess; i++) {
105. user_s = &user_session[i];
106.
107. switch (user_s->State) {
108. case USER_STATE_IDLE:
109. case USER_STATE_RESERVED:
110. /* Keep TCP sockets listening. */
111. if (tcp_get_state (user_s->Socket) < TCP_STATE_LISTEN) {
112. tcp_listen (user_s->Socket, USER_SERVER_PORT);
113. }
114. break;
115. case USER_STATE_WAITING:
116. if (sec_tick == __TRUE) {
117. if (--user_s->Tout == 0) {
118. /* A timeout expired. */
119. user_kill_session (user_s);
120. }
121. }
122. break;
123. case USER_STATE_ACTIVE:
124. ..
125. break;
126. }
127. }
128. }

Note
 There is one TCP socket used per user session. You need to reserve enough TCP sockets in

Net_Config.c configuration file for all user sessions.

Copyright © Keil, An ARM Company. All rights reserved.

Page 150

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

UDP Socket

The User Datagram Protocol (UDP) runs on top of the Internet Protocol (IP). The UDP protocol was
developed for use by application protocols that do not require reliability, acknowledgment, or flow
control features at the transport layer. It is simple and only provides transport layer addressing in
the form of UDP ports and an optional checksum capability.

Copyright © Keil, An ARM Company. All rights reserved.

Page 151

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Opening UDP Connection

The User Datagram Protocol (UDP) is probably the simplest in all of TCP/IP. The UDP takes the
application layer data passed to it, packages the layer in a simplified message format, and sends it
to the IP for transmission. This handles the UDP sockets in a simple way. The UDP socket only
needs to be opened for communication. It listens for incoming messages and sends outgoing
messages on request.

Copyright © Keil, An ARM Company. All rights reserved.

Page 152

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Sending UDP Data

The UDP protocol is a simple byte stream service. It does not know anything about the format of
the data being sent. It simply takes the data, encapsulates it into the UDP packet, and sends it to
a remote peer.

The UDP protocol does not wait for any acknowledgement and is unable to detect any lost packets.
When acknowledgement or detection is required, it must be done by the application layer.
However, it is better to use a TCP socket for communication when acknowledgement is necessary.

Copyright © Keil, An ARM Company. All rights reserved.

Page 153

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

When DHCP Enabled

A Dynamic Host Configuration Protocol (DHCP) client automatically configures the network
parameters for the application. This normally takes some time after startup.

When the network traffic is low and a DHCP server is idle, automatic device configuration is finished
in less than 60 msec. But it is possible, on high traffic networks, that this configuration could take a
lot longer by up to a couple of seconds. Any attempt to send an UDP data packet during that time
will fail and the UDP data packet will be lost.

Communications must wait until the local IP address is configured. This can be done by simply
monitoring the IP address in the localm structure, which holds all the network configuration
parameters.

When the DHCP client starts, it copies a default Local IP address, which is set in the configuration,
to a local buffer and clears the assigned IP address for the ethernet adapter. The DHCP client then
tries to acquire the proposed IP address in the DHCP negotiation process. To see when the DHCP
configuration procedure has finished, it is enough to monitor the assigned IP address of the
ethernet adapter.

The whole procedure is required only when we want to send UDP data. For receiving UDP packets,
this is not a problem because the application will not accept any IP packet until the ethernet
adapter IP address is assigned.

Here is an example for the send_data() function from the UDP example modified for enabled
DHCP:

void send_data (void) {

 static const U8 rem_IP[4] = {192,168,0,100};

 U8 *sendbuf;

 if (wait_ack == __TRUE) {

 return;

 }

 if (mem_test (localm[NETIF_ETH].IpAdr, 0, 4) == __TRUE) {

 /* IP address not yet assigned by DHCP. */

 return;

 }

 if (bindex < 128) {

 sendbuf = udp_get_buf (512);

 for (i = 0; i < 512; i += 2) {

 sendbuf[i] = bcount >> 8;

 sendbuf[i+1] = bcount & 0xFF;

 }

 udp_send (udp_soc, rem_IP, 1000, sendbuf, 512);

 }

}

 The example assumes that the DHCP Client for Ethernet Network Interface is enabled in

the configuration.

Copyright © Keil, An ARM Company. All rights reserved.

Page 154

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

When ARP Cache Empty

The Address Resolution Protocol (ARP) module caches all received IP addresses to an internal cache
buffer, which stores the IP addresses and Ethernet addresses (MAC).

When the application starts, the ARP Cache buffer is normally empty. The ARP module does not yet
know the target MAC address for the first UDP data packet being sent from the application. It sends
the ARP request to the network. The first and any subsequent UDP data packets sent from the user
application are lost until the target MAC address is resolved. This is because the UDP does not
buffer outgoing packets.

An ARP request must be sent to the network and the MAC address for the target IP address must
be resolved before the first UDP data packet is sent to the network. This is only required if no
packets were received from a destination IP. Every received IP or ARP packet is also processed by
the ARP module, and the IP and MAC addresses are cached internally.

All cached IP addresses are by default temporary IP cache entries. After a timeout, which is set in
the configuration, such entries are automatically deleted from the cache. You can use the function
arp_cache_ip() to force an ARP request. You can also use the function to change the cache entry
attribute to a fixed IP address rather than a temporary IP address.

Fixed IP entries are automatically refreshed by the ARP module on timeout. When timeout expires,
the ARP module sends an ARP request to the target again to verify whether the target is still active
and able to accept packets.

Once the function arp_cache_ip() returns the value of __TRUE, the remote IP address is resolved
and cached in the ARP cache buffer. If the Cache Entry attribute is set to ARP_FIXED_IP, there is
no need to take care of resolving the IP address when a timeout expires. The ARP module does this
automatically.

Copyright © Keil, An ARM Company. All rights reserved.

Page 155

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Example for Sending Data

This example demonstrates the basic concept of sending a large amount of data using a UDP
socket.

 The example sends 64 Kbytes to the remote IP address 192.168.0.100, which is listening on
port 1000.

 The UDP socket will be allocated permanently and will not be released when the data is
sent.

 The data is sent as a stream of bytes.
 The UDP socket does not wait for acknowledge from the remote peer to ascertain whether

the data has been accepted. For this reason, a very simple acknowledge protocol is added
to the example. The data will be sent in 512-byte blocks. Upon receiving the packet, the
remote peer will send back a simple UDP packet with an acknowledgement. The
acknowledgement is simply an index of the received packet starting with 0.

The steps for this example are as follows:

1. Initialize the system and allocate a free UDP Socket and open it for communication:
2.
3. #include <RTL.h>

4.
5. U8 udp_soc;

6. U16 bindex;

7. BOOL wait_ack;

8.
9. void main (void) {

10. init_TcpNet ();

11. udp_soc = udp_get_socket (0, UDP_OPT_SEND_CS | UDP_OPT_CHK_CS,

udp_callback);

12. udp_open (udp_soc, 0);

13. bindex = 0;

14. wait_ack = __FALSE;

15. Run the main thread and call the send_data() function from an endless loop:
16.
17. while (1) {

18. timer_poll ();

19. main_TcpNet ();

20. send_data ();

21. }

22. }

23. The send_data() function sends UDP Data and waits for acknowledge. Note that the UDP
sockets do not support any acknowledgment. The example provides its own
acknowledgement.

24.
25. void send_data (void) {

26. static const U8 rem_IP[4] = {192,168,0,100};

27. U8 *sendbuf;

28.
29. if (wait_ack == __TRUE) {

30. return;

31. }

32. if (bindex < 128) {

33. sendbuf = udp_get_buf (512);

34. for (i = 0; i < 512; i += 2) {

35. sendbuf[i] = bcount >> 8;

36. sendbuf[i+1] = bcount & 0xFF;

Page 156

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

37. }

38. udp_send (udp_soc, rem_IP, 1000, sendbuf, 512);

39. }

40. }

41. When the packet is sent, wait for the remote acknowledge before proceeding with the
next data packet. Use the callback listener function to wait for the remote acknowledge.

42.
43. U16 udp_callback (U8 socket, U8 *remip, U16 port, U8 *buf, U16 len)

44. /* This function is called when UDP data has been received. */

45.
46. if ((len == 2) && (bindex == (buf[0]<<8 | buf[1]))) {

47. wait_ack == __FALSE;

48. }

49. return (0);

50. }

Note
 The example assumes that the Network Interface Adapter is selected, enabled, and

properly configured in the Net_Config.c configuration file.
 If the system runs out of UDP sockets, the application hangs in an endless loop in the

system error function with the error code ERR_UDP_ALLOC.

Copyright © Keil, An ARM Company. All rights reserved.

Page 157

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

IP Multicasting

IP multicasting is the transmission of an IP datagram to a "host group", a set of zero or more hosts
identified by a single IP destination address. A multicast datagram is delivered to all the members
of its destination host group in the same way as regular unicast datagrams.

A host can receive a multicast datagram when it is a member of a host group a datagram is
destined to. To enable reception of multicast packets a host must first join a host group.

A membership of a host group is dynamic. Hosts may join and leave groups at any time.

Host groups are identified by class D IP adresses, those with "1110" as their high-order four bits.
Host group addresses range from 224.0.0.0 to 239.255.255.255. The address 224.0.0.0 is
reserved and shall not be assigned to any group and 224.0.0.1 is assigned to the permanent group
of all IP hosts, including gateways. This group shall also not be used for a dynamic host group.

UDP multicasting

Incoming multicast UDP datagrams are received by UDP socket in the same way as normal, unicast
datagrams. The only difference is that the host must first join a host group, before the muticast
packets for the selected group can be received.

Outgoing multicast UDP datagrams are sent in the same way as unicast datagrams, only the
destination IP address is a group address instead of a host address.

Copyright © Keil, An ARM Company. All rights reserved.

Page 158

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Multiple UDP Connections

It is often required for the server applications to be able to accept several UDP connections from
clients on the same port. Such application is for example a TFTP server. The multiplex handling must
be implemented in the session layer of the user application.

Because UDP socket is a connectionless service, it is able to accept several concurrent connections
from different remote hosts. The packet multiplexing must be done in user application.

The framework of the user application shall contain the following basic functions:

1. The user_init() function to initialize all user application sessions at startup.
2.
3. void user_init () {

4. USER_INFO *user_s;

5. int i;

6.
7. for (i = 0; i < user_num_sess; i++) {

8. user_s = &user_session[i];

9. mem_set (user_s->RemIp, 0, IP_ADRLEN);

10. user_s->RemPort = 0;

11. user_s->Flags = 0;

12. user_s->Retries = 0;

13. user_s->Tout = 0;

14. user_s->File = NULL;

15. user_s->State = USER_STATE_IDLE;

16. }

17. /* Allocate one UDP socket for all sessions. */

18. user_Socket = udp_get_socket (0, UDP_OPT_SEND_CS | UDP_OPT_CHK_CS,

19. user_listener);

20. if (user_Socket != 0) {

21. udp_open (user_Socket, USER_SERVER_PORT);

22. }

23. }

All user sessions are now initialized. A common UDP socket is opened for communication on
selected USER_SERVER_PORT port.

24. The user_listener() callback function for UDP socket.
25.
26. static U16 user_listener (U8 socket, U8 *remip, U16 port,

27. U8 *buf, U16 len) {

28. USER_INFO *user_s;

29. U8 session;

30. int i;

31.
32. if (socket != user_Socket)) {

33. return (__FALSE);

34. }

35.
36. session = user_map_session (remip, port);

37. if (session == 0) {

38. return (__FALSE);

39. }

40. user_s = &user_session[session-1];

41. switch (user_s->State) {

Page 159

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

42. case USER_STATE_IDLE:

43. /* A new connection established. */

44. ..

45. user_s->State = USER_STATE_ACTIVE;

46. break;

47.
48. case USER_STATE_ACTIVE:

49. /* Process UDP data. */

50. ..

51. break;

52. }

53. return (__TRUE);

54. }

55. The user_map_session() function to map the UDP packet, which has generated a callback
event, to it's owner session.

56.
57. static U8 user_map_session (U8 *remip, U16 port) {

58. USER_INFO *user_s;

59. int i;

60.
61. /* Check if this is an existing connection. */

62. for (i = 1; i <= user_num_sess; i++) {

63. user_s = &user_session[i-1];

64. if ((user_s->State > USER_STATE_IDLE) &&

65. (mem_comp (remip, user_s->RemIp, IP_ADRLEN) == __TRUE) &&

66. (port == user_s->RemPort)) {

67. return (i);

68. }

69. }

70. /* Check if this is a new connection. */

71. for (i = 1; i <= user_num_sess; i++) {

72. user_s = &user_session[i-1];

73. if (user_s->State == USER_STATE_IDLE) {

74. mem_copy (user_s->RemIp, remip, IP_ADRLEN);

75. user_s->RemPort = port;

76. return (i);

77. }

78. }

79. return (0);

80. }

81. The user_kill_session() function to initialize the session to a default state, close any
eventually opened files and release any eventually allocated buffers.

82.
83. static void user_kill_session (USER_INFO *user_s) {

84.
85. user_s->State = USER_STATE_IDLE;

86. if (user_s->File != NULL) {

87. user_fclose (user_s->File);

88. user_s->File = NULL;

89. }

90. mem_set (user_s->RemIp, 0, IP_ADRLEN);

91. user_s->RemPort = 0;

Page 160

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

92. user_s->Flags = 0;

93. user_s->Retries = 0;

94. user_s->Tout = 0;

95. }

96. The user_run_server() function to maintain the application jobs, timeouts, etc. This
function shall be frequently called from the main loop.

97.
98. void user_run_server () {

99. USER_INFO *user_s;

100. int i;
101.
102. for (i = 0; i < user_num_sess; i++) {
103. user_s = &user_session[i];
104.
105. switch (user_s->State) {
106. case USER_STATE_ACTIVE:
107. if (sec_tick == __TRUE) {
108. if (--user_s->Tout == 0) {
109. /* A timeout expired. */
110. user_kill_session (user_s);
111. }
112. }
113. break;
114. }
115. }
116. }

Note
 There is only one socket used for all user sessions.

Copyright © Keil, An ARM Company. All rights reserved.

Page 161

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuring TCPnet

RL-TCPnet is easy to customize for each application you create. The configuration settings are
collected and moved to the Net_Config.c system configuration file. Most of the configuration
options are set at compile time and integrated into the application code.

Each of the embedded device that is connected to a local area network must have a unique MAC
address, IP address, and host name. Hence, the compile time configuration in Net_Config.c is not
sufficient when several embedded ethernet devices are produced. For this reason, RL-TCPnet
provides runtime configuration of certain ethernet network parameters. The runtime configuration
allows you to dynamically configure the embedded system when the system has already started.
The configuration parameters can be stored to the system EEPROM or some other system NV
memory.

Copyright © Keil, An ARM Company. All rights reserved.

Page 162

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Static Configuration

RL-TCPnet must be configured for the embedded applications you create. All configuration settings
are found in the Net_Config.c file, which is located in the \Keil\ARM\RL\TCPnet\User folder.
Configuration options allow you to configure:

System Settings

 Local Host Name
 Memory Pool Size
 System Tick Timer Interval
 Code for the System Error Function

Ethernet Network Interface

 Enable or Disable Ethernet interface
 Local MAC Address
 Local IP Address
 Subnet Mask
 Default Gateway IP Address
 Primary DNS Server
 Secondary DNS Server
 Enable or Disable IGMP protocol
 IGMP Membership Table size
 Enable or Disable NetBIOS Name Service
 Enable or Disable Dynamic Host Configuration
 DHCP Vendor Class Identifier
 ARP Cache Table Size
 ARP Cache Entry Timeout
 Number of Retries to resolve an IP Address
 ARP Resend Timeout
 Enable or Disable Gratuitous ARP Notification

PPP Network Interface

 Enable or Disable PPP interface
 Local IP Address
 Subnet Mask
 Primary DNS Server
 Secondary DNS Server
 Enable or Disable Obtain Client IP address automatically
 Enable or Disable default Gateway on remote Network
 Async Control Character Map
 Retransmissions and Timeouts

SLIP Network Interface

 Enable or Disable SLIP interface
 Local IP Address
 Subnet Mask
 Primary DNS Server
 Secondary DNS Server
 Enable or Disable default Gateway on remote Network

UDP Settings

 Enable or Disable the UDP protocol
 Number of available UDP Sockets

TCP Settings

 Enable or Disable the TCP protocol
 Number of available TCP Sockets
 Number of Retries to Resend the TCP data packet
 TCP Resend Timeout
 Default Connection Timeout for the Keep-alive Timer

HTTP Server Settings

 Enable or Disable the HTTP Server
 Number of HTTP Sessions

Page 163

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Port Number
 Enable or Disable HTTP Authorization
 Realm string for Authorization
 Username
 Default Password

Telnet Server Settings

 Enable or Disable the Telnet Server
 Number of Telnet Sessions
 Port Number
 Enable or Disable Telnet Authorization
 Username
 Default Password

TFTP Server Settings

 Enable or Disable the TFTP Server
 Number of TFTP Sessions
 Port Number
 Inactive Session Timeout
 Number of Retries

FTP Server Settings

 Enable or Disable the FTP Server
 Number of FTP Sessions
 Port Number
 Enable or Disable FTP Authorization
 Username
 Default Password

DNS Client Settings

 Enable or Disable a DNS Client
 DNS Cache Table Size

SMTP Client Settings

 Enable or Disable a SMTP Client
 SMTP Inactive Timeout

SNMP Agent Settings

 Enable or Disable a SNMP Agent
 Community Name
 Port Number
 Trap Port Number
 IP addres of Trap Server

You must copy the Net_Config.c file to your project folder and add it to your project. To customize
the configuration, you must change the settings specified in Net_Config.c

Note
 The Configuration Wizard feature, in µVision, helps you to make the configuration changes

easily with just a couple of mouse clicks and provides a good overview of the complete
configuration.

Copyright © Keil, An ARM Company. All rights reserved.

Page 164

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

System

The System configuration allows you to modify the system parameters such as:

 Local Host Name specifies the name for your hardware. You can access your hardware by
this name. This name is also used as a host name when sending emails with the SMTP
Client. The name length is limited to 15 characters.

 #define LHOST_NAME "mcb2100"

 Memory Pool size specifies the amount of RAM allocated for the Memory Pool. The memory
blocks are dynamically allocated and released by the system Memory Management
Functions.

Memory size is specified in 4-byte words, however the µVision Configuration Wizard
converts this value to number of bytes. For example the value 2000 for MEM_SIZE specifies
the memory pool of 8000 bytes.

 #define MEM_SIZE 2000

 Tick Timer interval specifies the system tick timer interval. It is specified in milliseconds.
Allowed values are: 10ms, 20ms, 25ms, 40ms, 50ms, 100ms, or 200 ms. You should set this
value as high as possible.

 #define TICK_INTERVAL 100

Note
 You can start with the default values specified in the Net_Config.c configuration file. The

system error function sys_error() is also provided in the configuration file. This function
gets called on system critical errors. If you get this function called in your application, check
the error code.

 For error code ERR_MEM_ALLOC, you need to increase the memory size for the Memory
Pool. When the error code is ERR_TCP_ALLOC, you need to increase the number of
available TCP sockets etc.

Copyright © Keil, An ARM Company. All rights reserved.

Page 165

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Ethernet Interface

The Ethernet Network Interface can be enabled or disabled. The network settings can be specified
for Local Ethernet Address, Local IP Address, Default Gateway IP Address, and Net Mask.

The network settings set here are valid for Ethernet Network Interface only. They must be set for
each network interface separately. You must carefully configure those parameters to match the
settings of your local LAN.

 Ethernet Network Interface switch enables or disables the Ethernet Network interface.
Ethernet Interface should be disabled only when PPP or SLIP interface is used to reduce the
code size. When this value is set to 1 the Ethernet Interface is enabled.

 #define ETH_ENABLE 1

 MAC Address specifies a six byte Local Ethernet MAC address. It must be unique for each
ethernet controller located in your local area network.

 #define _MAC1 0x1E

 #define _MAC2 0x30

 #define _MAC3 0x6C

 #define _MAC4 0xA2

 #define _MAC5 0x45

 #define _MAC6 0x5E

 IP Address specifies your local static four byte IP address.

 #define _IP1 192

 #define _IP2 168

 #define _IP3 0

 #define _IP4 100

 Subnet Mask specifies the Net Mask. This is normally the class C for small LANs:
255.255.255.0. It is used by the system to check if the given IP address belongs to an
internal LAN or an external WAN.

 #define _MSK1 255

 #define _MSK2 255

 #define _MSK3 255

 #define _MSK4 0

 Default Gateway specifies the IP address of the default gateway. It is used when the
external WAN is accessed. If your application is to be used only on a local LAN, then you
don't have to specify the Default Gateway.

 #define _GW1 192

 #define _GW2 168

 #define _GW3 0

 #define _GW4 254

 Primary DNS Server specifies the IP address of the primary DNS Server. The DNS Client
sends IP address resolution requests to this address. This setting is irrelevant when the
DNS Client is disabled by configuration.

 #define _pDNS1 194

 #define _pDNS2 25

 #define _pDNS3 2

 #define _pDNS4 129

 Secondary DNS Server specifies the IP address of the secondary DNS Server. This DNS
Server is used when the primary DNS Server is down or not accessible. In this case, the DNS
Client automatically switches to a backup secondary DNS Server if a non-zero address is
provided.

Page 166

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 #define _sDNS1 194

 #define _sDNS2 25

 #define _sDNS3 2

 #define _sDNS4 130

 NetBIOS Name Service switch enables or disables the NBNS Name Service. When NBNS is
enabled, you can access your hardware device by the name of your LAN. For example you
can type: PING mcb2100 instead of PING 192.168.0.100. NBNS is enabled when this value is
set to 1.

 #define NBNS_ENABLE 1

 Dynamic Host Configuration switch enables or disables the DHCP Service. When DHCP is
enabled, your hardware device obtains all the network parameters like IP address, net
mask, default gateway, primary and secondary DNS servers, automatically from your DHCP
server on the LAN. Dynamic Host Configuration does not work without a DHCP Server
running on your LAN. You must also enable the NBNS Service to access the hardware by
name. A dynamically assigned IP address is normally not known or can even change during
the lifetime of the connection.

 #define DHCP_ENABLE 1

 Vendor Class Identifier specifies a string, which is optionally added to DHCP request
message. If this is an empty string, the VCI option is not added. The Vendor Class Identifier
can be used to selectively identify a device on DHCP server. For example: DHCP server can
assign an IP address to a specific Vendor Class group only and ignore all other DHCP clients
with different VCI.

 #define DHCP_VCID ""

Note
 If you want to use a static IP for your application in a network where a DHCP address

assignment is used, disable the DHCP client in the configuration and set the static IP
address out of the range of the DHCP Server address pool.

 You can use Ethernet and PPP (or SLIP) network interfaces simultaneously.

Copyright © Keil, An ARM Company. All rights reserved.

Page 167

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ARP

The Ethernet Address Resolution Protocol module (ARP) caches the addresses of remote peers.
This greatly improves the system performance. The following ARP parameters can be configured:

 Cache Table size specifies the size of ARP cache table. It defines how many cache entries
may be kept in the ARP cache. You must increase this value if you are using multiple
simultaneous IP connections.

 #define ARP_TABSIZE 10

 Cache Timeout in seconds specifies the timeout for an ARP cache entry. After a timeout, the
Permanent IPs are refreshed, and the Temporary IPs are removed from the cache. The
Timeout (Keep-alive) Timer is reset on every access to the cache entry. This means when an
ethernet packet is received from a remote peer.

 #define ARP_TIMEOUT 150

 Number of Retries is the maximum number of retries to resolve the ethernet MAC address
of the remote peer before the ARP module gives up. When the ARP request is not
responded to by the remote peer, the ARP module sends another request to retrieve the
remote peer's ethernet MAC address. This process is repeated ARP_MAXRETRY times before
the ARP module gives up.

 #define ARP_MAXRETRY 4

 Resend Timeout in seconds specifies the resend timeout. When this timeout has expired
and no response has been received from the remote peer, an ARP module resends the ARP
request.

 #define ARP_RESEND 2

 Send Notification on Address changes switch enables or disables the Gratuitous ARP
Service. When it is enabled, the embedded host will broadcast a Gratuitous ARM notification
at startup, or when the local IP Address has changed.

 #define ARP_NOTIFY 0

Copyright © Keil, An ARM Company. All rights reserved.

Page 168

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

IGMP

The Internet Group Management Protocol (IGMP) is required for sending and receiving IP Multicast
packets. In order to recive Multicast packets, a host must first join a Host Group with specified Host
Group IP address. The following IGMP parameters can be configured:

 IGMP Group Management switch enables or disables the IGMP protocol with IP
Multicasting. It is enabled when this value is set to 1.

 #define IGMP_ENABLE 1

 Membership Table size specifies the size of IGMP Host Group table. It defines how many
Host Groups a host can join to. A default value of 5 means that a host can be a member of
max. 5 different Host Groups.

 #define IGMP_TABSIZE 5

Copyright © Keil, An ARM Company. All rights reserved.

Page 169

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

PPP Interface

The Point to Point Protocol (PPP) Network Interface can be enabled or disabled. The other network
settings you can configure are Local IP Address, Net Mask, Primary DNS, Secondary DNS Server, and
Async Control Character map.

The network settings in this topic are only valid for the PPP Interface. They must be set for each
network interface separately. You must carefully configure those parameters to match the settings
of your remote peer. PPP Network Interface supports some of the automatic configuration
protocols.

The network settings are used to route packets from the stack to the proper network interface on
transmit.

 PPP Network Interface switch enables or disables the PPP Network interface. When the
PPP Interface is not used, it should be disabled to reduce the application code size. It is
enabled when this value is set to 1.

 #define PPP_ENABLE 1

 IP Address specifies your local static four-byte IP address.

 #define _IP1P 192

 #define _IP2P 168

 #define _IP3P 125

 #define _IP4P 1

 Subnet Mask specifies the Net Mask. This is normally class C for small LANs:
255.255.255.0. The system uses it to route packets to network interfaces.

 #define _MSK1P 255

 #define _MSK2P 255

 #define _MSK3P 255

 #define _MSK4P 0

 Primary DNS Server specifies the IP address of the primary DNS Server. The DNS Client
sends IP address resolution requests to this address. This setting is irrelevant when the
DNS Client is disabled by configuration.

 #define _pDNS1P 194

 #define _pDNS2P 25

 #define _pDNS3P 2

 #define _pDNS4P 129

 Secondary DNS Server specifies the IP address of the secondary DNS Server. This DNS
Server is used when the primary DNS Server is down or not accessible. In this case, the DNS
Client automatically switches to a backup secondary DNS Server if a non-zero address is
provided.

 #define _sDNS1P 194

 #define _sDNS2P 25

 #define _sDNS3P 2

 #define _sDNS4P 130

 Obtain Client IP address automatically option applies when the PPP dial-up connection
dials to a remote PPP Server. If it is enabled, the local PPP IP address is obtained from the
remote server automatically.

When this option is enabled the Local IP address and Subnet Mask configuration settings
are ignored. The Subnet Mask is automatically set to 255.255.255.255 when the PPP link is
connected.

#define PPP_GETIP 1

 Use Default Gateway on remote Network option applies when both Ethernet and PPP
dial-up networks are used simultaneously. When TCPNet finds a packet with a destination

Page 170

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

IP address does not belong to either the LAN or the PPP interface, this option determines
which gateway to use.

If this option is disabled, these packets are forwarded to the default gateway on the LAN. If
this option is enabled, these packets are forwarded to the Dial-up PPP network.

 #define PPP_DEFGW 1

 Async Control Character Map specifies the Map of Control Characters that are transmitted
with an escape character. All 32 control characters are mapped into a 4-byte map table. For
example:

 ASCII control character NULL (0) is mapped to the least significant bit of _ACCM4.
 Control character STX (1) is mapped to bit 1 of _ACCM4.
 Control character CR (13) is mapped to bit 4 of _ACCM3.

By default, no control characters are mapped.

#define _ACCM1 0x00

#define _ACCM2 0x00

#define _ACCM3 0x00

#define _ACCM4 0x00

When the XON/XOFF protocol is used for the flow control, the data bytes 0x11 and 0x13
should never be sent in a packet. Those values are used to start and stop the RS232
stream. They must be sent as a 2 byte sequence containing the ESCAPE character followed
by the XON/XOFF character xor-ed with 0x20.

 XON (17 = 0x11) is sent as 0x7D, 0x31
 XOFF (19 = 0x13) is sent as 0x7D, 0x33

Control Character Map for XON/XOFF protocol would then be:

#define _ACCM1 0x00

#define _ACCM2 0x0A

#define _ACCM3 0x00

#define _ACCM4 0x00

 Retransmissions and Timeouts configures timeouts and the number of retransmissions for
various PPP protocols. When using slow serial links (for example a GSM data link), the
timeout values should be increased if the PPP connect fails.

Link Control Protocol (LCP):
 LCP Number of Retries specifies the number of retransmissions before the LCP module

gives up.

 #define LCP_MAXRETRY 2

 LCP Retry Timeout in seconds is the timeout after which the LCP module retransmits the
packet.

 #define LCP_RETRYTOUT 2

Password Authentication Protocol (PAP):
 PAP Number of Retries specifies the number of retransmissions before the PAP module

gives up.

 #define PAP_MAXRETRY 3

 PAP Retry Timeout in seconds is the timeout after which the PAP module retransmits the
packet.

 #define PAP_RETRYTOUT 3

Internet Protocol Control Protocol (IPCP):
 IPCP Number of Retries specifies the number of retransmissions before the IPCP module

gives up.

 #define IPCP_MAXRETRY 3

 IPCP Retry Timeout in seconds is the timeout after which the IPCP module retransmits
the packet.

Page 171

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 #define IPCP_RETRYTOUT 2

Note
 If both PPP and Ethernet Interfaces are used simultaneously, you must not set the same

network group address for both the Ethernet and PPP interfaces.

Copyright © Keil, An ARM Company. All rights reserved.

Page 172

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SLIP Interface

The Serial Line IP (SLIP) protocol is a very simple way to transmit IP packets over a serial line. It
does not provide any framing or error control and is therefore not widely used today.

You can enable or disable the SLIP interface. You can also configure the Local IP Address, Net Mask,
Primary DNS, and Secondary DNS Server IP address.

Network settings in this topic are valid for the SLIP Interface only. They must be set separately for
each network interface. You must carefully configure those parameters to match the settings of
your remote peer. SLIP protocol does not support any of the automatic configuration protocols.

The network settings are used to route packets from the stack to the proper network interface on
transmit.

 SLIP Network Interface switch enables or disables the SLIP Network interface. When the
SLIP Interface is not used, it should be disabled to reduce the application code size. It is
enabled when this value is set to 1.

 #define SLIP_ENABLE 1

 IP Address specifies your local static four byte IP address.

 #define _IP1S 192

 #define _IP2S 168

 #define _IP3S 225

 #define _IP4S 1

 Subnet Mask specifies the Net Mask. This is normally class C for small LANs:
255.255.255.0. It is used by the system to route packets to network interfaces.

 #define _MSK1S 255

 #define _MSK2S 255

 #define _MSK3S 255

 #define _MSK4S 0

 Primary DNS Server specifies the IP address of the primary DNS Server. The DNS Client
sends IP address resolution requests to this address. This setting is irrelevant when the
DNS Client is disabled by configuration.

 #define _pDNS1S 194

 #define _pDNS2S 25

 #define _pDNS3S 2

 #define _pDNS4S 129

 Secondary DNS Server specifies the IP address of the secondary DNS Server. This DNS
Server is used when the primary DNS Server is down or not accessible. In this case, the DNS
Client automatically switches to a backup secondary DNS Server if a non-zero address is
provided.

 #define _sDNS1S 194

 #define _sDNS2S 25

 #define _sDNS3S 2

 #define _sDNS4S 130

 Use Default Gateway on remote Network option applies when both Ethernet and SLIP
dial-up networks are used simultaneously. If enabled, data that cannot be sent to a local
LAN is forwarded to the Dial-up SLIP network instead.

 #define SLIP_DEFGW 1

Note
 If both SLIP and Ethernet Interfaces are used simultaneously, you must not set the same

network group address for both the Ethernet and SLIP interfaces.

Page 173

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 174

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

UDP Socket

The User Datagram Protocol (UDP) is unreliable and only provides simple transport layer addressing
to transfer data streams. Because of it simplicity and small protocol overhead, it is suitable for direct
peer-to-peer communication on local LANs.

The following UDP options are configurable:

 UDP Sockets switch enables or disables the UDP Socket service in your application. It is
enabled when this value is set to 1. It should be set to 0 when the UDP connections are not
used.

 #define UDP_ENABLE 1

 Number of UDP Sockets specifies the number of available UDP sockets. This number is
usually set to the maximum number of simultaneously opened UDP connections.

 #define UDP_NUMSOCKS 5

Note
 When the UDP Sockets are not enabled, the ARM linker does not link the UDP support

modules to your application and thus reduces the code size and memory usage.

Copyright © Keil, An ARM Company. All rights reserved.

Page 175

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

TCP Socket

The Transmission Control Protocol (TCP) is a connection oriented reliable protocol. TCP is much more
complex than UDP and introduces more protocol overhead. It implements a number of protocol
timers to ensure reliable and synchronized communication between the two end systems. It is thus
suitable to use on WANs.

The following TCP options are configurable:

 TCP Sockets switch enables or disables the TCP Socket service in your application. It is
enabled when this value is set to 1. It should be set to 0 when the TCP connections are not
used.

 #define TCP_ENABLE 1

 Number of TCP Sockets specifies the number of available TCP sockets. This number is
usually set to the maximum number of simultaneously opened TCP connections.

 #define TCP_NUMSOCKS 5

 Number of Retries specifies the number of retransmissions before the TCP module gives
up. Data is retransmitted if it is not acknowledged within the timeout frame defined by the
TCP_RETRYTOUT.

 #define TCP_MAXRETRY 5

 Retry Timeout in seconds is the timeout, after which the TCP module retransmits the data.

 #define TCP_RETRYTOUT 4

 Default Connect Timeout in seconds is the default Keep Alive timeout. After this timeout
has expired, the TCP link is disconnected. This parameter is used by applications like HTTP
Server and Telnet Server.

 #define TCP_DEFTOUT 120

Note
 When the TCP Sockets are not enabled, the ARM linker does not link the TCP support

modules to your application and thus reduces the code size and memory usage.

Copyright © Keil, An ARM Company. All rights reserved.

Page 176

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

HTTP Server

RL-TCPnet has integrated a tiny Hypertext Transfer Protocol Server (HTTP) that can be used to
transfer integrated web pages to a remote client.

The following HTTP Server options are configurable:

 HTTP Server switch enables or disables the HTTP Server service in your application. It is
enabled when this value is set to 1. It should be set to 0 when HTTP server is not used in
your application.

 #define HTTP_ENABLE 1

 Number of HTTP Sessions specifies the number of available HTTP sessions. You must
increase this number if the web page has many objects (like gif or jpeg images). The remote
HTTP client, sometimes called the web browser, opens multiple connections when
downloading such pages.

 #define HTTP_NUMSESS 3

 Port Number specifies the listening TCP port number. The default HTTP server listening port
is 80.

 #define HTTP_PORTNUM 80

 Enable User Authentication switch enables or disables the WEB Server authentication with
a username and a password. The user authentication is enabled, when this value is set to
1.

 #define HTTP_ENAUTH 1

 Authentication Realm string is the string which displays in the internet browser's
authentication dialog when authentication is required. This is a zero terminated string.

 #define HTTP_AUTHREALM "Embedded WEB Server"

 Authentication Username is the username identification.

 #define HTTP_AUTHUSER "admin"

 Authentication Password is the default password, which is an empty string that must be
stored in Non volatile memory. The user can change the password later.

 #define HTTP_AUTHPASSW ""

Note
 When the HTTP server is not enabled, the ARM linker does not link the HTTP support

modules to your application and thus reduces the code size and memory usage.

Copyright © Keil, An ARM Company. All rights reserved.

Page 177

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Telnet Server

RL-TCPnet has integrated a tiny Telnet Server, which is a command-line oriented application that
can be used to remotely connect to your device with the Telnet client.

The following Telnet Server options are configurable from the Net_Config.c configuration file:

 Telnet Server switch enables or disables the Telnet Server service in your application. It is
enabled when this value is set to 1. It should be set to 0 when Telnet server is not used in
your application.

 #define TNET_ENABLE 1

 Number of Telnet Connections specifies the number of available Telnet sessions. The
default value is one, and this enables only one concurrent client connection. You should
increase this number if multiple Telnet clients must connect to the Telnet server at the same
time.

 #define TNET_NUMSESS 1

 Port Number specifies the listening TCP port number. The default Telnet server listening
port is 23.

 #define TNET_PORTNUM 23

 Enable User Authentication switch enables or disables the Telnet Server authentication
with a username and a password. The user authentication is enabled when this value is
set to 1.

 #define TNET_ENAUTH 1

 Authentication Username is the username identification.

 #define TNET_AUTHUSER "admin"

 Authentication Password is the default password, which is an empty string that must be
stored in Non volatile memory. The user may change the password later.

 #define TNET_AUTHPASSW ""

Note
 You must also add the Telnet_uif.c user interface module to your project and customize it.

This file is in the \Keil\ARM\RL\TCPnet\User folder.
 When the Telnet server is not enabled, the ARM linker does not link the Telnet support

modules to your application and thus reduces the code size and memory usage.

Copyright © Keil, An ARM Company. All rights reserved.

Page 178

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

TFTP Server

The Trivial File Transfer Protocol (TFTP) is a very simple protocol used to transfer files. Using this
protocol, you can send files to the System or read files from it. This protocol can be used, for
example, for Firmware Upgrade.

The following TFTP Server options are configurable from the Net_Config.c configuration file:

 TFTP Server switch enables or disables the TFTP Server service in your application. It is
enabled when this value is set to 1. It should be seto to 0 when TFTP server is not used in
your application.

 #define TFTP_ENABLE 1

 Number of TFTP Sessions specifies the number of available TFTP sessions. The default
value is one, and this enables only one concurrent client connection. You should increase
this number if multiple TFTP clients must connect to the TFTP server at the same time.

 #define TFTP_NUMSESS 1

 Port Number specifies the listening UDP port number. The default TFTP server listening port
is 69.

 #define TFTP_PORTNUM 69

 Inactive Session Timeout in seconds is an inactive session timeout. The TFTP session
closes if the TFTP file transfer is interrupted for some reason and the timeout timer expires.

 #define TFTP_DEFTOUT 15

 Number of Retries specifies how many times the TFTP Server tries to retransmit the data
before giving up.

 #define TFTP_MAXRETRY 4

Note
 You also need to add the TFTP_uif.c user interface module to your project and customize it.

This file is in the \Keil\ARM\RL\TCPnet\User folder.
 When the TFTP server is not enabled, the ARM linker does not link the TFTP support

modules to your application and thus reduces the code size and memory usage.

Copyright © Keil, An ARM Company. All rights reserved.

Page 179

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FTP Server

The File Transfer Protocol (FTP) is a protocol used to transfer and manage files and folders. Using
this protocol, you can send files to the System or read files from it. You can also create and delete
folders and rename files or folders on the system.

The following FTP Server options are configurable from the Net_Config.c configuration file:

 FTP Server switch enables or disables the FTP Server service in your application. It is
enabled when this value is set to 1. It should be set to 0 when FTP server is not used in
your application.

 #define FTP_ENABLE 1

 Number of FTP Sessions specifies the number of available FTP sessions. The default value
is one, and this enables only one concurrent client connection. You should increase this
number if multiple FTP clients must connect to the Telnet server at the same time.

If you are using Windows Explorer as a FTP client, you should also increase this number
because the Windows Explorer creates multiple simultaneous connections.

 #define FTP_NUMSESS 3

 Port Number specifies the listening TCP port number. The default FTP server listening port
is 21.

 #define FTPT_PORTNUM 21

 Enable User Authentication switch enables or disables the FTP Server authentication with
a username and a password. The user authentication is enabled when this value is set to
1.

 #define FTP_ENAUTH 1

 Authentication Username is the username identification.

 #define FTP_AUTHUSER "admin"

 Authentication Password is the default password, which is an empty string that must be
stored in Non volatile memory. The user may change the password later.

 #define FTP_AUTHPASSW ""

Note
 You must also add the FTP_uif.c user interface module to your project and customize it.

This file is in the \Keil\ARM\RL\TCPnet\User folder.
 One FTP session uses two TCP sockets, one control and one data socket. Have this in mind

when you are configuring the number of TCP sockets.
 When the FTP server is not enabled, the ARM linker does not link the FTP support modules

to your application and thus reduces the code size and memory usage.

Copyright © Keil, An ARM Company. All rights reserved.

Page 180

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

DNS Client

The DNS Client allows you to resolve IP addresses of internet hosts that are identified by a host
name. The address is resolved using a protocol in which a piece of information is sent by a client
process (executing on the local computer) to a server process (executing on a remote computer).
The address resolution procedure is completed when the client receives a response from the server
containing the required address.

 DNS Client switch enables or disables the DNS Client service in your application. It is
enabled when this value is set to 1. It should be set to 0 when the DNS Client is not used.

 #define DNS_ENABLE 1

 Cache Table size specifies the size of the DNS Cache by defining the number of entries for
the DNS Cache table. When the IP address is resolved, it is also stored to the local cache.

When a request for resolving an IP address is received, the DNS Client first checks the local
cache memory. If a valid entry is found there, the IP address is taken from the cache, and
the request is not sent on to the remote DNS Server.

#define DNS_TABSIZE 20

Note
 DNS Cache entries expire after a Time to Live (TTL) timeout. This is defined by the DNS

Server. The TTL value for resolved IP addresses is received in an answer packet from the
DNS Server. The DNS Client manages the timeouts. When a timeout counter expires, the
DNS Cache entry is deleted from the Cache.

Copyright © Keil, An ARM Company. All rights reserved.

Page 181

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SMTP Client

The SMTP Client sends email messages from the embedded system to a designated email address,
which can be either local or remote. It can send log reports using dynamic email messages or
trouble reports for a variety of predetermined conditions.

The following SMTP Client options are configurable from the Net_Config.c configuration file:

 SMTP Client switch enables or disables the SMTP Client service in your application. It is
enabled when this value is set to 1. It should be set to 0 when the SMTP Client is not used
in your application.

 #define SMTP_ENABLE 1

 Response Timeout in seconds is an inactivity timeout. When the SMTP Client does not
receive a response from SMTP Server within this timeout, it aborts the operation.

 #define SMTP_DEFTOUT 20

Copyright © Keil, An ARM Company. All rights reserved.

Page 182

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SNMP Agent

The SNMP Agent manages a set of managed objects defined by the user in SNMP_MIB.c interface
module. It can be used to control various system settings or IO peripherals from the SNMP
manager.

The following SNMP Agent options are configurable from the Net_Config.c configuration file:

 SNMP Agent switch enables or disables the SNMP Agent service in your application. It is
enabled when this value is set to 1. It should be set to 0 when the SNMP Agent is not used
in your application.

 #define SNMP_ENABLE 1

 Community Name specifies the SNMP Community where an SNMP message is destined for.
Only the members of the same community can communicate with each other using SNMP
protocol. Default Community name is public.

 #define SNMP_COMMUNITY "public"

 Port Number specifies the listening UDP port number. The default SNMP Agent listening port
is 161.

 #define SNMP_PORTNUM 161

 Trap Port Number specifies the UDP port number for Trap operations. The default SNMP
Agent trap port is 162.

 #define SNMP_TRAPPORT 162

 Trap Server specifies the IP address of the Trap Server which receives Trap messages. This
IP address is used when the Trap Server IP is not specified in snmp_trap() function
parameter.

 #define SNMP_TRAPIP1 192

 #define SNMP_TRAPIP2 168

 #define SNMP_TRAPIP3 0

 #define SNMP_TRAPIP4 1

Copyright © Keil, An ARM Company. All rights reserved.

Page 183

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Error Function

Various errors can cause the system to crash when the system is running. For critical errors, the
system calls the system error function sys_error(). This makes is possible to catch the exception
and possibly recover from it.

The system can, for example, run out of memory or fail to allocate the TCP socket. These are usually
an indication that the system configuration is wrong and needs to be corrected. The error function
alerts the developer as to what requires changing.

The parameter code holds the error code of the exception. This can have the following values:

Error Code Type of Error Description
ERR_MEM_ALLOC Out of memory This is normally the case when the memory pool size

is too small. You must increase the size of the memory
pool in the configuration.

ERR_MEM_FREE Invalid memory
block release

Possible reason is that the link pointers were
overwritten by the user. This can happen when the
user application has written buffer data out of
boundaries of the allocated memory block.

ERR_MEM_CORRUPT Link pointer
corrupted

The system memory link is corrupted and points to an
odd address. Resuming the program execution would
cause the B-Class Trap with Illegal Word Operand
Access. Possible reason is writing buffer data out of
boundaries of the allocated memory block.

ERR_UDP_ALLOC No free UDP
Sockets

The system has run out of UDP sockets. You must
increase the number of available UDP sockets in the
configuration.

ERR_TCP_ALLOC No free TCP
Sockets

The system has run out of TCP sockets. You must
increase the number of available TCP sockets in the
configuration.

ERR_TCP_STATE Undefined State TCP socket is in an undefined state. This can happen
when the system memory is accidentally overwritten
by the user application.

This is an example of the error function which can be customized. This function currently does
nothing but stop the TCPnet system by running in an endless loop.

void sys_error (ERROR_CODE code) {

 /* This function is called when a fatal error is encountered. The normal */

 /* program execution is not possible anymore. Add your critical error */

 /* handler code here. */

 switch (code) {

 case ERR_MEM_ALLOC:

 /* Out of memory. */

 break;

 case ERR_MEM_FREE:

 /* Trying to release non existing memory block. */

 break;

 case ERR_MEM_CORRUPT:

 /* Memory Link pointer is Corrupted. */

 /* More data written than the size of allocated mem block. */

 break;

 case ERR_UDP_ALLOC_SOCKET:

 /* Out of UDP Sockets. */

 break;

Page 184

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 case ERR_TCP_ALLOC_SOCKET:

 /* Out of TCP Sockets. */

 break;

 case ERR_TCP_STATE_UNDEFINED:

 /* TCP State machine in undefined state. */

 break;

 }

 /* End-less loop */

 while (1);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 185

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Runtime Configuration

Each embedded ethernet device must have a unique MAC address, IP address, and host name.
This is very important when multiple devices are connected to the same LAN. Otherwise, network
collisions might occur, network communications on local LAN might be disturbed, and the system
might not work.

You can use the same application code for serial production of embedded devices. The runtime
configuration feature allows you to read configuration parameters from the EEPROM and configure
the ethernet network interface for each embedded device differently.

 The MAC address is written to the ethernet controller registers when the controller
initializes (when calling the function init_TcpNet()). For this reason, the variable
own_hw_adr[6] must be set before the system initializes.

 The ethernet interface configuration parameters must be set after the system initializes.
The structure localm[0] can simply be overwritten with new values.

 The local host name can be changed by overwriting the default value, which is set in the
Net_Config.c system configuration file. The local host name accesses the embedded system
by the name instead of the IP address.

 Dynamic Host Configuration can be disabled at runtime. In this case, user provided
network parameters defined in the Net_Config.c configuration file are used instead. The
DHCP Client can be disabled by calling the function dhcp_disable() after the system
initializes. The DHCP Client must be enabled in the configuration so that the DHCP Client
code links to the application code.

Here is an example of dynamic system configuration:

#include <Net_Config.h>

extern U8 own_hw_adr[];

extern U8 lhost_name[];

extern LOCALM localm[];

/* The following definitions should be read out of EEPROM. */

U8 const mac_adr[6] = { 0,1,2,50,60,70 };

LOCALM const ip_config = {

 { 192,168,0,150 }, // IP address

 { 192,168,0,1 }, // Default Gateway

 { 255,255,255,0 }, // Net mask

 { 194,25,2,129 }, // Primary DNS server

 { 194,25,2,130 } // Secondary DNS server

};

U8 const DHCP_mode = 0;

U8 const dev_name[16] = { "Keil_MCB" };

void main (void) {

 /* Main Thread of the TCPnet. */

 /* Change the MAC address for the ethernet controller. */

 mem_copy (own_hw_adr, mac_adr, 6);

 init_TcpNet ();

 /* Change the Ethernet IP configuration. */

 if (DHCP_mode == 0) {

 dhcp_disable ();

 }

Page 186

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 str_copy (&lhost_name, &dev_name);

 mem_copy (&localm[NETIF_ETH], &ip_config, sizeof(ip_config));

 while (1) {

 timer_poll ();

 main_ ();

 }

}

In this example, the new parameters are defined in the code. However, in your application, this
would be the network parameters read out from the EEPROM or NV RAM.

Note
 You can change the localm[NETIF_ETH] - ethernet IP parameters also when the system is

working. See the HTTP_demo example. The ethernet controller MAC address can only be
changed when the system starts. It is not advisable to change it later.

Copyright © Keil, An ARM Company. All rights reserved.

Page 187

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Library Files

There are two types of RL-TCPnet object libraries:

 Production version is a release version.
 Debug version is used for debugging. This version prints out debug messages to a serial

port.

RL-TCPnet includes six library files:

 TCP_ARM_L.LIB release version for microcontrollers based on ARM7TDMI™ and ARM9™ -
Little Endian.

 TCP_CM1.LIB release version for microcontrollers based on Cortex™-M0 and Cortex™-M1 -
Little Endian.

 TCP_CM3.LIB release version for microcontrollers based on Cortex™-M3 - Little Endian.
 TCPD_ARM_L.LIB debug version for microcontrollers based on ARM7TDMI™ and ARM9™ -

Little Endian.
 TCPD_CM1.LIB debug version for microcontrollers based on Cortex™-M0 and Cortex™-M1 -

Little Endian.
 TCPD_CM3.LIB debug version for microcontrollers based on Cortex™-M3 - Little Endian.

You must manually include the correct library into your project.

Note
 The debug version must not be used for the production release of your firmware because it

significantly reduces the system performance.
 The existing libraries are built for the Little Endian format. Applications do not work if you

select Big Endian for your project.

Copyright © Keil, An ARM Company. All rights reserved.

Page 188

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using RL-TCPnet

RL-TCPnet is designed as a stand alone TCP/IP Operating System and does not require an RTOS
kernel to run.

RL-TCPnet has integrated applications such as WEB Server, Telnet Server, and TFTP Server. Web
pages are stored in a simple ROM file system integrated into the RL-TCPnet, so RL-FlashFS is not
required. For an application where only the Web configuration is needed, the RTOS kernel and the
RL-FlashFS can both be omitted, and thus the code size of the application can be reduced.

You can also use RL-TCPnet together with the RTX kernel. In this case, the basic framework is
setup a little differently.

Several network interfaces are also supported. The most popular is the ethernet network interface.
However, sometimes the ethernet is not available, and it is necessary to dial a remote Internet
Service Provider to use the Internet.

RL-TCPnet has integrated support for the serial links with the implemented serial protocols PPP
and SLIP. It also supports modem device drivers with integrated default drivers for Standard
Modems and a direct serial Cable Connection.

Copyright © Keil, An ARM Company. All rights reserved.

Page 189

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Stand Alone

RL-TCPnet is designed as a stand alone TCP/IP Operating System. This means it does not need any
external RTOS or File System to run. It has an integrated tiny task scheduler that manages
timeouts, events, and internal tasks. Each application (TCP, UDP, and Network Interface) is treated
as a separate internal task.

A framework for a stand alone application basically needs to call a few system functions:

 init_TcpNet function needs to be called after the system starts to initialize the OS.
 init_user is the function that initializes your application. It can be placed before or after the

call to init_TcpNet. If you call your initialization code before calling init_TcpNet, you cannot
call any OS function from your init function (because the OS is not yet initialized).

 main_TcpNet function needs to be called frequently to properly handle system events and
timeouts. It is normally placed in an endless loop.

 main_user is the main thread of your application. You must design it as a state machine.
On each call to this function, events and timeouts must be processed according the current
state of the application, and then the function should return. It should never run in an
endless loop waiting for a event as this blocks the whole OS, and the system might stop
functioning.

 timer_tick function is needed to generate timer ticks for the OS. This function can be called
from the function that polls for the timer timeout or from a timer interrupt function. It is
used to synchronize internal timeout processing to a system tick timer. It is very important
that this function be called at regular time intervals.

Here is a framework for a stand alone application:

#include <RTL.h>

static void timer_poll () {

 if (T1IR & 1) {

 T1IR = 1;

 /* Timer tick every 100 ms */

 timer_tick ();

 }

}

void main (void) {

 init_TcpNet ();

 init_user ();

 while (1) {

 /* Poll for a system tick timer overflow. */

 timer_poll ();

 main_TcpNet ();

 /* A function call to your application. */

 main_user ();

 }

}

Note
 Avoid using waiting loops in your application because the RTL-TCPnet system is blocked if

any application function runs in a loop.

Copyright © Keil, An ARM Company. All rights reserved.

Page 190

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

With RTX Kernel

Even though RL-TCPnet is designed as a stand alone TCP/IP Operating System, you can use it with
the RTX kernel. This is useful for large complex applications, where different jobs are implemented
as tasks. In this case, the basic framework is different because the functions from the stand alone
framework are moved into tasks.

The following tasks are introduced:

 init task is used to initialize the system. Since the task is not needed after initialization is
complete, the task can be terminated.

 tcp_poll task runs the main thread for RL-TCPnet. It must have the lowest priority in the
system. Otherwise, the tasks with a lower priority than the tcp_poll task will never execute.

 timer_tick task generates periodic ticks for RL-TCPnet. For proper timing, the interval timer
and the kernel timer reload value must be set in the Net_Config.c configuration file. The
interval time should be the same as set in the configuration file.

When the timings are not correct, the application might fail to complete certain functions.
For example, requests may retransmit too fast, or the waiting timeout might expire before
receiving a valid response from a remote server.

Here is a framework for the RTX kernel application:

#include <RTL.h>

__task void tick_timer (void) {

 os_itv_set (10);

 while (1) {

 os_itv_wait ();

 /* Timer tick every 100 ms */

 timer_tick ();

 }

}

__task void tcp_poll (void) {

 while (1) {

 main_TcpNet ();

 os_tsk_pass ();

 }

}

__task void init (void) {

 system_init ();

 init_TcpNet ();

 os_tsk_create (tick_timer, 2);

 os_tsk_create (tcp_poll, 1);

 /* Init done, terminate this task. */

 os_tsk_delete_self ();

}

void main (void) {

 os_sys_init (init);

}

Follow these guidelines when using RL-TCPnet with the RTX kernel:

 Functions are not reentrant. This means they must not be interrupted and called again from
another task. All TCPnet-related functionality should be collected in a single networking

Page 191

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

task.
 All callback functions are executed from the networking task. Use the kernel event,

semaphore, and mailbox functions to communicate with other tasks.

Copyright © Keil, An ARM Company. All rights reserved.

Page 192

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Applications

RL-TCPnet has several integrated high level applications, which can be enabled or disabled in the
Net_Config.c configuration file.

The following applications are implemented:

 HTTP Server is a Web Server supporting dynamic Web pages and CGI Scripting
 Telnet Server with command line interface and authorization
 TFTP Server for uploading Web pages to a Web Server
 SMTP Client for sending automated emails
 SNMP Agent for managing the embedded system
 DNS Resolver used to resolve an IP address from the Host name.

Some applications require adding the user interface modules to your project and customizing them
to your needs.

You can also write your own applications and use only the built-in socket interface. The RL-TCPnet
system has integrated TCP socket and UDP socket interfaces.

Copyright © Keil, An ARM Company. All rights reserved.

Page 193

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

HTTP Web Server

Hypertext Mark-up Language (HTML) is the primary language for formatting web pages. With HTML,
you describe what a page must look like, what types of fonts to use, what color the text should be,
where paragraph marks must come, and many more aspects of the document.

There are two types of web pages which are stored on a web server and sent to a web client on
request:

 Static Web pages do not change their content. When the page is requested, it is sent to
the web client as it is. It is not modified.

 Dynamic Web pages are generated when the page is requested. Pages that show system
settings or log records are examples of dynamic pages.

RL-TCPnet supports both of them. Static web pages are generally stored in the virtual ROM file
system. The files are converted into C-code by the FCARM file converter and compiled into code.

Supported Features and Technologies

The Embedded Web server has integrated several advanced features, which support the usage of
many advanced web technologies:

 Script language
is used to generate Dynamic Web pages.

 Ajax programming
allows you to move the Web page processing from the Web server to the client browser.

 SOAP interface
allows you to produce some cutting edge user interfaces.

 HTTP Caching
supports the local caching at the browser and improves the Web Server performance a lot.

 Web on SD Card
allows you to store the complete Web site resource files on SD Card. Web files can be
updated with HTTP file upload.

 Access filtering
allows you to filter out the hosts, which are not allowed to connect to the Web Server.

 Multi-language Web pages
You can use language information to generate language specific web pages with the help of
the integrated script language.

Note
 To use an Embedded Web Server, you must enable and configure it in the configuration

file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 194

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Script Language

The Embedded Web Server provides a small script language which can be used to generate true
dynamic web pages. The HTTP Server processes the script source file line by line and calls the CGI
functions as needed. The output from a CGI function is sent to the web client as a part of the web
page.

Each script line starts with a command character which specifies a command for the script
interpreter. The script language itself is simple and works as follows:

Command Description
i Commands the script interpreter to include a file from the virtual file system and to

output the content on the web browser.
t Commands that the line of text that follows is to be output to the browser.
c Calls a C function from the HTTP_CGI.c file. The function may be followed by the line

of text which is passed to cgi_func() as a pointer to an environment variable.
This is a comment line and is ignored by the interpreter.
. Denotes the last script line.

Here is an example of a web page written in the script language. This web page edits or changes
the system password. The web page is stored in three files (two are static, and the third (main file)
is the script file that generates dynamic data).

 The script file system.cgi contains the following:

 i password_h.inc

 c d 1 <TR><TD><IMG

SRC=pabb.gif>Authentication</TD><TD>%s</TD></TR>

 t <TR><TD>Password for user 'admin'</TD>

 c d 2 <TD><INPUT TYPE=TEXT NAME=pw SIZE=10 MAXLENGTH=10

VALUE="%s"></TD></TR>

 t <TR><TD>Retype your password</TD>

 c d 2 <TD><INPUT TYPE=TEXT NAME=pw2 SIZE=10 MAXLENGTH=10

VALUE="%s"></TD></TR>

 i password_f.inc

 .

 The web page header, which is static and does not change when the web page is
generated, is moved into the separate header file password_h.inc. The content of the
included page header file is:

 <HTML>

 <HEAD>

 <TITLE>System Settings</TITLE>

 </HEAD>

 <BODY TEXT=#000000 BGCOLOR=#ccddff LINK=#0000FF VLINK=#0000FF

ALINK=#FF0000>

 <H2 ALIGN=CENTER>System Settings</H2>

 <FORM ACTION=index.htm METHOD=POST NAME=CGI>

 <TABLE BORDER=0 WIDTH=99%>

 <TR BGCOLOR=#aaccff>

 <TH WIDTH=40%>Item</TH>

 <TH WIDTH=60%>Setting</TH>

 </TR>

It is included into the generated web page with the following script command:

i password_h.inc

 The web page footer is also static and is moved into the password_f.inc file. It is not
changed when the web page generates but is simply included in the script.

Page 195

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 <TR>

 <TD> </TD>

 <TD> </TD>

 </TR>

 <TR>

 <TD></TD>

 <TD align="right">

 <INPUT TYPE=SUBMIT NAME=set VALUE="Change" id="sbm">

 <INPUT TYPE=RESET VALUE="Undo">

 <INPUT TYPE=BUTTON VALUE="Home" OnClick="location='/index.htm'">

 </TD>

 </TR>

 </FORM>

 <p>This page allows you to change the system Password, for the

username

 admin. Default realm, user and password

can be set

 in configuration file. This Form uses a POST method to send

data back to

 a Web server. You need to click on Change button to activate

the changes.

 </p>

 </BODY>

 </HTML>

This is how the generated web page looks like, with the dynamically generated items in the Setting
column:

Page 196

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

You can see the HTML source code of this web page. This data is actually sent to the web client
when the client requests the web page system.cgi. The script file is processed by the script
interpreter, and the following data is generated by the Web Server. You can compare the
generated HTML source with the script file to see where the CGI interface comes in.

<HTML>

 <HEAD>

 <TITLE>System Settings</TITLE>

 </HEAD>

 <BODY TEXT=#000000 BGCOLOR=#ccddff LINK=#0000FF VLINK=#0000FF ALINK=#FF0000>

 <H2 ALIGN=CENTER>System Settings</H2>

 <FORM ACTION=index.htm METHOD=POST NAME=CGI>

 <TABLE BORDER=0 WIDTH=99%>

 <TR BGCOLOR=#aaccff>

 <TH WIDTH=40%>Item</TH>

 <TH WIDTH=60%>Setting</TH>

 </TR>

 <TR><TD>Authentication</TD><TD>Enabled</TD></TR>

 <TR><TD>Password for user 'admin'</TD>

 <TD><INPUT TYPE=TEXT NAME=pw SIZE=10 MAXLENGTH=10 VALUE="test"></TD></TR>

 <TR><TD>Retype your password</TD>

 <TD><INPUT TYPE=TEXT NAME=pw2 SIZE=10 MAXLENGTH=10 VALUE="test"></TD></TR>

 <TR>

 <TD> </TD>

 <TD> </TD>

 </TR>

 <TR>

 <TD></TD>

 <TD align="right">

 <INPUT TYPE=SUBMIT NAME=set VALUE="Change" id="sbm">

 <INPUT TYPE=RESET VALUE="Undo">

 <INPUT TYPE=BUTTON VALUE="Home" OnClick="location='/index.htm'">

 </TD>

 </TR>

 </FORM>

 <p>This page allows you to change the system Password, for the

username

 admin. Default realm, user and password can be

set

 in configuration file. This Form uses a POST method to send data

back to

 a Web server. You need to click on Change button to activate the

changes.

 </p>

 </BODY>

</HTML>

Note
 The script files use the reserved filename extension of cgi. Using the cgi filename extension

for script files is mandatory for the Web Server script interpreter to recognize and process
the script files.

 The script line length is limited to 120 characters.

Page 197

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 198

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CGI Functions

CGI functions are in the HTTP_CGI.c module. Copy this module to your project directory, add it to
your project, and customize it. The HTTP_CGI.c module is in the \Keil\ARM\RL\TCPnet\User
directory.

The following functions are included in this module:

 cgi_process_var() - processes the query string for the CGI Form GET method. The form in
the web HTML source is created with the attribute METHOD=GET.

 cgi_process_data() - processes the returned Data for the CGI Form POST method. The
form in the web HTML source is created with the attribute METHOD=POST.

 cgi_func() - processes a script line. It is called by the script interpreter.

The following functions are optional in this module:

 http_accept_host() - used for the web server access filtering. It is called when a web
browser is trying to connect to a web server.

 cgx_content_type() - defines the HTML content type header for xml script files. This
function might be used to override the default content type header for cgx scripts.

The following system functions are included in the RL-TCPnet library:

 http_get_var() - called from the HTTP_CGI.c module to process the environment
variables.

 http_get_lang() - called from the HTTP_CGI.c module to retrieve the browser preferred
language for Multi-Language Web pages.

 http_get_info() - called from the HTTP_CGI.c module to retrieve the remote machine
information: IP address and MAC address.

 http_get_session() - called from the HTTP_CGI.c module to retrieve the current HTTP
server running session instance index.

 http_get_content_type() - called from the HTTP_CGI.c module to retrieve the
content-type html header received in XML-POST request.

Copyright © Keil, An ARM Company. All rights reserved.

Page 199

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Ajax Support

Ajax is a group of web development techniques used on the client-side to create interactive web
applications. Ajax is a shorthand for asynchronous JavaScript + XML. With Ajax web applications can
retrieve data from the server asynchronously in the background without interfering with the display
and behavior of the existing page.

Ajax is based on JavaScript and HTTP requests. It is not a new programming language, but a new
way to use existing standards. JavaScript is the most popular language for Ajax programming due
to its inclusion in and compatibility with the majority of modern web browsers.

The XML, a shorthand for Extensible Markup Language, is a simple, very flexible text format. It is a
generic framework for storing any amount of any data whose structure can be represented as a
tree. It allows the user to create the mark-up elements. XML has become the almost universally
supported way of exchanging documents and data across applications and platforms.

Copyright © Keil, An ARM Company. All rights reserved.

Page 200

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using XML

The TCPnet Web server supports the Ajax technology. The idea behind is to move the page
processing from the Web Server to a local computer. Java Script processes the web page on a
local computer and generates a web page updates.

The benefits of using XML technology for web page update are obvious:

 instead of several files, only one small XML file is transferred for web page update,
 this allows faster, flicker-free screen updates,
 the used LAN bandwith is very small,
 the web server can easily handle more clients at the same time.

The components of XML file are tagged. You must use this format for generated XML responses. The
object ID's and their values must be specified within XML body - enclosed with tags <form> and
</form>.

The following objects are defined:

 Text object

 <text>

 <id>text_id</id>

 <value>text_value</value>

 </text>

 Checkbox object

 <checkbox>

 <id>checkbox_id</id>

 <checked>true/false</checked>

 </checkbox>

 Select object

 <select>

 <id>option_id</id>

 <value>true/false</value>

 </select>

 Radio object

 <radio>

 <id>radio_id</id>

 <value>true/false</value>

 </radio>

The other http objects are optional. You can add them yourself.

Copyright © Keil, An ARM Company. All rights reserved.

Page 201

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

XML Example

Here is an example of a XML web page update written in the script language. This web page
displays the value of analog input (AD). When first opened, a complete AD web page is generated
by the Embedded web server. Later, when you enable the periodic update of the page, this page is
updated with Java Script function updateMultiple(). This function is in xml_http.js file.

 The script file ad.cgx contains the following:

 t <form>

 t <text>

 t <id>ad_value</id>

 c x<value>0x%03X</value>

 t </text>

 t </form>

 .

 The script interpreter processess this file and generates the following response:

 <form><text><id>ad_value</id><value>0x06A</value></text></form>

The XML response does not contain any spaces or CR-LF characters between the XML tags.
 The Java Script function periodicUpdateAd() activates the periodic timeouts for the page

update. This function is specific for AD page module and is included in ad.cgi script file:

 function periodicUpdateAd() {

 if(document.getElementById("adChkBox").checked == true) {

 updateMultiple(formUpdate,plotADGraph);

 ad_elTime = setTimeout(periodicUpdateAd, formUpdate.period);

 }

 else

 clearTimeout(ad_elTime);

 }

 The update interval and url are defined in the formUpdate object. When update interval
expires, an xml response is requested from the url specified in this java object.

 var formUpdate = new periodicObj("ad.cgx", 500);

 The actual update of the analog bar and AD values on the web page is done by the java
function plotADGraph():

 function plotADGraph() {

 adVal = document.getElementById("ad_value").value;

 numVal = parseInt(adVal, 16);

 voltsVal = (3.3*numVal)/1024;

 tableSize = (numVal*100/1024);

 document.getElementById("ad_table").style.width = (tableSize + '%');

 document.getElementById("ad_volts").value = (voltsVal.toFixed(3) + '

V');

 }

This function is called as a call-back function from the updateMultiple() java function.

 The XML script files use the reserved filename extension cgx. Using the cgx file extension

for XML script files is mandatory for the Web Server script interpreter to recognize and
process the XML script files.

 There must be no spaces or CR-LF characters between XML tags, or some web browsers
might have problems when parsing the XML response.

 The script line length is limited to 120 characters.

Copyright © Keil, An ARM Company. All rights reserved.

Page 202

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

How it works

In Ajax programming, the browser sends standard HTTP request to an Embedded Web server,
such as GET or POST. The Embedded Web server checks the file extension of the requested file. If
the file extension is cgx, the requested file is an XML script file. This file is processed by internal
script interpreter of the Web server. As a result the XML response is generated and sent back to
the browser.

Here is a an example of a typical data flow.

 Web browser sends a standard http GET request:

 GET /ad.cgx HTTP/1.1\r\n

 Web server processess the script file ad.cgx and sends the XML response:

 <form><text><id>ad_value</id><value>0x06A</value></text></form>

 The JavaScript XML parser in the Web browser processes this response and updates the
object with id ad_value on the web page.

 <input type="text" readonly size="10" id="ad_value" value="0x06A">

Copyright © Keil, An ARM Company. All rights reserved.

Page 203

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SOAP Support

The SOAP protocol, originally defined as Simple Object Access Protocol, is a simple XML-based
protocol to let applications exchange information over HTTP. It is used by Microsoft Silverlight web
service application.

SOAP is for communication between applications. It is important for application development to
allow Internet communication between programs. A better way to communicate between
applications is over HTTP, because HTTP is supported by all Internet browsers and servers. SOAP
provides a way to communicate between applications running on different operating systems, with
different technologies and programming languages.

With the Microsoft Silverlight and SOAP it is possible to produce some cutting edge user interfaces.
The SOAP objects are used as the replies from the Embedded Web server to generate the classes
at the Silverlight application.

Copyright © Keil, An ARM Company. All rights reserved.

Page 204

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SOAP Interface

The SOAP messages in HTTP consist of the POST request, submitted by the client, and a response
generated by the Web server. The Embedded Web server handles the SOAP messages different.
Instead of processing them internally and notifying the user via user callback functions, the Web
server delivers a complete SOAP message to the user via the callback function.

The SOAP messages in general are large. Embedded systems that run the Web server with SOAP,
need much more RAM for message buffering and processing. A typical configuration would have:

 a few MBytes of RAM
 an SD Card for deploying web service application, for example the Silverlight.

The following extensions have been added to the Web server:

 the cgi_process_data function has been extended with the code 4 and 5 to allow
processing fragmented large POST messages.

 the Content-Type http header for XML-encoded POST requests is buffered. Function
http_get_content_type returns a pointer to the Content-Type string, which was received in
the XML POST request.

 the Content-Type header for the response can be defined by the user in the
cgx_content_type function.

 the http_get_session function is used to identify which Web server session has called a
cgi_process_data callback function, if two or more clients have sent XML-POST requests at
the same time.

 the HTTP Caching improves the Web server performance a lot when serving large web
service applications.

Copyright © Keil, An ARM Company. All rights reserved.

Page 205

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Large POST Messages

When the Web server receives the POST request, the server checks the Content-Type header. For
all XML-encoded content types, the server does no further processing, but delivers the data to the
user in the callback function. It is a responsibility of the user to correctly assemble large POST
messages, because they are fragmented and delivered from several TCP packets. For the first and
optional subsequent packets, the Web server calls the callback function with code 4:

cgi_process_data (4, dat, len);

The user shall now start buffering the data into a buffer.

For the last data packet, the Web server calls the callback function with code 5:

cgi_process_data (5, dat, len);

The XML-POST data is now complete and the user can start parsing the XML encoded data. In
addition the user might check what was the Content-Type with the function http_get_content_type
.

Copyright © Keil, An ARM Company. All rights reserved.

Page 206

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Web Pages

The web pages for the Embedded Web Server are created in the same way as the web pages for
any other web server. You can use any text editor to edit the HTML code. It is a good idea to
preview the page. Here are a few guidelines:

 Design a web page in HTML code. You can add images and java script functions as well.
 If the web page needs to show dynamic values, code this page in the script language. You

must also update the CGI callback function, cgi_func(), accordingly. It is a good practice to
program the script code and cgi_func() in parallel. Note that the module HTTP_CGI.c must
be included in your project.

 If needed, draw or add images, which can be of type gif, bmp, jpg, or png for example. A
good choice is to select the image type with the better compression because these files
are included in the code. Large image files might increase the application code size by a
large extent.

 Add all the web files to the FCARM File Converter command file and include the FCARM
output C-file in your project.

Copyright © Keil, An ARM Company. All rights reserved.

Page 207

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Default Page

When you type the url in the browser's address bar, for example:

http://mcb2300

the Web server sends the content of index.htm web page. This is the default page, which is
opened, when no filename is specified in the url. If you enter the complete url with a filename, for
example:

http://mcb2300/ad.htm

then the Web server tries to open this page.

The default page index.htm is a static page. This means the content of this page is stored on Web
server and sent unmodified to the web client on request. Usually this page contains links to other
static or dynamic pages on the Web server.

Sometimes a dynamic page is preferred as a default web page. Embedded Web server implicitly
supports also this option. When a web browser requests a default web page, the web server tries
to open index.htm as default web page. If this page does not exist, Web server in the next step
tries to open index.cgi as a default page. If this page is also not existing, then the Web server
responds with HTTP Error 404 - Requested File Not Found.

 If you want to use a dynamic default page, then the file index.htm must not exist on the

Web server.

Copyright © Keil, An ARM Company. All rights reserved.

Page 208

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://mcb2300
http://mcb2300/ad.htm
http://www.processtext.com/abcchm.html

Error Pages

HTTP Server shows an Error page when it encounters error conditions such as:

 HTTP Error 401 - Unauthorized access to Web Server
 HTTP Error 404 - Requested File Not Found
 HTTP Error 501 - Requested Method Not Implemented

Default HTTP Server Error pages are already included into the RL-TCPnet library. If you want to
modify them, you must copy the module HTTP_err.c to your project and customize it. This module is
located in the \Keil\ARM\RL\TCPnet\User folder. Modified error pages must be small because
they are sent in a single TCP packet.

Copyright © Keil, An ARM Company. All rights reserved.

Page 209

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Web on SD Card

You can place the content of web pages also on SD Card, which is attached to the embedded
system. This configuration is useful if you want to update or change the web content remotely. In
this case, the RL-FlashFS system is used, which must be configured for a target device Memory
Card Drive.

You can use any of the update methods to change the content of Embedded web pages:

 HTTP File Upload
The Web files are uploaded using a web browser. HTTP Server must be configured for the
file upload. (See HTTP_Upload example for details).

 FTP Server
The Web files are uploaded and managed with the FTP Client, such as Windows Explorer.
This might be easy, but the FTP Server must be correctly configured.

 TFTP Server
The TFTP Server allows only a limited functionality of the file manipulation. Again, the TFTP
Server must be enabled for the embedded system and correctly configured.

Note
 To enable the SD-Card File System, you must copy the HTTP_uif.c user interface module to

your project directory and add it to your project. This interface module is in the
\Keil\ARM\RL\TCPnet\User folder. It is preconfigured for the RL-FlashFS system, so no
modifications to this file are required.

 The RL-FlashFS library code is not included in the project by default to reduce the application
code size. You must include the file HTTP_uif.c, which contains the interface functions for
the Flash File System and SD-Card.

Copyright © Keil, An ARM Company. All rights reserved.

Page 210

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Web Update

When Web server tries to open a web page, it searches the external file system first. This is
usually an externally attached SD Card. If the Web server is not configured for external file system,
then only the internal virtual ROM file system, which is compiled into the code, is searched.

If the requested file is found on SD Card, then the content of this file is sent to web client. If the
requested file does not exist on SD Card, then the file with the same name is opened on internal
ROM file system and transferred to the web client. This concept allows you to simply replace the
web content from internal ROM file system with a new one, that is uploaded to external SD Card.

You should carefully update the cgi and cgx script files, as the change in the script files usually
reflects in a change to the application code, which is in module HTTP_CGI.c. If you have made a
mistake in the uploaded script files, the web pages might not be accessible anymore.

Copyright © Keil, An ARM Company. All rights reserved.

Page 211

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File System Interface

The Embedded Web Server can read files also from a generic File System. All interface functions are
located in HTTP_uif.c, which is a user interface module. This module is in the
\Keil\ARM\RL\TCPnet\User folder. For large Web resources, you must copy it to your project
directory and add it to your project.

The HTTP_uif.c module is preconfigured for RL-FlashFS, so no modifications are required. You can
modify this interface module to use another type of file system or to use a different storage media
such as a hard disk.

The following functions are implemented in this module:

 http_fopen() - open a file for reading.
 http_fclose() - close a file that was previously opened.
 http_fread() - read a block of data from a file to data buffer.
 http_fgets() - read a string from a file to data buffer.
 http_finfo() - read last modification time of a file.

The following system functions are included in the RL-TCPnet library:

 http_date() - convert the RL date format to UTC time format.

 When a complete Web site is stored internally in the code, you should not include the

HTTP_uif.c module into the project to reduce the code size of the image.

Copyright © Keil, An ARM Company. All rights reserved.

Page 212

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Http Caching

HTTP protocol supports local caching of static resources by the browser. Most web pages include
resources that change infrequently, such as CSS files, image files, JavaScript files, and so on. These
resources take time to download over the network, which increases the time it takes to load a web
page. HTTP caching allows these resources to be saved, or cached, by a browser. Once a resource
is cached, a browser can refer to the locally cached copy instead of having to download it again on
subsequent visits to the web page.

The advantage of caching is obvious:

 the page load time for subsequent user visits is reduced, eliminating numerous HTTP
requests for the required resources

 the total payload size of the responses is reduced.

Copyright © Keil, An ARM Company. All rights reserved.

Page 213

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

How it works

The Embedded Web server supports the HTTP local caching by the browser. For static resources,
what are basically all except the scripts, the server sends the http header with the last modified
date tag in the response.

Resource not cached

Here is an example, recorded from HTTP_demo. The browser opens a web page, which is not yet
cached locally.

 The browser opens a default page:

 http://mcb2300

 This generates the following http request for the web server:

 GET / HTTP/1.1

 Accept: image/gif, image/jpeg, image/pjpeg, image/pjpeg, application/x-

 shockwave-flash, application/vnd.ms-excel,

application/vnd.ms-powerpoint,

 application/msword, application/xaml+xml,

application/vnd.ms-xpsdocument,

 application/x-ms-xbap, application/x-ms-application, */*

 Accept-Language: en-us

 User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;

 Trident/4.0; .NET CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727; .NET CLR

 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR 3.0.4506.2152; .NET CLR

 3.5.30729)

 Accept-Encoding: gzip, deflate

 Host: mcb2300

 Connection: Keep-Alive

 The web server opens a default page index.htm and sends it to the browser with the
following http header:

 HTTP/1.1 200 OK

 Server: Keil-EWEB/2.1

 Content-Type: text/html

 Last-Modified: Thu, 19 Nov 2009 07:46:25 GMT

 Connection: close

 // and the content of 'index.htm'

 The browser, when receiving the Last-Modifed http header, stores this file to local cache
together with the url and date tag.

Resource cached

When the browser tries to open the same page again, it first checks the local cache. The file
index.htm is already there, so it sends a different request to the Web server.

 The browser sends a different http header in the request:

 GET / HTTP/1.1

 Accept: */*

 Accept-Language: en-us

 User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1;

 Trident/4.0; .NET CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727; .NET CLR

 3.0.04506.30; .NET CLR 3.0.04506.648; .NET CLR 3.0.4506.2152; .NET CLR

 3.5.30729)

Page 214

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://mcb2300
http://www.processtext.com/abcchm.html

 Accept-Encoding: gzip, deflate

 If-Modified-Since: Thu, 19 Nov 2009 07:46:25 GMT

 Host: mcb2300

 Connection: Keep-Alive

 Now, the Web server is also informed that the requested file is cached. The Web server
checks the date, if the browser caches the same file version. If the date tags are equal, the
Web server sends only a short response:

 HTTP/1.1 304 Not Modified

 Server: Keil-EWEB/2.1

 Connection: close

 The browser now uses the locally cached index.htm

Outdated resource cached

If the date tags are not equal, the file cached by browser is outdated. The Web server sends the
updated index.htm. The browser updates the local cache and uses an updated file.

 HTTP/1.1 200 OK

 Server: Keil-EWEB/2.1

 Content-Type: text/html

 Last-Modified: Thu, 19 Nov 2009 09:38:54 GMT

 Connection: close

 // and the new content of 'index.htm'

Copyright © Keil, An ARM Company. All rights reserved.

Page 215

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Internal Web

The Internal Web pages are included and compiled into the code. When the FCARM file converter
reformats the web files into a C-file, adds also the time, when FCARM was executed, into a C-file.

const U32 FileMD = 1256735886;

This time is used later by the Web server as the File Modification Date. It is specified in UTF format.
The Web server uses this date in the http responses.

File caching improves the Web server performance a lot. The following table lists the times required
to load the default page from HTTP_demo.

Web not cached Web cached
447.5 ms 53.1 ms

 Default Web includes four files: index.htm, keil.gif, nxp_logo.gif and llblue.jpg, with the total

size of 12 kBytes.

Copyright © Keil, An ARM Company. All rights reserved.

Page 216

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

External Web

The Web server also supports the browser local caching of Web pages stored on SD Card at the
Web server. In general the files on SD Card are bigger, and so the performance gain, much better.
The space, available for Internal Web pages is limited with the size of internal flash memory. So all
large images, java script archives and other large web resources, have to be located on externally
attached SD Card.

Static Web Resources

The static web resource files are copied to SD Card when the application is built and are not
modified later. You might use the SD Card Reader attached to PC to copy the files. In this case, the
file modification date is set correctly by the PC. If you use an embedded application to copy the
files, the file modification date is most likely set to the FlashFS default time. This however does not
create any problems in browser local caching. Once the web is locally cached by the browser, the
cache is always valid and is used in subsequent browser requests.

Using Web Update

Web resource files, which are updated later with one of the update options provided by RL-TCPnet,
are dynamic Web resource files. You must provide the file modification date and time to the Flash
File System. If this information is not available, the FlashFS uses a default file modification time. This
might create troubles in local caching by the browser.

If you upload an updated web page to the server, but the FlashFS adds a default file modification
date, the Web server is not able to recognize the updated files. It always reports the same
Last-Modified date. The the browser then uses locally cached, but outdated web resources instead
of the updated ones.

To load the updated web page in the browser, you have to manually clear the cache in the
browser first and then reload the web page again.

 If the FlashFS does not have a Real Time Clock information, the Web Server will not work for

updated Web pages.

Copyright © Keil, An ARM Company. All rights reserved.

Page 217

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using RAM File System

You can add a real dynamic image feature to the Embedded Web Server. In this case, the
RL-FlashFS system is used, which must be configured for a target device SRAM.

You can, for example, use a routine which generates a png image file which represents the graph
of the temperature over the last 12 hours and store it to the RAM File System. This file is then sent
to the web browser on request. You can create a more professional appearance on the web page
using this feature. The measurement results for the above example are displayed in a real graphic
format.

To enable the RAM File System, you must copy the HTTP_uif.c user interface module to your project
directory and add it to your project. This interface module is in the \Keil\ARM\RL\TCPnet\User
folder. It is preconfigured for the RL-FlashFS system, so no modifications to this file are required.

Note
 The RL-FlashFS library code is not included in the project by default to reduce the application

code size. You must include the file HTTP_uif.c only when real dynamic images are
required.

Copyright © Keil, An ARM Company. All rights reserved.

Page 218

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FCARM File Converter

This file converter reformats all the web files into a single C-file, which is then included and compiled
into the project. All the files are stored in the Virtual ROM File System.

The FCARM file converter has integrated also a file optimization algorithm to compress the html,
java script and cgi script files. This allows you to create more compact and smaller executable
images.

The FCARM command line syntax is:

FCARM <{>inputlist<}> <{> TO outputfile<}> <{>directives<}>

or

FCARM @commandfile

Where
inputlist is a comma-separated list of web files for the file converter to include in the output

file.

The inputlist uses the following general format:

filename <{> , ... <}>

Where
filename is the name of an html, script or image file. The filename must be

specified with a file extension, but without the path information.
outputfile is the name of the output C-file containing converted web files.
directives are commands and parameters that control the operation of the file converter.
commandfile is the name of a command file that can contain an inputlist, outputfile, and directives.

File Converter Directives

The following table describes all FCARM Converter directives.

Directive Description
PRINT Specifies the name of the listing file.
NOPRINT Disables generation of the listing (LST) file.
PAGEWIDTH Specifies the number of characters on a line in the listing file.
PAGELENGTH Specifies the number of lines on a page in the listing file.
ROOT Specifies the root path where web files are located relative to the project

directory path.

Disabling Optimization

To disable the FCARM optimization for a web content file, you have to add the tilde prefix (~) to
the file name. For example, to disable optimization for jquerry.js, specify this file in a list as
~jquerry.js.

This allows you to selectively disable optimization for a file of interest. For example if you want to
debug java script file, it is very hard to trace the code that is compacted to a single line with no
spaces, no comments and no line feed separators.

Examples

The following command line example invokes FCARM, specifies the web file index.htm. The output
C-file is index.c which the file converter creates.

FCARM index.htm

Page 219

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The following command line example invokes FCARM, specifies the web files index.htm, keil.gif,
llblue.jpg, system.cgi, and specifies the C-file web.c which the file converter creates.

FCARM index.htm, keil.gif, llblue.jpg, system.cgi to web.c

The following command line example invokes FCARM, specifies the web files index.htm, keil.gif,
llblue.jpg, system.cgi, specifies the C-file web.c, and disables generation of the listing file. The
web files are located in subfolder Web_Files.

FCARM index.htm, keil.gif, llblue.jpg, system.cgi to web.c nopr

root(Web_Files)

Copyright © Keil, An ARM Company. All rights reserved.

Page 220

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

PRINT Directive
Abbreviation PR

Arguments PRINT (filename)

Default The name of the generated listing file with a .LST extension.

µVision None.

Description The PRINT directive specifies the name of the listing file. If no PRINT directive is
specified the listing file is given the name of the generated c-source file with a .LST
extension.

See Also NOPRINT

Example
FCARM index.htm, keil.gif to web.c print (Sample.lst)

Copyright © Keil, An ARM Company. All rights reserved.

Page 221

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NOPRINT Directive
Abbreviation NOPR

Arguments NOPRINT

Default The listing file is generated using the basename of the output file.

µVision None.

Description The NOPRINT directive prevents the file converter from generating a listing file.

See Also PRINT

Example
FCARM index.htm, keil.gif to web.c print(web.lst)

Copyright © Keil, An ARM Company. All rights reserved.

Page 222

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

PAGEWIDTH Directive
Abbreviation PW

Arguments PAGEWIDTH (number)

Default PAGEWIDTH (132)

µVision None.

Description The PAGEWIDTH directive specifies the number of character per line that may be
printed to the converter listing file. Lines with more than the specified number of
characters are broken into two or more lines. The valid range of values is 72-132
columns.

See Also PAGELENGTH

Example
FCARM index.htm to web.c pagewidth (132)

Copyright © Keil, An ARM Company. All rights reserved.

Page 223

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

PAGELENGTH Directive
Abbreviation PL

Arguments PAGELENGTH (number)

Default PAGELENGTH (60)

µVision None.

Description The PAGELENGTH directive specifies the number of lines printed per page in the
converter listing file. The minimum page length is 10 lines per page. The maximum
page length is 65535.

See Also PAGEWIDTH

Example
FCARM index.htm to web.c pagelength (55)

Copyright © Keil, An ARM Company. All rights reserved.

Page 224

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ROOT Directive
Abbreviation RO

Arguments ROOT (directory)

Default The current project directory path is used as the web container.

µVision None.

Description The ROOT directive defines the root path where the web files are located relative
to the project directory path.

See Also None.

Example
FCARM index.htm, keil.gif to web.c root(Web_Files)

Copyright © Keil, An ARM Company. All rights reserved.

Page 225

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Telnet Server

Telnet is most often used for remote login. A user typically uses a Telnet client program to open a
Telnet connection to a remote server. The server then treats the Telnet client like a local terminal
and allows the user to log in and access the server's resources as if the user was using a
directly-attached terminal. Telnet is still used this way quite extensively by UNIX users, who often
need to log in to remote hosts from their local machines.

It is the client and server devices that decide whether Telnet is used for remote access or for some
other purpose. When Telnet is used to access a remote device, the protocol itself is used to:

 set up the connection between the client and server machines
 encode data to be transmitted according to the rules of the Telnet Network Virtual Terminal

(NVT)
 facilitate the negotiation and use of options.

Using the RL-TCPnet Embedded Telnet Server, you can build a simple command line interface that
enables a Telnet client to access and control the remote embedded system.

 In order to use the Embedded Telnet Server, you have to enable and configure it in the

configuration file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 226

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Command Line Interface

The Embedded Telnet Server calls the tnet_process_cmd() function when a command is received
from the user. A command is any sequence of characters that is terminated by the CRLF sequence
(the Enter key is pressed). The Telnet Server assembles this command and passes it as an
argument to the tnet_process_cmd() function.

The command line interface functions are located in the Telnet_uif.c module. You must copy this
module to your project directory, add it to your project, and customize it. You can add new
commands or remove existing commands from the module. The module is located in the
\Keil\ARM\RL\TCPnet\User folder.

The following functions are implemented in this module:

 tnet_cbfunc() - copies various system messages to the sending buffer for transmission to
the Telnet Client. You can also modify this function to support different languages.

 tnet_msg_poll() - polls the upper-layer application for Unsolicited messages.
 tnet_process_cmd() - called by the Telnet Server to process the commands entered by a

remote user.

The following system functions are included in the RL-TCPnet library:

 tnet_ccmp() - compares the content of the command buffer.
 tnet_set_delay() - sets a delay before a repeated call to tnet_proc_cmd(). You can use

this function to implement a continuously updating screen.
 tnet_get_info() - called from Telnet_uif.c to obtain the IP address and MAC address of

the remote machine.

Copyright © Keil, An ARM Company. All rights reserved.

Page 227

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Sending Reply Message

The tnet_process_cmd function processes the Telnet command when it is received from a remote
user. This function then generates a reply message and sends it back to the user. This is how the
command-line interface works.

When the reply message is short, the whole message can be sent in a single packet. However,
when long reports are generated, multiple packets must be sent to transfer the whole message.
This is the case, for example, when the log files are displayed. Both single and multiple packets are
supported by the Embedded Telnet Server.

Copyright © Keil, An ARM Company. All rights reserved.

Page 228

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Short Reply

A short reply message is sent in a single TCP packet. When a telnet command is received, a reply
message is generated and sent to the remote telnet client.

In the following example, the telnet command HELP is sent by the Telnet client:

MCB2100> HELP

This command is answered by the predefined help message tnet_help. This message is copied to
the output buffer and sent to the remote telnet client. The following code sends the reply message.

U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U32 *pcgi) {

 ..

 if (tnet_ccmp (cmd, "HELP") == __TRUE || tnet_ccmp (cmd, "?") == __TRUE) {

 /* 'HELP' command, display help text */

 len = str_copy (buf,tnet_help);

 return (len);

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 229

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Long Reply

A long reply message requires multiple calls to the function tnet_process_cmd. Each call to this
function generates part of the reply message until the entire message is generated and sent. To
distinguish between different calls to the function, the argument pvar is used. This argument is a
pointer to a variable that is set to 0 on the first call and not altered on each subsequent call to this
function. The function's return value, which specifies the number of bytes in the reply message,
cannot exceed 1500. Hence the high bits of the function's return value is used to store the flags:

 Repeat flag - bit 14
This flag tells the Telnet Server whether the function tnet_process_cmd must be called
again or not (because the command processing is complete). The return value must be
OR-ed with 0x4000 to call the function again.

 Disconnect flag - bit 15
This flag tells the Telnet Server to disconnect the telnet connection. If this flag is set, the
Telnet Server disconnects the current Telnet session. The return value must be OR-ed with
0x8000 to disconnect.

In the following example, the MEAS command is given by the user using the Telnet client.

MCB2100> MEAS 100

When a new telnet command is received, the function tnet_process_cmd is called with the
argument *pvar set to 0. The command buffer cmd is checked to identify the command.

U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U32 *pvar) {

 switch (MYBUF(pvar)->id) {

 case 0:

 /* First call to this function, the value of '*pvar' is 0 */

 break;

 case 1:

 /* Repeated call, command 'MEAS' measurements display. */

 ..

 /* Request a repeated call, bit 14 is a repeat flag. */

 return (len | 0x4000);

 ..

 }

 /* Check if the command 'MEAS' is entered. */

 if (tnet_ccmp (cmd, "MEAS") == __TRUE) {

 MYBUF(pvar)->id = 1;

 if (len > 5) {

 /* We must be careful here, because data is overlaid. */

 sscanf ((const S8 *)&cmd[5], "%d", &temp);

 MYBUF(pvar)->nmax = temp;

 }

 len = str_copy (buf,(U8 *)meas_header);

 if (MYBUF(pvar)->nmax) {

 /* Bit 14 is a repeat flag. */

 len |= 0x4000;

 }

 return (len);

 }

When a command is recognized, you can reuse the same command buffer to store local variables,

Page 230

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

which might be needed in repeated calls. During the repeated call to this function, the cmd buffer is
locked and is not altered by the system. You can use it as temporary storage of variables for the
repeated calls. Each Telnet session has its own buffer of size 96 bytes. You can use only 95 bytes
since the last byte is not available.

The above example uses 3 bytes of a storage variable pointed by pvar pointer for the following
structure:

typedef struct {

 U8 id;

 U8 nmax;

 U8 idx;

} MY_BUF;

#define MYBUF(p) ((MY_BUF *)p)

When the call to tnet_process_cmd() is repeated for the same command, the value of a storage
variable pointed to by argument pvar is not altered anymore. You can use the value of *pvar to
process the command differently. The *pvar buffer now holds the private structure MY_BUF, which
is valid for the lifetime of processing the command. When the command processing is finished, this
buffer is not used anymore until the next command.

U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U32 *pvar) {

 switch (MYBUF(pvar)->id) {

 case 0:

 /* First call to this function, the value of '*pvar' is 0 */

 break;

 case 1:

 /* Repeated call, command 'MEAS' measurements display. */

 while (len < buflen-80) {

 /* Let's use as much of the buffer as possible. */

 /* This will produce less packets and speedup the transfer. */

 len += sprintf ((S8 *)(buf+len), "\r\n%4d", MYBUF(pvar)->idx);

 for (val = 0; val < 8; val++) {

 len += sprintf ((S8 *)(buf+len), "%7d", AD_in(val));

 }

 if (++MYBUF(pvar)->idx >= MYBUF(pvar)->nmax) {

 /* OK, we are done. */

 return (len);

 }

 }

 /* Request a repeated call, bit 14 is a repeat flag. */

 return (len | 0x4000);

 case 2:

 /* Repeated call, TCP status display. */

 ..

}

After giving a MEAS command, the Telnet Client screen looks like this:

Page 231

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note
 You can check the Telnet_demo example to see how the Telnet Server works. This example

is located in the \Keil\ARM\Boards\Phytec\LPC229x\RL\TCPnet folder.

Copyright © Keil, An ARM Company. All rights reserved.

Page 232

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Continuous Screen Update

Continuous screen updates can be used for continuous monitoring of measurement or status
variables. When enabled, the telnet client screen refreshes periodically. The tnet_set_delay
function activates a delayed repeating call to the tnet_process_cmd function.

The screen for status monitoring appears as follows:

The refresh interval, after which the screen regenerates and reflects the most recent status, is 2
seconds.

Note
 You can check the Telnet_demo example to see how the Telnet Server works. This example

is in the \Keil\ARM\Boards\Phytec\LPC229x\RL\TCPnet folder.

Copyright © Keil, An ARM Company. All rights reserved.

Page 233

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

TFTP Server

Trivial File Transfer Protocol (TFTP) is a simple protocol for exchanging files between two TCP/IP
machines. TFTP servers allow connections from TFTP clients to perform file send and receive
operations. TFTP users initiate connections by starting a TFTP client program, which generally uses
a command-line interface.

The TFTP protocol supports only file send and receive operations. File delete, file move, and file
rename are not supported. Due to its limitations, TFTP is a complement to the regular File Transfer
Protocol (FTP) and not a replacement. It is used only when its simplicity is important, and its lack of
features is acceptable. The most common application is bootstrapping, although it can be used for
other purposes.

Embedded TFTP Server can be used to upload HTTP Web pages or to download log files to a
remote PC. In this case, the Flash File System must be used, and the Embedded Web Server
must be properly configured.

Note
 In order to use an Embedded TFTP Server, you have to enable and configure it in the

configuration file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 234

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File System Interface

The Embedded TFTP Server can store files in a generic File System. All interface functions are
located in TFTP_uif.c, which is a user interface module. This module is in the
\Keil\ARM\RL\TCPnet\User folder. You must copy it to your project directory and add it to your
project.

The TFTP_uif.c module is preconfigured for RL-FlashFS, so no modifications are required. You can
modify this interface module to use another type of file system or to use a different storage media
such as a hard disk.

The following functions are implemented in this module:

 tftp_fopen() - open a file for reading or writing.
 tftp_fclose() - close a file that was previously opened.
 tftp_fread() - read a block of data from a file to the TFTP data buffer.
 tftp_fwrite() - write a block of data from the TFTP data buffer to a file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 235

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FTP Server

File Transfer Protocol (FTP) is a standard network protocol used to exchange and manipulate files
over a TCP/IP-based network. FTP is built on a client-server architecture and utilizes separate
control and data connections between the client and server applications. FTP is used with
user-based password authentication or with anonymous user access.

FTP file manipulation means that you can: create and delete files on FTP server, rename files,
create folders and subfolders, print the folder listings, etc.

FTP applications were originally interactive command-line tools with a standardized command
syntax. Various graphical user interfaces have been developed for all types of operating systems in
use today.

FTP can be run in active or in passive mode, which control how the second data connection is
opened.

 In active mode the client sends the server the IP address port number that the client will
use for the data connection, and the server opens the connection.

 In passive mode the server sends the client an IP address and port number and the client
opens the connection to the server. This mode is used, when the client is located behind a
firewall and unable to accept incoming TCP connection.

Embedded FTP Server can also be used to upload HTTP Web pages or to download log files to a
remote PC. In this case, the Flash File System must be used, and the Embedded Web Server
must be properly configured.

Note
 In order to use an Embedded FTP Server, you have to enable and configure it in the

configuration file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 236

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File System Interface

The Embedded FTP Server can store files in a generic File System. All interface functions are located
in FTP_uif.c, which is a user interface module. This module is in the \Keil\ARM\RL\TCPnet\User
folder. You must copy it to your project directory and add it to your project.

The FTP_uif.c module is preconfigured for RL-FlashFS, so no modifications are required. You can
modify this interface module to use another type of file system or to use a different storage media
such as a hard disk.

The following functions are implemented in this module:

 ftp_fopen() - open a file for reading or writing.
 ftp_fclose() - close a file that was previously opened.
 ftp_fread() - read a block of data from a file to the FTP data buffer.
 ftp_fwrite() - write a block of data from the FTP data buffer to a file.
 ftp_fdelete() - delete a specified file.
 ftp_frename() - rename a file from old to a new name.
 ftp_ffind() - find a file in a folder for printing a directory listing.

Copyright © Keil, An ARM Company. All rights reserved.

Page 237

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Supported Commands

The Embedded FTP Server supports only a subset of standard FTP Commands. The following FTP
Commands are supported:

Code Command Description
USER User Name Starts login with name identifying the user.
PASS Password Continues login with the user's password.
QUIT Logout Closes the user connection.
SYST System Identifies the operating system at the server.
NOOP No Operation Sends an OK reply.
PWD Print Working Directory Returns the name of the current working directory.
CWD Change Working DirectoryChanges the current working directory of the user.
MKD Make Directory Creates a sub directory in the current working directory.
RMD Remove Directory Removes the directory.
TYPE Representation Type Supports ASCII and Image types.
PORT Data Port Specifies the data port to be used in data connection.
PASV Passive Requests the server to listen on a data port and wait for a

connection.
LIST List Sends a directory listing to the user.
NLST Name List Sends a directory listing to the user.
RETR Retrieve Sends a file content to the user.
STOR Store Saves a captured user file on server.
DELE Delete Deletes a specified file from server.
RNFR Rename From Specifies the name of existing file to rename. (must be followed

by RNTO).
RNTO Rename To Renames an existing file to new name.
HELP Help Returns a list of supported commands.
SIZE Size Returns the size of a specified file.
MDTM Last-modified Time Returns last-modified time of a specified file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 238

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SMTP Client

Simple Mail Transfer Protocol (SMTP) is a widely used protocol for the delivery of e-mails between
TCP/IP systems and users. All steps in the e-mail system use SMTP with the exception of the final
retrieval step by an e-mail recipient.

An Embedded SMTP Client can send e-mails to various recipients. A typical use is to send
automated e-mail notifications to different e-mail addresses.

E-mail content can be a static predefined e-mail message or a real dynamic message. An example
of a real dynamic email is one that contains the measurement results from a log file or an email with
current measurement values.

SMTP Client interface functions are in the user interface module SMTP_uif.c, which is in the
\Keil\ARM\RL\TCPnet\User folder. You must copy it to your project directory and add it to your
project. Customize this module by changing the From address, the To address, and the body of the
email message.

The following function is in the module:

 smtp_cbfunc() - callback function to compose the e-mail.
 smtp_accept_auth() - callback function to accept/deny the authentication advertised by

SMTP Server.

The following function is in the RL-TCPnet library:

 smtp_connect() - connect to SMTP Server and send an e-mail.

 In order to use an Embedded SMTP Client, you must enable and configure it in the

configuration file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 239

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SNMP Agent

Simple Network Management Protocol (SNMP) is mainly used in network management systems to
monitor network-attached devices for conditions that warrant administrative attention. It is the
most popular network management protocol in the TCP/IP protocol suite.

SNMP is a simple request/response protocol that communicates management information between
two types of SNMP software entities: SNMP managers and SNMP agents.

In summary, the SNMP Management program performs the following operations:

 The GET operation receives a specific value about a managed object, such as the available
hard disk space from the agent's MIB.

 The GET-NEXT operation returns the "next" value by traversing the MIB tree of managed
object variables.

 The SET operation changes the value of a managed object's variable. Only variables whose
object definition allows read/write access can be changed.

 The TRAP operation sends a message to the Management Station when a change occurs in
a managed object, and that change is important enough to send an alert message.

The SNMP Agent validates each request from an SNMP manager before responding to the request,
by verifying that the manager belongs to an SNMP community with access priviliges to the agent.
An SNMP community is a logical relationship between an SNMP agent and one or more SNMP
managers. The community has a name, and all members of a community have the same access
privileges: either read-only or read-write.

An Embedded SNMP Agent is an optimized and compact implementation for embedded systems.
Currently it implements SNMP version 1.

 In order to use an Embedded SNMP Agent, you must enable and configure it in the

configuration file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 240

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MIB Database

The data base controlled by the SNMP Agent is referred to as the SNMP Management Information
Base (MIB). It is a standard set of statistical and control values. SNMP allows the extension of
these standard values with values specific to a particular agent through the use of private MIBs.

The definitions of MIB variables supported by a particular agent are incorporated in descriptor files,
written in Abstract Syntax Notation (ASN.1) format, made available to network management client
programs so that they can become aware of these MIB variables and their usage.

The OID naming scheme is governed by the Internet Engineering Task Force (IETF). The IETF
grants authority for parts of the name space to individual organizations such as Microsoft, Novell or
Cisco. For example, Microsoft has the authority to assign the OIDs that can be derived by branching
downward from the node in the MIB name three that starts with 1.3.6.1.4.1.311. Novell's OIDs
branch down from 1.3.6.1.4.1.23. etc. You can see this structure in the diagram below.

The MIB variables are referred to as MIB object identifiers - OIDs. OID names are hierarchy
structured and unique. SNMP uses the OID to identify objects on each network element (device
running SNMP agent) that can be managed using SNMP.

Copyright © Keil, An ARM Company. All rights reserved.

Page 241

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MIB Interface

The Embedded SNMP Agent manages MIB variables that are located in SNMP_MIB.c, which is a
user interface module. This module is in the \Keil\ARM\RL\TCPnet\User folder. You must copy it
to your project directory and add it to your project.

The SNMP_MIB.c module has implemented a scaled-down MIB-II Management Information Base.
Only the System MIB is defined by default. The user might expand this table by adding his own MIB
variables.

The user can register a callback function with a MIB variable. This function gets called, when the
SNMP Manager accesses the MIB variable. This concept allows the SNMP Manager to control the
SNMP Agent system. For example to change LED outputs, to write text on embedded LCD module,
to read push buttons or analog inputs, etc.

Copyright © Keil, An ARM Company. All rights reserved.

Page 242

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MIB Entry

The MIB_ENTRY structure describes the MIB variable. SNMP Agent uses this description to process
local MIB variables. This structure is defined in Net_Config.h as follows:

typedef struct mib_entry { /* << SNMP-MIB Entry Info >> */

 U8 Type; /* Object Type */

 U8 OidLen; /* Object ID length */

 U8 Oid[MIB_OIDSZ]; /* Object ID value */

 U8 ValSz; /* Size of a Variable */

 void *Val; /* Pointer to a variable */

 void (*cb_func)(int mode); /* Write/Read event callback function */

} MIB_ENTRY;

The components of MIB_ENTRY structure are:

 the Type defines the MIB variable type:

MIB Type Description Size
MIB_INTEGER Signed Integer 1, 2 or 4 bytes
MIB_OCTET_STR Octet String entry max. 110 characters
MIB_OBJECT_ID Object Identifier entry max. 13 bytes
MIB_IP_ADDR IP Address entry 4 bytes
MIB_COUNTER Counter entry 1, 2 or 4 bytes
MIB_GAUGE Gauge entry 1, 2 or 4 bytes
MIB_TIME_TICKS Time Ticks entry 4 bytes
 The Type component may be or-ed with the MIB_ATR_RO read-only attribute. A read-only

variable can not be changed by the SNMP Manager.
 the OID specifies the Object Identification Name of the variable. It is length encoded.

- OidLen specifies the length of the Oid[] array.
- Oid[MIB_OIDSZ] array specifies the OID name - a length encoded binary array.

 the Val specifies the Pointer to the variable and it's Size.
- ValSz specifies the size of Val variable.
- *Val is a pointer to the actual variable.

 the cb_func specifies a Callback function which is called, when the variable is accessed by
SNMP Manager. The callback function is not registered, when the value of cb_func is NULL.

Parameter mode of the callback function specifies the access mode of SNMP Manager:

Mode Type of Access
MIB_READ Reads a MIB variable.
MIB_WRITE Writes to a MIB variable.

Copyright © Keil, An ARM Company. All rights reserved.

Page 243

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MIB Table

The snmp_mib table is defined as an array. The components of this array are of type MIB_ENTRY.

const MIB_ENTRY snmp_mib[] = {

 /* ---------- System MIB ----------- */

 /* SysDescr Entry */

 { MIB_OCTET_STR | MIB_ATR_RO,

 8, {OID0(1,3), 6, 1, 2, 1, 1, 1, 0},

 MIB_STR("Embedded System SNMP V1.0"),

 NULL },

 /* SysObjectID Entry */

 { MIB_OBJECT_ID | MIB_ATR_RO,

 8, {OID0(1,3), 6, 1, 2, 1, 1, 2, 0},

 MIB_STR("\x2b\x06\x01\x02\x01\x01\x02\x00"),

 NULL },

 /* SysUpTime Entry */

 { MIB_TIME_TICKS | MIB_ATR_RO,

 8, {OID0(1,3), 6, 1, 2, 1, 1, 3, 0},

 4, &snmp_SysUpTime,

 NULL },

 ..

}

In the following example, we will construct a MIB variable entry LedOut. It will allow SNMP Manager
to control LED diodes on an evaluation board.

 The MIB variable type is Integer. An U8 variable is sufficient, because the LED port is 8-bit:

 /* LedOut Entry */

 { MIB_INTEGER,

 The OID reference is 1.3.6.1.3.1.0. It is defined in the Experimental MIB branch of the MIB
tree:

 6, {OID0(1,3), 6, 1, 3, 1, 0},

- the first byte defines the length of the OID name,
- macro OID0 calculates the first byte of OID value from 1st and 2nd address byte,
- the value of an OID address byte must be less than 128, othervise an extended encoding
must be used.

 The variable size and location is described with the help of MIB_INT macro:

 MIB_INT(LedOut),

The following macros are defined:

Macro Variable Definition
MIB_STR Octet String size and location.
MIB_INT Signed or Unsigned Integer size and location.
MIB_IP IP Address size and location.
 The write_leds is specified as callback function. It gets called when the LedOut is written:

 write_leds },

 Finally we need the actual variable definition:

 static U8 LedOut;

For the LedOut control we actually need the following parts of code to be defined in SNMP_MIB.c
module:

Page 244

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

static U8 LedOut;

static void write_leds (int mode);

const MIB_ENTRY snmp_mib[] = {

 ..

 /* LedOut Entry */

 { MIB_INTEGER,

 6, {OID0(1,3), 6, 1, 3, 1, 0},

 MIB_INT(LedOut),

 write_leds },

 ..

}

static void write_leds (int mode) {

 /* No action on read access. */

 if (mode == MIB_WRITE) {

 LED_out (LedOut);

 }

}

Extended OID encoding

The value of OID address byte must be less than 128. If it is not, an OID address must be encoded
in extended format. This is because the high bit of an address byte is an address extension bit.

For example, the OID address 1.3.6.1.4.1.311.0 is encoded as:

 8, {OID0(1,3), 6, 1, 4, 1, 130, 55, 0},

The address value for the highlighted numbers is calculated as:

 (130-128) * 128 + 55 = 311

The OID address 1.3.6.1.4.1.31036.50.1.1.0 is encoded as:

 12, {OID0(1,3), 6, 1, 4, 1, 129, 242, 60, 50, 1, 1, 0},

where the value 31036 is calculated as:

 (129-128) * 128 * 128 + (242-128) * 128 + 60 = 31036

Copyright © Keil, An ARM Company. All rights reserved.

Page 245

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

DNS Resolver

Domain Name System (DNS) servers store and manage information about domains and respond to
resolution requests for clients (in some cases millions of times each day). The DNS database is a
distributed name database stored on many DNS servers. DNS uses a hierarchical tree structure for
its name space and a hierarchical tree for name authorities and registration.

Since information in DNS is stored in a distributed form, there is no single server that has
information about every domain in the system. The process of resolution instead relies on the
hierarchy of name servers as described above.

At the top of the DNS hierarchy is the root domain and the root name servers. These are the most
important servers because they maintain information about the top-level domains within the root.
They also know the servers that can be used to resolve domains one level below them. Those
servers can reference servers that are responsible for second-level domains. Thus, a DNS
resolution requests might be sent to more than one server.

An Embedded DNS Resolver is capable of resolving the IP address of a host from the host's name.
It does this by sending DNS requests to a DNS Server. The IP address of a DNS Server is specified
in the configuration or can be obtained from the DHCP Server for the Local Area Network.

The Embedded DNS Resolver caches the resolved IP addresses. The length of time the resolved
host IP address is kept in the local cache depends on the Time to Live (TTL) timeout. This is
returned in an answering packet from the DNS Server. The next time a DNS is requested, the cache
table is checked first. If a valid host is found, the IP address is resolved from the cache and no
actual DNS request is sent to the DNS Server.

You must use the DNS Resolver when a remote host uses a Dynamic IP, which changes each time
the remote host logs on to the internet.

Copyright © Keil, An ARM Company. All rights reserved.

Page 246

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Starting DNS

Start the DNS Resolver by calling the function get_host_by_name(). DNS Requests are routed to
the DNS Server IP address of an active network interface. If you are using a PPP or SLIP interface
and no ethernet interface, you must enable the Use default gateway on remote network option in
the configuration.

You must also specify a callback function, which is called from the DNS Client when a DNS event
occurs.

static void dns_cbfunc (U8 event, U8 *ip) {

 switch (event) {

 case DNS_EVT_SUCCESS:

 printf("IP Address: %d.%d.%d.%d\n",ip[0],ip[1],ip[2],ip[3]);

 break;

 case DNS_EVT_NONAME:

 printf("Host name does not exist.\n");

 break;

 case DNS_EVT_TIMEOUT:

 printf("DNS Resolver Timeout expired, Host IP not resolved.\n");

 break;

 case DNS_EVT_ERROR:

 printf("DNS Resolver Error, check the host name, labels, etc.\n");

 break;

 }

}

When the required host is found in the local DNS Cache, the callback function is called immediately
with the result code DNS_EVT_SUCCESS and provides the IP address of the host to the function.
In this case, no actual DNS request packet is sent to the remote DNS Server.

Note
 To use an Embedded DNS Client, you must enable and configure it in the configuration

file.
 You can also provide the IP address in a string format to specify the host name. The DNS

Client decodes it and returns the decoded IP address to the callback function.

Copyright © Keil, An ARM Company. All rights reserved.

Page 247

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Device Drivers

RL-TCPnet uses device drivers to interface the physical transport media. The purpose of a device
driver is to move all device specific functions to a single module, which can be customized by the
user. The device driver functions are OS independent.

 Ethernet Network Driver interfaces with the ethernet controller. This driver sends the
ethernet packets to a network and receives incoming packets, which it then stores in a
memory buffer.

 Modem Driver handles the modem connection when using the PPP or SLIP network
interface. It dials a remote target number on request and accepts incoming calls.

 Serial Driver is used when using the PPP or SLIP network interface. This is an interrupt
driven serial interface that stores received characters in a buffer and sends outgoing data
to a serial port.

All driver functions must be included in a single driver module. It is a good practice to name this
module by the type of the ethernet controller like CS8900A.c or Ax88796.c.

Copyright © Keil, An ARM Company. All rights reserved.

Page 248

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Ethernet Driver

For the Ethernet Driver in polling mode, the system frequently calls the function poll_ethernet().
This mode gives you more simplicity and less performance. However, if the ethernet controller has
an integrated large memory buffer, polling mode is a good choice.

The required functions for implementation of the driver are:

 init_ethernet() - initializes the ethernet controller
 poll_ethernet() - reads the packet out of the ethernet controller's buffer
 send_frame() - writes a packet to the ethernet controller.

You can also use the Ethernet interface in interrupt mode.

RL-TCPnet includes several Ethernet Network drivers. These are located in the
\Keil\ARM\RL\TCPnet\Drivers directory:

 LAN91C111.C - for the SMSC LAN91C111 Ethernet Controller used on the Phytec phyCore
LPC229x evaluation board.

 AT91_EMAC.C - for the Atmel AT91SAM7X on-chip EMAC Ethernet Controller used on the
Atmel AT91SAM7X-EK evaluation board.

 STR9_ENET.C - for the ST STR912 on-chip ENET Ethernet Controller used on the Keil
MCBSTR9 evaluation board.

 LPC23_EMAC.c - for the NXP (founded by Philips) LPC2368 and LPC2378 on-chip EMAC
Ethernet Controllers used on the Keil MCB2300 evaluation board.

 LPC24_EMAC.c - for the NXP (founded by Philips) LPC2468 and LPC2478 on-chip EMAC
Ethernet Controllers used on the Keil MCB2400 evaluation board.

 LM3S_EMAC.c - for the Luminary Micro LM3S6962 and LM3S8962 on-chip EMAC Ethernet
Controllers used on the Luminary Micro EK-LM3S6965 and EK-LM3S8962 evaluation boards.

You can use these source files as a template for your own Ethernet Network driver.

note
 If you want to use the Ethernet Network interface in your project, you must copy the

Ethernet Network driver to your project directory and add it to your project.

Copyright © Keil, An ARM Company. All rights reserved.

Page 249

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Interrupt Mode

The Interrupt Device Driver gives you better performance and eliminates the risk of losing a packet
when the system reaction time is slow. This can happen if the ethernet traffic is high and the user
event function takes very long to process.

When the ethernet controller integrates a small memory buffer (for example a couple of kilobytes),
the interrupt mode is necessary to prevent possible packet reception problems.

The required functions for implementation of the driver are:

 init_ethernet() - initializes the ethernet controller
 interrupt_ethernet() - interrupt service routine that reads the packet out of the ethernet

controller's buffer and stores it to the RAM buffer
 send_frame() - writes a packet to the ethernet controller
 int_disable_eth() - disables the interrupts of the ethernet controller
 int_enable_eth() - enables the interrupts of the ethernet controller.

Copyright © Keil, An ARM Company. All rights reserved.

Page 250

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Modem Driver

The Modem Driver controls an attached modem, dials an outgoing target number, and handles
incoming calls. The Modem Driver is used when the PPP or SLIP serial network interface is enabled.
You must use a Null_Modem driver for the zero-modem link if you use a serial cable to connect the
embedded device directly to a computer.

The required functions for the driver are:

 init_modem() - initialize the modem
 modem_dial() - dial a target number
 modem_listen() - initialize the modem to accept incoming calls
 modem_hangup() - stop the connection
 modem_online() - check if the modem is online
 modem_process() - process a character received from the modem in command mode
 modem_run() - the main thread for the modem driver.

RL-TCPnet includes two modem device drivers which are located in the
\Keil\ARM\RL\TCPnet\User directory:

 Null_Modem.c is a zero-modem link driver used when a computer is connected directly to
the target hardware. The computer simulates a real modem. The Null_Modem driver
responds to modem commands sent from a computer in the same way as it responds to a
real modem. It also works with the direct cable connection link supported by MS Windows.

 Std_Modem.c is a standard modem driver. This driver works with most of the currently
available modems. Use the standard modem driver when a real modem is used to access
the embedded device over a public telephone network.

You can copy these files into your project folder or use them as a template to write your own
modem driver.

 You need to include only one modem driver into your project for the PPP or SLIP interface.

For a zero-modem link, this is not required because the default Null_Modem driver is
already in the RL-TCPnet library.

 If you want to customize the Null_Modem.c modem driver, copy it from the
\Keil\ARM\RL\TCPnet\User directory and add it to your project. Then customize it as
needed.

Copyright © Keil, An ARM Company. All rights reserved.

Page 251

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Serial Driver

The Serial Driver handles a serial port and is required for a PPP or SLIP serial network interface.
The Serial Driver is interrupt driven since polling for a new character sometimes fails at higher baud
rates and some of the received characters might be lost.

The serial receive interrupt function stores incoming characters to an intermediate input buffer. The
serial transmit interrupt function sends outgoing data from an output buffer to a serial port.

If you use a serial PPP or SLIP network interface, then copy the serial device driver to your project
directory and add it to your project.

The required functions of the driver are:

 init_serial() - initialize the serial interface
 com_getchar() - get a character from an input buffer
 com_putchar() - put the character to an output buffer
 com_tx_active() - check if the serial transmit is active.

RL-TCPnet includes various serial device drivers for different ARM device variants. The driver
filename syntax used is Serial_xxxx.c, where xxxx is the device name. The drivers are located in
the \Keil\ARM\RL\TCPnet\User directory:

 Serial.c is configured for Philips LPC21xx devices. Use this driver for all Keil MCB21xx
evaluation boards.

 Serial_LPC214x.c is configured for Philips LPC214x devices. This driver uses extended
features which allow configuring various baud rates using built-in fractional baud rate
generator.

 Serial_S3C44B0X.c is configured for Samsung S3C44B0X devices.

For ARM device variants that are not currently supported, or if you are using an external UART, use
the Serial.c device driver as a template and customize it for your needs.

Copyright © Keil, An ARM Company. All rights reserved.

Page 252

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Using Serial Link

These topics include instructions on how to use a serial link, a serial cable, or a modem connection
to establish a PPP or SLIP link with a Windows 2000 host.

The Keil evaluation board is the PPP (or SLIP) server and the Windows host is the client. Before a
serial link can be established, the Windows host must be configured to use a direct serial device
or a standard modem for dial-up network connections.

Copyright © Keil, An ARM Company. All rights reserved.

Page 253

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Cable Connection

If you want to connect the embedded device directly to a computer, you must use the Null Modem
driver. The figure belows shows an overview of a directly connected system.

However, RL-TCPnet's Null Modem driver supports two different procedures for establishing the null
modem serial link with the computer:

 Windows Direct Serial Link. This is a non-modem link. This system requires the exchange
of string tokens between the computer and the embedded device before the PPP link can
be negotiated. The SLIP link needs no negotiation because SLIP is a simple protocol over a
serial line.

The Windows client sends the string "CLIENT". The Keil evaluation board must then send
the string "CLIENTSERVER". When operating as a server, the Keil evaluation board must
send the string "CLIENT". The Windows client must respond with the string
"CLIENTSERVER".

This string exchange must occur before Windows allows the PPP connection to proceed. This
string exchange is peculiar to Windows and is not required by other hosts.

 Windows Standard Modem Link. In this system, the Null Modem driver simulates an
external modem. The PPP source must also be modified to operate with the Windows direct
serial driver. It requires the exchange of modem command strings between the computer
and the evaluation board before the PPP link can be negotiated. The strings to be
exchanged are shown in the table below.

Windows Command Reply Description
AT\r OK\r Attention Command
ATE0V1\r OK\r Set No echo and Verbose Result reply
AT\r OK\r Attention Command
ATS0=0\r OK\r Disable Modem Auto Answer
AT\r OK\r Attention Command
ATE0V1\r OK\r Set No echo and Verbose Result reply
AT\r OK\r Attention Command
ATDTxxxxxxx\r CONNECT\r Dial Target number: xxxxxxx
 After the "CONNECT" string is received, Windows starts the PPP negotiations and user

authentication.

Copyright © Keil, An ARM Company. All rights reserved.

Page 254

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Modem Connection

Another way to connect to the Internet is the usage of a classic modem with an RS232 interface. In
this case the SLIP or PPP interface is used to establish the modem connection.

The SLIP or PPP interface can be also used with a GPRS/GSM phone that allows a wireless
connection to the Internet.

RL-TCPnet supports a modem connection. A modem connection can be established with any type of
analog, ISDN, GSM or GPRS modem. In this case, the TCPnet modem driver takes care of the modem
commands which are sent to the modem to dial, accept a call, or hangup. The modem dial-up
connection is setup like a standard Internet dial-up connection.

Copyright © Keil, An ARM Company. All rights reserved.

Page 255

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Windows Dial-up

These instructions tell you how to configure your Windows dial-up connection so you can connect to
a system that uses a serial PPP link or a SLIP link.

The PPP link is preferable because it provides link control protocol, IP address negotiation, and
user authentication. All these features are not available in a SLIP link. SLIP is a simple protocol
over the serial line. It was widely used with UNIX systems in the past.

Copyright © Keil, An ARM Company. All rights reserved.

Page 256

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Add Direct Serial Link

Follow these steps to add the direct serial link device in Windows XP.

1. Open the Phone and Modem Options applet found in the control panel. Select Add from the
Modems tab on the Phone and Modem Options applet. The Add Hardware Wizard dialog
appears. Enable the Don't detect my modem… option and click Next.

2. On the next dialog, select (Standard Modem Types) in the left column, Communications
cable between two computers in the right column, and click Next.

Page 257

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3. Select the appropriate communications port and click Next.

4. On the next dialog, click Finish to complete the installation of the Direct Serial Link device.
After the new device is installed, click OK to close the Phone and Modem Options applet.

5. Next, limit the serial line baud rate. Open the Phone and Modem Options applet found in the
control panel again. Select the Modems tab and double-click the modem you just installed.
Alternatively, highlight it and click Properties.

Page 258

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. Limit the highest port speed to 115200 baud because the default Null Modem driver, in
RL-TCPnet, uses this baud rate by default. Select 115200 from the drop down menu.

Page 259

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

7. After selecting the port speed, click OK twice to close the Phone and Modem Options
applet.

Copyright © Keil, An ARM Company. All rights reserved.

Page 260

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

New Dial-up Connection

Follow these steps to add a new dial-up connection in Windows XP.

1. Open the Network and Dial-Up Connections applet located in the control panel. Open Make
New Connection to start the Network Connection Wizard and click Next.

2. On the Network Connection Wizard dialog, select Set up an advanced connection and click
Next.

Page 261

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3. On the Network Connection Wizard dialog, select Connect directly to another computer
and click Next.

4. On the Network Connection Wizard dialog, select Guest and click Next.

Page 262

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5. On the Current Connection Wizard dialog, type in name for the new connection and click
Next.

6. On the Network Connection Wizard dialog, select the Communication cable between two
computers… option from the drop-down menu and click Next.

7. On the current Connection Wizard dialog, click Next to allow all users to use this connection.
On the next dialog, name the new connection and click Finish.

Page 263

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8. The new dial-up connection dialog (Connect PPP) appears. Before using the new dial-up
connection, you must verify the serial port speed. Click on Properties in the Connect PPP
dialog.

9. The PPP Dialog opens and shows the General tab. Select the device from the drop-down
menu (if there is more than one) and click Configure.

Page 264

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

10. The Modem Configuration dialog appears. Verify that the Maximum speed is set properly
and click OK. The default Keil Evaluation Board baud rate is 115200 baud.

11. Click OK to close the dialog.

Copyright © Keil, An ARM Company. All rights reserved.

Page 265

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configure PPP Dial-up

Follow these steps to configure the PPP dial-up.

1. In the Connection Properties dialog, click the Networking tab and select PPP from the
"Type of dial-up server I am calling" drop-down menu. Then in the "Components checked
are used by this connection:" section, check the Internet Protocol (TCP/IP) component
and click Properties.

2. The Internet Protocol (TCP/IP) Properties dialog appears. Select Obtain an IP address
automatically and Obtain DNS server address automatically for the IP settings on this
dialog.

Page 266

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

3. Click OK to close the options dialog. The new dial-up connection is now ready to use.

You can also provide your own Static IP. However, it must belong to the same PPP local network or
the connection will be rejected. A typical Class C Net Mask is 255.255.255.0, which means that the
first three bytes of your provided Static IP and the PPP Server static IP address must match. The
last IP address byte must be different.

Copyright © Keil, An ARM Company. All rights reserved.

Page 267

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configure SLIP Dial-up

Follow these steps to configure the SLIP dial-up.

1. Click the Networking tab in the Connection Properties dialog.
Select SLIP from the drop-down menu for the "Type of dial-up server I am calling."

2. Enable the Internet protocol (TCP/IP) option from the "Components checked are used by
this connection" section. Then click the Properties button.

3. On the General tab of the Internet Protocol (TCP/IP) Properties dialog, the "Use the
following IP address" and "Use the following DNS server address" options are automatically
selected because SLIP does not provide IP address negotiation.

Page 268

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Setup the SLIP IP address of your Windows SLIP Client and click OK to close the options
dialog. The new dial-up connection is now ready for use.

Copyright © Keil, An ARM Company. All rights reserved.

Page 269

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Debugging

Two versions of the RL-TCPnet Library are available.

 The production version is the library that is normally used. It does not include any
debugging code.

 The debug version includes debugging messages that are output to the serial interface
using the standard printf function. You can redirect the output messages to another
specified device.

The RL-TCPnet library is not automatically linked with your project. You must manually include one of
them.

Note
 If your target system only has one serial port available and it is used by the PPP or SLIP

Network Interface, then do not enable the debug mode. This is because the debug
messages will interfere with the IP packets, and the system might malfunction or crash.

 If you have a high traffic LAN and the debug mode is enabled, the system might block. If you
experience unpredictable system hangs, try the application with the debug mode disabled.

Copyright © Keil, An ARM Company. All rights reserved.

Page 270

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Enabling Debug

Perform the following steps to enable the Debug mode:

1. Copy the file Net_Debug.c into your project folder, and add it to your project. This file is in
the \Keil\ARM\RL\TCPnet\User folder.

2. Open the Net_Debug.c file in the µVision editor and configure the debugging.

The Net_Debug.c file uses the µVision Configuration Wizard to make it a simple and easy process.
All the options are self explanatory.

You must add the debug version of the RL-TCPnet Library to your project. In this case, the
production library is not required.

Copyright © Keil, An ARM Company. All rights reserved.

Page 271

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Debug Level

Several system modules output debug messages. It is possible to configure the debug output for
each module separately. There are three debug levels available:

Level Description
Off The debug messages for the selected module are disabled.
Errors Only Only error messages are output. This mode is useful for error tracking.
Full Debug In this mode, all debug messages are output.

The system is built from several modules. The owner module of the displayed debug message is
identified by the message prefix. The following system modules are configurable for debugging:

ID Module Description
MEM Dynamic Memory

Management
Allocates and releases frame buffers.

ETH Ethernet Protocol Handles ethernet link.
PPP Point to Point Protocol Handles serial line direct or modem connection PPP link.
SLIP Serial Line Internet

Protocol
Handles serial line direct or modem connection SLIP link.

ARP Address Resolution
Protocol

Handles ethernet MAC address resolution and caching.

IP Internet Protocol Processes the IP network layer.
ICMP Internet Control Message

Protocol
Processes ICMP messages. Best known example is the ping.

IGMP Internet Group
Management Protocol

Processes IGMP messages, Hosts groups and IP Multicasting.

UDP User Datagram Protocol Processes UDP frames.
TCP Transmission Control

Protocol
Processes TCP frames.

NBNS NetBIOS Name Service Maintains name access to your hardware.
DHCP Dynamic Host

Configuration Protocol
Handles automatic configuration of IP address, Net mask,
Default Gateway, and Primary and Secondary DNS servers.

DNS Domain Name Service Handles the resolution of the IP address from a host name.
APP Applications This is a common debug module for all applications such as

HTTP Server, Telnet Server, and TFTP Server.

An example of the debug output is:

ETH: *** Processing Ethernet frame ***

ETH: Dest.MAC: 1E:30:6C:A2:45:5E

ETH: Src. MAC: 00:11:43:A4:FE:40

ETH: Frame len: 60 bytes

ETH: Protocol : 0800

IP : *** Processing IP frame ***

IP : Src. IP: 192.168.1.1

IP : Dest.IP: 192.168.1.150

IP : Protoc.: TCP

IP : Id. Num: E9C1

IP : Frm len: 40 bytes

IP : Frame valid, IP version 4 OK

IP : Sending IP frame...

IP : Src. IP: 192.168.1.150

IP : Dest.IP: 192.168.1.1

IP : Protoc.: TCP

IP : Id. Num: 003A

IP : Frm len: 40 bytes

ETH: Sending Ethernet frame...

ETH: Dest.MAC: 00:11:43:A4:FE:40

ETH: Src. MAC: 1E:30:6C:A2:45:5E

Page 272

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ETH: Frame len: 54 bytes

ETH: Protocol : 0800

In the above example, ethernet and IP debug messages are enabled. Received ethernet packets
are processed byt the Ethernet layer and a debug message containing Ethernet header
information is printed out. Ethernet debug information contains source and destination MAC
address, ethernet frame length and ethernet protocol type.

The packet is then passed to the IP layer. IP layer prints out IP debug messages containing the IP
header information such as source and destination IP address, frame length, protocol type etc.

Copyright © Keil, An ARM Company. All rights reserved.

Page 273

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Redirecting Output

Debug messages are output to a standard serial port. The sendchar() function outputs a single
character. If required, you can customize this function to send the debug messages to some other
device. In most cases, a serial UART is used to print out the debug messages.

Note
 When the sendchar function runs in polling mode, printing all debug messages significantly

reduces the performance. The preferred way is to rewrite the sendchar() function to work in
the interrupt mode.

 Use the highest baud rate possible to reduce the impact on performance from printing the
debug messages.

 If the debug mode is enabled and the embedded system is connected to a high traffic LAN
with plenty of broadcast packets, the system might malfunction.

 Printing debug messages blocks out the system task scheduler during the time when the
message is being sent from the serial port. The incoming IP packets accumulate in the
memory. This soon causes an out of memory error. Any further incoming packets are lost
until some memory is released.

Copyright © Keil, An ARM Company. All rights reserved.

Page 274

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Function Overview

This section summarizes all the routines in the RL-TCPnet product. The functions are ordered
according to the following categories:

 CGI Routines
 Ethernet Routines
 FTP Routines
 HTTP Routines
 IGMP Routines
 Miscellaneous Routines
 Modem Routines
 PPP Interface
 Serial Routines
 SLIP Interface
 SMTP Routines
 System Functions
 TCP Interface
 Telnet Routines
 TFTP Routines
 UDP Interface

The function format is same as that of the RL-RTX functions.

note
 The RL-TCPnet library does not contain all the functions that are part of the RL-TCPnet

product. The Library Reference section on each function mentions whether the function is in
the library or not. If a function you want to use is not in the library, you must do one of the
following:

 Include one of the provided RL-TCPnet source files that contains the function in your
project. You can further customize the function.

 Provide your own function if the RL-TCPnet source files do not contain the function you
require. This is usually the case when you want to use driver functions for a different
hardware.

Copyright © Keil, An ARM Company. All rights reserved.

Page 275

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CGI Routines
Routine Description
cgi_func Processes CGI script commands.
cgi_process_data Processes data returned from an HTTP POST request.
cgi_process_var Processes data returned from an HTTP GET request.
http_accept_host Used for the web server access filtering.
cgx_content_type Defines the HTML content type for cgx script files.

note
 The CGI routines enable you to use CGI scripts to generate dynamic HTTP pages.
 The CGI routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 276

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Ethernet Routines
Routine Description
init_ethernet Initializes the Ethernet controller.
int_disable_eth Disables Ethernet controller interrupts.
int_enable_eth Enables Ethernet controller interrupts.
interrupt_ethernet Interrupt service routine for the Ethernet controller.
poll_ethernet Polls the status register of the Ethernet controller.
send_frame Sends an Ethernet frame.

note
 The Ethernet routines enable the TCPnet system to use an ethernet controller for data

transfer.
 The Ethernet routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 277

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FTP Routines
Routine Description
ftp_fclose Closes a file that was previously opened.
ftp_fdelete Deletes a specified file.
ftp_ffind Lists a file directory.
ftp_fopen Opens a file for reading or writing.
ftp_fread Reads a block of data from a file to data buffer.
ftp_frename Renames a file to a new name.
ftp_fwrite Writes a block of data from buffer to a file.

note
 The FTP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 278

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

HTTP Routines
Routine Description
http_get_info Retrieves remote machine information.
http_get_lang Retrieves preferred browser language settings.
http_get_session Retrieves current session ID.
http_get_var Retrieves HTTP environment variables.
http_get_content_type Retrieves HTTP Content-Type header value.
http_fopen Opens a file for reading.
http_flose Closes a file that was previously opened.
http_fread Reads a block of data from a file to data buffer.
http_fgets Reads a string from a file to data buffer.
http_finfo Reads a time when the file was last modified.
http_date Converts RL date/time format to UTC format.

note
 The HTTP routines enable you to create HTTP applications and serve webpages.
 The HTTP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 279

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

IGMP Routines
Routine Description
igmp_join Requests that this host become a member of the Host Group identified with the

"group-address".
igmp_leave Requests that this host give up its membership in the host group identified by

"group-address".

note
 The IGMP api routines enable you to use IP Multicasting - the transmission of an IP

datagram to a "host group". A multicast datagram is delivered to all the members of its
destination host group.

Copyright © Keil, An ARM Company. All rights reserved.

Page 280

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Miscellaneous Routines
Routine Description
arp_cache_ip Determines if a MAC address is in the ARP cache for the requested IP

address.
dhcp_disable Permanently disables DHCP at run-time.
get_host_by_name Gets the IP address for a hostname.

note
 These TCPnet routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 281

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Modem Routines
Routine Description
init_modem Initializes the modem driver.
modem_dial Dials the phone number of the remote modem.
modem_hangup Disconnects the modem.
modem_listen Sets the local modem to answer incoming calls.
modem_online Determines if the local modem is connected.
modem_process Processes characters that the local modem sends to RL-TCPNet.
modem_run Executes the modem commands required to dial, listen, or disconnect.

note
 The modem routines enable you to use a modem to connect to a remote computer.
 The Modem routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 282

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

PPP Routines
Routine Description
ppp_listen Configures the PPP interface to accept incoming connections.
ppp_connect Starts a dial-up connection to a remote PPP server.
ppp_close Disconnects the PPP link.
ppp_is_up Determines whether the PPP link is established and ready to use.

note
 PPP Network Interface functions activate the PPP demon to start the outgoing dial-up or to

listen to the incoming dial-in connections and to stop an established PPP link. The PPP
Network Interface must be enabled in the configuration.

 The OS can handle simultaneous Ethernet and PPP data links. Using PPP and SLIP link at
the same time is currently not supported, because both use the same serial and modem
device driver.

 The PPP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 283

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Serial Routines
Routine Description
init_serial Initializes the serial driver.
com_getchar Reads a character from the serial input buffer.
com_putchar Writes a character to the source output buffer.
com_tx_active Determines if the serial transmitter is currently active.

note
 The TCPnet serial driver routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 284

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SLIP Routines
Routine Description
slip_listen Configures the SLIP interface to accept incoming connections.
slip_connect Starts a dial-up connection to a remote SLIP server.
slip_close Disconnects the SLIP link.
slip_is_up Determines whether the SLIP link is established and ready to use.

note
 SLIP Network Interface routines activate the SLIP demon to start the outgoing dial-up or to

listen to the incoming dial-in connections and to stop an established SLIP link. The SLIP
Network Interface must be enabled in the configuration.

 The OS can handle simultaneous Ethernet and SLIP data links. Using PPP and SLIP link at
the same time is currently not supported, because both use the same serial and modem
device driver.

 The SLIP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 285

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SMTP Routines
Routine Description
smtp_cbfunc SMTP call-back function.
smtp_connect Starts the SMTP client.
smtp_accept_auth Enables the SMTP authentication.

note
 The SMTP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 286

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SNMP Routines
Routine Description
snmp_trap Sends SNMP trap message.
snmp_set_community Changes the SNMP community.

note
 The SNMP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 287

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

System Functions
Routine Description
init_TcpNet Initializes RL-TCPnet system resources, protocols, and applications.
main_TcpNet Processes RL-TCPnet operations including protocol timeouts, ARP address cache,

and Ethernet controller polling.
timer_tick Generates periodic events for RL-TCPnet.

note
 The TCPnet system functions are the core of the protocol stack. They form a operating

system which calls all other protocol module functions.
 The TCPnet system functions do not require RTOS to run. However, it can run with various

forms of RTOS if required.
 The TCPnet system functions are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 288

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

TCP Routines
Routine Description
tcp_get_socket Allocates a TCP socket.
tcp_connect Initiates a TCP connection.
tcp_listen Opens a TCP socket for listening.
tcp_close Closes a TCP socket.
tcp_abort Closes a TCP socket immediately.
tcp_release_socket Releases (deallocates) a TCP socket.
tcp_get_buf Allocates memory for a TCP send buffer.
tcp_max_dsize Changes the TCP maximum segment size.
tcp_send Sends a TCP packet.
tcp_get_state Retrieves the current state of the TCP socket.
tcp_check_send Determines if a TCP socket is ready to send data.
tcp_reset_window Resets the TCP window to maximum size.

note
 TCP Interface functions exchange data over TCP Socket. It is used when data security is a

primary option. TCP packets require acknowledgement at the protocol level. Eventually, any
lost packets are retransmitted.

 The TCP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 289

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Telnet Routines
Routine Description
tnet_cbfunc TELNET call-back function.
tnet_ccmp Compares the TELNET buffer to a command string.
tnet_get_info Retrieves information about the remote host connected to the TELNET

server.
tnet_process_cmd Processes and executes a TELNET command.
tnet_set_delay Sets the time delay used between TELNET command processing.
tnet_msg_poll Polls the upper-layer application for Unsolicited messages.

note
 The telnet routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 290

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

TFTP Routines
Routine Description
tftp_fclose Closes a TFTP file.
tftp_fopen Opens a TFTP file.
tftp_fread Reads a block of data from a TFTP file.
tftp_fwrite Writes a block of data to a TFTP file.

note
 The TFTP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 291

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

UDP Routines
Routine Description
udp_get_socket Allocates a UDP socket.
udp_open Opens a UDP socket for communication.
udp_close Closes a UDP socket.
udp_release_socket Releases (deallocates) a UDP socket.
udp_get_buf Allocates memory for a UDP send buffer.
udp_send Sends a UDP packet.
udp_mcast_ttl Sets the Time to Live (TTL) for the outgoing multicast messages of a

socket.

note
 UDP Interface routines exchange data over the UDP Socket. It is used when data security

is not the primary option, because UDP packets do not require an acknowledge and can
possibly be lost.

 The UDP routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 292

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-CAN

The RL-CAN Real-Time Library CAN Driver is a group of library routines that enable CAN
communications on a variety of microcontrollers. RL-CAN gives your programs access to the on-chip
CAN controller found on these devices.

A CAN (Controller Area Network) is a high speed (up to 1 Mbit) serial bus with message priority and
error checking. Originally developed for use in automobiles, it is suitable for numerous other
applications like factory automation.

Nodes on a CAN network are usually connected by a differential twisted wire pair physical interface.

Note
 RL-CAN is not included with the RealView® MDK-ARM™ Microcontroller Development Kit. It is

available in the stand-alone product RL-ARM™, which also contains the RTX kernel (source
code included), Flash File System, TCP/IP Stack, and USB drivers.

Copyright © Keil, An ARM Company. All rights reserved.

Page 293

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.keil.com/rl-arm/
http://www.processtext.com/abcchm.html

Overview

The RL-CAN for the RTX Kernel simplifies the implementation of Controller Area Network (CAN)
applications. The RL-CAN includes:

 A common generic software layer.
 A hardware dependent software layer that implements the physical interface with the CAN

peripheral.

The RL-CAN runs interrupt service routines using RTX Kernel functions for Mailbox Management
and Memory Allocation. The RL-CAN uses one Memory Pool for all CAN messages. Each CAN
controller has two mailbox arrays, one to receive and one to transmit message buffering. The buffer
method is First In First Out (FIFO) based.

The interrupt-based RL-CAN provides the user with an available mechanism for message
transmission and reception.

The RL-CAN common generic software layer functions are located in the RTX_CAN.c file. This layer
allows users to apply the same interface across different targets and to easily switch from one
target to another without changing the Main Program.

The RL-CAN hardware dependent software layer functions are located in the CAN_chip.c (example:
for NXP LPC23xx chip file name is CAN_LPC23xx.c) file. The hardware dependent software layer
enables the generic portion to function on many different targets, with each target having its own
hardware dependent software layer implementation.

The RL-CAN function diagram below shows how the Main Program's functions traverse the generic
layer to the hardware layer where the functions are then executed. Input from the hardware
controller follows a reverse route back to the Main Program.

See the article in Wikipedia for more information about CAN.

Copyright © Keil, An ARM Company. All rights reserved.

Page 294

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://en.wikipedia.org/wiki/Controller_Area_Network
http://www.processtext.com/abcchm.html

Features

The RL-CAN Real-Time Library CAN Driver offers a number of benefits and features that help you
create applications with CAN support.

 Support for 11-bit and 29-bit message IDs.
 Support for Data Frames and Remote Frames.
 Easy-to-use library routines to send and receive CAN messages.
 Pre-configured drivers for the most popular ARM® devices.

Copyright © Keil, An ARM Company. All rights reserved.

Page 295

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Source Files

Source files for the Real-Time Library CAN Driver are found in the
\KEIL\ARM\Boards\<vendor>\<board>\RL\CAN\ folders. Various architectures are supported.

 \KEIL\ARM\Boards\Atmel\AT91SAM7X-EK\RL\CAN\
This folder contains CAN projects for the Atmel AT91SAM7X Evaluation Board for the
Atmel AT91SAM7X device family.

 \KEIL\ARM\Boards\Keil\MCB1700\RL\CAN\
This folder contains CAN projects for the Keil MCB1700 Evaluation Board for the
NXP LPC17xx device family.

 \KEIL\ARM\Boards\Keil\MCB2100\RL\CAN\
This folder contains CAN projects for the Keil MCB2100 Evaluation Board for the
NXP LPC21xx device family.

 \KEIL\ARM\Boards\Keil\MCB2300\RL\CAN\
This folder contains CAN projects for the Keil MCB2300 Evaluation Board for the
NXP LPC23xx device family.

 \KEIL\ARM\Boards\Keil\MCB2400\RL\CAN\
This folder contains CAN projects for the Keil MCB2400 Evaluation Board for the
NXP LPC24xx device family.

 \KEIL\ARM\Boards\Keil\MCB2900\RL\CAN\
This folder contains CAN projects for the Keil MCB2900 Evaluation Board for the
NXP LPC29xx device family.

 \KEIL\ARM\Boards\Keil\MCB2929\RL\CAN\
This folder contains CAN projects for the Keil MCB2929 Evaluation Board for the
NXP LPC29xx device family.

 \KEIL\ARM\Boards\Keil\MCBSTM32\RL\CAN\
This folder contains CAN projects for the Keil MCBSTM32 Evaluation Board for the
ST Microelectronics STM32F103 device family.

 \KEIL\ARM\Boards\Keil\MCBSTM32C\RL\CAN\
This folder contains CAN projects for the Keil MCBSTM32C Evaluation Board for the
ST Microelectronics STM32F105/7 device family.

 \KEIL\ARM\Boards\Keil\MCBSTM32E\RL\CAN\
This folder contains CAN projects for the Keil MCBSTM32E Evaluation Board for the
ST Microelectronics STM32F103 device family.

 \KEIL\ARM\Boards\Keil\MCBSTR7\RL\CAN\
This folder contains CAN projects for the Keil MCBSTR7 Evaluation Board for the
ST Microelectronics STR71x device family.

 \KEIL\ARM\Boards\Keil\MCBSTR730\RL\CAN\
This folder contains CAN projects for the Keil MCBSTR730 Evaluation Board for the
ST Microelectronics STR73x device family.

 \KEIL\ARM\Boards\Keil\MCBSTR9\RL\CAN\
This folder contains CAN projects for the Keil MCBSTR9 Evaluation Board for the
ST Microelectronics STR91x device family.

 \KEIL\ARM\Boards\Luminary\EK-LM3S2110\RL\CAN\
This folder contains CAN projects for the Luminary EK-LM3S2110 Evaluation Board for the Luminary
LM3Sxxxx device family.

 \KEIL\ARM\Boards\Luminary\EK-LM3S8962\RL\CAN\
This folder contains CAN projects for the Luminary EK-LM3S8962 Evaluation Board for the Luminary
LM3Sxxxx device family.

 \KEIL\ARM\Boards\Phytec\LPC229x\RL\CAN\
This folder contains CAN projects for the Phytec LPC229x Evaluation Board for the
NXP LPC229x device family.

The following table identifies the file names and contents. The include and source files described
contain constant definitions and program code that is specific to each target hardware and
microcontroller.

Filename Description
RTX_CAN.H This include file defines the functions and constants related to the CAN driver. This

header file should be included in all source files that use CAN Driver routines.
It is located in Keil\ARM\RV31\INC directory.

RTX_CAN.C This source file is the common generic CAN Driver file that interfaces to the hardware
layer via routines implemented in CAN_chip.C.
It is located in Keil\ARM\RL\CAN\SRC directory.

CAN_chip.C This source file contains the hardware-level driver routines. "chip" stands for name
of device series, for example for NXP LPC23xx device series file name is
CAN_LPC23xx.C . All files are located in Keil\ARM\RL\CAN\Drivers directory.

CAN_CFG.H This include file is the configuration file that enables users to easily change

Page 296

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

parameters for the hardware-level driver. You may edit this file using the
Configuration Wizard in µVision®.

CAN_REG.H This include file contains type definitions that are used by the hardware-level driver
routines. This include file is only used for the NXP LPC2xxx device family.

Note
 To use the CAN Driver in your own project, copy the files listed above except RTX_CAN.H

and RTX_CAN.C from the appropriate folder into your project folder. Then, configure
CAN_CFG.H to meet the requirements of your CAN application.

Copyright © Keil, An ARM Company. All rights reserved.

Page 297

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Function Overview

This section summarizes all the routines in the RL-CAN library. The functions are ordered according
to the following categories:

 Initialization Routines
 Message Reception Routines
 Message Transmission Routines

The function format is same as that of the RL-RTX functions.

Copyright © Keil, An ARM Company. All rights reserved.

Page 298

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Initialization Routines
Routine Attributes Description
CAN_init Initializes the CAN controller hardware, CAN driver resources, and CAN

bus baudrate.
CAN_start Starts the specified CAN controller and enables CAN bus communication.

note
 The CAN initialization routines enable you to initialize a CAN controller and start the

communication.
 The CAN initialization routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 299

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Message Reception Routines
Routine Attributes Description
CAN_rx_object Configures a CAN message receive object.
CAN_receive Receives a CAN message.

note
 The CAN message reception routines enable you to configure and receive data using a CAN

controller.
 The CAN message reception routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 300

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Message Transmission Routines
Routine Attributes Description
CAN_tx_object Configures a CAN message transmit object.
CAN_send Transmits a CAN DATA FRAME message.
CAN_request Transmits a CAN REMOTE FRAME request and possibly receives a

DATA FRAME response.
CAN_set Sets the CAN DATA FRAME to send in response to a REMOTE

FRAME request.

note
 The CAN message transmission routines enable you to configure, send and request data

using a CAN controller.
 The CAN message transmission routines are not reentrant.

Copyright © Keil, An ARM Company. All rights reserved.

Page 301

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Errors

The RL-CAN library routines return one of the following error constants to indicate status.

 CAN_OK
Indicates the function completed successfully without error.

 CAN_NOT_IMPLEMENTED_ERROR
Indicates the function is not implemented.

 CAN_MEM_POOL_INIT_ERROR
Indicates that the memory pool used for software message buffers did not initialize successfully.

 CAN_BAUDRATE_ERROR
Indicates that the communication speed was incorrectly initialized.

 CAN_TX_BUSY_ERROR
Indicates that the transmit hardware is busy.

 CAN_OBJECTS_FULL_ERROR
Indicates that no more transmit or receive objects may be defined.

 CAN_ALLOC_MEM_ERROR
Indicates there is no available memory in the CAN memory pool.

 CAN_DEALLOC_MEM_ERROR
Indicates that the memory used by the transmitted or received message was not correctly
deallocated.

 CAN_TIMEOUT_ERROR
Indicates that the timeout expired before a message was transmitted.

 CAN_UNEXIST_CTRL_ERROR
Indicates that the requested CAN controller does not exist.

 CAN_UNEXIST_CH_ERROR
Indicates that the requested CAN channel does not exist.

If the function completes successfully and without error, CAN_OK is returned.

Note
 CAN error codes are defined as an enumerated CAN_ERROR type in RTX_CAN.h.

Copyright © Keil, An ARM Company. All rights reserved.

Page 302

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Hardware Configuration

The RL-CAN must be configured for the embedded applications you create. All configuration settings
are found in the CAN_Cfg.h file. Configuration options allow you to:

 Specify which of the hardware available CAN controllers to use
 Specify the size of the transmit software FIFO buffer for each CAN controller
 Specify the size of the receive software FIFO buffer for each CAN controller

You need to add a CAN_Cfg.h configuration file to each project when you want to use the RL-CAN.

To customize the RL-CAN configuration, you must change the settings specified in CAN_Cfg.h file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 303

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NXP LPC17xx Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 304

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_LPC17xx.c file:

 PCLK (Peripheral CLocK) constant is used to calculate the correct communication speed
(baudrate).

 #define PCLK 25000000

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL2 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_LPC17xx.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 305

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NXP LPC21xx Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 306

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_LPC21xx.c file:

 PCLK (Peripheral CLocK) constant is used to calculate the correct communication speed
(baudrate). The value of this constant must be calculated manually and is dependent on
VPBDIV and MSEL settings in the Startup file. The value is equal to VPB Clock.

 #define PCLK 60000000 /* VPB Clock = CPU Clock,

 MSEL = 5,

 xtal = 12 MHz,

 CPU Clock = 60 MHz (MSEL * xtal)

*/

 VIC_NUM_CTRL1_TX .. VIC_NUM_CTRL4_TX specifies which vectored interrupt number
to use for message transmission.

Since transmission is interrupt driven, it is necessary to define unique numbers of interrupts
used for each controller's transmission. Acceptable values are 0 .. 15. The lower values have
a higher priority.

#define VIC_NUM_CTRL1_TX 11

 VIC_NUM_CTRL1_RX .. VIC_NUM_CTRL4_RX specifies which vectored interrupt number
is going to be used for message reception.

Since reception is interrupt driven, it is necessary to define unique numbers of interrupts
used for each controller's reception. Acceptable values are 0 .. 15. The lower values have a
higher priority.

#define VIC_NUM_CTRL1_RX 7

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL4 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 1

#define USE_CAN_CTRL3 0

#define USE_CAN_CTRL4 0

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

Page 307

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_LPC21xx.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 308

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Getting Started

To run this RL-CAN LPC21xx example on a board, ensure you have:

 an MCB2100 Evaluation board from Keil
 a ULINK® USB Interface Adapter from Keil
 a 5V power supply
 a loopback cable (DB-9 female to DB-9 female).
1. Copy the example from \Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex1 or from

\Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex2 to any directory you want to use.
2. Load the project CAN_Ex1.uv2 or CAN_Ex2.uv2 file from the copied directory into µVision® 3

IDE (Project — Open Project...)

3. Rebuild the executable file from source files. Click on Project — Rebuild all target files on
the menu or click on the toolbar button.

Page 309

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Connect the ULINK device to the PC's USB port and to the JTAG connector on the MCB2100
board.
Connect a power cord to the barrel plug port on the MCB2100 board.

5. Make a loopback connection between the CAN1 and CAN2 ports. Connect the CAN1 pin 2 to
the CAN2 pin 2 and the CAN1 pin 7 to the CAN2 pin 7.

6. Power-up the MCB2100 board.
7. Click on Flash — Download on the menu to download the executable file to the target

LPC2100 Flash on the MCB2100 board.

8. Rotate the potentiometer and watch the LEDs change state and flash speed according to
the position of the potentiometer.

Copyright © Keil, An ARM Company. All rights reserved.

Page 310

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Simulation

Programs you create with the RL-CAN Real-Time Library CAN Driver may be tested using the
simulation capabilities of the µVision® IDE. Simulation allows you to test your CAN application
before target hardware is ready.

Follow these steps to test an RL-CAN example application using the µVision Simulator.

1. Copy the example from \Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex1 or from
\Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex2 directory to any directory you
want to use.

2. Select and load the project file CAN_Ex1.uv2 or CAN_Ex2.uv2 into µVision . This file is
located in the folder copied in step 1. In µVision, use Project — Open Project...

3. Select the target Simulator.

4. Click on Debug — Start/Stop Debug Session on the menu bar or click the toolbar button to
run the simulation.

5. New windows appear as shown below. These windows show the device peripheral
functionality.

Page 311

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. Click on Debug — Run to start the simulation.

7. The communication messages display in the CAN Communication window.

8. Click on the Analog sweep 0 .. 3.3V button, on the Toolbox window, to start the analog
value changing by rising from 0 V to 3.3 V and lowering from 3.3 V to 0 V. You can stop the
analog value change by clicking on Analog sweep STOP.

Page 312

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

9. Click on the button CAN loopback ON, on the Toolbox window, to enable simulation of the
hardware connection (loopback) between the CAN 1 and CAN 2 ports.

Click on CAN loopback OFF to turn off the simulation of the loopback connection between
the CAN ports.

10. After enabling the loopback in the previous step, you can watch changes in the General
Purpose Input/Output 1 (GPIO 1) window on bits 23 .. 16, according to analog input
value.

11. Stop the simulation before exiting µVision by clicking on Debug — Stop on the Debug menu.

Copyright © Keil, An ARM Company. All rights reserved.

Page 313

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NXP LPC229x Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 314

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_LPC229x.c file:

 PCLK (Peripheral CLocK) constant is used to calculate the correct communication speed
(baudrate). The value of this constant must be calculated manually and is dependent on
VPBDIV and MSEL settings in the Startup file. The value is equal to VPB Clock.

 #define PCLK 60000000 /* VPB Clock = CPU Clock,

 MSEL = 5,

 xtal = 12 MHz,

 CPU Clock = 60 MHz (MSEL * xtal)

*/

 VIC_NUM_CTRL1_TX .. VIC_NUM_CTRL4_TX specifies which vectored interrupt number
to use for message transmission.

Since transmission is interrupt driven, it is necessary to define unique numbers of interrupts
used for each controller's transmission. Acceptable values are 0 .. 15. The lower values have
a higher priority.

#define VIC_NUM_CTRL1_TX 11

 VIC_NUM_CTRL1_RX .. VIC_NUM_CTRL4_RX specifies which vectored interrupt number
is going to be used for message reception.

Since reception is interrupt driven, it is necessary to define unique numbers of interrupts
used for each controller's reception. Acceptable values are 0 .. 15. The lower values have a
higher priority.

#define VIC_NUM_CTRL1_RX 7

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL4 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 1

#define USE_CAN_CTRL3 0

#define USE_CAN_CTRL4 0

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

Page 315

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_LPC229x.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 316

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NXP LPC23xx Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 317

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_LPC23xx.c file:

 PCLK (Peripheral CLocK) constant is used to calculate the correct communication speed
(baudrate).

 #define PCLK 24000000

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL2 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_LPC23xx.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 318

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NXP LPC24xx Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 319

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_LPC24xx.c file:

 PCLK (Peripheral CLocK) constant is used to calculate the correct communication speed
(baudrate).

 #define PCLK 24000000

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL2 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_LPC24xx.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 320

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

NXP LPC29xx Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 321

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_LPC29xx.c file:

 PCLK (Peripheral CLocK) constant is used to calculate the correct communication speed
(baudrate).

 #define PCLK 96000000

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL2 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_LPC29xx.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 322

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ST STM32F103 Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 323

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_STM32F103.c file:

 CAN_CLK (Peripheral Clock) constant is used to calculate the correct communication speed
(baudrate).

 #define CAN_CLK 36000000

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL2 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 0

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_STM32F103.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 324

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Getting Started

To run this RL-CAN STM32F103 example on a board, ensure you have:

 a MCBSTM32 Evaluation board from Keil
 a ULINK2® USB Interface Adapter from Keil
 a USB cable for 5 V power supply.
1. Copy the example from \Keil\ARM\Boards\Keil\MCBSTM32\RL\CAN\CAN_Ex1 to any

directory you want to use.
2. Load the project CAN_Ex1.uv2 file from the copied directory into µVision® 3 IDE (Project —

> Open Project...)

3. Select the target MCBSTM32.

4. Rebuild the executable file from source files. Click on Project —> Rebuild all target files on
the menu or click on the toolbar button .

Page 325

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5. Connect the ULINK device to the PC's USB port and to the JTAG Connector on the
MCBSTM32 board.

6. Power-up the MCBSTM32 board by connecting the board's USB power input to the PC's USB
port.

7. Click on Flash —> Download on the menu to download the executable file to the STM32
flash target on the MCBSTM32 board.

8. Rotate the potentiometer and watch the Tx and RX values on the LCD, and the state of the
LEDs change according to the position of the potentiometer.

Copyright © Keil, An ARM Company. All rights reserved.

Page 326

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Simulation

You can test the programs you create with the Real-Time Library CAN driver (RL-CAN) using the
simulation capabilities of the µVision® IDE. Simulation allows you to test your CAN application
before the target hardware is ready.

Follow these steps to test an RL-CAN example application using the µVision Simulator.

1. Copy the example \KEIL\ARM\Boards\Keil\MCBSTM32\RL\CAN\CAN_Ex1 to a new
folder.

2. Select and load the project file (CAN_Ex1.UV2) into µVision. This file is located in the folder
copied in step 1. In µVision, use Project —> Open Project...

3. Select the target Simulator.

4. Click on Debug —> Start/Stop Debug Session on the menu bar or click the toolbar button
to run the simulation.

5. New windows appear as shown below. These windows show the device peripheral
functionality.

Page 327

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. Click on Debug —> Run to start the simulation.

7. The communication messages display in the windows.

Page 328

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8. Click on the Analog sweep 0 .. 3.3V button, on the Toolbox window, to start the analog
value rising from 0 V to 3.3 V and lowering from 3.3 V to 0 V. You can stop the analog value
change by clicking on Analog sweep STOP.

9. Stop the simulation before exiting µVision by clicking on Debug —> Stop on the Debug
menu.

Copyright © Keil, An ARM Company. All rights reserved.

Page 329

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ST STM32F105/7 Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 330

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_STM32F107.c file:

 CAN_CLK (Peripheral Clock) constant is used to calculate the correct communication speed
(baudrate).

 #define CAN_CLK 36000000

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL2 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_STM32F107.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 331

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ST STR71x Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 332

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 enables the CAN controller that will be used. To enable the CAN
controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 333

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Getting Started

To run this RL-CAN STR71x example on a board, ensure you have:

 an MCBSTR7 Evaluation board from Keil
 a ULINK® USB Interface Adapter from Keil
 a 6 - 9 V power supply.
1. Copy the example from \Keil\ARM\Boards\Keil\MCBSTR7\RL\CAN\CAN_Ex1 or from

\Keil\ARM\Boards\Keil\MCBSTR7\RL\CAN\CAN_Ex2 to any directory you want to use.
2. Load the project CAN_Ex1.uv2 or CAN_Ex2.uv2 file from the copied directory into µVision® 3

IDE (Project — Open Project...)

3. Rebuild the executable file from source files. Click on Project — Rebuild all target files on
the menu or click on the toolbar button .

4. Connect the ULINK device to the PC's USB port and to the JTAG Connector on the MCBSTR7

Page 334

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

board.
Connect a power cord to the barrel plug port on the MCBSTR7 board.

5. Power-up the MCBSTR7 board.
6. Click on Flash — Download on the menu to download the executable file to the target

MCBSTR7 board.

7. Rotate the potentiometer and watch the LEDs change state and flash speed according to
the position of the potentiometer.

Copyright © Keil, An ARM Company. All rights reserved.

Page 335

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Simulation

You can test the programs you create with the Real-Time Library CAN driver (RL-CAN) using the
simulation capabilities of the µVision® IDE. Simulation allows you to test your CAN application
before the target hardware is ready.

Follow these steps to test an RL-CAN example application using the µVision Simulator.

1. Copy one of the examples (\KEIL\ARM\Boards\Keil\MCBSTR7\RL\CAN\CAN_Ex1 or
\KEIL\ARM\Boards\Keil\MCBSTR7\RL\CAN\CAN_Ex2) to a new folder.

2. Select and load the project file (CAN_Ex1.UV2 or CAN_Ex2.UV2) into µVision. This file is
located in the folder copied in step 1. In µVision, use Project — Open Project...

3. Select the target Simulator.

4. Click on Debug — Start/Stop Debug Session on the menu bar or click the toolbar button to
run the simulation.

5. New windows appear as shown below. These windows show the device peripheral
functionality.

Page 336

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. Click on Debug — Run to start the simulation.

7. The communication messages display in the CAN Communication window.

Page 337

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8. Click on the Analog sweep 0 .. 2.5V button, on the Toolbox window, to start the analog
value changing by rising from 0 V to 2.5 V and lowering from 2.5 V to 0 V. You can stop the
analog value change by clicking on Analog sweep STOP.

9. Stop the simulation before exiting µVision by clicking on Debug — Stop on the Debug menu.

Copyright © Keil, An ARM Company. All rights reserved.

Page 338

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ST STR73x Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 339

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL3 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 1

#define USE_CAN_CTRL3 0

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 340

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Getting Started

To run this RL-CAN STR73x example on a board, ensure you have:

 an STR730 Evaluation board from Hitex
 a ULINK® USB Interface Adapter from Keil
 a 6 - 9 V power supply
 a loopback cable (DB-9 female to DB-9 female).
1. Copy the example from \Keil\ARM\Boards\Keil\MCBSTR730\RL\CAN\CAN_Ex1 or from

\Keil\ARM\Boards\Keil\MCBSTR730\RL\CAN\CAN_Ex2 to any directory you want to
use.

2. Load the project CAN_Ex1.uv2 or CAN_Ex2.uv2 file from the copied directory into µVision® 3
IDE (Project — Open Project...)

3. Rebuild the executable file from source files. Click on Project — Rebuild all target files on
the menu or click on the toolbar button .

Page 341

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Connect the ULINK device to the PC's USB port and to the JTAG Connector on the STR730
board.
Connect the power cord to the barrel plug port on the STR730 board.

Page 342

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5. Power-up the STR730 board.
6. Click on Flash — Download on the menu to download the executable file to the target

STR730 board.

7. Rotate the potentiometer and watch the value change on the 7-segment LCDs according to
the position of the potentiometer.

Copyright © Keil, An ARM Company. All rights reserved.

Page 343

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Simulation

You can test the programs you create with the Real-Time Library CAN driver (RL-CAN) using the
simulation capabilities of the µVision® IDE. Simulation allows you to test your CAN application
before the target hardware is ready.

Follow these steps to test an RL-CAN example application using the µVision Simulator.

1. Copy one of the examples (\KEIL\ARM\Boards\Keil\MCBSTR730\RL\CAN\CAN_Ex1 or
\KEIL\ARM\Boards\Keil\MCBSTR730\RL\CAN\CAN_Ex2) to a new folder.

2. Select and load the project file (CAN_Ex1.UV2 or CAN_Ex2.UV2) into µVision. This file is
located in the folder copied in step 1. In µVision, use Project — Open Project...

3. Select the target Simulator.

4. Click on Debug — Start/Stop Debug Session on the menu bar or click the toolbar button to
run the simulation.

5. New windows appear as shown below. These windows show the device peripheral
functionality.

Page 344

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. Click on Debug — Run to start the simulation.

7. The communication messages display in the CAN 0 Communication and CAN 1
Communication windows.

Page 345

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

8. Click on the Analog sweep 0 .. 4.5V button, on the Toolbox window, to start the analog
value rising from 0 V to 4.5 V and lowering from 4.5 V to 0 V. You can stop the analog value
change by clicking on Analog sweep STOP.

9. Stop the simulation before exiting µVision by clicking on Debug — Stop on the Debug menu.

Page 346

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 347

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ST STR91x Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 348

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 enables the CAN controller that will be used. To enable the CAN
controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 349

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Getting Started

To run this RL-CAN STR91x example on a board, ensure you have:

 an MCBSTR9 Evaluation board from Keil
 a ULINK® USB Interface Adapter from Keil
 a USB cable for 5 V power supply.
1. Copy the example from \Keil\ARM\Boards\Keil\MCBSTR9\RL\CAN\CAN_Ex1 or from

\Keil\ARM\Boards\Keil\MCBSTR9\RL\CAN\CAN_Ex2 to any directory you want to use.
2. Load the project CAN_Ex1.uv2 or CAN_Ex2.uv2 file from the copied directory into µVision® 3

IDE (Project — Open Project...)

3. Rebuild the executable file from source files. Click on Project —; Rebuild all target files on
the menu or click on the toolbar button .

4. Connect the ULINK device to the PC's USB port and to the JTAG Connector on the MCBSTR9

Page 350

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

board.

5. Power-up the MCBSTR9 board by connecting the board's USB power input to the PC's USB
port.

Page 351

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. Click on Flash — Download on the menu to download the executable file to the STR910
flash target on the MCBSTR9 board.

7. Rotate the potentiometer and watch the Tx and RX values on the LCD, and the state of the
LEDs change according to the position of the potentiometer.

Copyright © Keil, An ARM Company. All rights reserved.

Page 352

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Toshiba TMPM36x Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 353

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_TMPM36x.c file:

 CAN_PERI_FREQ (CAN PERIpheral FREQency) constant is used to calculate the correct
communication speed (baudrate).

 #define CAN_PERI_FREQ 12000000

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 enables the CAN controller that will be used. To enable the CAN
controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_TMPM36x.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 354

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Getting Started

To run this RL-CAN TMPM36x example on a board, ensure you have:

 an MCBTMPM360 Evaluation board from Keil
 a ULINK® USB Interface Adapter from Keil
 a USB cable for 5 V power supply.
1. Copy the example from \Keil\ARM\Boards\Keil\MCBTMPM360\RL\CAN\CAN_Ex1 or

from \Keil\ARM\Boards\Keil\MCBTMPM360\RL\CAN\CAN_Ex2 to any directory you
want to use.

2. Load the project CAN_Ex1.uv2 or CAN_Ex2.uv2 file from the copied directory into µVision® 4
IDE (Project —> Open Project...)

3. Rebuild the executable file from source files. Click on Project —> Rebuild all target files on
the menu or click on the toolbar button .

Page 355

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Connect the ULINK device to the PC's USB port and to the Cortex Debug Connector on the
MCBTMPM360 board.

5. Power-up the MCBTMPM360 board by connecting the board's USB power input to the PC's
USB port.

6. Click on Flash —> Download on the menu to download the executable file to the TMPM364
flash target on the MCBTMPM360 board.

7. Press button PJ4 and keep it pressed while resetting the board (to enable loopback mode in
which everything that is sent on CAN is also received).

8. Rotate the potentiometer and watch the the state of the LEDs change according to the
position of the potentiometer.

Copyright © Keil, An ARM Company. All rights reserved.

Page 356

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Luminary LM3Sxxxx Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 357

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_LM3Sxxxx.c file:

 CAN_CLOCK (Peripheral clock) constant is used to calculate the correct communication
speed (baudrate).

 #define CAN_CLOCK 8000000

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 .. USE_CAN_CTRL3 enables the CAN controller that will be used. To
enable the CAN controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

#define USE_CAN_CTRL2 0

#define USE_CAN_CTRL3 0

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_LM3Sxxxx.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 358

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Atmel AT91SAM7X Devices

Copyright © Keil, An ARM Company. All rights reserved.

Page 359

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Hardware Configuration

CAN Hardware Configuration

The following symbols specify CAN Hardware Configuration related parameters and are located in
CAN_SAM7X.c file:

 MCK_FREQ (Master Clock Frequency) constant is used to calculate the correct
communication speed (baudrate). The value of this constant must be calculated manually
and is dependent on the Power Management Controller (PMC) settings in the SAM7.s
startup file.

 #define MCK_FREQ 47923200

CAN Generic Configuration

The following symbols specify CAN Generic Configuration related parameters and are located in
CAN_Cfg.h file:

 USE_CAN_CTRL1 enables the CAN controller that will be used. To enable the CAN
controller, set this value to 1.

The RL-CAN uses this information to reserve the memory pool and the memory for software
FIFO buffers, as well as to enable interrupts for handling transmission and reception of CAN
messages on the specified CAN controller.

#define USE_CAN_CTRL1 1

 CAN_No_SendObjects specifies the size of the software message FIFO buffers for
message sending. Each CAN controller reserves a specified size of software buffer to send
messages.

 #define CAN_No_SendObjects 20

 CAN_No_ReceiveObjects specifies the size of the software message FIFO buffers for
message reception. Each CAN controller reserves a specified size of software buffer to
receive messages.

 #define CAN_No_ReceiveObjects 20

Using Configuration Wizard

You can use the Configuration Wizard to select the parameters as shown in the picture below.

File CAN_SAM7X.c edited with Configuration Wizard:

File CAN_Cfg.h edited with Configuration Wizard:

Copyright © Keil, An ARM Company. All rights reserved.

Page 360

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Getting Started

To run this RL-CAN AT91SAM7X example on a board, ensure you have:

 an AT91SAM7X-EK Evaluation board from Atmel
 a ULINK® USB Interface Adapter from Keil
 a USB cable for 5 V power supply.
1. Copy the example from \Keil\ARM\Boards\Atmel\AT91SAM7X-EK\RL\CAN\CAN_Ex1 or

from \Keil\ARM\Boards\Atmel\AT91SAM7X-EK\RL\CAN\CAN_Ex2 to any directory you
want to use.

2. Load the project CAN_Ex1.uv2 or CAN_Ex2.uv2 file from the copied directory into µVision® 3
IDE (Project — Open Project...)

3. Rebuild the executable file from source files. Click on Project — Rebuild all target files on
the menu or click on the toolbar button .

Page 361

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Connect the ULINK device to the PC's USB port and to the JTAG Connector on the
AT91SAM7X-EK board.

5. Power-up the AT91SAM7X board by connecting the board's USB power input to the PC's USB
port.

6. Click on Flash — Download on the menu to download the executable file to the SAM7X flash
target on the AT91SAM7X-EK board.

7. The AT91SAM7X microcontroller has only one CAN port, and it does not have loopback
capability. Hence, to demonstrate the functionality of the example, you must connect
another CAN device that can send and receive CAN messages from this AT91SAM7X-EK

Page 362

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

board. After connecting another CAN device, move the joystick on the AT91SAM7X-EK board
and see what CAN message has been sent. You can also see the state of the 4 most
significant bits of the received message in the 4 LEDs.

Copyright © Keil, An ARM Company. All rights reserved.

Page 363

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Initialization

On its first invocation, the CAN_init function does two things:

 It initializes the hardware of all CAN controllers. This includes setting up dedicated pin
functions for CAN transmit and receive and assigning interrupt routine addresses and
priorities to the CAN transmit and receive interrupts according to the parameters in
CAN_CFG.H.

 It initializes the memory pool used for CAN transmit and receive message buffers.

The size of the memory pool is determined by constants in RTX_CAN.H and CAN_CFG.H.
These parameters are constants CAN_CTRL_MAX_NUM, CAN_No_SendObjects and
CAN_No_ReceiveObjects.

CAN_CTRL_MAX_NUM is maximum index of the hardware CAN controller used, this constant
is set automatically by preprocessor inside RTX_CAN.H file.

CAN_No_SendObjects is the number of messages available for usage in the transmit
software message FIFO buffer.

CAN_No_ReceiveObjects is the number of messages available for usage in the receive
software message FIFO buffer.

The memory pool uses (CAN_CTRL_MAX_NUM * (CAN_No_SendObjects +
CAN_No_ReceiveObjects) * 4 + 3) * 4 of bytes of memory.

Note
 Mailbox size is specified in the CAN_CFG.H file using the CAN_No_SendObjects and

CAN_No_ReceiveObjects manifest constants.

Copyright © Keil, An ARM Company. All rights reserved.

Page 364

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Example Projects

Example Projects for the RL-CAN are in the folder
\Keil\ARM\Boards\<vendor>\<board>\RL\CAN\.

Project Description
CAN_Ex1 Shows CAN message sending and receiving with different fixed CAN message IDs.
CAN_Ex2 Shows CAN message sending and receiving with remote frames and the usage of CAN

message masks.

Copyright © Keil, An ARM Company. All rights reserved.

Page 365

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB

RL-USB describes the RL-USB Library designed to create USB Device and USB Host
applications. RL-USB is integrated in the Real-Time Library (RL-ARM).

The RL-USB Library offers configurable functions to quickly design an application for a USB Device
or USB Host. The library handles the low-level USB requests without the need to write the
hardware layer code. Developers can focus on the application's request rather than concentrating
on the specialties of the USB protocol.

From an application point of view, the library can be split into two parts, each supporting specific
characteristics: RL-USB Device Features and RL-USB Host Features.

The following chapters are included:

RL-USB for USB Device Applications

Describes the library features, software stack, the source files, and device functions.
Explains how to create a USB Device applications with the RL-USB Library.

RL-USB for USB Host Applications

Describes the library features, software stack, the source files, and host functions. Explains
how to create a USB Host applications with the RL-USB Library.

USB Concepts

Gives a general introduction to the USB network, protocol, communication, and descriptors.
This chapter is not strictly related to the RL-USB Library.

Copyright © Keil, An ARM Company. All rights reserved.

Page 366

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.keil.com/rl-arm/
http://www.processtext.com/abcchm.html

RL-USB for USB Device Applications

This chapter contains the following sections:

RL-USB Device Library

Describes the RL-USB Library features, software stack, source files, and functions when
designing a USB Device application.

Create USB Device Applications

Describes the steps to create various applications for USB Devices using the RL-USB Library.

Test USB Device Applications

Lists utilities to test applications for USB Devices.

Copyright © Keil, An ARM Company. All rights reserved.

Page 367

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Device Library

The RL-USB Library for USB Devices is an easy-to-use software collection providing a common API
for a broad range of USB Device controllers. The RL-USB Library can be used standalone or with the
RTX-RTOS. The library uses the native device drivers of the Windows operating system and
supports ADC, CDC, HID, MSC, and composite devices.

This chapter contains the sections:

RL-USB Device Features

Lists the RL-USB characteristics and supported device classes.

RL-USB Device Software Stack

Describes the RL-USB Device Controller Software Stack layers.

RL-USB Device Functions

Lists the RL-USB Device Library functions and relates them to the software stack layer.

RL-USB Device Source Files

Lists the source code files and relates them to the software stack layer.

RL-USB Device Configuration

Explains the device configuration options available in the RL-USB Device Library.

Copyright © Keil, An ARM Company. All rights reserved.

Page 368

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Device Features

The RL-USB Library enables the developer to create USB Device applications that:

 Comply with the USB 2.0 specification (High-Speed USB).
 Comply with USB 1.1 (Low-Speed and Full-Speed USB) specification.
 Work with the RTX-RTOS.
 Support control, interrupt, bulk, and isochronous endpoints.
 Support composite USB devices.
 Support the device classes:
 Audio Device (ADC) - to exchange streaming audio data.
 Communication Device (CDC) - to realize a virtual COM port.
 Human Interface Device (HID) - to exchange control and configuration data.
 Mass Storage Device (MSC) - to store and access data.

Copyright © Keil, An ARM Company. All rights reserved.

Page 369

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Device Software Stack

The Software Stack of the RL-USB Device Library consists of several layers:

 USB Function Driver
 USB Device Core Driver
 USB Device Controller Driver

The USB Function Driver is a hardware independent layer containing USB functions that are class
specific and application dependent. The following USB classes are supported:

 Audio Device Class (ADC)
 Communication Device Class (CDC)
 Human Interface Device Class (HID)
 Mass Storage Device Class (MSC)

The USB Device Core Driver is a hardware independent layer and contains functions that
implement the USB device core. This layer is an interface between the USB Device Controller Driver
and the USB Function Driver layer.

The USB Device Controller Driver is the interface between the USB Device Controller Hardware
and the USB Device Core Driver. It contains routines to read and write to the USB Device Controller
Hardware.

Copyright © Keil, An ARM Company. All rights reserved.

Page 370

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Device Functions

RL-USB Device Functions can be used for creating USB Device applications. The functions are
categorized into global functions and class specific functions.

 Global functions.

These RL-USB functions initialize and connect a USB Device. Use these functions prior to using any
other class specific function.

Function Name Description
usbd_init Initializes the USB Device core and controller hardware. Use this function

before using any other USB Device function. No code changes required.
usbd_connect Connects or disconnects the USB Device. No code changes required.
usbd_reset_core Resets the USB Device core. No code changes required.
 Audio Device Class (ADC) functions.

Use the following class specific functions to customize audio device functionality. Adapt these
functions in the file usbd_user_adc.c.

Function Name Description
usbd_adc_init Initializes the USB Device user audio functionality. Modify the code to the

application needs.
Custom functions to provide required USB Audio Device functionality. (For
example timer interrupt routine to output audio samples on speaker)

 Communication Device Class (CDC) functions.

Use these class specific functions to customize a serial communication device functionality. Adapt
these functions in the file usbd_user_cdc.c.

Function Name Description
usbd_cdc_init Initializes the USB Device user communication functionality. Modify the

code to the application needs.
usbd_cdc_ser_availchar Checks whether data are available at the serial interface. Modify the code

to the application needs.
usbd_cdc_ser_closeport Closes the serial communication port.
usbd_cdc_ser_initport Initializes the data structures and serial port. Modify the code to the

application needs.
usbd_cdc_ser_linestate Checks the line-state of the port. Modify the code to the application

needs.
usbd_cdc_ser_openport Opens the serial communication port.
usbd_cdc_ser_read Reads data from the serial port. Modify the code to the application needs.
usbd_cdc_ser_write Writes data to the serial port. Modify the code to the application needs.

Custom functions to provide required USB Communication Device
functionality. (For example serial interrupt routine to input or output
characters on serial port)

usbd_vcom_chkserstate Checks the status of the USB virtual COM port and if state changes
prepares notification. No code changes required.

usbd_vcom_serial2usb Writes data from the serial port to the USB virtual COM Port. No code
changes required.

usbd_vcom_usb2serial Writes data from the USB virtual COM port to the serial port. No code
changes required.

 Human Interface Device Class (HID) functions.

Use the following class specific functions to customize a human interface device functionality. Adapt
these functions in the file usbd_user_hid.c.

Function Name Description
usbd_hid_init Initializes the user USB Device user HID functionality. Modify the code to

the application needs.
usbd_hid_getinreport Prepares USB HID IN report data to be sent to the USB Host. Modify the

code to the application needs.
usbd_hid_setoutreport Processes the USB HID OUT report data that was received. Modify the

code to the application needs.

Page 371

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Mass Storage Device Class (MSC) functions.

Use the following class specific functions to customize a mass storage device functionality. Adapt
these functions in the file usbd_user_msc.c.

Function Name Description
usbd_msc_init Initializes the USB Device user Mass Storage functionality. Modify the code

to the application needs.
usbd_msc_read_sect Handles the read request of a USB Mass Storage Device. Modify the code

to the application needs.
usbd_msc_write_sect Handles the write request of a USB Mass Storage Device. Modify the code

to the application needs.

Copyright © Keil, An ARM Company. All rights reserved.

Page 372

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Device Source Files

RL-USB Device Source Files for creating USB Device applications with the RL-USB Library can be
found in the folders:

Folder Name Description
\ARM\RV31\INC Contains include files, header files, and

configuration files.
\ARM\RV31\LIB Contains the library files USB_ARM_L.LIB and

USB_CM3.LIB.
\ARM\RL\USB\Drivers Contains USB Device Controller Driver modules.
\ARM\Boards\Vendor\Board\RL\USB\Device Contains example applications built with the

RL-USB Library. Use the projects as templates to
create new USB Device applications.

\ARM\Boards\Vendor\Board
\RL\USB\Device\RTX

Contains example applications built with the
RL-USB Library and the RTX-RTOS. Use the
projects as templates to create new USB Device
applications.

RL-USB Device files in \ARM\RV31\INC:

File Name File Type Layer Description
usb_lib.c Module All layers Packs configuration settings and provides them

to the library. The file is included from the module
file USB_CONFIG.C. No code changes are
required.

rl_usb.h Header All layers Contains prototypes of functions exported from
the library or imported to the library. No code
changes are required.

usb.h Header Core Driver Main RL-USB header file used to include other
USB header files.

usb_adc.h Header Core Driver Contains definitions and structures used by the
audio device class such as endpoint, subclasses,
audio data formats, audio processing unit,
request codes, ...

usb_cdc.h Header Core Driver Contains definitions and structures used by the
communication device class such as endpoint,
subclasses, sub-types, request codes, ...

usb_hid.h Header Core Driver Contains definitions and structures used by the
human interface device class such as subclasses,
protocol codes, descriptor types, reports, ...

usb_msc.h Header Core Driver Contains definitions and structures used by the
mass storage device class such as subclasses,
protocol codes, request codes, SCSCI commands,
...

usb_def.h Header Core Driver Contains definitions for device classes,
descriptors, pipes.

usbd.h Header Core Driver Contains variable declarations used by the
library.

usbd_desc.h Header Core Driver Contains USB Device descriptor macros.
usbd_event.h Header Core Driver Contains USB Device event definitions and

callback function prototypes.
usbd_hw.h Header Device Controller

Driver
Contains USB Device hardware driver function
prototypes.

RL-USB Device Library files in \ARM\RV31\LIB:

File Name File Type Layer Description
USB_ARM_L.lib Library All layers RL-USB library for ARM7 and ARM9 devices - Little

Endian.
USB_CM3.lib Library All layers RL-USB library for Cortex-M3 devices - Little

Endian.

RL-USB Device Application files in \ARM\Boards\Vendor\Board\RL\USB\Device or
\ARM\Boards\Vendor\Board\RL\USB\Device\RTX:

File Name File Type Layer Description
usbd_user_xxx.c Module Application Contains the user code for appropriate class

handling.
usb_config.c Module All layers Configures the USB Device Controller and USB

Page 373

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File Name File Type Layer Description
Device Classes at compile time. Settings for the
USB Device Controller Driver and USB Device
Class Drivers are available. Modify this file to suit
the application requirements.

usbd_device family.c Module Device
Controller
Driver

Provides the hardware specific driver functions.
Standardized modules are available in the folder
\ARM\RL\USB\Drivers. Modify this file, if no
module is provided for the used device.

Copyright © Keil, An ARM Company. All rights reserved.

Page 374

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Device Configuration

RL-USB Device Configuration explains the options offered by the RL-USB Library for configuring
USB Devices. Options are set in the file usb_config.c directly or using the µVision Configuration
Wizard.

Where
 USB Device - enables the USB Device functionality. This option corresponds to

#define USBD_ENABLE.

 #define USBD_ENABLE 1

 High Speed - enables high speed support, if supported by the microcontroller. This option
corresponds to #define USBD_HS_ENABLE.

 #define USBD_ENABLE 0

Device Settings
configure the settings of the USB Device that affect Device Descriptor.
 Power sets default power source, Bus-powered or Self-powered. This option corresponds to

#define USBD_POWER.

 #define USBD_POWER 0 // 0 =

Bus-powered; 1 = Self-powered;

 Max Endpoint 0 Packet Size sets the maximum packet size of endpoint 0 (bMaxPacketSize0).
Values of 8, 16, 32, and 64 Bytes are possible. This option corresponds to
#define USBD_MAX_PACKET0.

Page 375

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 #define USBD_MAX_PACKET0 8 // 8, 16, 32,

and 64 Bytes

 Vendor ID sets the vendor identification number (idVendor) assigned by the USB-IF. Values
between 0x0000-0xFFFF are valid. This option corresponds to
#define USBD_DEVDESC_IDVENDOR.

 #define USBD_DEVDESC_IDVENDOR 0xC251 // ask USB-IF

for a valid ID

 Product ID sets the product identification number (idProduct) assigned by the manufacturer.
Values between 0x0000-0xFFFF are valid. This option corresponds to
#define USBD_DEVDESC_IDPRODUCT.

 #define USBD_DEVDESC_IDPRODUCT 0x1705 // ask the

manufacturer for a valid ID

 Device Release Number sets the product release number (bcdDevice) assigned by the
manufacturer. Values between 0x0000-0xFFFF are valid. This option corresponds to
#define USBD_DEVDESC_BCDDEVICE.

 #define USBD_DEVDESC_BCDDEVICE 0x0100 // ask

manufacturer for release number

Configuration Settings
configure the settings of the USB Device that affect Configuration Descriptor.
 Remote Wakeup sets the wakeup attribute (D5: of bmAttributes). This option corresponds to

#define USBD_CFGDESC_BMATTRIBUTES.

 #define USBD_CFGDESC_BMATTRIBUTES 0xA0

 Maximum Power Consumption (in mA) sets the maximum power consumption (bMaxPower)
allowed when the device is fully operational. Values between 0..510 are possible. This option
corresponds to #define USBD_CFGDESC_BMAXPOWER.

 #define USBD_CFGDESC_BMAXPOWER 0x32 // value range

0..510

String Settings
configure the language, manufacturer name, product name, and product serial number.
 Language ID sets the language. Numbers between 0x0000-0xFCFF are valid. This option

corresponds to #define USBD_STRDESC_LANGID.

 #define USBD_STRDESC_LANGID 0x0409 // 0x0409 -

English (United States)

 Manufacturer String sets the manufacturer name. The string can have 126 characters. This
option corresponds to #define USBD_STRDESC_MAN.

 #define USBD_STRDESC_MAN L"Keil Software" // max. 126

characters

 Product String sets the product name. The string can have 126 characters. This option
corresponds to #define USBD_STRDESC_PROD.

 #define USBD_STRDESC_PROD L"Keil USB Device" // max. 126

characters

 Serial Number enables the serial number string. This option corresponds to
#define USBD_STRDESC_SER_ENABLE.

 #define USBD_STRDESC_SER_ENABLE 1 // 1=enabled;

0=disabled;

 Serial Number String sets the serial number. This option corresponds to
#define USBD_STRDESC_SER.

 #define USBD_STRDESC_SER L"0001A0000000" // max. 126

Page 376

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

characters

Class Support
enables class specific requests. This option corresponds to #define USBD_CLASS_ENABLE.

#define USBD_CLASS_ENABLE 1 // 1=enabled;

0=disabled;

The USB Device class options are explained in:
 Audio Device (ADC) Options
 Communication Device (CDC) Options
 Human Interface Device (HID) Options
 Mass Storage Device (MSC) Options
 Vendor Specific Device enables vendor specific requests. This category is optional and might

not be available for every microcontroller.

Note
 Refer to Create USB Device Applications to build an USB Device application.

Copyright © Keil, An ARM Company. All rights reserved.

Page 377

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Audio Device (ADC) Options

Audio Device (ADC) Options explains the configuration options for an audio device. The options
can be edited in the file usb_config.c directly or using the µVision Configuration Wizard.

Where
 Audio Device (ADC) - enables the USB audio functionality of the device. This option

corresponds to #define USBD_ADC_ENABLE.

 #define USBD_ADC_ENABLE 1 //

1=enabled; 0=disabled

Isochronous Endpoint Settings
configure the endpoint characteristics and affect Endpoint Descriptor.
 Isochronous Out Endpoint Number sets the endpoint number. Values between 1..15 are

allowed. This option corresponds to #define USBD_ADC_EP_ISOOUT.

 #define USBD_ADC_EP_ISOOUT 0 // value range

1..15

 Maximum Endpoint Packet Size (in bytes) sets the maximal packet size. Values between
0..1024 are allowed. This option corresponds to #define USBD_ADC_WMAXPACKETSIZE.

 #define USBD_ADC_WMAXPACKETSIZE 64 // value range

0..1024

 Endpoint polling Interval (in ms) sets the data transfer polling interval. Discrete values can

Page 378

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

be selected. This option corresponds to #define USBD_ADC_BINTERVAL.

 #define USBD_ADC_BINTERVAL 1 // value range

0..1024

 High-speed enables the characteristics when using high speed transfer rates. Enable the
High Speed option under USB Device. This option corresponds to
#define USBD_ADC_HS_ENABLE.

 #define USBD_ADC_HS_ENABLE 1 // 1=enabled;

0=disabled

 Maximum Endpoint Packet Size (in bytes) sets the maximal packet size for high speed
transfers. Values between 0..1024 are allowed. This option corresponds to
#define USBD_ADC_HS_WMAXPACKETSIZE.

 #define USBD_ADC_HS_WMAXPACKETSIZE 64 // next option

also configures this macro

 Additional transactions per microframe sets the additional transaction packets for high
speed transfers. Discrete settings can be selected. This option also corresponds to
#define USBD_ADC_HS_WMAXPACKETSIZE.

 #define USBD_ADC_HS_WMAXPACKETSIZE 64 // prev. option

also configures this macro

Audio Device Settings
configure device specific options.
 Audio Control Interface String sets the audio control string identifier. 126 characters are

allowed. This option corresponds to #define USBD_ADC_CIF_STRDESC.

 #define USBD_ADC_CIF_STRDESC L"USB_ADC" // up to 126

characters

 Audio Streaming (Zero Bandwidth) Interface String sets the zero bandwidth streaming
control string identifier. 126 characters are allowed. This option corresponds to
#define USBD_ADC_SIF1_STRDESC.

 #define USBD_ADC_SIF1_STRDESC L"USB_ADC1" // up to 126

characters

 Audio Streaming (Operational) Interface String sets the operational streaming control
string identifier. 126 characters are allowed. This option corresponds to
#define USBD_ADC_SIF2_STRDESC.

 #define USBD_ADC_SIF2_STRDESC L"USB_ADC2" // up to 126

characters

 Audio Subframe Size (in bytes) sets the audio subframe size. Values between 0..255 are
allowed. This option corresponds to #define USBD_ADC_BSUBFRAMESIZE.

 #define USBD_ADC_BSUBFRAMESIZE 2 // value range

0..255

 Sample Resolution (in bits) sets the bit resolution size. Values between 0..255 are allowed.
This option corresponds to #define USBD_ADC_BBITRESOLUTION.

 #define USBD_ADC_BBITRESOLUTION 16 // value range

0..255

 Sample Frequency (in Hz) sets the sample frequency. Values between 0..16777215 are
allowed. This option corresponds to #define USBD_ADC_TSAMFREQ.

 #define USBD_ADC_TSAMFREQ 32000 // value range

0..16777215

 Packet Size (in bytes) sets the size of data packets. Values between 1..256 are allowed.
This option corresponds to #define USBD_ADC_CFG_P_S.

Page 379

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 #define USBD_ADC_CFG_P_S 32 // value range

1..256

 Packet Count sets the number of data packets. Values between 1..16 are allowed. This option
corresponds to #define USBD_ADC_CFG_P_C.

 #define USBD_ADC_CFG_P_C 1 // value range

1..16

Note
 The USB Device Controller hardware might impose restrictions on the use of endpoints.
 Refer to Create ADC Applications for a quick-start on programming an audio device.

Copyright © Keil, An ARM Company. All rights reserved.

Page 380

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Communication Device (CDC) Options

Communication Device (CDC) Options explains the configuration options for an communication
device. The options can be edited in the file usb_config.c directly or using the µVision Configuration
Wizard.

Where
 Communication Device (CDC) - enables class support for communication devices. This

option corresponds to #define USBD_CDC_ENABLE.

 #define USBD_CDC_ENABLE 1 //

1=enabled; 0=disabled

Interrupt Endpoint Settings
configure the endpoint characteristics and affect the Endpoint Descriptor.
 Interrupt In Endpoint Number sets the endpoint number. Values between 1..15 are allowed.

This option corresponds to #define USBD_CDC_EP_INTIN.

 #define USBD_CDC_EP_INTIN 1 // value range

Page 381

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

1..15

 Maximum Endpoint Packet Size (in bytes) sets the maximal packet size. Values between
0..1024 are allowed. This option corresponds to #define USBD_CDC_WMAXPACKETSIZE.

 #define USBD_CDC_WMAXPACKETSIZE 16 // value range

0..1024

 Endpoint polling Interval (in ms) sets the data transfer polling interval. Values from 0..255
are allowed. This option corresponds to #define USBD_CDC_BINTERVAL.

 #define USBD_CDC_BINTERVAL 2 // value range

0..255

 High-speed enables the characteristics when using high speed transfer rates. Enable the
High Speed option under USB Device. This option corresponds to
#define USBD_CDC_HS_ENABLE.

 #define USBD_CDC_HS_ENABLE 1 // 1=enabled;

0=disabled

 Maximum Endpoint Packet Size (in bytes) sets the maximal packet size for high speed
transfers. Values between 0..1024 are allowed. This option corresponds to
#define USBD_CDC_HS_WMAXPACKETSIZE.

 #define USBD_CDC_HS_WMAXPACKETSIZE 16 // next option

also configures this macro

 Additional transactions per microframe sets the additional transaction packets for high
speed transfers. Discrete settings can be selected. This option also corresponds to
#define USBD_CDC_HS_WMAXPACKETSIZE.

 #define USBD_CDC_HS_WMAXPACKETSIZE 16 // prev. option

also configures this macro

 Endpoint polling Interval (in ms) sets the data transfer polling interval for high speed
transfers. Discrete values can be selected. This option corresponds to
#define USBD_CDC_HS_BINTERVAL.

 #define USBD_CDC_HS_BINTERVAL 2 // value range

0..32768

Bulk Endpoint Settings
configure the endpoint characteristics and affect the Endpoint Descriptors.
 Bulk In Endpoint Number sets the endpoint number. Values between 1..15 are allowed. This

option corresponds to #define USBD_CDC_EP_BULKIN.

 #define USBD_CDC_EP_BULKIN 2 // value range

1..15

 Bulk Out Endpoint Number sets the endpoint number. Values between 1..15 are allowed.
This option corresponds to #define USBD_CDC_EP_BULKOUT.

 #define USBD_CDC_EP_BULKOUT 2 // value range

1..15

 Maximum Packet Size sets the maximal packet size, in bytes. Values between 0..1024 are
allowed. This option corresponds to #define USBD_CDC_WMAXPACKETSIZE1.

 #define USBD_CDC_WMAXPACKETSIZE1 64 // value range

0..1024

 High-speed enables the characteristics when using high speed transfer rates. Enable the
High Speed option under USB Device. This option corresponds to
#define USBD_CDC_HS_ENABLE1.

 #define USBD_CDC_HS_ENABLE1 1 // 1=enabled;

0=disabled

Page 382

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Maximum Packet Size sets the maximal packet size, in bytes, for high speed transfers. Values
between 0..1024 are allowed. This option corresponds to
#define USBD_CDC_HS_WMAXPACKETSIZE1.

 #define USBD_CDC_HS_WMAXPACKETSIZE1 64 // value range

0..1024

 Maximum NAK Rate sets the number for maximum not acknowledged transfers. values
between 0..255 are allowed. This option also corresponds to
#define USBD_CDC_HS_BINTERVAL1.

 #define USBD_CDC_HS_BINTERVAL1 0 // value range

0..255

Communication Device Settings
configure device specific options.
 Communication Class Interface String sets the communication interface string identifier. 126

characters are allowed. This option corresponds to #define USBD_CDC_CIF_STRDESC.

 #define USBD_CDC_CIF_STRDESC L"USB_CDC" // up to 126

characters

 Data Class Interface String sets the data interface string identifier. 126 characters are
allowed. This option corresponds to #define USBD_CDC_DIF_STRDESC.

 #define USBD_CDC_DIF_STRDESC L"USB_CDC1" // up to 126

characters

 Maximum Communication Device Buffer Size sets the maximal communication buffer size, in
bytes. Discrete values can be selected. This option corresponds to
#define USBD_CDC_BUFSIZE.

 #define USBD_CDC_BUFSIZE 64 // possible

values: 8, 16, 32, 64, 128

 Maximum Communication Device Output Buffer Size sets the maximal data buffer size, in
bytes. Discrete values can be selected. This option corresponds to
#define USBD_CDC_OUTBUFSIZE.

 #define USBD_CDC_OUTBUFSIZE 128 // possible

values: 8, 16, 32, 64, 128

Note
 The USB Device Controller hardware might impose restrictions on the use of endpoints.
 Refer to Create CDC Applications for a quick-start on programming a USB CDC Device.

Copyright © Keil, An ARM Company. All rights reserved.

Page 383

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Human Interface Device (HID) Options

Human Interface Device (HID) Options explains the configuration options for creating an human
interface application. The options can be edited in the file usb_config.c directly or using the µVision
Configuration Wizard.

Where
 Human Interface Device (HID) - enables class support for human interface devices. This

option corresponds to #define USBD_HID_ENABLE.

 #define USBD_HID_ENABLE 1 //

1=enabled; 0=disabled

Interrupt Endpoint Settings
configure the endpoint characteristics and affect the Endpoint Descriptors.
 Interrupt In Endpoint Number sets the endpoint number. Values between 1..15 are allowed.

This option corresponds to #define USBD_HID_EP_INTIN.

 #define USBD_HID_EP_INTIN 1 // value range

1..15

 Interrupt Out Endpoint Number sets the endpoint number. Values between 0..15 are
allowed; 0-disables the endpoint for messages sent by the host. This option corresponds to
#define USBD_HID_EP_INTOUT.

 #define USBD_HID_EP_INTOUT 1 // value range

0..15; 0=not used;

 Maximum Endpoint Packet Size (in bytes) sets the maximal packet size. Values between
0..64 are allowed. This option corresponds to #define USBD_HID_WMAXPACKETSIZE.

 #define USBD_HID_WMAXPACKETSIZE 4 // value range

Page 384

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

0..64

 Endpoint polling Interval (in ms) sets the data transfer polling interval. Values from 0..255
are allowed. This option corresponds to #define USBD_HID_BINTERVAL.

 #define USBD_HID_BINTERVAL 32 // value range

0..255

 High-speed enables the characteristics when using high speed transfer rates. Enable the
High Speed option under USB Device. This option corresponds to
#define USBD_HID_HS_ENABLE.

 #define USBD_HID_HS_ENABLE 1 // 1=enabled;

0=disabled

 Maximum Endpoint Packet Size (in bytes) sets the maximal packet size for high speed
transfers. Values between 0..1024 are allowed. This option corresponds to
#define USBD_HID_HS_WMAXPACKETSIZE.

 #define USBD_HID_HS_WMAXPACKETSIZE 4 // next option

also configures this macro

 Additional transactions per microframe sets the additional transaction packets for high
speed transfers. Discrete settings can be selected. This option also corresponds to
#define USBD_HID_HS_WMAXPACKETSIZE.

 #define USBD_HID_HS_WMAXPACKETSIZE 4 // prev. option

also configures this macro

 Endpoint polling Interval (in ms) sets the data transfer polling interval for high speed
transfers. Discrete values can be selected. This option corresponds to
#define USBD_HID_HS_BINTERVAL.

 #define USBD_HID_HS_BINTERVAL 6 // value range

1..32768

Human Interface Device Settings
configure device specific options.
 HID Interface String sets the interface string identifier. 126 characters are allowed. This

option corresponds to #define USBD_HID_CIF_STRDESC.

 #define USBD_HID_CIF_STRDESC L"USB_HID" // up to 126

characters

 Number of Reports sets the amount of reports. Values from 1..255 are allowed. This option
corresponds to #define USBD_HID_CFG_REPORTNUM.

 #define USBD_HID_CFG_REPORTNUM 1 // value range

0..255

 Input Report Size (in bytes) sets the size for reports sent to the host. Values from 1..64 are
allowed. This option corresponds to #define USBD_HID_INREPORT_BYTES.

 #define USBD_HID_INREPORT_BYTES 1 // value range

1..64

 Output Report Size (in bytes) sets the size for reports received from the host. Values from
1..64 are allowed. This option corresponds to #define USBD_HID_OUTREPORT_BYTES.

 #define USBD_HID_OUTREPORT_BYTES 1 // value range

1..64

 Feature Report Size (in bytes) sets the size for control reports. Values from 1..64 are
allowed. This option corresponds to #define USBD_HID_FEATREPORT_BYTES.

 #define USBD_HID_FEATREPORT_BYTES 1 // value range

1..64

Page 385

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note
 The USB Device Controller hardware might impose restrictions on the use of endpoints.
 Refer to Create HID Applications for a quick-start on programming a USB HID Device.

Copyright © Keil, An ARM Company. All rights reserved.

Page 386

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Mass Storage Device (MSC) Options

Mass Storage Device (MSC) Options explains the configuration options for an mass storage
device. The options can be edited in the file usb_config.c directly or using the µVision Configuration
Wizard.

Where
 Mass Storage Device (MSC) - enables class support for mass storage devices. This option

corresponds to #define USBD_MSC_ENABLE.

 #define USBD_MSC_ENABLE 1 //

1=enabled; 0=disabled

Bulk Endpoint Settings
configure the endpoint characteristics and affect the Endpoint Descriptors.
 Bulk In Endpoint Number sets the endpoint number. Values between 1..15 are allowed. This

option corresponds to #define USBD_MSC_EP_BULKIN.

 #define USBD_MSC_EP_BULKIN 2 // value range

1..15

 Bulk Out Endpoint Number sets the endpoint number. Values between 1..15 are allowed.
This option corresponds to #define USBD_MSC_EP_BULKOUT.

 #define USBD_MSC_EP_BULKOUT 2 // value range

1..15

 Maximum Packet Size sets the maximal packet size, in bytes. Values between 1..1024 are
allowed. This option corresponds to #define USBD_MSC_WMAXPACKETSIZE.

 #define USBD_MSC_WMAXPACKETSIZE 64 // value range

1..1024

 High-speed enables the characteristics when using high speed transfer rates. Enable the

Page 387

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

High Speed option under USB Device. This option corresponds to
#define USBD_MSC_HS_ENABLE.

 #define USBD_MSC_HS_ENABLE 1 // 1=enabled;

0=disabled

 Maximum Packet Size sets the maximal packet size for high speed transfers. Values between
1..1024 are allowed. This option corresponds to #define USBD_MSC_HS_WMAXPACKETSIZE.

 #define USBD_MSC_HS_WMAXPACKETSIZE 512 // value range

1..1024

 Maximum NAK Rate sets the maximum not acknowledge packets for high speed transfers.
Values between 0..255 are allowed. This option also corresponds to
#define USBD_MSC_HS_BINTERVAL.

 #define USBD_MSC_HS_BINTERVAL 0 // value range

0..255

Mass Storage Device Settings
configure device specific options.
 MSC Interface String sets the mass storage interface string identifier. 126 characters are

allowed. This option corresponds to #define USBD_MSC_STRDESC.

 #define USBD_MSC_STRDESC L"USB_MSC" // up to 126

characters

 Vendor Identification sets the vendor string identifier. 8 characters are allowed. This option
corresponds to #define USBD_MSC_INQUIRY_DATA.

 #define USBD_MSC_INQUIRY_DATA L"KEIL " // see next

option; 8 characters

 Product Identification sets the product string identifier. 16 characters are allowed. This
option corresponds to #define USBD_MSC_INQUIRY_DATA.

 #define USBD_MSC_INQUIRY_DATA L"LPC23xx Disk " // see

next+prev. option; 16 characters

 Product Revision Level sets the product revision string identifier. 4 characters are allowed.
This option corresponds to #define USBD_MSC_INQUIRY_DATA.

 #define USBD_MSC_INQUIRY_DATA L"1.0 " // see prev.

option; 4 characters

Note
 The USB Device Controller hardware might impose restrictions on the use of endpoints.
 Refer to Create MSC Applications for a quick-start on programming a USB MSC Device.

Copyright © Keil, An ARM Company. All rights reserved.

Page 388

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create USB Device Applications

Several USB Device applications can be built with the RL-USB Library. Each example demonstrates
the use of another endpoint and transfer type and are located in the folder \Keil\ARM\Boards\
Vendor\Board\RL\USB\Device.

Create ADC Applications

Creates an audio applications demonstrating isochronous endpoints. The evaluation board
is configured as a sound card, which can be connected to a computer using a USB cable.

Create CDC Applications

Creates a serial interface device application demonstrating interrupt and bulk endpoints via
a USB Virtual COM Port.

Create HID Applications

Creates an human interface application demonstrating interrupt endpoints. The µVision
examples control the LEDs of the evaluation board.

Create MSC Applications

Creates a mass storage application demonstrating bulk endpoints for transferring large
volumes of data between a computer and the device.

Create Composite Applications

Creates a combined application using existing HID and MSC applications.

Copyright © Keil, An ARM Company. All rights reserved.

Page 389

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create ADC Applications

Create ADC Applications explains the steps to program a USB Device for audio streaming using the
RL-USB Library. Audio applications control speakers, microphones, or other audio devices.

Include into the project and configure the following RL-USB Device Source Files:

1. The library that matches the device core:
USB_CM3.lib - for Cortex-M devices.
USB_ARM_L.lib - for ARM7 or ARM9 devices.

2. usb_config.c - to configure the USB system.
3. usbd_device family.c - to configure the device hardware layer.
4. usbd_user_adc.c - to adapt the code to the application needs.
5. USBD_Demo.c - to initialize and connect the USB Device from main().
6.
7. ..

8. usbd_init();

9. usbd_connect(__TRUE);

10. ..

Applications can be created using existing µVision audio projects. The RL-USB audio examples have
a simple function that receives an audio data stream from the host and sends it to a speaker.

1. Copy all files from any folder \ARM\Boards\Vendor\BoardName\RL\USB\Device\Audio
to a new folder and open the project *.uvproj with µVision. RTX projects are using the
RTX-RTOS, whereas simple Audio projects work without an RTOS. However, the USB
configuration does not differ.

2. Open the file usb_config.c and configure the USB device with the Configuration Wizard.
3. Enable USB Device and set the device characteristics.

Page 390

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Enable Class Support and Audio Device (ADC) and set the characteristics.

Page 391

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5. Optionally, adapt the source files usbd_device family.c that contain hardware dependent
code and must be adapted to the USB controller.

6. Modify the file usbd_user_adc.c to adapt the code to the application needs.

Note
 The options are explained in Audio Device (ADC) Options.

Copyright © Keil, An ARM Company. All rights reserved.

Page 392

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create CDC Applications

Create CDC Applications explains how to program a USB Communication Device using the RL-USB
Library. Communication applications control networks, serial and wireless communication interfaces,
telecom devices, modems, printers, scanners.

Include into the project and configure the following RL-USB Device Source Files:

1. The library that matches the device core:
USB_CM3.lib - for Cortex-M devices.
USB_ARM_L.lib - for ARM7 or ARM9 devices.

2. usb_config.c - to configure the USB system.
3. board_name-vcom.inf - to configure the driver information file.
4. usbd_device family.c - to configure the device hardware layer.
5. usbd_user_cdc.c - to adapt the code to the application needs.
6. USBD_Demo.c - to initialize and connect the USB Device from main().
7.
8. ..

9. usbd_init(); // USB Initialization

10. usbd_connect(__TRUE); // USB Connect

11.
12. while (1) { // Loop forever

13. usbd_vcom_serial2usb(); // write to USB VCOM Port

14. usbd_vcom_chkserstate(); // check status

15. usbd_vcom_usb2serial(); // write to Serial Port

16. }

17. ..

Applications can be created using existing µVision CDC projects. The RL-USB communication
examples use two simple functions that send the signals from the USB virtual COM port to the PC
serial COM port and vice versa.

1. Copy all files from any folder \ARM\Boards\Vendor\BoardName\RL\USB\Device\CDC to
a new folder and open the project *.uvproj with µVision. RTX projects are using the
RTX-RTOS, whereas simple CDC projects work without an RTOS. However, the USB
configuration does not differ.

2. Open the file usb_config.c and configure the USB device with the Configuration Wizard.
3. Enable USB Device and set the device characteristics.

Page 393

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Adapt the file board_name-vcom.inf whenever the Vendor ID and Product ID has been
changed. (See picture above).

5. Enable Class Support and Communication Device (CDC) and set the characteristics.

Page 394

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. Optionally, adapt the source file usbd_device family.c that contains hardware dependent
code.

7. Modify the file usbd_user_cdc.c to adapt the code to the application needs.

Note
 The options are explained in Communication Device (CDC) Options.

Copyright © Keil, An ARM Company. All rights reserved.

Page 395

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create HID Applications

Create HID Applications explain how to program a USB Human Interface Device using the RL-USB
Library. HID applications control keyboards, mice, and other I/O devices.

Include into the project and configure the following RL-USB Device Source Files:

1. The library that matches the device core:
USB_CM3.lib - for Cortex-M devices.
USB_ARM_L.lib - for ARM7 or ARM9 devices.

2. usb_config.c - to configure the USB system.
3. usbd_device family.c - to configure the device hardware layer.
4. usbd_user_hid.c - to adapt the code to the application needs.
5. USBD_Demo.c - to initialize and connect the USB Device from main().
6.
7. ..

8. usbd_init(); // USB Initialization

9. usbd_connect(__TRUE); // USB Connect

10. ..

Applications can be created using existing µVision HID projects.

1. Copy all files from any folder \ARM\Boards\Vendor\BoardName\RL\USB\Device\HID to
a new folder and open the project *.uvproj with µVision. RTX projects are using the
RTX-RTOS, whereas simple HID projects work without an RTOS. However, the USB
configuration does not differ.

2. Open the file usb_config.c and configure the USB device with the Configuration Wizard.
3. Enable USB Device and set the device characteristics.

Page 396

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Enable Class Support and Human Interface (HID) and set the characteristics.

5. Optionally, adapt the source file usbd_device family.c that contains hardware dependent
code.

6. Modify the file usbd_user_hid.c to adapt the code to the application needs.

Note
 The options are explained in Human Interface Device (HID) Options.
 Use the Test HID Client application for testing the HID applications that interact with the

LEDs and push buttons of the board.

Copyright © Keil, An ARM Company. All rights reserved.

Page 397

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create MSC Applications

Create MSC Applications explains how to program a USB Mass Storage Device using the RL-USB
Library. Mass Storage applications control USB sticks, cameras, or other external storage devices.

Include into the project and configure the following RL-USB Device Source Files:

1. The library that matches the device core:
USB_CM3.lib - for Cortex-M devices.
USB_ARM_L.lib - for ARM7 or ARM9 devices.

2. usb_config.c - to configure the USB system.
3. usbd_device family.c - to configure the device hardware layer.
4. DiskImg.c - to provide the disk image.
5. usbd_user_msc.c - to adapt the code to the application needs.
6. USBD_Demo.c - to initialize and connect the USB Device from main().
7.
8. ..

9. usbd_init(); // USB Initialization

10. usbd_connect(__TRUE); // USB Connect

11. ..

Applications can be created using existing µVision MSC projects.

1. Copy all files from any folder \ARM\Boards\Vendor\BoardName\RL\USB\Device\
Memory to a new folder and open the project *.uvproj with µVision. RTX projects are
using the RTX-RTOS, whereas simple Memory projects work without an RTOS. However, the
USB configuration does not differ.

2. Open the file usb_config.c and configure the USB device with the Configuration Wizard.
3. Enable USB Device and set the device characteristics.

Page 398

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Enable Class Support and Mass Storage Device (MSC) and set the characteristics.

Page 399

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5. Optionally, adapt the source file usbd_device family.c that contains hardware dependent
code.

6. Optionally, modify the file DiskImg.c.
7. Modify the file usbd_user_msc.c to adapt the code to the application needs.

Note
 The options are explained in Mass Storage Device (MSC) Options.

Copyright © Keil, An ARM Company. All rights reserved.

Page 400

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create Composite Applications

Create Composite Applications explains how to program a USB Device that supports more class
functions. Composite applications combine various USB functionalities into one device.

Include into the project and configure the following RL-USB Device Source Files:

1. The library that matches the device core:
USB_CM3.lib - for Cortex-M devices.
USB_ARM_L.lib - for ARM7 or ARM9 devices.

2. usb_config.c - to configure the USB system.
3. special files - provide special files. For example, disk image file - for MSC support, driver

information file - for CDC support.
4. usbd_device family.c - to configure the device hardware layer.
5. usbd_user_xxx.c - to adapt the code to the application needs.
6. USBD_Demo.c - to initialize and connect the USB Client device from main().
7.
8. ..

9. usbd_init(); // USB Initialization

10. usbd_connect(__TRUE); // USB Connect

11. ..

Applications can be created using existing µVision projects. For example, to create a HID and MSC
device:

1. Copy all files from any folder \ARM\Boards\Vendor\BoardName\RL\USB\Device\
Memory to a new folder and open the project *.uvproj with µVision.

2. Copy the file usbd_user_hid.c from an existing HID project and include the file into this new
project. The project should now contain the files usbd_user_hid.c and usbd_user_msc.c.

3. Open the file usb_config.c and configure the USB device with the Configuration Wizard.
4. Enable USB Device and set the device characteristics.

Page 401

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

5. Enable Class Support, Human Interface Device (HID), Mass Storage Device (MSC), and
set the characteristics.

Page 402

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. Optionally, adapt the source file usbd_device family.c that contains hardware dependent
code.

7. Adapt the code in usbd_user_hid.c and usbd_user_msc.c to the application needs.

Note
 The configuration options are explained in RL-USB Device Configuration.

Copyright © Keil, An ARM Company. All rights reserved.

Page 403

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Test USB Device Applications

USB peripherals have to pass certain tests in order to gain certification. The links below offer the
necessary test utilities:

Compliance Tests

Test the application with a USB Command Verifier to ensure compliance with the USB
Standard.

Test HID Device Applications

Test a USB HID Device application with the HID Client utility.

Copyright © Keil, An ARM Company. All rights reserved.

Page 404

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Compliance Tests

Before releasing a USB device, ensure that the device fully meets the USB specifications. A suite of
USB compliance test tools can be downloaded from the USB Implementers Forum. The type of
software needed is called USB Command Verifier.

It is recommended to perform as much plug and play testing with different hosts, hubs, and
operating systems as you would expect to find in the field.

Copyright © Keil, An ARM Company. All rights reserved.

Page 405

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.usb.org/developers/tools
http://www.processtext.com/abcchm.html

Test HID Client Application

After the USB HID application has been downloaded to the device, test the application with the
HIDClient.exe utility located in C:\Keil\ARM\Utilities\HID_Client\Release.

1. Verify the jumper settings of the board.
2. Connect the board to the PC using a USB cable.

(The Windows operating system installs the Human Interface driver automatically.)

3. Optionally, ensure that the device has been recognized. Launch the Device Manager from
the command line with devmgmt.msc.

 Scan for new hardware if necessary.
 Use the Property - Details page to find the device identifiers.

4. Launch C:\Keil\ARM\Utilities\HID_Client\Release\HIDClient.exe.
5. Select the Device to establish the communication channel.

6. Test the application.
 Move the joystick (on some boards press buttons) to enable the check-boxes Inputs

(Buttons).
 Check the check-boxes Outputs (LEDs) to turn on the LEDs on the board.

Page 406

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 407

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB for USB Host Applications

This chapter contains the following sections:

RL-USB Host Library

Describes the RL-USB Host Library features, software stack, source files, supported class
functions when designing a USB Host application.

Create USB Host Applications

Describes the steps to create new USB Host applications using the RL-USB Library.

Copyright © Keil, An ARM Company. All rights reserved.

Page 408

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Host Library

The RL-USB Host Library is an easy-to-use collection of functions providing a common API for
designing USB Host applications. The RL-USB Host Library can be used standalone or with the
RTX-RTOS. The RL-USB Host Library supports the human interface device class (HID) and mass
storage device class (MSC).

This chapter contains the sections:

RL-USB Host Features

Lists the RL-USB Host characteristics.

RL-USB Host Software Stack

Describes the RL-USB Host Controller Software Stack layers.

RL-USB Host Functions

Lists the RL-USB Host functions and relates them to the software stack layer.

RL-USB Host Source Files

Lists the code source files and relates them to the software stack layer.

RL-USB Host Configuration

Explains the USB Host configuration options available for the RL-USB Host Library.

Copyright © Keil, An ARM Company. All rights reserved.

Page 409

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Host Features

The RL-USB Host Software library can be used standalone or with the RTX-RTOS and enables the
developer to create applications that:

 Comply with the USB 1.1 (Low-Speed and Full-Speed USB) specification.
 Support control, interrupt, and bulk data transfer types.
 Support the following device classes:
 Human Interface Device (HID)
 Mass Storage Device (MSC)

Copyright © Keil, An ARM Company. All rights reserved.

Page 410

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Host Software Stack

The RL-USB Host Software Stack consists of the following layers:

 USB Host Class Driver
 USB Host Core
 USB Host Controller Driver

The USB Host Class Driver is a hardware independent layer containing functions that are class
specific and application dependent. The following USB classes are supported:

 Human Interface Device (HID)
 Mass Storage Device (MSC)

The USB Host Core is a hardware independent layer and contains the functions to manage USB
peripherals and the USB bus. This layer is an interface between the USB Host Controller Driver and
the USB Host Class Driver. The most important functions in this layer are:

 usbh_init() which initializes the USB Host.
 usbh_engine() which enables the USB Host Core to react to USB bus events. This function

must be called periodically from the main application.

The USB Host Controller Driver is the layer between the USB Host Controller Hardware and the
USB Host Core. This layer handles hardware specific interfaces. Two types of USB Host Controller
Drivers are available:

1. The Host Controller Driver for OHCI is packed in the library, whereas the USB Host
Controller Hardware Driver is delivered as a source module. However, the two parts are
used as an entity by devices having OHCI USB Host Controllers.

2. The USB Host Controller Driver and Hardware Driver for Custom USB Host Controller is
packed in the library and is included for devices that do not support the USB OHCI standard
(this is not refering to EHCI).

Copyright © Keil, An ARM Company. All rights reserved.

Page 411

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Host Functions

The following RL-USB Host Functions are important to understand the RL-USB Host Software
Stack. RL-USB Host functions are categorized into:

 Core functions

initialize and run the USB Host Core. These functions are part of the RL-USB Library.

Function Name Description
usbh_connected Checks whether a device is present on the USB bus.
usbh_engine Handles USB Host events and executes enumeration.
usbh_init Initializes the USB Host Stack and USB Host Controller Hardware.
usbh_uninit Uninitializes the USB Host Stack and USB Host Controller Hardware.
 Hardware layer functions

interact with the USB Host Controller Hardware. In most cases, these functions are provided
in an external module for devices that have an OHCI compliant USB Host Controller. For
devices without this module, adapt the functions manually. Provided modules are located in
the folder \ARM\RL\USB\Drivers and have the name usbh_ohci_device family name.c.

Function Name Description
usbh_ohci_hw_delay Delays execution for a specified time.
usbh_ohci_hw_init Initializes the hardware. For example, clocks or pins.
usbh_ohci_hw_irq_dis Disables the USB Host OHCI Controller interrupt.
usbh_ohci_hw_irq_en Enables the USB Host OHCI Controller interrupt.
usbh_ohci_hw_power Supplies or removes power on the USB Host OHCI Controller port.
usbh_ohci_hw_reg_rd Reads data from the OHCI register.
usbh_ohci_hw_reg_wr Writes data to the OHCI register.
usbh_ohci_hw_uninit Uninitializes the hardware. For example, clocks or pins.
 HID Class specific functions

enable the USB Host to support USB Human Interface Devices.

Function Name Description
usbh_hid_kbd_getkey Retrieves the signals sent by a USB keyboard.
usbh_hid_mouse_getdata Reads the signals sent by a USB mouse.
 MSC Class specific functions

enable the USB Host to support USB Mass Storage Devices.

Function Name Description
usbh_msc_read_config Reads the USB MSC device configuration and checks whether the

device is compatible with the Flash File System.
usbh_msc_read Reads USB MSC device sector data into a buffer.
usbh_msc_status Checks whether the USB MSC device is connected and ready.
usbh_msc_write Writes data from a buffer to USB MSC device sectors.

Copyright © Keil, An ARM Company. All rights reserved.

Page 412

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Host Source Files

RL-USB Host Source Files for creating USB Host applications with the RL-USB Library can be found
in the folders:

Folder Name Description
\ARM\RV31\INC Contains include files, header files, and

configuration files.
\ARM\RV31\LIB Contains the library files USB_ARM_L.LIB and

USB_CM3.LIB.
\ARM\RL\USB\Drivers Contains USB Host Controller Driver modules.
\ARM\Boards\Vendor\Board\RL\USB\Host Contains example applications built with the

RL-USB Library. Use the projects as templates to
create new USB Host applications.

RL-USB Host files in \ARM\RV31\INC:

File Name File Type Layer Description
usb_lib.c Module All layers Packs configuration settings and provides them

to the library. The file is included from the module
file USB_CONFIG.C. No code changes are
required.

rl_usb.h Header All layers Contains prototypes of functions exported from
the library or imported to the library. No code
changes are required.

usb.h Header Core Driver Main RL-USB header file used to include other
USB header files.

usb_adc.h Header Core Driver Contains definitions and structures used by the
audio device class such as endpoint, subclasses,
audio data formats, audio processing unit,
request codes, ...

usb_cdc.h Header Core Driver Contains definitions and structures used by the
communication device class such as endpoint,
subclasses, sub-types, request codes, ...

usb_hid.h Header Core Driver Contains definitions and structures used by the
human interface device class such as subclasses,
protocol codes, descriptor types, reports, ...

usb_msc.h Header Core Driver Contains definitions and structures used by the
mass storage device class such as subclasses,
protocol codes, request codes, SCSCI commands,
...

usb_def.h Header Core Driver Contains definitions for device classes,
descriptors, pipes.

RL-USB Host Library files in \ARM\RV31\LIB:

File Name File Type Layer Description
USB_ARM_L.lib Library All layers RL-USB library for ARM7 and ARM9 devices - Little

Endian.
USB_CM3.lib Library All layers RL-USB library for Cortex-M3 devices - Little

Endian.

RL-USB Host Application files in \ARM\Boards\Vendor\Board\RL\USB\Host:

File Name File Type Layer Description
usb_config.c Module All layers Configures the USB Host Controller and USB Host

Classes at compile time. Settings for the USB
Host Controller Driver and USB Host Class Drivers
are available. Modify this file to suit the
application requirements.

usbh_ohci_device
family.c

Module Host
Controller
Driver

Provides the OHCI hardware specific driver
functions. Standardized modules are available in
the folder \ARM\RL\USB\Drivers. Adapt this
file, if no module is provided for the used device.

Source files required to support MSC devices. Use these files in addition to the RL-USB Host source
files outlined in the tables above.

File Type Layer Description
File_Config.c Module Application Provides configuration options for FlashFS. Options

to define the USB drive letter and cache size are

Page 413

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File Type Layer Description
available. Modify the options to suit the application
needs.

fs_usbh_msc.c Module Application Provides the USB Host functions to support MSC
devices. Modify the code to suit the application
needs.

FS_ARM_L.lib Library Application Flash File System library for ARM7 and ARM9
devices - Little Endian.

FS_CM3.lib Library Application Flash File System library for Cortex-M3 devices -
Little Endiand.

Copyright © Keil, An ARM Company. All rights reserved.

Page 414

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RL-USB Host Configuration

RL-USB Host Configuration explains the options offered by the RL-USB Library for configuring USB
Host devices. The options can be configured in the file usb_config.c directly or using the µVision
Configuration Wizard.

USB Host enables the USB Host functionlity. This options corresponds to #define USBH_ENABLE.

#define USBH_ENABLE 1 // enable

HC; (0=disabled)

The USB Host Controller configuration can be split into two main groups:

1. Host Controller Driver Configuration, which offers:
 Options to configure a OHCI compliant Host Controller.
 Options to configure a custom USB Host Controller.

2. Host Class Driver Configuration, which defines the supported class functions.

Copyright © Keil, An ARM Company. All rights reserved.

Page 415

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Host Controller Driver Configuration

The section explains the configuration options for the USB Host Controller Driver layer, which
supports the OHCI standard and the custom USB Host Controller Driver for the ST STM32F105/107
device series. The configuration options are set in the file usb_config.c. The following option blocks
are available:

 Open Host Controller Interface (OHCI) for NXP devices.
 STM32F105/107 USB Host Controller (Custom driver) for ST STM32 devices.

Note
 The option Open Host Controller Interface (OHCI) cannot be used in combination with

STM32F105/107 USB Host Controller. Both options configure the USB Host Controller
Driver, but address different device types.

Open Host Controller Interface (OHCI)

Open Host Controller Interface (OHCI) activates the OHCI. This option configures the USB Host
Controller Driver for OHCI layer of the RL-USB Host Controller Software Stack. Enable this option
when using any device that supports OHCI. This option corresponds to #define USBH_OHCI_ENABLE
.

#define USBH_OHCI_ENABLE 1 //

OHCI enabled (0=disabled)

The following configuration settings are available:

 Root Hub ports used by OHCI sets the number of ports used by the OHCI. 15 Ports can be
configured. This option corresponds to #define USBH_OHCI_PORTS.

 #define USBH_OHCI_PORTS 0x00000001 //

activate the first port

 Start address of memory used by OHCI sets the memory start address for descriptors and
communication data. This option corresponds to #define USBH_OHCI_MEM_ADDR.

 #define USBH_OHCI_MEM_ADDR 0x20080000 //

memory address start

 Size of memory used by OHCI sets the memory size used by the descriptors and
communication data. The size of maximum 1048576 bytes can be set. This option

Page 416

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

corresponds to #define USBH_OHCI_MEM_SIZE.

 #define USBH_OHCI_MEM_SIZE 16384 //

memory size

 Maximum number of Endpoint Descriptors used by OHCI sets the maximum number of
serviced endpoints. At least one endpoint has to be set. Maximum 64 endpoints can be
serviced. This option corresponds to #define USBH_OHCI_ED_MAX_NUM.

 #define USBH_OHCI_ED_MAX_NUM 10 //

10 Endpoints

 Maximum number of Transfer Descriptors used by OHCI sets the maximum number of
transfer slots. At least one transfer slot has to exist. A maximum of 64 transfer slots are
possible. This option corresponds to #define USBH_OHCI_TD_MAX_NUM.

 #define USBH_OHCI_TD_MAX_NUM 10 //

10 transfers per frame

 Maximum number of Isochronous Transfer Descriptors used by OHCI sets the maximum
number of isochronous transfer slots. A maximum of 64 isochronous transfers slots are
possible. This option can be set to zero. This option corresponds to #define
USBH_OHCI_ITD_MAX_NUM.

 #define USBH_OHCI_ITD_MAX_NUM 0 //

no Isochronous transfers

The USB Host OHCI Controller Address is set in the file usbh_ohci_family device name.c and
configures the USB Host Controller Hardware Driver layer of the RL-USB Host Controller Software
Stack.

The option USB Host OHCI Controller Address corresponds to #define USBH_OHCI_ADDR.

define USBH_OHCI_ADDR 0x5000C000 //

Host Controller address

STM32F105/107 USB Host Controller

STM32F105/107 USB Host Controller activates a custom USB Host Controller driver. This option
configures the USB Host Controller Driver and Hardware Driver for Custom USB Host Controller
layer in the RL-USB Host Controller Software Stack. Enable this option when using ST STM32
devices. This option corresponds to #define USBH_STM32_ENABLE.

#define USBH_STM32_ENABLE 1 //

custom HC enabled (0=disabled)

Page 417

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The following configuration settings are available:

 Start address of memory used by STM32F105/107 USB Host Controller sets the
memory start address for communication data. This option corresponds to #define
USBH_STM32_MPOOL_MEM_POS.

 #define USBH_STM32_MPOOL_MEM_POS 0x2000E800 //

memory start address

 Size of memory used by STM32F105/107 USB Host Controller sets the memory size for
communication data. The size of maximum 1048576 bytes can be set. This option
corresponds to #define USBH_STM32_MPOOL_MEM_SZ.

 #define USBH_STM32_MPOOL_MEM_SZ 0x00000800 //

memory size

Copyright © Keil, An ARM Company. All rights reserved.

Page 418

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Host Class Driver Configuration

This section explains the configuration options for the USB Host Class Driver layer. The options are
set in the file usb_config.c.

The Class Configuration options enable the host to interact with the following device types:

 Mass Storage Device Class (MSC)
 Human Interface Class (HID)

Mass Storage Device Class (MSC)

Mass Storage Device Class (MSC) activates the host support for accessing mass storage devices.
This option corresponds to #define USBH_MSC_ENABLE.

#define USBH_MSC_ENABLE 1 //

MSC enabled; (0=disabled)

 Timeout for transaction requests sets the maximum time allowed for transaction requests.
The value has to be set at least to 1. A maximum of 2E+9 is possible. This option
corresponds to #define USBH_MSC_TR_TOUT.

 #define USBH_MSC_TR_TOUT 1000000 //

Default=1000000; ˜0.08s @100MHz

 Timeout for block read sets the maximum time allowed for reading a block of data. The
value has to be set at least to 1. A maximum of 2E+9 is possible. This option corresponds
to #define USBH_MSC_RD_BLK_TOUT.

 #define USBH_MSC_RD_BLK_TOUT 10000000 //

Default=10000000; ˜0.8s @100MHz

 Timeout for block write sets the maximum time allowed to for writing a block of data. The
value has to be set at least to 1. A maximum of 2E+9 is possible. This option corresponds
to #define USBH_MSC_WR_BLK_TOUT.

 #define USBH_MSC_WR_BLK_TOUT 100000000 //

Default=100000000; ˜8s @100MHz

 Number of block read retries sets the maximum number of attempts allowed to read a
block of data in case of failures. The value has to be set at least to 1. A maximum of 100

Page 419

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

attempts are possible. This option corresponds to #define USBH_MSC_RD_RETRIES.

 #define USBH_MSC_RD_RETRIES 3 //

try to read 3 times

 Number of block write retries sets the maximum number of attempts allowed to write a
block of data in case of failures. The value has to be set at least to 1. A maximum of 100
attempts are possible. This option corresponds to #define USBH_MSC_WR_RETRIES.

 #define USBH_MSC_WR_RETRIES 3 //

try to write 3 times

Human Interface Device Class (HID)

Human Interface Device Class (HID) activates the host support for interacting with human
interface devices. This option corresponds to #define USBH_HID_ENABLE.

#define USBH_HID_ENABLE 1 //

HID enabled; (0=disabled)

 Timeout for transaction requests sets the maximum time allowed for transaction requests.
The value has to be set at least to 1. A maximum of 2E+9 is possible. This option
corresponds to #define USBH_HID_TR_TOUT.

 #define USBH_HID_TR_TOUT 1000000 //

Default=1000000; ˜0.08s @100MHz

Copyright © Keil, An ARM Company. All rights reserved.

Page 420

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create USB Host Applications

Create USB Host Applications shows how to program a USB Host unsing the RL-USB Library. The
application source code is located in the folders \Keil\ARM\Boards\Vendor\Board\RL\USB\Host
.

 Create USB Host HID Applications

Configures a USB Host to interact with a USB HID Device.

 Create USB Host MSD Applications

configures a USB Host to interact with a USB MSD Device.

Each example demonstrates a USB Host supporting another class function:

 HID_Kbd Example

This example shows a USB Host interacting with a human interface device. It uses the
Measure example to demonstrate command inputs via a USB keyboard. The application
configures the evaluation board as a USB Host.

 MSD_File Example

This example application shows a USB Host interacting with a mass storage device. It uses
the Flash File System to store, retrieve, and manage files. The application configures the
evaluation board as a USB Host.

Copyright © Keil, An ARM Company. All rights reserved.

Page 421

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create USB Host HID Applications

Create USB Host HID Applications shows how to program a USB Host to support USB human
interface devices using the RL-USB Library.

Include into the project and configure the following RL-USB Host Source Files:

1. The USB library that matches the device core:
USB_CM3.lib - for Cortex-M devices.
USB_ARM_L.lib - for ARM7 or ARM9 devices.

2. usbh_ohci_device family.c - to configure the device hardware layer (for devices with OHCI
host controllers).

3. usb_config.c - to configure the USB system.
4. main file.c - to initialize the USB Host from main().
5.
6. ..

7. usbh_init(); // initialize

USB Host Controller

8. while(1) {

9. ..

10. usbh_engine(); // check for

new devices

11. ..

12. }

Several µVision USB Host HID projects can be used as a template for creating new USB Host HID
applications. The files can be edited directly or using the µVision Configuration Wizard.

1. Copy all files from any folder \ARM\Boards\Vendor\Board\RL\USB\Host\HID_Kbd to a
new folder and open the *.uvproj project with µVision.

2. Open the file usb_config.c and set USB Host.

For USB Host devices that support OHCI:

3. Enable the option Open Host Controller Interface (OHCI).

Page 422

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Set the configuration values.
5. Disable any custom USB Host Controller Driver.
6. In the Class Configuration section, enable Human Interface Device Class (HID) and set

the timeout for transaction requests.
7. Open the file usbh_ohci_device family.c and set the USB Host OHCI Controller Address.

For USB Host devices that support a Custom USB Host Controller:

3. Disable the option Open Host Controller Interface (OHCI).

Page 423

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Enable the Custom USB Host Controller.
5. Set the configuration options.
6. In the Class Configuration section, enable Human Interface Device Class (HID) and set

the timeout for transaction requests.

Note
 The configuration options are explained in RL-USB Host Configuration.

Copyright © Keil, An ARM Company. All rights reserved.

Page 424

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

HID_Kbd Example

The HID_Kbd example application shows a USB Host device interacting with a USB HID Class
device. The interaction is explained on behalf of the Measure program. Commands are entered via a
USB keyboard connected to an evaluation board configured as the USB Host. The Measure output
and input prompt is shown on the board's LCD display.

Required hardware:

 An evaluation board that supports USB Host.
 USB keyboard.
 ULINK2 USB-JTAG debug adapter.

Hardware setup:

 Connect the board to the ULINK2 USB-JTAG adapter, and the adapter to the PC.
 Connect the USB keyboard to the board.
 Verify the jumper settings on the board.
 Power-up the board.

Open the project Measure.uvproj located in the folder \ARM\Boards\Vendor\Board
\RL\USB\Host\HID_Kbd with µVision.

1. Build the project and download it to target.

2. Start a debugging session. Click Run to continue.
The board's LCD display shows the menu of the Measure program.

3. Press "D" on the USB keyboard to display the measured values.

Page 425

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 426

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Create USB Host MSC Applications

Create USB Host MSC Applications shows how to create a USB Host application that supports the
mass storage class using the RL-USB Library.

Include into the project and configure the following RL-USB Host Source Files:

1. The USB library that matches the device core:
USB_CM3.lib - for Cortex-M devices.
USB_ARM_L.lib - for ARM7 or ARM9 devices.

2. The FlashFile library that matches the device core:
FS_CM3.lib - for Cortex-M devices.
FS_ARM_L.lib - for ARM7 or ARM9 devices.

3. usbh_ohci_device family.c - to configure the device hardware layer (for devices with OHCI
host controllers).

4. usb_config.c - to configure the USB system.
5. File_Config.c - to configure the USB Flash Drive.
6. fs_usbh_msc.c - to adapt the code to the application needs.
7. main file.c - to initialize the USB Host from main().
8.
9. ..

10. usbh_init(); // initialize

USB Host Controller

11. while(1) {

12. ..

13. usbh_engine(); // check for

new devices

14. ..

15. }

Several µVision USB Host MSD projects can be used as a template for creating new USB Host MSD
applications. The files can be edited directly or using the µVision Configuration Wizard.

1. Copy all files from any folder \ARM\Boards\Vendor\Board\RL\USB\Host\MSD_File to a
new folder and open the *.uvproj project with µVision.

2. Open the file usb_config.c and set USB Host.

For USB Host devices that support OHCI:

3. Enable the option Open Host Controller Interface (OHCI).

Page 427

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Set the configuration values.
5. Disable any custom USB Host Controller Driver.
6. In the Class Configuration section, set Mass Storage Device Class (MSC), define the

timeouts, and the number of read- and write retries.
7. Open the file usbh_ohci_device family.c and set the USB Host OHCI Controller Address.

For USB Host devices that support a Custom USB Host Controller:

3. Open the file usb_config.c and disable the option Open Host Controller Interface (OHCI)
.

Page 428

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

4. Enable Custom USB Host Controller.
5. Set the configuration options.
6. In the Class Configuration section, set Mass Storage Device Class (MSC), define the

timeouts, and the number of read and write retries.

Continue configuring the USB Flash Drive. Option details are explained in USB Flash Drive.

a. Open the file File_Config.c, enable the option USB Flash Drive.

b. Define the File System Cache size.
c. Enable Default Drive [U0:].

Continue configuring the USB clocks:

a. Open the file system_device family.c, enable the USB PLL and configure the
PLL-register.

Page 429

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

b. Configure the USB Clock Configuration Register.

Finally, modify the file fs_usbh_msc.c to suite the application requirements.

Note
 The configuration options are explained in RL-USB Host Configuration.

Copyright © Keil, An ARM Company. All rights reserved.

Page 430

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB Concepts

The Universal Serial Bus (USB) is a serial interface designed to be plug-and-play making it easy
to connect peripherals to a host. Programmers can build sophisticated computing systems without
having to worry about the underlying technology. To design USB peripherals, the programmer
should understand the microcontroller firmware, the USB protocol, the USB device descriptors, and
the USB host operating system.

This chapter contains the sections:

USB Transfer Rates

Lists the USB transfer rates.

USB Network

Describes the physical and logical USB network.

Basic Communication Model

Describes the USB communication model and where RL-USB supports the programmer.

USB Protocol

Describes the Transfer types, pipe concept, and transaction packets.

Descriptors

Explains the most important descriptors.

Copyright © Keil, An ARM Company. All rights reserved.

Page 431

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB Transfer Rates

USB uses two wires to transfer power and two wires to transfer signals. Three data transfer rates
are supported:

Performance Attributes Application
Low-Speed
1.5 Mbits/s

Lower cost
Hot-pluggable
Multiple peripherals

interactive devices:
keyboard, mouse,
game peripherals

Full-Speed
12 Mbits/s

Low cost
Hot-pluggable
Multiple peripherals
Guaranteed latency
Guaranteed bandwidth

phone, audio, compressed video,
printers, scanners

High-Speed
480 Mbits/s

Guaranteed latency
High bandwidth

video, mass storage

Note
 SuperSpeed has been introduced in 2008. Devices supporting this speed are available since

2010.
 SuperSpeed - 5 Gbits/s - is not covered in this document.

Copyright © Keil, An ARM Company. All rights reserved.

Page 432

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB Network

The physical USB network is implemented as a tiered star network with one host (master) and
several devices (slaves).

The USB host provides one attachment port. If more peripherals are required, connect a hub to the
root port to provide additional connection ports. The USB network can support up to 127 external
nodes. Due to timing constraints for signal propagation, the maximum number of tiers allowed is
seven:

 One tier for the host (bus master).
 Six tiers for hubs and devices.

USB devices are divided into device classes and can be:

 Hubs, which provide additional attachment points.
 Functions, which provide capabilities to the system.

Hubs serve to simplify USB connectivity from the user’s perspective. Each hub converts a single
attachment point into multiple attachment points referred to as ports.

Functions are USB devices that transmit or receive data or control information. Each function
contains configuration information describing the device capabilities and resource requirements.

Compound Devices are physical packages that implement multiple functions and an embedded
hub. A compound device appears to the host as a hub with one or more non-removable USB
devices.

Composite Devices support more than one class and thus, provide more than one function to the
host.

Examples of functions include the following:

 A human interface device such as a mouse, keyboard, tablet, or game controller.
 An imaging device such as a scanner, printer, or camera.
 A mass storage device such as a CD-ROM drive, floppy drive, or DVD drive.

The logical USB network appears as a star network to the developer with the host at the centre.
Hubs do not introduce any programming complexity and are transparent as far as the programmer
is concerned. A USB device will work the same way whether connected directly to a root-hub or
whether connected via intermediate hubs. All USB devices are available as addressable nodes in
this master/slave network. Only the host can initiate a data transfer in the network.

Page 433

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note
 Only one host exists in any USB system.
 Only functions can be enabled in tier seven.
 Compound devices occupy two tiers.

Copyright © Keil, An ARM Company. All rights reserved.

Page 434

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Basic Communication Model

The host and the device have distinct layers, as shown in the picture below. Ultimately, the
communication occurs on the physical USB wire. However, there are logical host-device interfaces
between each horizontal layer.

The major host layers are the:

 Client describing the software entities responsible for interacting directly with USB devices.
 USB System managing data transfers between the host and USB devices.
 USB Bus Interface handling interactions of the electrical and protocol layers and actually

transmits the packets.

Host layers have the role to:

 Detect the attachment and removal of USB devices.
 Manage USB control flows between the host and USB devices.
 Manage data flows between the host and USB devices.
 Collect status and activity statistics.
 Control the electrical interface.

The major device layers are the:

 Function providing a new capability, for instance, a mouse, a keyboard, an mp3-player, or
an ISDN interface.

 USB Device managing data transfers between the host and USB devices.
 USB Bus Interface handling interactions of the electrical and protocol layers and actually

transmits the packets.

Copyright © Keil, An ARM Company. All rights reserved.

Page 435

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB Protocol

USB is a polled bus, where the host initiates all data exchanges. USB consists of several protocol
layers, where data are transferred via a set of logical connections referred to as pipes. Two types
of pipes exist:

 Stream pipes have no defined USB format. Stream pipes can either be controlled by the
host or device. The data stream has a predefined direction, either IN or OUT. Stream pipes
support Bulk Transfers, Isochronous Transfers, and Interrupt Transfers.

 Message pipes have a defined USB format. They are host controlled. Message pipes allow
data to flow in both directions and support Control Transfers only.

Most pipes come into existence when a USB device has been connected and the signaling speed
has been determined. A pipe originates from a buffer in the host and terminates inside the device
at an endpoint.

Endpoints can be described as data sources or sinks. A device can have up to 16 OUT and 16 IN
endpoints. An endpoint can have only one transfer direction. Endpoint 0 is a special case and is a
combination of Endpoint 0 OUT and Endpoint 0 IN. It is used to control the device.

OUT always refers to the direction pointing from the host to the device. IN always refers to the
direction pointing towards the host.

Transfers, or data flow types, can consist of one or more transactions. A pipe supports only one of
the following transfer types:

 Control Transfers are typically used to setup a USB device. They are mandatory using
Endpoint 0 IN/OUT.

 Interrupt Transfers can be used where data are sent regularly, for example status
updates.

 Isochronous Transfers transmit real-time data such as audio and video. They have a
guaranteed, fixed bandwidth.

 Bulk Transfers can be used to send data where timing is not important, for example to a
printer.

Transactions are transfers of data and mostly consist of three packets:

1. Token packet is the header defining the transaction type and direction, the device address,
and the endpoint.

2. Data packet carries the information.
3. Status packet is a handshake packet informing whether the transfer was successful.

In a transaction, data are transferred either from the host to a device or from a device to the host.
The transfer direction is specified in the token packet. Then, the source sends a data packet or
indicates it has no data to transfer. In general, the destination responds with a status packet
indicating whether the transfer was successful.

Page 436

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Packets could be thought of as the smallest element of data transmission. Each packet transmits
an integral number of bytes at the current transmission rate. Packets starts with a synchronization
pattern, followed by the data bytes of the packet, and concluded with an End of Packet (EOP)
signal. All USB packet patterns are transmitted least significant bit first. Before and after the
packet, the bus is in idle state.

A special packet is the Start-of-Frame packet (SOF) that splits the USB bus into time segments.
Each pipe is allocated a slot in each frame. The Start-of-Frame packet is sent every 1ms on full
speed links. At high speed, the 1ms frame is divided into 8 micro frames of 125 µs each. A
Start-of-Frame packet is sent at the beginning of each micro frame with the same frame number.
The frame number increments every 1 ms.

Copyright © Keil, An ARM Company. All rights reserved.

Page 437

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Control Transfer

Control Transfers are bi-directional transfers reserved for the host to send and request
configuration information to and from the device using the IN and OUT Endpoint 0. Each Control
Transfer consists of 2 to several transactions. The maximum packet size for the data stage is 8
bytes at low speed; 8, 16, 32, or 64 at full speed; and 64 for high speed. In general, the application
software does not use this type of transfer.

Control Transfers have three stages:

 The SETUP stage carries 8 bytes called the Setup packet, defining the request, and
specifying how many data should be transferred in the DATA stage.

 The DATA stage is optional. If present, it always starts with a transaction containing a
DATA1 packet. Then, the transaction type alternates between DATA0 and DATA1 until all
required data have been transferred.

 The STATUS stage is a transaction containing a zero-length DATA1 packet. If the DATA
stage was IN, then the STATUS stage is OUT, and vice versa.

Copyright © Keil, An ARM Company. All rights reserved.

Page 438

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Interrupt Transfer

Interrupt Transfers have a limited latency to or from a device. In USB, an Interrupt Transfer, or
Interrupt Pipe, has a defined polling rate between 1ms and 255ms. The developer can define how
often the host can request a data transfer from the device.

For example, for a mouse, a data transfer rate at every 10 ms can be guaranteed. However,
defining the polling rate does not guarantee that data will be transferred every 10 ms, but rather
that the transaction will occur somewhere within the tenth frame. For this reason, a certain amount
of timing jitter is inherent in a USB transaction.

Typically, Interrupt Transfer data consists of event notifications, characters, or coordinates from a
pointing device.

Copyright © Keil, An ARM Company. All rights reserved.

Page 439

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Isochronous Transfer

Isochronous Transfers are used for transmitting real-time information such as audio and video
data, and must be sent at a constant rate. USB isochronous data streams are allocated a dedicated
portion of USB bandwidth to ensure that data can be delivered at the desired rate. An Isochronous
pipe sends a new data packet in every frame, regardless of the success or failure of the last
packet. No interrupt is generated when data arrive in the Endpoint buffer. Instead, the interrupt is
raised on the Start-of-Frame token, which guarantees a regular 1ms interrupt on the Isochronous
Endpoint.

Isochronous Transfers have no error detection. In other words, any error in electrical transmission
is not corrected by hardware mechanisms such as retries.

Isochronous Transfers are also subject to timing jitters as described for Interrupt Transfers.

Copyright © Keil, An ARM Company. All rights reserved.

Page 440

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Bulk Transfer

Bulk Transfers are used for the data which are not of type Control, Interrupt, or Isochronous.
Reliable exchange of data is ensured at the hardware level using error detection and invoking a
limited number of retries in hardware.

Data are transferred in the same manner and with the same packet sizes as in Interrupt Transfers,
but have no defined polling rate. Bulk Transfers take up all the bandwidth that is available after the
other transfers have finished. If the bus is very busy, then a Bulk Transfer may be delayed. If the
bus is idle, multiple Bulk Transfers can take place in a single 1ms frame (Interrupt and Isochronous
Transfers are limited to a maximum of one packet per frame).

For example, Bulk Transfers send data to a printer. As long as the data is printed in a reasonable
time frame, the exact transfer rate is not important.

Copyright © Keil, An ARM Company. All rights reserved.

Page 441

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Descriptors

USB devices report their attributes using descriptors. A descriptor is a data structure with a defined
format. Each descriptor begins with a byte-wide field containing the total number of bytes in the
descriptor followed by a byte-wide field identifying the descriptor type.

This is not a complete list of all the possible descriptors a USB host can request. However, as a
minimum, the USB device must provide the device descriptor, configuration descriptor, interface
descriptor, and three endpoint descriptors.

 Device Configuration explains the device configuration options and the structure of the
descriptors.

 Device Descriptor describes the basic information that identifies a device.
 Configuration Descriptor describes the power requirements and the number of interfaces a

device can contain.
 Interface Descriptor describes the collection of endpoints and the interfaces a device can

have.
 Endpoint Descriptor specifies the attributes of an endpoint.
 Device Qualifier Descriptor describes the alternative information needed when the device

operates in different speed modes.

The USB Host sends setup requests as soon as the device has joined the USB network. The device
will be instructed to select a configuration and an interface to match the needs of the application
running on the USB Host. Once a configuration and an interface have been selected, the device
must service the active endpoints to exchange data with the USB Host.

Copyright © Keil, An ARM Company. All rights reserved.

Page 442

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Device Configuration

When a USB device is attached to or removed from the USB, the host uses a process known as bus
enumeration to identify and manage the device.

The data requested by the host are stored in a hierarchy of descriptors. Descriptors are arrays of
data, which fully describe the device.

The minimum and required number of descriptors are:

 One Device Descriptor.
 One Configuration Descriptor.
 One Interface Descriptor.
 Three Endpoint Descriptors (one control, one IN, and one OUT).

Complex devices have multiple interfaces. Each interface can have a number of endpoints
representing a functional unit. For example, a voice-over-IP phone might have:

 One audio class interface with 2 endpoints for transferring audio data in each direction.
 One HID interface with a single IN interrupt endpoint for a built-in keypad.

Copyright © Keil, An ARM Company. All rights reserved.

Page 443

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Device Descriptor

The Device Descriptor is the root of the descriptor tree and contains basic device information. The
unique numbers, idVendor and idProduct, identify the connected device. The Windows operating
system uses these numbers to determine which device driver to load.

idVendor is the number assigned to each company producing USB-based devices. The USB
Implementers’ Forum is responsible for administering the assignment of Vendor IDs.

The idProduct is another 16-bit field containing a number assigned by the manufacturer to identify
a specific product.

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes.
1 bDescriptorType 1 Constant Device Descriptor Type.
2 bcdUSB 2 BCD USB Specification Release Number in

Binary-Coded Decimal (i.e., 2.10 is 210H). This
field identifies the release of the USB
Specification with which the device and its
descriptors are compliant.

4 bDeviceClass 1 Class Class code (assigned by the USB-IF).

If this field is reset to zero, each interface within
a configuration specifies its own class information
and the various interfaces operate
independently.

If this field is set to a value between 1 and FEH,
the device supports different class specifications
on different interfaces and the interfaces may not
operate independently. This value identifies the
class definition used for the aggregate
interfaces.

If this field is set to FFH, the device class is
vendor-specific.

5 bDeviceSubClass 1 SubClass Subclass code (assigned by the USB-IF).

These codes are qualified by the value of the
bDeviceClass field.

If the bDeviceClass field is reset to zero, this field
must also be reset to zero.

If the bDeviceClass field is not set to FFH, all
values are reserved for assignment by the
USB-IF.

6 bDeviceProtocol 1 Protocol Protocol code (assigned by the USB-IF). These
codes are qualified by the value of the
bDeviceClass and the bDeviceSubClass fields. If a
device supports class-specific protocols on a
device basis as opposed to an interface basis,
this code identifies the protocols that the device
uses as defined by the specification of the device
class.

If this field is reset to zero, the device does not
use class specific protocols on a device basis.
However, it may use class specific protocols on
an interface basis.

If this field is set to FFH, the device uses a
vendor-specific protocol on a device basis.

7 bMaxPacketSize0 1 Number Maximum packet size for Endpoint zero (only 8,
16, 32, or 64 are valid).

8 idVendor 2 ID Vendor ID (assigned by the USB-IF).
10 idProduct 2 ID Product ID (assigned by the manufacturer).
12 bcdDevice 2 BCD Device release number in binary-coded decimal.

Page 444

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.usb.org
http://www.usb.org
http://www.usb.org
http://www.usb.org
http://www.processtext.com/abcchm.html

Offset Field Size Value Description
14 iManufacturer 1 Index Index of string descriptor describing

manufacturer.
15 iProduct 1 Index Index of string descriptor describing product.
16 iSerialNumber 1 Index Index of string descriptor describing the device's

serial number.
17 bNumConfigurations 1 Number Number of possible configurations.

Copyright © Keil, An ARM Company. All rights reserved.

Page 445

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Configuration Descriptor

The Configuration Descriptor contains information about the device’s power requirements and the
number of interfaces it can support. A device can have multiple configurations. The host can select
the configuration that best matches the requirements of the application software it is running.

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes.
1 bDescriptorType 1 Constant Configuration Descriptor Type.
2 wTotalLength 2 Number Total length of data returned for this

configuration. Includes the combined length of all
descriptors (configuration, interface, endpoint,
and class- or vendor-specific) returned for this
configuration.

4 bNumInterfaces 1 Number Number of interfaces supported by this
configuration.

5 bConfigurationValue 1 Number Value to use as an argument to the
SetConfiguration() request to select this
configuration.

6 iConfiguration 1 Index Index of string descriptor describing this
configuration.

7 bmAttributes 1 Bitmap Configuration characteristics
D7: Reserved (set to one)
D6: Self-powered
D5: Remote Wakeup
D4...0: Reserved (reset to zero)

D7 is reserved and must be set to one for
historical reasons.

A device configuration that uses power from the
bus and a local source reports a non-zero value
in bMaxPower to indicate the amount of bus
power required and sets D6. The actual power
source at runtime may be determined using the
GetStatus(DEVICE) request. If a device
configuration supports remote wakeup, D5 is set
to one.

8 bMaxPower 1 mA Maximum power consumption of the USB device
from the bus in this specific configuration when
the device is fully operational. Expressed in 2 mA
units (i.e., 50 = 100 mA).

Copyright © Keil, An ARM Company. All rights reserved.

Page 446

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Interface Descriptor

The Interface Descriptor describes a collection of endpoints. This interface supports a group of
pipes that are suitable for a particular task. Each configuration can have multiple interfaces. The
interface can be selected dynamically by the USB host. The Interface Descriptor can associate its
collection of pipes with a device class, which in turn has an associated class device driver within the
host operating system. Typically, the device class is a functional type such as a printer class or
mass storage class.

An interface descriptor never includes Endpoint 0 in the number of endpoints. If an interface uses
only Endpoint 0, then the field bNumEndpoints must be set to zero.

If no class type has been selected for the device, then none of the standard USB drivers is loaded,
and the developer has to provide its own device driver.

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes.
1 bDescriptorType 1 Constant Device Descriptor Type.
2 bInterfaceNumber 1 Number The number of this interface. Zero-based value,

identifying the index in the array of concurrent
interfaces supported by this configuration.

3 bAlternateSetting 1 Number Value used to select this alternate setting for the
interface identified in the prior field. Allows an
interface to change its settings on the fly.

4 bNumEndpoints 1 Number Number of endpoints used by this interface
(excluding endpoint zero). If this value is zero,
this interface only uses the Default Control Pipe.

5 bInterfaceClass 1 Class Class code (assigned by the USB-IF). A value of
zero is reserved for future standardization.

If this field is set to FFH, the interface class is
vendor-specific. All other values are reserved for
assignment by the USB-IF.

6 bInterfaceSubClass 1 SubClass Subclass code (assigned by the USB-IF).

If the bInterfaceClass field is reset to zero, this
field must also be reset to zero.

If the bInterfaceClass field is not set to FFH, all
values are reserved for assignment by the USB-IF.

7 bInterfaceProtocol 1 Protocol Protocol code (assigned by the USB).

If an interface supports class-specific requests,
this code identifies the protocols that the device
uses as defined in the device class.

If this field is reset to zero, the device does not
use a class-specific protocol on this interface.

If this field is set to FFH, the device uses a
vendor-specific protocol for this interface.

8 iInterface 1 Index Index of string descriptor describing this interface.

For example, two device with different interfaces are needed. The first interface, Interface Zero, has
the field bInterfaceNumber set to zero.
The next interface, Interface One, has the field bInterfaceNumber set to one and the field
bAlternativeSetting also set to zero (default). It is possible to define an alternative setting for this
device, by leaving the field bInterfaceNumber set to one, but with the field bAlternativeSetting is set
to one instead of zero.

The first two interface descriptors with bAlternativeSettings equal to zero are used. However, the
host can send a SetInterface() request to enable the alternative setting.

Page 447

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 448

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Endpoint Descriptor

The Endpoint Descriptor is used to specify the transfer type, direction, polling interval, and
maximum packet size for each endpoint. Endpoint zero, the default endpoint, is always assumed to
be a control endpoint and never has a descriptor.

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes.
1 bDescriptorType 1 Constant Endpoint Descriptor Type (05h).
2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB device

described by this descriptor. The address is encoded
as follows:

Bit 3...0: The endpoint number
Bit 6...4: Reserved, reset to zero
Bit 7: Direction, ignored for control endpoints.
 0 = OUT endpoint
 1 = IN endpoint

3 bmAttributes 1 Bitmap The endpoint’s attribute when configured through
bConfigurationValue.
Bits 1..0: Transfer Type
 00 = Control
 01 = Isochronous
 10 = Bulk
 11 = Interrupt

For non-isochronous endpoints, bits 5..2 must be set
to zero.
For isochronous endpoints, they are defined as:
Bits 3..2: Synchronization Type
 00 = No Synchronization
 01 = Asynchronous
 10 = Adaptive
 11 = Synchronous
Bits 5..4: Usage Type
 00 = Data
 01 = Feedback
 10 = Implicit feedback
 11 = Reserved

All other bits are reserved and must be reset to zero.
4 wMaxPacketSize 2 Number Is the maximum packet size of this endpoint.

For isochronous endpoints, this value is used to
reserve the time on the bus, required for the
per-(micro)frame data payloads.

Bits 10..0 = max. packet size (in bytes).

For high-speed isochronous and interrupt endpoints:
Bits 12..11 = number of additional transaction
opportunities per micro-frame:
 00 = None (1 transaction per micro-frame)
 01 = 1 additional (2 per micro-frame)
 10 = 2 additional (3 per micro-frame)
 11 = Reserved
Bits 15..13 are reserved and must be set to zero.

6 bInterval 1 Number Interval for polling endpoint for data transfers.
Expressed in frames or micro-frames depending on
the operating speed (1 ms, or 125 µs units).

Copyright © Keil, An ARM Company. All rights reserved.

Page 449

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Device Qualifier Descriptor

A high-speed capable device that has different device information for full-speed and high-speed
must also have a Device Qualifier Descriptor. For example, if the device is currently operating at
full-speed, the Device Qualifier returns information about how it would operate at high-speed and
vice-versa.

The fields for the vendor, product, device, manufacturer, and serial number are not included. This
information is constant for a device regardless of the supported speeds.

If a full-speed only device receives a GetDescriptor() request for a device_qualifier, it must respond
with a request error. Then, the host must not make a request for an other_speed_configuration
descriptor.

Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor in bytes.
1 bDescriptorType 1 Constant Device Qualifier Type.
2 bcdUSB 2 BCD USB Specification Release Number in

Binary-Coded Decimal (i.e., 2.10 is 210H). This
field identifies the release of the USB
Specification with which the device and its
descriptors are compliant. At least V2.00 is
required to use this descriptor.

4 bDeviceClass 1 Class Class code (assigned by the USB-IF).

If this field is reset to zero, each interface within
a configuration specifies its own class information
and the various interfaces operate
independently.

If this field is set to a value between 1 and FEH,
the device supports different class specifications
on different interfaces and the interfaces may not
operate independently. This value identifies the
class definition used for the aggregate
interfaces.

If this field is set to FFH, the device class is
vendor-specific.

5 bDeviceSubClass 1 SubClass Subclass code (assigned by the USB-IF).

These codes are qualified by the value of the
bDeviceClass field.

If the bDeviceClass field is reset to zero, this field
must also be reset to zero.

If the bDeviceClass field is not set to FFH, all
values are reserved for assignment by the
USB-IF.

6 bDeviceProtocol 1 Protocol Protocol code (assigned by the USB-IF). These
codes are qualified by the value of the
bDeviceClass and the bDeviceSubClass fields. If a
device supports class-specific protocols on a
device basis as opposed to an interface basis,
this code identifies the protocols that the device
uses as defined by the specification of the device
class.

If this field is reset to zero, the device does not
use class-specific protocols on a device basis.
However, it may use classspecific protocols on an
interface basis.

If this field is set to FFH, the device uses a
vendor-specific protocol on a device basis.

7 bMaxPacketSize0 1 Number Maximum packet size for other speed.
8 bNumConfigurations 1 Number Number of other-speed configurations.

Page 450

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Offset Field Size Value Description
9 bReserved 1 Zero Reserved for future use, must be zero.

Copyright © Keil, An ARM Company. All rights reserved.

Page 451

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Example Programs

The RL-ARM kit includes several example programs that are configured for ARM® devices.

The example programs are in the \Keil\ARM\RL\...\Examples\ and
\Keil\ARM\Boards\<vendor>\<board>\RL\... folders. Each example program is stored in a
separate folder along with project files that help you quickly build the projects and run the
programs.

To begin using one of the example projects, use the µVision®3 Project —> Open Project menu
and load the project file.

You can review the following projects when you start using RL-ARM:

Example Component Description
RTX_ex1 RL-RTX A very simple program to control 2 tasks and to pass signals

between the tasks.
RTX_ex2 RL-RTX A more complex program to control 4 tasks and to pass signals

between the tasks.
Blinky RL-RTX A simple LED flasher program to demonstrate Kernel I/O control.
Mailbox RL-RTX The Mailbox task inter-communication example program. Fixed size

messages are sent using fixed memory block management functions.
Measure RL-RTX A data acquisition example program. The measure application is split

into several tasks for easy control of the application.
Traffic RL-RTX A program that controls a traffic light.
RoundRobin RL-RTX Demonstrates Round-Robin task switching.
Semaphore RL-RTX Demonstrates how to use a shared resource (a UART) from different

tasks using a semaphore.
SD_File RL-FlashFS A program that creates and manipulates with files located on the

Memory Card.
MSD_File RL-FlashFS A program that creates and manipulates with files located on the

USB Mass Storage Device.
File_ex1 RL-FlashFS A program that creates and manipulates the SRAM files.
HTTP_demo RL-TCPnet An embedded Web Server demonstration program. This example

shows you how to create web pages and use a CGI interface.
Telnet_demo RL-TCPnet An embedded Telnet Server demonstration program. This example

shows you how to build a command-line interface and control an
embedded device using Telnet.

TFTP_demo RL-TCPnet
RL-FlashFS

A file transfer over TCP/IP demonstration program. It uses a TFTP
Server which manipulates files from the Flash File System.

SMTP_demo RL-TCPnet A program that sends an e-mail using SMTP Client application.
DNS_demo RL-TCPnet A program that resolves the IP address from a host name using the

DNS Client application.
LEDSwitch RL-TCPnet A control embedded system from C++ application over TCP/IP to

switch LED diodes on and off.
LEDSwitch\
Client

RL-TCPnet A control embedded system from another embedded system over
TCP/IP to switch LED diodes on and off. This program replaces the
C++ control application from the LEDSwitch example.

Copyright © Keil, An ARM Company. All rights reserved.

Page 452

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

RTX_ex1

The RTX example program controls two tasks and passes signals between the tasks. This example
is in the
\Keil\ARM\RL\RTX\Examples\RTX_ex1 folder.

The two tasks, named task1 and task2, are to repeat after a pause of 50 ms which starts when
both tasks are complete. There is an additional pause of 20 ms between the completion of task1
and start of task2.

Follow these steps to build the application:

1. Place the code for the two activities into task1 and task2. Tasks can be declared in RVCT as
a special type of function by using the C language extension key word __task.

2.
3. __task void task1 (void) {

4. code of task 1 placed here

5. }

6.
7. __task void task2 (void) {

8. code of task 2 placed here

9. }

10. Start the Real-Time Executive before running the tasks. Do this by calling the function
os_sys_init() in the C main function.

Pass the task ID as an argument to the os_sys_init function so that the task executes
immediately, rather than the program continuing execution in the main function.

Start task1 first. At the beginning of task1, use a call of os_tsk_create to start task2:

__task void task1 (void) {

 os_tsk_create (task2, 0);

 code of task 1 placed here

}

__task void task2 (void) {

 code of task 2 placed here

}

void main (void) {

 os_sys_init (task1);

}

11. Place the activities into endless loops to repeat indefinitely inside the two tasks.

First, the system function os_dly_wait() pauses a task for a number of system intervals.
The RTX kernel starts a system timer by programming one of the on-chip hardware timers of
the ARM processor. By default, the system interval is 10 ms and timer 0 is used (you can
change these settings).

Then use the functions os_evt_wait_or and os_evt_set to wait for and set event flags.

For this example, use the event flag at bit 2. The listing shown below contains all the
statements required to run the RTX example:

/* Include type and function declarations for RTX */

#include "RTL.h"

/* id1, id2 will contain task identifications at run-time */

OS_TID id1, id2;

Page 453

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

/* Forward reference. */

__task void task1 (void);

__task void task2 (void);

__task void task1 (void) {

 /* Obtain own system task identification number */

 id1 = os_tsk_self ();

 /* Assign system identification number of task2 to id2 */

 id2 = os_tsk_create (task2, 0);

 for (;;) { /* do-this */

 /* Indicate to task2 completion of do-this */

 os_evt_set (0x0004, id2);

 /* Wait for completion of do-that (0xffff means no time-out)*/

 os_evt_wait_or (0x0004, 0xffff);

 /* Wait now for 50 ms */

 os_dly_wait (5);

 }

}

__task void task2 (void) {

 for (;;) {

 /* Wait for completion of do-this (0xffff means no time-out) */

 os_evt_wait_or (0x0004, 0xffff); /* do-that */

 /* Pause for 20 ms until signaling event to task1 */

 os_dly_wait (2);

 /* Indicate to task1 completion of do-that */

 os_evt_set (0x0004, id1);

 }

}

void main (void) {

 os_sys_init (task1);

}

12. Compile the example program and link it with the RTX function library. Select the RTX
Operating System for the project under: Options for Target —> Target —> Operating
System —> RTX Kernel. The final product (absolute file) can be run on your target or under
the µVision Simulator in the normal way.

Copyright © Keil, An ARM Company. All rights reserved.

Page 454

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Traffic Example

The TRAFFIC example is a pedestrian traffic light controller that shows the usage of the multitasking
RTX Real-time operating system. The traffic light operates during a user-defined time interval.
Outside this time interval, the yellow light flashes. If a pedestrian pushes the request button, the
traffic light goes immediately into walk state. Otherwise, the traffic light works continuously.

Traffic Light Controller Commands

The serial commands that the TRAFFIC controller supports are listed in the following table. These
commands are composed of ASCII text characters. All commands must be terminated with a
carriage return.

Command Serial Text Description
Display D Display clock, start, and end times.
Time T hh:mm:ss Set the current time in 24-hour format.
Start S hh:mm:ss Set the start time in 24-hour format. The traffic light controller operates

normally between the start and end times. Outside these times, the
yellow light flashes.

End E hh:mm:ss Set the end time in 24-hour format.

Software

The TRAFFIC application is composed of three files, which can be found in the
\Keil\ARM\RL\RTX\Examples\Traffic folder.

TRAFFIC.C contains the traffic light controller program, which is divided into the following tasks:

 Task init: initializes the serial interface and starts all other tasks. This task deletes itself
since initialization is needed only once.

 Task command: is the command processor for the traffic light controller. This task controls
and processes the received serial commands.

 Task clock: controls the time clock.
 Task blinking: flashes the yellow light when the clock time is outside the active time range.
 Task lights: controls the traffic light phases while the clock time is in the active time range

(between the start and end times).
 Task keyread: reads the pedestrian push button and sends a signal to the task lights.
 Task get_escape: If an ESC character is encountered in the serial stream, the command

task gets a signal to terminate the display command.

SERIAL.C implements an interrupt driven serial interface using events. This file contains the
functions putchar and getkey. The high-level I/O functions printf and getline call these basic I/O
routines. The traffic light application will also operate without using interrupt driven serial I/O but
will not perform so well without it.

GETLINE.C is the command line editor for characters received from the serial port. This source file is
also used by the MEASURE application.

TRAFFIC Project

Open the TRAFFIC.UV2 project file that is located in the \Keil\ARM\RL\RTX\Examples\Traffic
folder with µVision®. The source files for the TRAFFIC project are visible in the Project
Workspace area. If the files are not visible in the Project Workspace area, then select the
Files tab.

Page 455

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Select the RTX kernel Real-Time OS under Options for Target.

Build the TRAFFIC program with Project —> Build or the toolbar button. Select the target for
build:

Run in Simulator

Start the µVision debugger.

The watch variables shown on the right allow you to view port status that drives the lights.

The push_key signal function simulates the pedestrian push key that switches the light system to
the walk state. This function is called with the Push for Walk toolbar button.

Use Debug —> Function Editor to open TRAFFIC.INC. This file is specified under Options for
Target —> Debug —> Initialization File and defines the signal function push_key, the port
initialization and the toolbar button.

Page 456

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Note
 the VTREG symbol Clock is literalized with a back quote ('), since there is a C function named

clock in the TRAFFIC.C module. Refer to "Literal Symbols" on page 132 for more information.
Now run the TRAFFIC application. Enable View —> Periodic Window Update to view the lights
in the watch window during program execution.
The Serial Window #2 displays the printf output and allows you to enter the traffic light
controller commands described in the table above.

Set the clock time outside of the active time interval to flash the yellow light.

Run on MCB21xx

This example is configured for several targets. Select the MCB2100 or the MCB2130 evaluation
board and rebuild the project. ULINK® USB-JTAG adapter is used for debugging. The application is
loaded to the internal flash of the controller.

Page 457

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.keil.com/mcb2100/
http://www.keil.com/mcb2130/
http://www.keil.com/ulink/
http://www.processtext.com/abcchm.html

Download the HEX file into the on-chip Flash
ROM of the LPC21xx device on the MCB21xx
Evaluation Board.

Start the µVision debugger.

The INT1 switch is used as a push_key. INT1 is configured as a standard digital input with
jumpers J1 and J7. Jumper positions are:

Jumper Setting
J1 not inserted
J7 inserted

You can view the serial output and enter the traffic light controller commands with the Microsoft
Windows HyperTerminal application: Start —> Programs —> Accessories —> Communication —>
HyperTerminal.

Connect a serial cable to the COM1 serial port of the MCB21xx board and set the following serial
parameters:

 9600 bits per second
 8 data bits
 Parity None
 Stop bits 1
 Flow control None.

Copyright © Keil, An ARM Company. All rights reserved.

Page 458

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

SD_File

The SD_File example program shows you how to use the Flash File System to store, retrieve, and
manage files. This example is in the
\ARM\Boards\<vendor>\<board>\RL\FlashFS folder.

This example is configured to use the Secure Data Card drive for storing files.

1. Load the project, select Open Project from the Project menu and open the SD_File project
from the folder \ARM\Boards\<vendor>\<board>\RL\FlashFS\SD_File\.

2. Build the project.
3. Download example to target board.
4. Power-up the target board.
5. Enter the file commands from a serial window. A simple command-line interface is available

with the following commands:
Command Description
CAP "fname" [/A] Capture serial data to fname file.

/A option appends data to a fname file.
FILL "fname" [nnnn] Create a fname file filled with text.

nnnn specifies number of lines of text that will be filled in fname file
(default is 1000).

TYPE "fname" Display the content of a fname text file.
REN "fname1" "fname2" Rename a fname1 file to fname2 file.
COPY "fin" ["fin2"] "fout" Copy a fin file to fout file.

fin2 option merges fin and fin2 file to fout file.
DEL "fname" Delete a fname file.
DIR ["mask"] Displays the list of files and folders.
FORMAT [label] /FAT32 Formats the media and gives it label label.

/FAT32 option forces media to be formatted as FAT32.

Example of using command interface.

1. FORMAT KEIL
- format the media and give it label KEIL

2. FILL "M:\Test folder\Test file.txt"
- create a long file name Test file.txt in Test folder subfolder filled with text

3. DIR "M:\Test folder*.*"
- display all the files in the Test folder subfolder

4. TYPE "M:\Test folder\Test file.txt"
- display the content of the Test file.txt located in the Test folder subfolder

5. REN "M:\Test folder\Test file.txt" "Test file renamed.txt"
- rename the file Test file.txt located in the Test folder subfolder to the Test file
renamed.txt file in the same subfolder

6. COPY "M:\Test folder\Test file renamed.txt" "M:\test.txt"
- copy the file Test file renamed.txt located in the Test folder subfolder to the TEST.TXT
file in the root folder

7. DEL "M:\Test folder\Test file renamed.txt"
- delete the Test file renamed.txt file located in the Test folder subfolder

8. DEL "M:\Test folder\"
- delete the Test folder subfolder

9. DIR "M:*.*"
- display all files in the root folder

10. TYPE "M:\test.txt"
- display the content of the TEST.TXT file located in the root folder

note
 M:\ can be omitted if default drive in file File_Config.c is selected as Memory Card
 This is just an example of using Flash File System file manipulation functions. It does not

emulate DOS nor should it be mistaken as DOS.

Copyright © Keil, An ARM Company. All rights reserved.

Page 459

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MSD_File

The MSD_File example application shows how to use the Flash File System to store, retrieve, and
manage files. It is configured to use the USB Mass Storage Device drive for storing files. This
example is located in the folder \ARM\Boards\<vendor>\<board>\RL\USB\Host.

1. Load the project. Select Project - Open Project from the µVision menu and open the
project MSD_File.uvproj from the folder \ARM\Boards\Vendor\Board
\RL\USB\Host\MSD_File.

2. Build the project.
3. Power-up and connect the target board.
4. Download application to target board.
5. Enter the file commands from a serial window. A simple command-line interface is available

with the following commands:
Command Description
CAP "fname" [/A] Capture serial data to fname file.

/A option appends data to a fname file.
FILL "fname" [nnnn] Create a fname file filled with text.

nnnn specifies number of lines of text that will be filled in fname file
(default is 1000).

TYPE "fname" Display the content of a fname text file.
REN "fname1" "fname2" Rename a fname1 file to fname2 file.
COPY "fin" ["fin2"] "fout" Copy a fin file to fout file.

fin2 option merges fin and fin2 file to fout file.
DEL "fname" Delete a fname file.
DIR ["mask"] Displays the list of files and folders.
FORMAT [label] /FAT32 Formats the media and gives it label label.

/FAT32 option forces media to be formatted as FAT32.

Example of using command interface.

1. FORMAT KEIL
- format the media and give it label KEIL

2. FILL "U:\Test folder\Test file.txt"
- create a long file name Test file.txt in Test folder subfolder filled with text

3. DIR "U:\Test folder*.*"
- display all the files in the Test folder subfolder

4. TYPE "U:\Test folder\Test file.txt"
- display the content of the Test file.txt located in the Test folder subfolder

5. REN "U:\Test folder\Test file.txt" "Test file renamed.txt"
- rename the file Test file.txt located in the Test folder subfolder to the Test file
renamed.txt file in the same subfolder

6. COPY "U:\Test folder\Test file renamed.txt" "U:\test.txt"
- copy the file Test file renamed.txt located in the Test folder subfolder to the TEST.TXT
file in the root folder

7. DEL "U:\Test folder\Test file renamed.txt"
- delete the Test file renamed.txt file located in the Test folder subfolder

8. DEL "U:\Test folder\"
- delete the Test folder subfolder

9. DIR "U:*.*"
- display all files in the root folder

10. TYPE "U:\test.txt"
- display the content of the TEST.TXT file located in the root folder

note
 U:\ can be omitted if default drive in file File_Config.c is selected as USB Flash
 This is just an example of using Flash File System file manipulation functions. It does not

emulate DOS nor should it be mistaken as DOS.

Copyright © Keil, An ARM Company. All rights reserved.

Page 460

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

File_ex1

The File_ex1 example program shows you how to use the Flash File System to store, retrieve, and
manage files. This example is in the
\Keil\ARM\RL\FlashFS\Examples\File_ex1 folder.

This example is configured to use the RAM drive for storing files. A portion of the system RAM is
reserved for storing files. This example also works in simulation mode.

Follow these steps to build the application:

1. Load the project, select Open Project from the Project menu and open the File_ex1
project from the folder \Keil\ARM\RL\FlashFS\Examples\File_ex1\.

2. Enter the file commands from a serial window. A simple command-line interface is available
with the following commands:

Command Description
N name Set the file name for all file operations. This name is used for other commands.

C Capture the text entered from a serial window to a file. Use the filename set by the
N command.

A Append the text entered from a serial window to the end of file.
R Read a file content and output it to a serial window.

E new Rename a file to a new filename. The filename set by the N command is renamed.
D Delete a file.
L List file directory.

3. Create a file by entering the capture command C from a serial window.
4.
5. Command: C

After this command is given, any text entered in the serial window writes to a file. The
default filename is CAPTURE.TXT. However, you can change it using the N command before
starting file capture.

Use the ESC key to end the capture process.
Use the R command to read the file.

Page 461

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

6. You can create additional files by first defining a new filename and then starting the capture
process. The next file is INDEX.HTML.

7.
8. Command: N INDEX.HTML

9. Command: C

10. Use the L command to display the list of all files stored to the SRAM.
11.
12. Command: L

The files appear as in the following example:

Copyright © Keil, An ARM Company. All rights reserved.

Page 462

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

HTTP_demo

The HTTP_demo example program shows you how to use the Web Server application to control
the Embedded system. It is configured for several different evaluation boards. This example is in
the \ARM\Boards\<vendor>\<name>\RL\TCPnet folder.

Network Configuration

This example is configured to run on the Local Area Network (LAN). In order to run it, the network
parameters like IP address, network mask, default gateway, and DNS Server IP address must be
specified. You can specify these parameters in the following way:

 Automatically when DHCP Client is enabled in the Net_Config.c configuration file. This is
the default setting for this example. You must have a running DHCP Server in your local area
network. Your DHCP Server provides an IP address, network mask, default gateway, and
DNS Server IP address for the embedded system automatically when this example starts.

 Static IP address, network mask, Default Gateway, and DNS server configured in the
Net_Config.c configuration file. You must specify a free IP address and copy the netmask
from the LAN configuration.
Be careful defining these parameters because this example does not work if the network
configuration parameters are misconfigured. A DNS Server IP address is not really needed
for this example and can be left at 0.0.0.0.

Now you must connect a network cable and a JTAG cable for ULINK®. Then compile and link this
example, download it to the target, and run it. This example downloads through the ULINK adapter
from your computer to the target hardware SRAM or Flash memory, and it executes from there.

Testing the HTTP_demo

When you start the HTTP_demo example, you can connect to the embedded Web Server from your
local computer using a web browser. Since user authentication is enabled by default, you must
provide a username and a password when connecting. The default username is admin, and it has
no password. Just press enter to connect.

If the username and password are not correct, the Web Server displays a warning page.

Page 463

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

After a successful login, the default page (index.htm) is shown. From here several pages can be
selected.

The Network Settings page allows you to change the network parameters. After the parameters
are changed, the new settings are active immediately. So be careful when making changes because
your example might stop responding.

Page 464

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The System Settings page allows you to change the system authentication password. After a new
value is entered, you are immediately prompted for a new username and password to access the
web pages on the embedded server. It is not possible to change the username dynamically. It can
be changed in the Net_Config.c configuration file.

The LED page allows you to control the status of the LED diodes on the evaluation board. You can
switch them on and off, or enable or disable the running lights.

Page 465

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The LCD page allows you to change the text displayed on the LCD module of the evaluation board.

The AD page displays the voltage of analog input. You must enable the Periodic update on the
page to watch the change of analog voltage in real time.

Page 466

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The Button page displays the status of push buttons on the evaluation board. You must enable
the Periodic update on the page to watch the status change in real time.

The Language page displays the language preferences of your browser. You can use this
information in your own application to support multi-language web pages.

Page 467

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The Statistics page displays the online status of TCP sockets. This web page refreshes every 5
seconds and displays the current status of all TCP sockets.

Note
 You must type a different address on the web browser to access the web page on different

evaluation boards. Read the abstract.txt file for details.

Copyright © Keil, An ARM Company. All rights reserved.

Page 468

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Telnet_demo

The Telnet_demo example program shows you how to use the Telnet Server application to control
the Embedded system. This example program is in the
\Keil\ARM\Boards\Phytec\LPC229x\RL\TCPnet folder.

The Telnet_demo command-line interface has the following commands:

Command Description
led xx Write the hex value xx to the LED port to switch the LED diodes on and off.

led Re-enable the running lights that were stopped by the previous led xx command.
adin x Read the Analog-to-Digital converter input x. The range for x is from 0 to 7.
meas n Display n measurements. A measurement is a sampled analog input.

rinfo Display the remote machine's IP and MAC address.
tcpstat Display the TCP status. This page is continuously updated.

passw newp Change the system login password to the new password newp.
passwd Display the current password.

help
?

Display command help.

bye
<ESC>

Disconnect the telnet connection.

Network Configuration

This example is configured to run on the Local Area Network (LAN). In order to run it, the network
parameters like IP address, network mask, default gateway, and DNS Server IP address must be
specified. You can specify these parameters in the following way:

 Automatically when DHCP Client is enabled in the Net_Config.c configuration file. This is
the default setting for this example. You must have a running DHCP Server in your local area
network. Your DHCP Server provides an IP address, network mask, default gateway, and
DNS Server IP address for the embedded system automatically when this example starts.

 Static IP address, network mask, Default Gateway, and DNS server configured in the
Net_Config.c configuration file. You must specify a free IP address and copy the netmask
from the LAN configuration.
Be careful defining these parameters because this example does not work if the network
configuration parameters are misconfigured. A DNS Server IP address is not really needed
for this example and can be left at 0.0.0.0.

Now you need to connect a network cable and a serial cable to the target. Then compile and link
this example, download it to target, and run it. This example downloads through a serial cable from
your computer to the target hardware SRAM, and it executes from the SRAM.

Testing the Telnet_demo

When you start the Telnet_demo, you can connect to a Telnet Server from your local computer. Run
the telnet client program on your computer. Because user authentication is enabled by default, you
must provide a username and a password when connecting. The default username is admin, and it
has no password. Just press enter to connect.

You can check the integrated commands with the help command.

Page 469

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Use the meas command to sample analog inputs and display the results. You can provide a
parameter n to specify how many lines to display. The command example below, meas 10, shows
you how long lists display in the Telnet window.

You can change a login password with the command passw. You can display the current password
with the command passwd

You can check the remote machine's IP and MAC address with the command rinfo. The remote
machine is a Telnet Client computer that is connected to the Embedded Telnet Server.

Page 470

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

The Embedded Telnet Server also displays continuously updating pages. The command tcpstat
monitors the status of the TCP sockets. This page is similar to the Web Server example page
Statistics, where the monitoring is done by updating a web page.

After this example is tested, you can disconnect the Telnet connection with the bye command.

Copyright © Keil, An ARM Company. All rights reserved.

Page 471

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

TFTP_demo

The TFTP_demo example program shows you how to use the TFTP Server application to upload
and download files to an embedded system. This example program is in the
\Keil\ARM\Boards\Phytec\LPC229x\RL\TCPnet folder.

This example program is preconfigured for the following target hardware:

 Phytec LPC229x evaluation board

Network Configuration

This example is configured to run on the Local Area Network (LAN). In order to run it, the network
parameters like IP address, network mask, default gateway, and DNS Server IP address must be
specified. You can specify these parameters in the following way:

 Automatically when DHCP Client is enabled in the Net_Config.c configuration file. This is
the default setting for this example. You must have a running DHCP Server in your local area
network. Your DHCP Server provides an IP address, network mask, default gateway, and
DNS Server IP address for the embedded system automatically when this example starts.

 Static IP address, network mask, Default Gateway, and DNS server configured in the
Net_Config.c configuration file. You must specify a free IP address and copy the netmask
from the LAN configuration.
Be careful defining these parameters because this example does not work if the network
configuration parameters are misconfigured. A DNS Server IP address is not really needed
for this example and can be left at 0.0.0.0.

Now you must connect a network cable and a JTAG cable for ULINK®. Then compile and link this
example, download it to the target, and run it. This example downloads through a JTAG interface
over ULINK from your computer to the target hardware, and it executes from the external flash.

File System Configuration

This example uses a Flash File System to store files. This is configured in the File_Config.c
configuration file. It is configured to use the RAM File System only. The files are stored to RAM. The
File System capacity is configured for 1 Mbyte. This is also the maximum total size of files that can
be stored to this RAM drive.

Testing the TFTP_demo

When you start the TFTP_demo example, you can transfer files to it. Run the tftp client program on
your computer and send a file to the embedded system. You can use the name phycore for the
target system. This name must be defined in the system configuration.

Use the PUT command to send files to the embedded TFTP Server as shown:

Now you can check the files with an integrated debug dialog. This is opened from the Peripherals
menu when you select RTX Kernel. You need to stop the execution of the TFTP_demo application to
allow µVision access to the target system and to allow it to retrieve information about the files for
this dialog.

Read the file Net_Config.c stored on the embedded system and make a copy of it on the local

Page 472

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

computer under a new name test.c.

For a final check, compare the original file and the new file just received from the embedded system
to see if they are equal.

Copyright © Keil, An ARM Company. All rights reserved.

Page 473

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Library Reference

The Real-Time Library provides more than 50 predefined functions and macros you may use in your
ARM® real-time programs. The library makes embedded software development easier by providing
routines that perform common real-time tasks.

Copyright © Keil, An ARM Company. All rights reserved.

Page 474

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Data Types

The Real-Time Library contains definitions for a number of types which may be used by the library
routines. They are declared in include files which you may access from your C programs.

Copyright © Keil, An ARM Company. All rights reserved.

Page 475

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

BIT

The BIT type is defined in rtl.h. It specifies the bit type used by the real-time kernel routines. The
BIT type is defined as:

typedef unsigned char BIT;

and is used as shown in the following example:

#include <rtl.h>

BIT bit_val;

Copyright © Keil, An ARM Company. All rights reserved.

Page 476

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

BOOL

The BOOL type is defined in rtl.h. It specifies the boolean type used by the real-time kernel
routines. The BOOL type is defined as:

typedef unsigned int BOOL;

and is used as shown in the following example:

#include <rtl.h>

BOOL bval;

Copyright © Keil, An ARM Company. All rights reserved.

Page 477

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_ERROR

The CAN_ERROR type is defined in can_error.h. It defines the error return values for the CAN driver
routines. The CAN_ERROR type is defined as:

typedef enum {

 CAN_OK = 0, /* No error */

 CAN_NOT_IMPLEMENTED_ERROR, /* Function has not been implemented */

 CAN_MEM_POOL_INIT_ERROR, /* Memory pool initialization error */

 CAN_BAUDRATE_ERROR, /* Baudrate was not set */

 CAN_TX_BUSY_ERROR, /* Transmitting hardware busy */

 CAN_OBJECTS_FULL_ERROR, /* No more rx or tx objects available */

 CAN_ALLOC_MEM_ERROR, /* Unable to allocate memory from pool */

 CAN_DEALLOC_MEM_ERROR, /* Unable to deallocate memory */

 CAN_TIMEOUT_ERROR, /* Timeout expired */

 CAN_UNEXIST_CTRL_ERROR, /* Controller does not exist */

 CAN_UNEXIST_CH_ERROR, /* Channel does not exist */

} CAN_ERROR;

and is used as shown in the following example:

#include <can_error.h>

 ..

 CAN_ERROR retval;

 ..

 retval = CAN_send (2, &msg_buf, 0x0F00);

 ..

Copyright © Keil, An ARM Company. All rights reserved.

Page 478

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_msg

The CAN_msg type is defined in rtx_can.h. It specifies the CAN message structure used by the CAN
driver routines. The CAN_msg type is defined as:

typedef struct {

 U32 id; /* 11/29 bit message ID */

 U8 data[8]; /* Data field */

 U8 len; /* Length of data field in bytes */

 U8 ch; /* Object channel */

 U8 format; /* 0-STANDARD, 1-EXTENDED IDENTIFIER */

 U8 type; /* 0-DATA FRAME, 1-REMOTE FRAME */

} CAN_msg;

and is used as shown in the following example:

#include <rtx_can.h>

 ..

 CAN_msg msg_buf = {

 33, // ID

 { 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00 }, // Data

 1, // Length

 1, // Channel

 STANDARD_FORMAT, // Format

 DATA_FRAME // Type

 };

 ..

 CAN_send (2, &msg_buf, 0x0F00);

 ..

Copyright © Keil, An ARM Company. All rights reserved.

Page 479

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FILE

The FILE type is defined in stdio.h. It specifies the structure used in all stream I/O operations. The
fields of this structure store information about the current state of the stream. The FILE type is
used as shown in the following example:

#include <stdio.h>

void capture_file (char mode) {

 FILE *f;

 ..

 f = fopen (filename,fmode); /* open a file for writing */

 if (f == NULL) {

 printf ("\nCan not open file!\n");/* error when trying to open file */

 return;

 }

 /* read line-edited serial input */

 ..

 fclose (f); /* close the output file */

 printf ("\nFile closed.\n");

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 480

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

S8

The S8 type is defined in rtl.h. It specifies the signed 8-bit type used by the real-time kernel
routines. The S8 type is defined as:

typedef signed char S8;

and is used as shown in the following example:

#include <rtl.h>

S8 schar;

Copyright © Keil, An ARM Company. All rights reserved.

Page 481

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

S16

The S16 type is defined in rtl.h. It specifies the signed 16-bit type used by the real-time kernel
routines. The S16 type is defined as:

typedef short S16;

and is used as shown in the following example:

#include <rtl.h>

S16 sshort;

Copyright © Keil, An ARM Company. All rights reserved.

Page 482

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

S32

The S32 type is defined in rtl.h. It specifies the signed 32-bit type used by the real-time kernel
routines. The S32 type is defined as:

typedef int S32;

and is used as shown in the following example:

#include <rtl.h>

S32 sint;

Copyright © Keil, An ARM Company. All rights reserved.

Page 483

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

S64

The S64 type is defined in rtl.h. It specifies the signed 64-bit type used by the real-time kernel
routines. The S64 type is defined as:

typedef long long S64;

and is used as shown in the following example:

#include <rtl.h>

S64 sllong;

Copyright © Keil, An ARM Company. All rights reserved.

Page 484

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

U8

The U8 type is defined in rtl.h. It specifies the unsigned 8-bit type used by the real-time kernel
routines. The U8 type is defined as:

typedef unsigned char U8;

and is used as shown in the following example:

#include <rtl.h>

U8 uchar;

Copyright © Keil, An ARM Company. All rights reserved.

Page 485

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

U16

The U16 type is defined in rtl.h. It specifies the unsigned 16-bit type used by the real-time kernel
routines. The U16 type is defined as:

typedef unsigned short U16;

and is used as shown in the following example:

#include <rtl.h>

U16 ushort;

Copyright © Keil, An ARM Company. All rights reserved.

Page 486

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

U32

The U32 type is defined in rtl.h. It specifies the unsigned 32-bit type used by the real-time kernel
routines. The U32 type is defined as:

typedef unsigned int U32;

and is used as shown in the following example:

#include <rtl.h>

U32 uint;

Copyright © Keil, An ARM Company. All rights reserved.

Page 487

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

U64

The U64 type is defined in rtl.h. It specifies the unsigned 64-bit type used by the real-time kernel
routines. The U64 type is defined as:

typedef unsigned long long U64;

and is used as shown in the following example:

#include <rtl.h>

U64 ullong;

Copyright © Keil, An ARM Company. All rights reserved.

Page 488

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Include Files

The \KEIL\ARM\RV31\INC folder contains some of the include files provided with the Real-Time
Library. Some include files are located in different folders. These files contain definitions for
constants, macros, types, and function prototypes. The table below summarizes the include files,
their use, and their location.

Filename Description
can_cfg.h This configures the hardware-level CAN driver using simple parameters, which the

user can easily modify. You can edit this file using the Configuration Wizard in
µVision. If you use a different CAN controller, you might have to modify this file.
The file for the LPC2xxx device is located in:
\Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex1

can_error.h This defines the error codes that can be returned by the RL-CAN routines.
Location: \Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex1

can_hw.h This defines the prototypes for the hardware-level CAN driver routines. If you use a
different CAN controller, you might have to modify these routines.
The file for the LPC2xxx device is located in:
\Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex1

can_reg.h This include file defines the register interface for the hardware-level CAN driver. If
you use a different CAN controller, you might have to modify this file.
The file for the LPC2xxx device is located in:
\Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex1

file_config.h This defines constants and structures used by the Flash File System. It also defines
the prototypes of the flash programming routines.
Location: \Keil\ARM\RV31\INC

fs_flashdev.h This contains the flash sector layout description. If you use a different controller,
you might have to modify this file.
The file for the LPC2xxx device using 256 KB flash is located in:
\keil\ARM\RL\FlashFS\Flash\LPC_IAP_256

lpc23_emac.h This defines hardware driver level constants and structures for the Philips LPC2378
EMAC ethernet controller. The source also contains header files for a few other
ethernet controllers. If you use a different ethernet controller, you must provide
your own include file.
Location: \Keil\ARM\RL\TCPnet\User

net_config.h This defines constants, structures and prototypes for the TCPnet routines that
provide modem, ethernet, TFTP, and HTTP functionality.
Location: \Keil\ARM\RV31\INC

rtl.h This defines constants, structures and prototype for all the RTX kernel routines,
TCPnet routines (TCP, UDP, PPP, and SLIP), and Flash File System routines.
Location: \Keil\ARM\RV31\INC

rtx_can.h This defines constants and prototypes for all CAN driver routines that can be used
with the RTX kernel. You must include this file in all source files that use CAN Driver
routines.
Location: \Keil\ARM\Boards\Keil\MCB2100\RL\CAN\CAN_Ex1

rtx_config.h This defines various types and structures used by the RTX kernel to manage tasks,
messages, and events.
Location: \Keil\ARM\RV31\INC

stdio.h This contains prototype definitions of the file manipulation functions that are used
by the Flash File System.
Location: \Keil\ARM\RV31\INC

Copyright © Keil, An ARM Company. All rights reserved.

Page 489

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

can_cfg.h

The can_cfg.h include file contains manifest constants that define the following:

 USE_CAN_CTRLx
 CAN_No_SendObjects
 CAN_No_ReceiveObjects

Copyright © Keil, An ARM Company. All rights reserved.

Page 490

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

file_config.h

The file_config.h include file contains prototypes for some of the RL-FlashFS routines:

 fs_Init
 fs_EraseSector
 spi_init
 spi_send
 spi_hi_speed
 fs_ProgramPage
 fs_get_time
 fs_get_date

Copyright © Keil, An ARM Company. All rights reserved.

Page 491

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

net_config.h

The net_config.h include file contains prototypes for some of the RL-TCPnet routines:

 cgi_process_var
 cgi_process_data
 cgi_func
 http_get_var
 http_get_lang
 http_get_info
 http_get_session
 tnet_cbfunc
 tnet_process_cmd
 tnet_ccmp
 tnet_set_delay
 tnet_get_info
 tftp_fopen
 tftp_fclose
 tftp_fread
 tftp_fwrite
 get_host_by_name
 smtp_cbfunc
 init_ethernet
 poll_ethernet
 send_frame
 int_enable_eth
 int_disable_eth
 init_serial
 com_getchar
 com_putchar
 com_tx_active
 init_modem
 modem_dial
 modem_hangup
 modem_listen
 modem_online
 modem_process
 modem_run

The net_config.h include file contains definitions for:

 DNS error codes
 DNS event codes
 DHCP messages
 SMTP callback events
 SMTP server reply codes
 SMTP states
 TFTP error codes
 TFTP opcodes
 TFTP states
 Telnet flags
 Telnet states
 Telnet ASCII key codes
 Telnet commands
 HTTP states
 TCP callback events
 TCP socket types
 TCP states
 TCP flags
 UDP states
 ARP info states
 SLIP states
 PPP states

The net_config.h include file defines structures for:

 ICMP_HEADER

Page 492

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 TCP_HEADER
 UDP_HEADER
 IP_HEADER
 ARP_HEADER
 ETH_HEADER
 PPP_HEADER
 OS_FRAME
 REMOTEM

Copyright © Keil, An ARM Company. All rights reserved.

Page 493

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

rtl.h

The rtl.h include file contains prototypes for all the RTX kernel routines, and some of the TCPnet and
FlashFS routines.

Prototypes for RTX kernel routines:

 os_sys_init
 os_sys_init_prio
 os_tsk_create_ex
 os_tsk_delete_self
 os_tsk_prio_self
 os_tsk_create_user
 os_tsk_create_user_ex
 os_tsk_self
 os_sys_init_user
 os_tsk_pass
 os_tsk_prio
 os_tsk_delete
 os_evt_wait_or
 os_evt_wait_and
 os_evt_set
 os_evt_clr
 isr_evt_set
 os_evt_get
 os_sem_init
 os_sem_send
 os_sem_wait
 isr_sem_send
 os_mbx_init
 os_mbx_send
 os_mbx_wait
 os_mbx_check
 isr_mbx_check
 isr_mbx_send
 isr_mbx_receive
 os_mbx_declare
 os_mut_init
 os_mut_release
 os_mut_wait
 os_dly_wait
 os_itv_set
 os_itv_wait
 os_tmr_create
 os_tmr_kill
 tsk_lock
 tsk_unlock
 _init_box
 _init_box8
 _alloc_box
 _calloc_box
 _free_box
 _declare_box
 _declare_box8

Prototypes of RL-FlashFS routines:

 finit
 fdelete
 frename
 ffind
 ffree
 fformat
 fanalyse
 fcheck
 fdefrag

Page 494

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 unlink

Prototypes of RL-TCPnet routines:

 init_TcpNet
 main_TcpNet
 timer_tick
 udp_get_socket
 udp_release_socket
 udp_open
 udp_close
 udp_get_buf
 udp_send
 tcp_get_socket
 tcp_release_socket
 tcp_listen
 tcp_connect
 tcp_get_buf
 tcp_max_dsize
 tcp_check_send
 tcp_get_state
 tcp_send
 tcp_close
 tcp_abort
 arp_cache_ip
 ppp_listen
 ppp_connect
 ppp_close
 ppp_is_up
 slip_listen
 slip_connect
 slip_close
 slip_is_up
 get_host_by_name
 smtp_connect
 dhcp_disable

Copyright © Keil, An ARM Company. All rights reserved.

Page 495

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

rtx_can.h

The rtx_can.h include file contains prototypes for all the RL-CAN driver routines.

 CAN_init
 CAN_start
 CAN_send
 CAN_request
 CAN_set
 CAN_receive
 CAN_rx_object
 CAN_tx_object

The rtx_can.h include file contains definitions of types and structures for:

 CAN message type
 CAN message format
 Mailboxes for CAN transmit and receive messages
 CAN memory pool
 CAN message structure

The rtx_can.h include file contains for the CAN driver errors that might be encountered.

Following is a list of the CAN driver errors.

 CAN_OK
No errors were encountered.

 CAN_NOT_IMPLEMENTED_ERROR
The function invoked is not implemented and does not do anything.

 CAN_MEM_POOL_INIT_ERROR
The memory pool used for software message buffers did not initialize successfully.

 CAN_BAUDRATE_ERROR
The baudrate was not properly setup.

 CAN_TX_BUSY_ERROR
The transmit hardware is busy.

 CAN_OBJECTS_FULL_ERROR
All transmit and receive message objects are in use.

 CAN_ALLOC_MEM_ERROR
Memory could not be allocated from the memory pool.

 CAN_DEALLOC_MEM_ERROR
Memory previously used by the CAN message was not properly deallocated.

 CAN_TIMEOUT_ERROR
The function did not complete in the specified time.

 CAN_UNEXIST_CTRL_ERROR
A function tried to use a CAN controller that does not exist.

 CAN_UNEXIST_CH_ERROR
A function tried to use a CAN channel that does not exist.

The rtx_can.h include file includes the can_cfg.h include file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 496

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

rtx_config.h

The rtx_config.h include file contains prototypes for some of the RTX kernel routines:

 tsk_lock
 tsk_unlock
 os_tmr_call
 _init_box
 _alloc_box
 _calloc_box
 _free_box
 _declare_box
 _declare_box8
 _init_box8

The rtx_config.h include file contains other definitions of types and structures used by the RTX
kernel.

Note
 This include file is used by the RTX kernel for ARM7™ and ARM9™ devices. RTX library for

Cortex™-M devices has a different concept and does not need this include file.

Copyright © Keil, An ARM Company. All rights reserved.

Page 497

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

stdio.h

The stdio.h include file contains prototypes for some of the RL-FlashFS routines:

 fclose
 feof
 ferror
 fflush
 fgetc
 fgets
 fopen
 fprintf
 fputc
 fputs
 fread
 fscanf
 fseek
 ftell
 fwrite
 rename
 rewind
 ungetc

Copyright © Keil, An ARM Company. All rights reserved.

Page 498

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Reference

The following pages describe the routines in the Real-Time Library. Routines are listed in
alphabetical order and each is divided into several sections:

Summary Briefly describes the routine's effect, lists include file(s) containing its declaration
and prototype, illustrates the syntax, and describes any arguments.

Description Provides a detailed description of the routine and how it is used.
Return Value Describes the value returned by the routine.
See Also Names related routines.
Example Gives a function or program fragment demonstrating proper use of the function.

Copyright © Keil, An ARM Company. All rights reserved.

Page 499

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

_alloc_box
Summary

#include <rtl.h>

void *_alloc_box (

 void* box_mem); /* Start address of the memory pool */

Description The _alloc_box function allocates a block of memory from the memory pool that
begins at the address box_mem.

The _alloc_box function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You must initialize the memory pool using the _init_box function before
performing any other operation on the memory pool.

 The _alloc_box function is reentrant and thread-safe. You can call it from
the main function and from an IRQ interrupt function with no restriction.

Return Value The _alloc_box function returns a pointer to the allocated block if a block was
available. If there was no available block, it returns a NULL pointer.

See Also _calloc_box, _free_box, _init_box

Example
#include <rtl.h>

/* Reserve a memory for 32 blocks of 20-bytes. */

U32 mpool[32*5 + 3];

void membox_test (void) {

 U8 *box;

 U8 *cbox;

 _init_box (mpool, sizeof (mpool), 20);

 box = _alloc_box (mpool);

 /* This block is initialized to 0. */

 cbox = _calloc_box (mpool);

 ..

 _free_box (mpool, box);

 _free_box (mpool, cbox);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 500

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

_calloc_box
Summary

#include <rtl.h>

void *_calloc_box (

 void* box_mem); /* Start address of the memory pool */

Description The _calloc_box function allocates a block of memory from the memory pool that
begins at the address box_mem and initializes the entire memory block to 0.

The _calloc_box function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You must initialize the memory pool using the _init_box function before
performing any other operation on the memory pool.

 The _calloc_box function is reentrant and thread-safe. You can call it from
the main function and from an IRQ interrupt function with no restriction.

Return Value The _calloc_box function returns a pointer to the allocated block if a block was
available. If there was no available block, it returns a NULL pointer.

See Also _alloc_box, _free_box, _init_box

Example
#include <rtl.h>

/* Reserve a memory for 32 blocks of 20-bytes. */

U32 mpool[32*5 + 3];

void membox_test (void) {

 U8 *box;

 U8 *cbox;

 _init_box (mpool, sizeof (mpool), 20);

 box = _alloc_box (mpool);

 /* This block is initialized to 0. */

 cbox = _calloc_box (mpool);

 ..

 _free_box (mpool, box);

 _free_box (mpool, cbox);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 501

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

_declare_box
Summary

#include <rtl.h>

#define _declare_box(\

 pool, \ /* Name of the memory pool variable. */

 size, \ /* Number of bytes in each block. */

 cnt) \ /* Number of blocks in the memory pool. */

 U32 pool[((size+3)/4)*(cnt) + 3]

Description The _declare_box macro declares an array of bytes that can be used as a memory
pool for fixed block allocation.

The argument pool specifies the name of the memory pool variable, which can be
used by the memory block allocation routines. The argument size specifies the size
of the blocks, in bytes. The argument cnt specifies the number of blocks required in
the memory pool.

The _declare_box macro is part of RL-RTX. The definition is in rtl.h.

 The macro rounds up the value of size to the next multiple of 4 to give the
blocks a 4-byte alignment.

 The macro also declares an additional 12 bytes at the start of the memory
pool to store internal pointers and size information about the memory
pool.

Return Value The _declare_box macro does not return any value.

See Also _alloc_box, _calloc_box, _free_box, _init_box

Example
#include <rtl.h>

/* Reserve a memory for 32 blocks of 20-bytes. */

_declare_box(mpool,20,32);

void membox_test (void) {

 U8 *box;

 U8 *cbox;

 _init_box (mpool, sizeof (mpool), 20);

 box = _alloc_box (mpool);

 /* This block is initialized to 0. */

 cbox = _calloc_box (mpool);

 ..

 _free_box (mpool, box);

 _free_box (mpool, cbox);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 502

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

_declare_box8
Summary

#include <rtl.h>

#define _declare_box8(\

 pool, \ /* Name of the memory pool variable. */

 size, \ /* Number of bytes in each block. */

 cnt) \ /* Number of blocks in the memory pool. */

 U64 pool[((size+7)/8)*(cnt) + 2]

Description The _declare_box8 macro declares an array of bytes that can be used as a
memory pool for allocation of fixed blocks with 8-byte alignment.

The argument pool specifies the name of the memory pool variable that is used by
the memory block allocation routines. The argument size specifies the size of the
blocks, in bytes. The argument cnt specifies the number of blocks required in the
memory pool.

The _declare_box8 macro is part of RL-RTX. The definition is in rtl.h.

 The macro rounds up the value of size to the next multiple of 8 to give the
blocks an 8-byte alignment.

 The macro also declares an additional 16 bytes at the start of the memory
pool to store internal pointers and size information about the memory
pool.

Return Value The _declare_box8 macro does not return any value.

See Also _alloc_box, _calloc_box, _free_box, _init_box8

Example
#include <rtl.h>

/* Reserve a memory for 25 blocks of 30-bytes. */

_declare_box8(mpool,30,25);

void membox_test (void) {

 U8 *box;

 U8 *cbox;

 _init_box8 (mpool, sizeof (mpool), 30);

 box = _alloc_box (mpool);

 /* This block is initialized to 0. */

 cbox = _calloc_box (mpool);

 /* 'box' and 'cbox' are always 8-byte aligned. */

 ..

 _free_box (mpool, box);

 _free_box (mpool, cbox);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 503

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

_free_box
Summary

#include <rtl.h>

int _free_box (

 void* box_mem, /* Start address of the memory pool */

 void* box); /* Pointer to the block to free */

Description The _free_box function returns a memory block, which was allocated using
_alloc_box or _calloc_box, back to the memory pool where it was obtained from.

The box argument specifies the address of the memory block to be freed.

The box_mem argument specifies the start address of the memory pool where the
block was obtained from.

The _free_box function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 If you return the memory block to a memory pool that did not provide the
memory block, serious memory errors might occur.

 The _free_box function is reentrant and thread-safe. You can call it from
the main function and from an IRQ interrupt function with no restriction.

Return Value The _free_box function returns 0 if the memory block was successfully returned to
the memory pool. If there was an error while freeing the block, it returns 1.

See Also _alloc_box, _calloc_box, _init_box

Example
#include <rtl.h>

/* Reserve a memory for 32 blocks of 20-bytes. */

U32 mpool[32*5 + 3];

void membox_test (void) {

 U8 *box;

 U8 *cbox;

 _init_box (mpool, sizeof (mpool), 20);

 box = _alloc_box (mpool);

 /* This block is initialized to 0. */

 cbox = _calloc_box (mpool);

 ..

 _free_box (mpool, box);

 _free_box (mpool, cbox);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 504

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

_init_box
Summary

#include <rtl.h>

int _init_box (

 void* box_mem, /* Start address of the memory pool */

 U32 box_size, /* Number of bytes in the memory pool */

 U32 blk_size); /* Number of bytes in each block of the

pool */

Description The _init_box function initializes a fixed block size memory pool. When the
memory pool is initialized, the RTX kernel handles memory requests by allocating a
block of memory from the memory pool.

The box_mem specifies the start address of the memory pool, and this address
must be 4-byte aligned.

The box_size argument specifies the size of the memory pool, in bytes.

The blk_size argument specifies the size, in bytes, of the blocks in the memory
pool. You can set the block size to any value from 1 to box_size-12. However, the
blk_size is rounded up to the next multiple of 4 to maintain 4-byte address
alignment of the blocks. For example if you initialize a memory pool for 10-byte
blocks, the _init_box function actually initializes the memory pool for 12-byte
blocks.

The _init_box function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 The first 12 bytes from the memory pool are reserved for storing pointers
and size information that can be used by the functions that handle the
memory pool. The box_size must therefore be more than 12 bytes long.

 If the start address is not 4-byte aligned, the memory pool handling
functions might fail.

Return Value The _init_box function returns 0 if the memory pool was initialized without any
problem. If there was an initialization error, it returns 1.

See Also _alloc_box, _calloc_box, _declare_box, _free_box

Example
#include <rtl.h>

/* Reserve a memory for 32 blocks of 20-bytes. */

_declare_box(mpool,20,32);

void membox_test (void) {

 U8 *box;

 U8 *cbox;

 _init_box (mpool, sizeof (mpool), 20);

 box = _alloc_box (mpool);

 /* This block is initialized to 0. */

 cbox = _calloc_box (mpool);

 ..

 _free_box (mpool, box);

 _free_box (mpool, cbox);

}

Page 505

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 506

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

_init_box8
Summary

#include <rtl.h>

int _init_box8 (

 void* box_mem, /* Start address of the memory pool */

 U32 box_size, /* Number of bytes in the memory pool */

 U32 blk_size); /* Number of bytes in each block of the

pool */

Description The _init_box8 function initializes a fixed block size memory pool with 8-byte
alignment. When the memory pool is initialized, the RTX kernel handles memory
requests by allocating a block of memory from the memory pool.

The box_mem specifies the start address of the memory pool, and this address
must be 8-byte aligned.

The box_size argument specifies the size of the memory pool, in bytes.

The blk_size argument specifies the size, in bytes, of the blocks in the memory
pool. You can set the block size to any value from 1 to box_size-16. However, the
blk_size is rounded up to the next multiple of 8, to maintain 8-byte alignment of the
blocks. For example if you initialize a memory pool for 10-byte blocks, the
_init_box8 function actually initializes the memory pool for 16-byte blocks.

The _init_box8 function is implemented as a macro and is part of RL-RTX. The
definition is in rtl.h.

Note

 The first 16 bytes from the memory pool are reserved for storing pointers
and size information that can be used by the functions that handle the
memory pool. The box_size must therefore be more than 16 bytes long.

 If the start address is not 8-byte aligned, the memory pool handling
functions might fail.

Return Value The _init_box8 function returns 0 if the memory pool was initialized without any
problem. If there was an initialization error, it returns 1.

See Also _alloc_box, _calloc_box, _declare_box8, _free_box

Example
#include <rtl.h>

/* Reserve a memory for 25 blocks of 30-bytes. */

_declare_box8(mpool,30,25);

void membox_test (void) {

 U8 *box;

 U8 *cbox;

 _init_box8 (mpool, sizeof (mpool), 30);

 box = _alloc_box (mpool);

 /* This block is initialized to 0. */

 cbox = _calloc_box (mpool);

 /* 'box' and 'cbox' are always 8-byte aligned. */

 ..

 _free_box (mpool, box);

 _free_box (mpool, cbox);

Page 507

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 508

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ADC_IF_GetRequest
Summary

#include <adcuser.h>

bool ADC_IF_GetRequest (

 void);

Description The ADC_IF_GetRequest function sends the value of the requested audio setup
parameter to the host. The supported parameters are:

 maximum volume.

 minimum volume.

 current volume.

 volume resolution.

 mute.

The ADC_IF_GetRequest function is part of the Function Driver layer of the RL-USB
Software Stack. There is no requirement to modify this function.

Return Value The ADC_IF_GetRequest returns __TRUE if the host request is valid and
supported. Otherwise, it returns __FALSE.

See Also ADC_IF_SetRequest, FIQ_Handler

Example There is no requirement to invoke or modify the ADC_IF_GetRequest function.

Copyright © Keil, An ARM Company. All rights reserved.

Page 509

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ADC_IF_SetRequest
Summary

#include <adcuser.h>

bool ADC_IF_SetRequest (

 void);

Description The ADC_IF_SetRequest function accepts the new value for one of the audio
setup parameters:

 current volume.

 mute.

The ADC_IF_SetRequest function is part of the USB Function Driver layer of the
RL-USB Software Stack. There is no requirement to modify this function.

Return Value The ADC_IF_SetRequest returns __TRUE if the host request is valid and
supported. Otherwise, it returns __FALSE.

See Also ADC_IF_GetRequest, FIQ_Handler

Example There is no requirement to invoke or modify the ADC_IF_SetRequest function.

Copyright © Keil, An ARM Company. All rights reserved.

Page 510

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

arp_cache_ip
Summary

#include <rtl.h>

BOOL arp_cache_ip (

 U8* ipadr, /* Pointer to buffer containing the 4 octets of

the IP address. */

 U8 type); /* Specifies whether the IP address is fixed or

temporary. */

Description The arp_cache_ip function determines whether the ARP table has a MAC
(ethernet) address entry for the requested IP Address. If an entry does not exist,
the function forces the TcpNet system to resolve and cache the MAC address into
the internal ARP table buffer.

The argument ipadr points to a buffer containing the four octets of the dotted
decimal IP address to be resolved.

The argument type specifies whether the IP address is fixed or temporary. This
consequently determines whether or not the TcpNet system automatically
refreshes the IP address entry in the ARP cache.

Type Description
ARP_TEMP_IP The IP address is temporary, and thus TCPnet removes the IP

address entry from the ARP cache after a timeout.
ARP_FIXED_IP The IP address is fixed, and thus TCPnet's ARP module

automatically refreshes the IP address entry after the timeout.

The arp_cache_ip function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 Only the ethernet network interface needs to use the arp_cache_ip
function. There is no ARP protocol for the PPP and SLIP network interfaces.

 The arp_cache_ip function is primarily useful before sending the first UDP
packet. The function is not necessary before sending TCP packets because
the TCP module can retransmit the packet if the remote machine did not
receive the packet.

Return Value The arp_cache_ip function returns __TRUE when both of the following conditions
are satisfied:

 The requested IP address is resolved.

 The ARP table contains an entry for the IP address and its MAC address.

Otherwise, the function returns __FALSE.

Example
#include <rtl.h>

BOOL ip_cached;

void send_data (void) {

 static const U8 rem_IP[4] = {192,168,0,100};

 if (ip_cached == __FALSE) {

 if (arp_cache_ip (rem_IP, ARP_FIXED_IP) == __FALSE) {

 /* Wait, 'rem_IP' address not resolved yet. */

 return;

 }

Page 511

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 ip_cached == __TRUE;

 ..

 /* OK send UDP data packet here. */

 ..

 }

}

void main (void) {

 /* Main Thread of the TcpNet */

 init_TcpNet ();

 ip_cached = __FALSE;

 while (1) {

 timer_poll ();

 main_TcpNet ();

 send_data ();

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 512

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_init
Summary

#include <rtx_can.h>

CAN_ERROR CAN_init (

 U32 ctrl, /* CAN Controller */

 U32 baudrate); /* Baudrate */

Description The CAN_init function sets the baudrate for the CAN controller specified by ctrl.
The baudrate may be a value from 10,000-1,000,000 (10 Kbps to 1 Mbps).

This function may be invoked one or more times.

 The first invocation of CAN_init configures hardware used by the CAN
driver, initializes common resources including mailboxes used as message
FIFOs, and sets the CAN bus baudrate.

 Subsequent invocations initialize mailboxes used as message FIFOs and
set the CAN bus baudrate.

The CAN_init function is part of RL-CAN. The prototype is defined in RTX_CAN.h.

Return Value The CAN_init function returns one of the following manifest constants.

 CAN_OK
Success.

 CAN_MEM_POOL_INIT_ERROR
Indicates the memory pool was incorrectly initialized.

 CAN_BAUDRATE_ERROR
Indicates that the communication speed was incorrectly initialized.

See Also CAN_start

Example
#include <rtx_can.h>

void main (void) {

 ..

 CAN_init (1, 250000); /* Init CAN Controller, 250Kbps */

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 513

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_receive
Summary

#include <rtx_can.h>

CAN_ERROR CAN_receive (

 U32 ctrl, /* CAN Controller */

 CAN_msg *msg, /* CAN Message */

 U16 timeout); /* Time to Wait */

Description The CAN_receive function receives a message on the CAN controller specified by
ctrl and copies it into msg.

The CAN_receive function does not clear hardware message FIFOs. So, if a
message was received prior to invoking CAN_receive, that message is returned
immediately. If the message FIFO is empty, CAN_receive waits (up to the
specified timeout) for a message to be received.

timeout Description
0 Return immediately.

0x0001-0xFFFE Wait the specified number of RTX Kernel ticks.
0xFFFF Wait infinitely.

If a message is not received by the specified time, an error is returned.

The CAN_receive function executes quickly since all data transfers use software
buffers. Only in situations where the FIFO is empty is the CAN_receive function
delayed.

The CAN_receive function is part of RL-CAN. The prototype is defined in
RTX_CAN.h.

Return Value The CAN_receive function returns one of the following manifest constants.

 CAN_OK
Success.

 CAN_DEALLOC_MEM_ERROR
Indicates that the memory used by the received message was not correctly
deallocated.

 CAN_TIMEOUT
Indicates that the timeout expired before a message was received.

See Also CAN_send

Example
#include <rtx_can.h>

__task void task_rece_CAN (void) {

 CAN_msg msg_buf;

 for (;;) {

 // Wait to receive a message.

 // When the message arrives

 // activate LEDs using data[0]

 if (CAN_receive (1, &msg_buf, 0) == 0) {

 LED_Byte (msg_buf.data[0]);

 }

 }

}

Page 514

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 515

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_request
Summary

#include <rtx_can.h>

CAN_ERROR CAN_request (

 U32 ctrl, /* CAN Controller */

 CAN_msg *msg, /* CAN Message to Request */

 U16 timeout); /* Time to Wait */

Description The CAN_request function sends a REMOTE FRAME request (a special CAN
message that requests transmission of a specific msg) via the CAN controller
hardware specified by ctrl.

If the CAN controller hardware is ready (no other transmissions are in progress),
the CAN_request function sends the REMOTE FRAME request immediately. If the
CAN controller is busy, the request msg is put into a FIFO (that is managed using
an RTX mailbox). Messages stored in the the FIFO are sent in order.

The timeout specifies how long to wait for the FIFO (mailbox slot) to become
available.

timeout Description
0 Return immediately.

0x0001-0xFFFE Wait the specified number of RTX Kernel ticks.
0xFFFF Wait infinitely.

If a request is not stored in the FIFO by the specified time, an error is returned.

The CAN_request function executes quickly since all data transfers use software
buffers. Only in situations where the FIFO is full is the CAN_request function
delayed.

The CAN_request function is part of RL-CAN. The prototype is defined in
RTX_CAN.h.

Return Value The CAN_request function returns one of the following manifest constants.

 CAN_OK
Success.

 CAN_ALLOC_MEM_ERROR
Indicates there is no available memory in the CAN memory pool.

 CAN_DEALLOC_MEM_ERROR
Indicates that the memory used by the received message was not correctly
deallocated.

 CAN_TIMEOUT
Indicates that the timeout expired before a message was received.

See Also CAN_set

Example
#include <rtx_can.h>

__task void task_send_CAN (void) {

 CAN_msg msg_buf = {

 33, // ID

 { 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00 }, // Data

 1, // Length

 1, // Channel

 STANDARD_FORMAT, // Format

Page 516

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 REMOTE_FRAME // Type

 };

 while (1) {

 // Request DATA FRAME message ID 33

 // on CAN Controller 1

 CAN_request (1, &msg_buf, 0x0F00);

 // Wait 100ms

 os_dly_wait (10);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 517

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_rx_object
Summary

#include <rtx_can.h>

CAN_ERROR CAN_rx_object (

 U32 ctrl, /* CAN Controller */

 U32 channel, /* CAN Channel Number */

 U32 id, /* Message ID */

 U32 object_para); /* Object Parameters */

Description The CAN_rx_object function enables message reception for the CAN controller
specified by ctrl on the specified channel. Once enabled, the CAN controller will
receive messages matching the specified id. The object_para may be one of the
following:

 DATA_TYPE
DATA FRAME message type.

 REMOTE_TYPE
REMOTE FRAME message type.

 STANDARD_TYPE
Message with standard 11-bit identifier type.

 EXTENDED_TYPE
Message with extended 29-bit identifier type.

Note

Types DATA_TYPE or REMOTE_TYPE can be used together with STANDARD_TYPE or
EXTENDED_TYPE (type specifiers can be bit-ored together).

The CAN_rx_object function is part of RL-CAN. The prototype is defined in
RTX_CAN.h.

Note

 Some CAN controllers, like that used in the NXP LPC2000 devices, do not
use the channel information. For these devices, you should specify a value
of 0 for the channel.

Return Value The CAN_rx_object function returns one of the following manifest constants.

 CAN_OK
Success.

 CAN_OBJECTS_FULL_ERROR
Indicates that no more transmit or receive objects may be defined.

See Also CAN_tx_object

Example
#include <rtx_can.h>

void main (void) {

 CAN_rx_object (1, 0, 33, DATA_TYPE | STANDARD_TYPE);

 // Enable reception of a DATA message on controller 1,

 // channel 0, with STANDARD 11-bit ID 33

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 518

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_send
Summary

#include <rtx_can.h>

CAN_ERROR CAN_send (

 U32 ctrl, /* CAN Controller */

 CAN_msg *msg, /* CAN Message */

 U16 timeout); /* Time to Wait */

Description The CAN_send function transmits msg using the CAN controller specified by ctrl.

If the CAN controller hardware is ready (no other transmissions are in progress),
the CAN_send function sends the msg to the CAN controller for transmission. If the
CAN controller is busy, the msg is put into a FIFO (that is managed using an RTX
mailbox). Messages stored in the the FIFO are sent in order.

The timeout specifies how long to wait for the FIFO (mailbox slot) to become
available.

timeout Description
0 Return immediately.

0x0001-0xFFFE Wait the specified number of RTX Kernel ticks.
0xFFFF Wait infinitely.

If a message is not stored in the FIFO by the specified time, an error is returned.

The CAN_send function executes quickly since all data transfers use software
buffers. Only in situations where the FIFO is full is the CAN_send function delayed.

The CAN_send function is part of RL-CAN. The prototype is defined in RTX_CAN.h.

Return Value The CAN_send function returns one of the following manifest constants.

 CAN_OK
Success.

 CAN_ALLOC_MEM_ERROR
Indicates there is no available memory in the CAN memory pool.

 CAN_DEALLOC_MEM_ERROR
Indicates that the memory used by the transmitted message was not correctly
deallocated.

 CAN_TIMEOUT
Indicates that the timeout expired before a message was transmitted.

See Also CAN_receive

Example
#include <rtx_can.h>

__task void task_send_CAN (void) {

 unsined int i = 0;

 CAN_msg msg_buf = {

 33, // ID

 { 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00 }, // Data

 1, // Length

 1, // Channel

 STANDARD_FORMAT, // Format

 DATA_FRAME // Type

Page 519

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 };

 while (1) {

 // Put data (i) into the transmit buffer

 // Send CAN message on controller 2

 msg_buf.data[0] = ++i;

 CAN_send (2, &msg_buf, 0x0F00);

 // Wait 100ms

 os_dly_wait (10);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 520

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_set
Summary

#include <rtx_can.h>

CAN_ERROR CAN_set (

 U32 ctrl, /* CAN Controller */

 CAN_msg *msg, /* CAN Message */

 U16 timeout); /* Time to Wait */

Description The CAN_set function sets the DATA FRAME message to be sent automatically by
the CAN controller hardware (specified by ctrl) in response to a REMOTE FRAME
request.

If the CAN controller hardware supports REMOTE FRAME requests, this function
sets the DATA FRAME message from msg. If the hardware is busy it will retry every
timer tick.

The timeout specifies how long to wait for the hardware to become available.

timeout Description
0 Return immediately.

0x0001-0xFFFE Wait the specified number of RTX Kernel ticks.
0xFFFF Wait infinitely.

If the message is not set by the specified time, an error is returned.

The CAN_set function executes quickly because the CAN controller hardware is
rarely busy for long periods of time.

The CAN_set function is part of RL-CAN. The prototype is defined in RTX_CAN.h.

Return Value The CAN_set function returns one of the following manifest constants.

 CAN_OK
Success.

 CAN_TIMEOUT
Indicates that the timeout expired before a message was set.

 CAN_NOT_IMPLEMENTED_ERROR
Indicates that hardware does not offer this functionality.

See Also CAN_request

Example
#include <rtx_can.h>

__task void task_send_CAN (void) {

 unsined int i = 0;

 CAN_msg msg_buf = {

 33, // ID

 { 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00 }, // Data

 1, // Length

 1, // Channel

 STANDARD_FORMAT, // Format

 DATA_FRAME // Type

 };

 while (1) {

Page 521

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 // Put data (i) into the transmit buffer

 // Set DATA FRAME message on controller 1

 msg_buf.data[0] = ++i;

 CAN_set (1, &msg_buf, 0x0F00);

 // Wait 100ms

 os_dly_wait (10);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 522

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_start
Summary

#include <rtx_can.h>

CAN_ERROR CAN_start (

 U32 ctrl); /* CAN Controller to Enable */

Description The CAN_start function starts the CAN controller specified by ctrl and enables the
CAN controller to participate on the CAN network.

The CAN_start function is part of RL-CAN. The prototype is defined in RTX_CAN.h.

Note

 The CAN controller cannot send or receive messages on the network until
the CAN_start function is invoked.

Return Value The CAN_start function returns one of the following manifest constants.

 CAN_OK
Success.

See Also CAN_init

Example
#include <rtx_can.h>

void main (void) {

 ..

 CAN_start (1); /* Start CAN Controller 1 */

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 523

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

CAN_tx_object
Summary

#include <rtx_can.h>

CAN_ERROR CAN_tx_object (

 U32 ctrl, /* CAN Controller */

 U32 channel, /* CAN Channel Number */

 U32 id, /* Message ID */

 U32 object_para); /* Object Parameters */

Description The CAN_tx_object function enables message transmission for the CAN controller
specified by ctrl on the specified channel. Once enabled, the CAN controller can
transmit messages matching the specified id. The object_para may be one of the
following:

 DATA_TYPE
DATA FRAME message type.

 REMOTE_TYPE
REMOTE FRAME message type.

 STANDARD_TYPE
Message with standard 11-bit identifier type.

 EXTENDED_TYPE
Message with extended 29-bit identifier type.

Note

Types DATA_TYPE or REMOTE_TYPE can be used together with STANDARD_TYPE or
EXTENDED_TYPE (type specifiers can be bit-ored together).

The CAN_tx_object function is part of RL-CAN. The prototype is defined in
RTX_CAN.h.

Note

 Enabling a transmission object is not necessary for many microcontrollers
(like the NXP LPC2000 and ST Microelectronics STR7 devices) because they
can send CAN messages without configuring a transmission object. As
such, this function is not implemented for some devices.

 For devices like the ST Microelectronics STR7, you must leave at least one
message object available for message transmission. You cannot initialize
the object as a receive object and use it for transmission.

 Some CAN controllers, like that used in the NXP LPC2000 devices, do not
use the channel information. For these devices, you should specify a value
of 0 for the channel.

Return Value The CAN_tx_object function returns one of the following manifest constants.

 CAN_OK
Success.

 CAN_OBJECTS_FULL_ERROR
Indicates that no more transmit or receive objects may be defined.

See Also CAN_rx_object

Example
#include <rtx_can.h>

void main (void) {

 CAN_tx_object (1, 2, 33, DATA_TYPE | STANDARD_TYPE);

Page 524

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 // Enable DATA message transmission on controller 1,

 // channel 2, with STANDARD 11-bit ID 33

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 525

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

cgi_func
Summary

#include <net_config.h>

U16 cgi_func (

 U8* env, /* Pointer to input string from a TCPnet

script. */

 U8* buf, /* Location where to write the HTTP response

string. */

 U16 buflen, /* Number of bytes in the output buffer. */

 U32* pcgi); /* Pointer to a storage variable. */

Description The cgi_func function is what the TCPnet script interpreter calls, when interpreting
the TCPnet script, to output the dynamic part of the HTTP response. The script
interpreter calls cgi_func for each line in the script that begins with the command c
. You must customize the cgi_func function so that it can understand and use the
input string from the TCPnet script.

The argument env is a pointer to the input string that cgi_func uses to create the
dynamic response. It is the same string of bytes that is specified in the TCPnet
script code using the c command.

The argument buf is a pointer to the output buffer where the cgi_func function
must write the HTTP response.

The argument buflen specifies the length of the output buffer in bytes.

The argument pcgi is a pointer to a variable that never gets altered by the HTTP
Server. Hence, you can use it to store parameters for successive calls of the
cgi_func function. You might use this to store:

 loop counters

 number of sent bytes

 pointer to a local status buffer.

The cgi_func function is in the HTTP_CGI.c module. The prototype is defined in
net_config.h.

note

 The contents written by the cgi_func function, into the output buffer, must
be HTML code.

 c is a command that is available in the TCPnet scripting language.

 The length of the output buffer, buflen, might vary because buffer length is
determined by the TCP socket Maximum Segment Size (MSS) negotiation.
The buffer length is normally around 1400 bytes for local LAN. But this can
be reduced to 500 bytes or even less.

 The length of the output buffer, buflen also varies because the HTTP Server
tries to optimize number of generated TCP packets. It calls this function
again to use the complete buffer available. It stops when there is only 240
or less bytes freee in the buffer. Then the packet is generated and
transmitted. If you want to force the HTTP Server to transmit the packet,
return value from this function shall be or-ed with 0x4000.

 If the cgi_func function writes more bytes than buflen into the output
buffer, then a system crash resulting from corruption of memory link
pointers is highly likely.

 The input string env might contain single-character subcommands to tell

Page 526

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

the cgi_func function how to process the script line correctly. There is no
rule for these subcommands, so you can create and use your own
commands.

 The argument pcgi is private to each HTTP Session. The HTTP Server clears
the data in the pcgi pointer, to 0, before the cgi_func function is called for
the first time in each session.

 The cgi_func function must update the contents in pcgi for each call. You
can use the 4 bytes in pcgi to store data in any format.

Return Value The cgi_func function returns the number of bytes written to the output buffer and
writes the repeat flag value in the most significant bit of the return value.

If the return value's most significant bit is set to 1 (return value or-ed with
0x8000), the TCPnet script interpreter calls the cgi_func function again with the
same values for the arguments env, buflen, and pcgi, which holds the same content
as previously set. The argument buf is adjusted according to the number of bytes
that were written to the output buffer.

If the return value's second most significant bit is set to 1 (return value or-ed with
0x4000), the packet optimization is canceled and the current packet is transmitted
immediatelly.

See Also cgi_process_data, cgi_process_var, http_get_lang

Example
U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi) {

 U16 len = 0;

 switch (env[0]) {

 /* Analyze the environment string. It is the script 'c' line

starting */

 /* at position 2. What you write to the script file is

returned here. */

 case 'a' :

 /* Network parameters - file 'network.cgi' */

 ..

 break;

 case 'b':

 /* LED control - file 'led.cgi' */

 ..

 break;

 case 'c':

 /* TCP status - file 'tcp.cgi' */

 ..

 break;

 case 'd':

 /* System password - file 'system.cgi' */

 switch (env[2]) {

 case '1':

 len = sprintf(buf,&env[4],http_EnAuth ? "Enabled" :

"Disabled");

 break;

 case '2':

Page 527

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 len = sprintf(buf,&env[4],http_auth_passw);

 break;

 }

 break;

 }

 return (len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 528

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

cgi_process_data
Summary

#include <net_config.h>

void cgi_process_data (

 U8 code, /* Type of data in received data buffer. */

 U8* dat, /* Pointer to the data string from the POST

method. */

 U16 len); /* Number of bytes in the data string. */

Description The cgi_process_data function processes the data returned from the CGI form
POST method. The HTTP server calls this function when a user presses the SUBMIT
button on the input form, using a web browser.

Code Data Type Meaning of dat pointer Meaning of len
0 Form data Pointer to data string returned from the

POST method.
Length of data
string.

1 Filename Pointer to a Filename for the http file
upload.
Filename is a 0-terminated string.

Length of a filename.

2 File data Pointer to data packet received from
the host.

Length of data
packet.

3 End of file NULL Don't care.
4 XML data Pointer to data string returned from the

XML-POST method.
A single packet or last packet in xml
data stream.

Length of data
string.

5 XML data Pointer to data string returned from the
XML-POST method.
The same as under 4, but with more
xml data to follow.

Length of data
string.

The cgi_process_data function is in the HTTP_CGI.c module. The prototype is
defined in net_config.h.

note

 The HTTP server calls the cgi_process_data function only if the input form,
in HTML source, is created with the attribute METHOD=POST. For
example:

 <FORM ACTION=index.htm METHOD=POST NAME=CGI>

 ..

 </FORM>

 Web browsers provide a filename for HTTP file upload with path included. It
is a user responsibility to remove path information from the filename.

 For large files, file data is received in several small packets. The size of
data packet depends on the TCP Maximum Segment Size. MSS value is
typically 1460 bytes.

 The XML-POST is generated from the web service application, for example
the Silverlight.

Return Value The cgi_process_data function does not return any value.

See Also cgi_func, cgi_process_var, http_get_lang

Example
void cgi_process_data (U8 code, U8 *dat, U16 len) {

 U8 passw[12], retyped[12];

 U8 var[40], stpassw;

Page 529

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 switch (code) {

 case 0:

 /* Url encoded form data received. */

 break;

 case 1:

 /* Filename for file upload received as encoded by the

browser. */

 /* It might contain an absolute path to a file from the

sending */

 /* host. Open a file for writing. */

 return;

 case 2:

 /* File content data received. Write data to a file. */

 /* This function will be called several times with */

 /* code 2 when a big file is being uploaded. */

 return;

 case 3:

 /* File upload finished. Close a file. */

 return;

 case 4:

 /* XML encoded content type, last packet. */

 pType = http_get_content_type ();

 /* check the content type for CGX file request. */

 /* pType is a pointer to a 0-terminated string */

 /* For example: text/xml; charset=utf-8 */

 return;

 case 5:

 /* XML encoded as under 4, but with more to follow. */

 return;

 default:

 /* Ignore all other codes. */

 return;

 }

 if (len == 0) {

 /* No data, or all items (radio, checkbox) are off. */

 return;

 }

 stpassw = 0;

 do {

 /* Parse all returned parameters. */

 dat = http_get_var (dat, var, 40);

 if (var[0] != 0) {

 /* Parameter found, returned string is non 0-length. */

 if (str_scomp (var, "pw=") == __TRUE) {

Page 530

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Change password. */

 str_copy (passw, var+3);

 stpassw |= 1;

 }

 else if (str_scomp (var, "pw2=") == __TRUE) {

 /* Retyped password. */

 str_copy (retyped, var+4);

 stpassw |= 2;

 }

 }

 } while (dat);

 if (stpassw == 0x03) {

 len = strlen (passw);

 if (mem_comp (passw, retyped, len) == __TRUE) {

 /* OK, both entered passwords the same, change it. */

 str_copy (http_auth_passw, passw);

 }

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 531

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

cgi_process_var
Summary

#include <net_config.h>

void cgi_process_var (

 U8* qs); /* Pointer to QUERY_STRING returned from the GET

method. */

Description The cgi_process_var function processes the environmental variable
QUERY_STRING that is returned from the CGI form GET method. The HTTP server
calls this function when a user presses the SUBMIT button on the input form, using
a web browser.

The argument qs points to the QUERY_STRING that is returned from the GET
method.

The cgi_process_var function is in the HTTP_CGI.c module. The prototype is
defined in net_config.h.

note

 The querry string qs is terminated by the space character.

 The HTTP server calls the cgi_process_var function only if the input form,
in HTML source, is created with attribute METHOD=GET. For example:

 <FORM ACTION=index.htm METHOD=GET NAME=CGI>

 ..

 </FORM>

Return Value The cgi_process_var function does not return any value.

See Also cgi_func, cgi_process_data

Example
void cgi_process_var (U8 *qs) {

 U8 var[40];

 do {

 /* Loop through all the parameters. */

 qs = http_get_var (qs, var, 40);

 /* Check the returned string, 'qs' now points to the next. */

 if (var[0] != 0) {

 /* Returned string is non 0-length. */

 if (str_scomp (var, "ip=") == __TRUE) {

 /* My IP address parameter. */

 sscanf (&var[3],

"%bd.%bd.%bd.%bd",&LocM.IpAdr[0],&LocM.IpAdr[1],

&LocM.IpAdr[2],&LocM.IpAdr[3]);

 }

 else if (str_Scomp (var, "msk=") == __TRUE) {

 /* Net mask parameter. */

 sscanf (&var[4],

"%bd.%bd.%bd.%bd",&LocM.NetMask[0],&LocM.NetMask[1],

&LocM.NetMask[2],&LocM.NetMask[3]);

 }

Page 532

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 else if (str_scomp (var, "gw=") == __TRUE) {

 ..

 }

 }

 }while (qs);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 533

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

cgx_content_type
Summary

#include <net_config.h>

U8 *cgx_content_type (void);

Description The cgx_content_type function allows you to change the Content-Type html
header in the response to the Silverlight web service application requests. The
function returns a pointer to the new Content-Type html header. You can use this
function to override the default content type header from the TCPnet library. This
content type header is used in cgx script responses.

The default content type header in cgx script response is:

Content-Type: text/xml\r\n

This header is used if the cgx_content_type function does not exist in the project
or if it returns a NULL pointer.

The cgx_content_type function is in the HTTP_CGI.c module. The prototype is
defined in net_config.h.

note

 This function is optional. If it does not exist in the project, the default
library function is used instead.

Return Value The cgx_content_type function returns a pointer to 0-terminated Content-Type
string.

See Also http_get_content_type

Example
U8 *cgx_content_type (void) {

 /* A 0-terminated string must contain also a termination cr-lf.

*/

 return ("Text/xml; charset=utf-8\r\n");

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 534

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

com_getchar
Summary

#include <net_config.h>

int com_getchar (void);

Description The com_getchar function reads a character from the serial input buffer.

The com_getchar function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 The serial driver functions must not use waiting loops because loops block
the TCPnet system.

 You must provide the com_getchar function if the serial controller you use
is different from the ones provided in the TCPnet source.

Return Value The com_getchar function returns the character value it read. It returns -1 if the
input buffer is empty.

See Also com_putchar, com_tx_active, init_serial

Example
int com_getchar (void) {

 /* Read a byte from serial interface */

 struct buf_st *p = &rbuf;

 if (p->in == p->out) {

 /* Serial receive buffer is empty. */

 return (-1);

 }

 return (p->buf[p->out++]);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 535

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

com_putchar
Summary

#include <net_config.h>

BOOL com_putchar (

 U8 c); /* The character to write to the output buffer. */

Description The com_putchar function writes the character specified by the argument c to the
serial output buffer and activates the serial transmission if it is not already active.

The com_putchar function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 The serial driver functions must not use waiting loops because loops block
the TCPnet system.

 You must provide the com_putchar function if the serial controller you use
is different from the ones provided in the TCPnet source.

Return Value The com_putchar function returns __TRUE if it successfully wrote the character
into the output buffer. Otherwise, for example if the buffer is full, it returns
__FALSE.

See Also com_getchar, com_tx_active, init_serial

Example
BOOL com_putchar (U8 c) {

 struct buf_st *p = &tbuf;

 /* Write a byte to serial interface */

 if ((U8)(p->in + 1) == p->out) {

 /* Serial transmit buffer is full. */

 return (__FALSE);

 }

 VICIntEnClr = (1 << 7);

 if (tx_active == __FALSE) {

 /* Send directly to UART. */

 U1THR = (U8)c;

 tx_active = __TRUE;

 }

 else {

 /* Add data to transmit buffer. */

 p->buf [p->in++] = c;

 }

 VICIntEnable = (1 << 7);

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 536

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

com_tx_active
Summary

#include <net_config.h>

BOOL com_tx_active (void);

Description The com_tx_active function checks to see if the serial transmission is still active.
The serial transmission is active until it has finished sending the last byte from the
transmit buffer.

The com_tx_active function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 When TCPnet has decided to shutdown the serial data link, it monitors the
serial transmission using the com_tx_active function. Only when the
output buffer is empty, TCPnet hangs up the modem and disconnects the
phone line.

 The serial driver functions must not use waiting loops because loops block
the TCPnet system.

 You must provide the com_tx_active function if the serial controller you
use is different from the ones provided in the TCPnet source.

Return Value The com_tx_active function returns __TRUE if the serial transmission is still active.
Otherwise, it returns __FALSE.

See Also com_getchar, com_putchar, init_serial

Example
BOOL com_tx_active (void) {

 /* Return status Transmitter active/not active. */

 /* When transmit buffer is empty, 'tx_active' is FALSE. */

 return (tx_active);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 537

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

dhcp_disable
Summary

#include <rtl.h>

void dhcp_disable (void)

Description The dhcp_disable function permanently disables the Dynamic Host Configuration
at runtime. To enable the DHCP client again, you must restart the system.

The dhcp_disable function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

Note

 You can use the function only when the DHCP Client is already enabled in
the net_config.c configuration file.

Return Value The dhcp_disable function does not return any value.

Example
#include <rtl.h>

void main (void) {

 /* Main Thread of the TcpNet */

 init_TcpNet ();

 if (DHCP_mode == 0) {

 dhcp_disable ();

 }

 while (1) {

 timer_poll ();

 main_TcpNet ();

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 538

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

efs.EraseChip
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*EraseChip) (void); /* Optional, NULL if not

existing */

} const EFS_DRV;

Description The EraseChip function is a user-provided routine that globally erases the flash
memory device.

The EraseChip function is in the Flash driver. The prototype is defined in
file_config.h. You have to customize the function in your own flash driver.

 This function is optional. If the flash device does not support global erase,
or only a proportion of available flash memory space is used for storing
files, the value for this function should be set to NULL in the control block.

Return Value The EraseChip function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also efs.EraseSector, efs.Init, efs.ProgramPage, efs.ReadData, efs.UnInit

Example
/* Embedded Flash Device Driver Control Block */

EFS_DRV fl0_drv = {

 Init,

 UnInit,

 ReadData,

 ProgramPage,

 EraseSector,

 EraseChip

};

static BOOL EraseChip (void) {

 /* Global Erase complete Flash Memory. */

 M16(base_adr + 0xAAA) = 0xAA;

 M16(base_adr + 0x554) = 0x55;

 M16(base_adr + 0xAAA) = ERASE;

 M16(base_adr + 0xAAA) = 0xAA;

 M16(base_adr + 0x554) = 0x55;

 M16(base_adr + 0xAAA) = ERA_CHIP;

 /* Wait until Erase Completed */

 return (Q6Polling (base_adr));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 539

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

efs.EraseSector
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*EraseSector) (

 U32 adr); /* address of sector to erase */

 ..

} const EFS_DRV;

Description The EraseSector function is a user-provided routine that erases the flash sector
specified by adr address.

The EraseSector function is is in the Flash driver. The prototype is defined in
file_config.h. You have to customize the function in your own flash driver.

Return Value The EraseSector function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also efs.EraseChip, efs.Init, efs.ProgramPage, efs.ReadData, efs.UnInit

Example
/* Embedded Flash Device Driver Control Block */

EFS_DRV fl0_drv = {

 Init,

 UnInit,

 ReadData,

 ProgramPage,

 EraseSector,

 EraseChip

};

static BOOL EraseSector (U32 adr) {

 /* Erase Sector in Flash Memory. */

 U32 fsreg;

 M16(base_adr | 0xAAA) = 0xAA;

 M16(base_adr | 0x554) = 0x55;

 M16(base_adr | 0xAAA) = ERASE;

 M16(base_adr | 0xAAA) = 0xAA;

 M16(base_adr | 0x554) = 0x55;

 M16(adr) = ERA_SECT;

 /* Wait for Sector Erase Timeout. */

 do {

 fsreg = M16(adr);

 } while ((fsreg & DQ3) < DQ3);

 /* Wait until Erase Completed */

 return (Q6Polling (adr));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 540

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

efs.Init
Summary

#include <file_config.h>

typedef struct {

 BOOL (*Init) (

 U32 adr, /* base address */

 U32 clk); /* CPU clock frequency */

 ..

} const EFS_DRV;

Description The Init function is a user-provided routine that initializes the Flash programming
algorithm for a flash memory device. It is invoked by the finit function on system
startup.

The adr argument specifies the Flash Device base address as specified in the
configuration file. The clk argument specifies the CPU clock frequency (which may
be used to adjust the timing of Flash programming algorithms).

The Init function is in the Flash driver. The prototype is defined in file_config.h.
You have to customize the function in your own flash driver.

Return Value The Init function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also efs.EraseChip, efs.EraseSector, efs.ProgramPage, efs.ReadData, efs.UnInit

Example
/* Embedded Flash Device Driver Control Block */

EFS_DRV fl0_drv = {

 Init,

 UnInit,

 ReadData,

 ProgramPage,

 EraseSector,

 EraseChip

};

static BOOL Init (U32 adr, U32 clk) {

 /* Initialize flash programming functions. */

 base_adr = adr;

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 541

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

efs.ProgramPage
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*ProgramPage) (

 U32 adr, /* data page address */

 U32 sz, /* size of the data page */

 U8 *buf); /* buffer containing the data */

 ..

} const EFS_DRV;

Description The ProgramPage is a user-provided routine that programs the contents of buf
into Flash memory starting at address adr for sz bytes.

The adr must be 4-byte aligned, but buf may be not. The buffer sz must be a
multiple of 4.

The ProgramPage function is in the Flash driver. The prototype is defined in
file_config.h. You have to customize the function in your own flash driver.

Return Value The ProgramPage function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also efs.EraseChip, efs.EraseSector, efs.Init, efs.ReadData, efs.UnInit

Example
/* Embedded Flash Device Driver Control Block */

EFS_DRV fl0_drv = {

 Init,

 UnInit,

 ReadData,

 ProgramPage,

 EraseSector,

 EraseChip

};

static BOOL ProgramPage (U32 adr, U32 sz, U8 *buf) {

 /* Program Page in Flash Memory. */

 for (; sz; sz -= 2, adr += 2, buf += 2) {

 M16(base_adr | 0xAAA) = 0xAA;

 M16(base_adr | 0x554) = 0x55;

 M16(base_adr | 0xAAA) = PROGRAM;

 /* 'buf' might be unaligned. */

 M16(adr) = *(__packed U16 *)buf;

 /* Wait until Programming completed */

 if (Q6Polling (adr) == __FALSE) {

 return (__FALSE);

 }

 }

 return (__TRUE);

}

Page 542

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 543

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

efs.ReadData
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*ReadData) (/* Optional, NULL for memory-mapped Flash

*/

 U32 adr, /* data page address */

 U32 sz, /* size of the data page */

 U8 *buf); /* buffer to read data to */

 ..

} const EFS_DRV;

Description The ReadData function is a user-provided routine that reads the data from flash
memory device to a buffer.

The adr must be 4-byte aligned, but buf may be not. The buffer sz must be a
multiple of 4.

The ReadData function is in the Flash driver. The prototype is defined in
file_config.h. You have to customize the function in your own flash driver.

 This function is optional. For parallel memory-mapped flash device the
value for this function should be set to NULL in the control block. NULL
value instructs the RL-FlashFS to use internal memcpy function to read the
data.

Return Value The ReadData function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also efs.EraseChip, efs.EraseSector, efs.Init, efs.ProgramPage, efs.UnInit

Example
/* Embedded Flash Device Driver Control Block */

EFS_DRV sf0_drv = {

 Init,

 UnInit,

 ReadData,

 ProgramPage,

 EraseSector,

 EraseChip

};

static BOOL ReadData (U32 adr, U32 sz, U8 *buf) {

 /* Read a block of Data from SPI Flash Memory. */

 spi->SetSS (0);

 spi->Send (SPI_READ_DATA);

 spi->Send ((U8)(adr >> 16));

 spi->Send ((U8)(adr >> 8));

 spi->Send ((U8)(adr >> 0));

 spi->RecBuf (buf, sz);

 spi->SetSS (1);

Page 544

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 545

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

efs.UnInit
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*UnInit) (void);

 ..

} const EFS_DRV;

Description The UnInit function is a user-provided routine that uninitializes the Flash
programming algorithm for a flash memory device. It is invoked by the funinit
function.

It can be used if during the application run time the embedded flash needs to be
disabled for whatever reason (for example lowering power consumption). After this
function is called only the finit function should be called for reinitialization of
embedded flash device.

The UnInit function is in the Flash driver. The prototype is defined in file_config.h.
You have to customize the function in your own flash driver.

Return Value The UnInit function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also efs.EraseChip, efs.EraseSector, efs.Init, efs.ProgramPage, efs.ReadData

Example
/* Embedded Flash Device Driver Control Block */

EFS_DRV fl0_drv = {

 Init,

 UnInit,

 ReadData,

 ProgramPage,

 EraseSector,

 EraseChip

};

static BOOL UnInit (void) {

 /* Uninitialize flash programming functions. */

 base_adr = 0;

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 546

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fanalyse
Summary

#include <rtl.h>

int fanalyse (

 const char *drive); /* drive to analyze */

Description The fanalyse function analyzes the Flash File System and checks for file
fragmentation on the specified drive. If the drive string is empty ("") the default
drive specified in the File_Config.c configuration file is used.

The following values are allowed for the drive argument:

drive Device Type
"" Default System drive
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive

During analysis, the invalidated data size is compared to the stored file size and a
fragmentation factor is calculated. A factor of 0 indicates no files are fragmented
while a factor of 255 indicates most files are fragmented. If the fragmentation
factor is high (above 50) you should invoke the fdefrag function to defragment the
drive.

The fanalyse function is in the RL-FlashFS library. The prototype is defined in rtl.h.

Note

 The fanalyse function can not analyze a Memory Card drive. If the
specified drive is "M:", fanalyse returns an error.

Return Value The fanalyse function returns the fragmentation factor for the drive. The
fragmentation factor is a number from 0-255.

See Also fcheck, fdefrag

Example
#include <rtl.h>

void free_space (void) {

 printf ("\nFree space before defrag: %d bytes.", ffree(""));

 if (fanalyse("") > 50) {

 fdefrag ("");

 }

 printf ("\nFree space after defrag: %d bytes.", ffree(""));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 547

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fat.CheckMedia
Summary

#include <file_config.h>

typedef struct {

 ..

 U32 (*CheckMedia) (void); /* Optional, NULL if not

existing */

} const FAT_DRV;

Description The CheckMedia is a user-provided routine that checks the Storage Media status
of a removable media (ie. SD/MMC Memory Card, USB Flash dongle). It checks the
Media Detect and Write Protect status.

If this status is not available, or the media is non-removable (ie. NAND Flash
device), this function might be omitted. In this case enter the NULL value for
CheckMedia into the FAT Driver control block. It is also possible to provide this
function, which always returns M_INSERTED status.

The CheckMedia function is in the FAT driver. The prototype is defined in
file_config.h. You have to customize the function in your own FAT driver.

note

 The FAT driver for Memory Card and NAND Flash drive is provided and
configured internally from File_Config.c file.

 The CheckMedia function of the FAT driver calls the CheckMedia function of
the 2nd level MCI driver or SPI driver.

Return Value The CheckMedia function returns the or-ed status of the following values:

 M_INSERTED
Media is inserted in the socket.

 M_PROTECTED
Media is read-only. Lock slider on SD Card is in position Locked.

See Also fat.Init, fat.ReadInfo, fat.ReadSect, fat.UnInit, fat.WriteSect

Example
/* USB-MSC Device Driver Control Block */

FAT_DRV usb0_drv = {

 Init,

 UnInit,

 ReadSector,

 WriteSector,

 ReadInfo,

 CheckMedia

};

static U32 CheckMedia (void) {

 /* Read Device Detected status. */

 if (media_ok == __FALSE) {

 /* Allow to initialize the media first. */

 return (M_INSERTED);

 }

 /* Allow USB Host to detect and enumerate the device. */

 usbh_engine();

Page 548

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 if (usbh_msc_status () == __TRUE) {

 return (M_INSERTED);

 }

 return (0);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 549

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fat.Init
Summary

#include <file_config.h>

typedef struct {

 BOOL (*Init) (

 U32 mode); /* Init mode IO or Media */

 ..

} const FAT_DRV;

Description The Init function is a user-provided routine that initializes the FAT driver. It is
invoked by the finit function on system startup.

The argument mode specifies the initialization mode:

Mode Description
DM_IO Initialize the IO peripherals.
DM_MEDIA Initialize the storage media ie. a Memory Card.

The Init function is called twice. First with parameter DM_IO to initialize the
peripherals, enable system clocks, configure interrupts etc.

If the first call was successful, and the Init function has returned __TRUE, the
system calls the Init function again, but with mode argument set to DM_MEDIA. In
this phase, the storage media should be initialized.

In the MSD Driver, this function initializes the USB host stack and USB host
controller hardware and allows enumeration of Mass Storage Device if such a
device is connected to the USB host bus.

The Init function is in the FAT driver. The prototype is defined in file_config.h. You
have to customize the function in your own FAT driver.

note

 The FAT driver for Memory Card and NAND Flash drive is provided and
configured internally from File_Config.c file.

 The Init function of the FAT driver calls the Init function of the 2nd level MCI
driver, SPI driver or NAND driver.

 The Flash File System calls the Init function at system startup. The FlashFS
might call the function again if Mass Storage Device Hot Swapping is used.

Return Value The Init function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also fat.CheckMedia, fat.ReadInfo, fat.ReadSect, fat.UnInit, fat.WriteSect

Example
/* USB-MSC Device Driver Control Block */

FAT_DRV usb0_drv = {

 Init,

 UnInit,

 ReadSector,

 WriteSector,

 ReadInfo,

 CheckMedia

};

static BOOL Init (U32 mode) {

 /* Initialize USB Host. */

Page 550

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 U32 cnt;

 if (mode == DM_IO) {

 /* Initialise USB hardware. */

 media_ok = __FALSE;

 return (usbh_init());

 }

 if (mode == DM_MEDIA) {

 for (cnt = 0; cnt < 1000; cnt++) {

 usbh_engine();

 if (usbh_msc_status () == __TRUE) {

 media_ok = __TRUE;

 return (__TRUE);

 }

 Delay (500);

 }

 }

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 551

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fat.ReadInfo
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*ReadInfo) (

 Media_INFO *cfg); /* Structure where to write the read

info. */

 ..

} const FAT_DRV;

Description The ReadInfo function is a user-provided routine that reads the media
configuration info to a structure. This information is used by flash file system to
check if the Storage Media is compatible, or for formatting the Storage Media.

The argument cfg specifies the media configuration info (block_cnt, read_blen,
write_blen).

The ReadInfo function is in the FAT driver. The prototype is defined in
file_config.h. You have to customize the function in your own FAT driver.

note

 The FAT driver for Memory Card and NAND Flash drive is provided and
configured internally from File_Config.c file.

Return Value The ReadInfo function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also fat.CheckMedia, fat.Init, fat.ReadSect, fat.UnInit, fat.WriteSect

Example
/* USB-MSC Device Driver Control Block */

FAT_DRV usb0_drv = {

 Init,

 UnInit,

 ReadSector,

 WriteSector,

 ReadInfo,

 CheckMedia

};

static BOOL ReadInfo (Media_INFO *info) {

 /* Read Mass Storage Device configuration. */

 U32 blen;

 if (!usbh_msc_read_config (&info->block_cnt, &blen)) {

 /* Fail, Mass Storage Device configuration was not read. */

 return (__FALSE);

 }

 info->write_blen = info->read_blen = (U16)blen;

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 552

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fat.ReadSect
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*ReadSect) (

 U32 sect, /* Absolute sector address. */

 U8 *buf, /* Location where to write the read data.

*/

 U32 cnt); /* Number of sectors to read. */

 ..

} const FAT_DRV;

Description The ReadSect function is a user-provided routine that reads one or more sectors
from the FAT Device to a buffer.

The argument buf is a pointer to the buffer that stores the data. The argument
sect specifies the starting sector from where the data are read. The argument cnt
specifies the number of block to be read.

The ReadSect function is in the FAT driver. The prototype is defined in
file_config.h. You have to customize the function in your own FAT driver.

note

 The FAT driver for Memory Card and NAND Flash drive is provided and
configured internally from File_Config.c file.

 Sector size is 512 bytes.

Return Value The ReadSect function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also fat.CheckMedia, fat.Init, fat.ReadInfo, fat.UnInit, fat.WriteSect

Example
/* USB-MSC Device Driver Control Block */

FAT_DRV usb0_drv = {

 Init,

 UnInit,

 ReadSector,

 WriteSector,

 ReadInfo,

 CheckMedia

};

static BOOL ReadSector (U32 sect, U8 *buf, U32 cnt) {

 /* Read single/multiple sectors from Mass Storage Device. */

 return (usbh_msc_read (sect, buf, cnt));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 553

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fat.UnInit
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*UnInit) (

 U32 mode); /* Uninit mode IO or Media */

 ..

} const FAT_DRV;

Description The UnInit function is a user-provided routine in the FAT driver that uninitializes
the FAT driver. It is invoked by the funinit function.

The argument mode specifies the uninitialization mode:

Mode Description
DM_IO Uninitialize the IO peripherals.
DM_MEDIA Uninitialize the storage media ie. a Memory Card.

The UnInit function is called twice. First with parameter DM_MEDIA to uninitialize
the storage media, for example the Memory Card or USB Flash dongle.

If the first call was successful, and the UnInit function has returned __TRUE, the
system calls the UnInit function again. The argument mode is now set to DM_IO to
uninitialize the peripherals, disable system clocks, disable peripheral interrupts etc.

It can be used if during the application run time the drive volume to be disabled for
whatever reason (for example lowering power consumption). After this function is
called only the finit function should be called for reinitialization of the drive.

The UnInit function is in the FAT driver. The prototype is defined in file_config.h.
You have to customize the function in your own FAT driver.

 The FAT driver for Memory Card and NAND Flash drive is provided and
configured internally from File_Config.c file.

 The UnInit function of the FAT driver calls the UnInit function of the 2nd
level MCI driver, SPI driver or NAND driver.

Return Value The UnInit function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also fat.CheckMedia, fat.Init, fat.ReadInfo, fat.ReadSect, fat.WriteSect

Example
/* USB-MSC Device Driver Control Block */

FAT_DRV usb0_drv = {

 Init,

 UnInit,

 ReadSector,

 WriteSector,

 ReadInfo,

 CheckMedia

};

static BOOL UnInit (U32 mode) {

 /* UnInitialize USB Host. */

Page 554

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 if (mode == DM_IO) {

 /* Initialise USB hardware. */

 return (usbh_uninit());

 }

 if (mode == DM_MEDIA) {

 return (__TRUE);

 }

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 555

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fat.WriteSect
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*WriteSect) (

 U32 sect, /* Absolute sector address. */

 U8 *buf, /* Pointer to buffer with the data to

write. */

 U32 cnt); /* Number of sectors to read. */

 ..

} const FAT_DRV;

Description The WriteSect function is a user-provided routine that writes one or more sectors
from a buffer to the FAT Device.

The argument sect specifies the starting sector to where data are written. The
argument buf is a pointer to the buffer that holds the data that should be written.
The argument cnt specifies the number of sectors to be written.

The WriteSect function is in the FAT driver. The prototype is defined in
file_config.h. You have to customize the function in your own FAT driver.

note

 The FAT driver for Memory Card and NAND Flash drive is provided and
configured internally from File_Config.c file.

 Sector size is 512 bytes.

Return Value The WriteSect function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also fat.CheckMedia, fat.Init, fat.ReadInfo, fat.ReadSect, fat.UnInit

Example
/* USB-MSC Device Driver Control Block */

FAT_DRV usb0_drv = {

 Init,

 UnInit,

 ReadSector,

 WriteSector,

 ReadInfo,

 CheckMedia

};

static BOOL WriteSector (U32 sect, U8 *buf, U32 cnt) {

 /* Read single/multiple sectors from Mass Storage Device. */

 return (usbh_msc_write (sect, buf, cnt));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 556

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fcheck
Summary

#include <rtl.h>

int fcheck (

 const char *drive); /* drive to check */

Description The fcheck function checks the consistency of the Flash File System on the
specified drive. If the drive string is empty (""), fcheck uses the default drive
specified in the File_Config.c configuration file.

The following values are allowed for the drive argument:

drive Device Type
"" Default System drive
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive

The fcheck function determines if the Flash File System has been initialized. If this
check fails the Flash or RAM Device must be formatted.

The following errors are detected:

 Invalid file ID present,

 Data space overlapping allocation records,

 Allocation end-pointers not in ascending order.

The fcheck function is in the RL-FlashFS library. The prototype is defined in rtl.h.

Note

 The fcheck function can not check a Memory Card drive. If the specified
drive is "M:", fcheck returns an error.

Return Value The fcheck function returns a value of 0 if no errors were found in the file
consistency check. A non-zero return value indicates an error was encountered.

See Also fanalyse, fdefrag

Example
#include <rtl.h>

void tst_files (void) {

 if (fcheck ("R:") != 0) {

 printf ("Flash File System inconsistent, formatting...\n");

 if (fformat ("R:") != 0) {

 printf ("Formatting failed.\n");

 }

 else {

 printf ("Format done.\n");

 }

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 557

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fclose
Summary

#include <stdio.h>

int fclose (

 FILE *stream); /* file stream to close */

Description The fclose function closes the file stream opened by the fopen function. All buffers
associated with the stream are flushed prior to closing. Buffers allocated by the
system are released when the stream is closed.

The fclose function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fclose function returns a value of 0 if the stream is successfully closed. A
return value of EOF indicates an error.

See Also fflush, fopen

Example
#include <rtl.h>

#include <stdio.h>

void tst_fclose (void) {

 FILE *fin;

 fin = fopen ("Test.txt","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 // process file content

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 558

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fdefrag
Summary

#include <rtl.h>

int fdefrag (

 const char *drive); /* drive to defragment */

Description The fdefrag function defragments the Flash File System on the specified drive. If
the drive string is empty ("") the default drive specified in the File_Config.c
configuration file is used.

The following values are allowed for the drive argument:

drive Device Type
"" Default System drive
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive

During defragmentation, the fdefrag function reorganizes the memory used by the
file system and increases the number of available Flash pages.

The fdefrag function is in the RL-FlashFS library. The prototype is defined in rtl.h.

Note

 Invoke this function only when the system is in an idle state and no files
are open. If files are open, fdefrag aborts the defragmentation.

 The fdefrag function can not defragment a Memory Card drive. If a
specified drive is "M:", fdefrag returns an error.

 You may use the fanalyse function to determine if defragmentation is
required.

Return Value The fdefrag function returns one of the following completion codes:

 0
No error, function completed successfully.

 1
Files are open for reading or writing. Defragmentation was canceled.

 2
No Flash pages were available to use for defragmentation. Defragmentation was
canceled.

See Also fanalyse, fcheck

Example
#include <rtl.h>

void free_space (void) {

 printf ("\nFree space before defrag: %d bytes.", ffree("F:"));

 if (fanalyse("F:") > 50) {

 fdefrag ("F:");

 }

 printf ("\nFree space after defrag: %d bytes.", ffree("F:"));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 559

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fdelete
Summary

#include <rtl.h>

int fdelete (

 const char *filename); /* file to delete */

Description The fdelete function deletes the file specified by filename. The filename may
contain a drive prefix that specifies where the file exists. If the drive prefix is
omitted the default drive specified in File_Config.c configuration file is used.

The following drive prefixes are allowed in filename argument:

Drive Prefix Storage Medium
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

For the M: drive, a filename must contain a path, otherwise a file from the root
folder will be deleted. To delete a subfolder parameter filename, which is in this
case a directory name, must contain also a terminating backslash character.

The fdelete function is in the RL-FlashFS library. The prototype is defined in rtl.h.

note

 To maintain compatibility, rtl.h defines the identical function unlink as a
macro that is substituted by the fdelete function.

Return Value The fdelete function returns a value of 0 if successful. A non-zero return value
indicates an error or file not found condition.

See Also fformat, frename

Example
#include <rtl.h>

void tst_fdelete (void) {

 /* Delete a file from default drive. */

 if (fdelete ("TEST.TXT") == 0) {

 printf ("Deleted: TEST.TXT\n");

 }

 /* Delete a file from RAM FS. */

 if (fdelete ("R:DATA.LOG") == 0) {

 printf ("Deleted: DATA.LOG\n");

 }

 /* Delete a file from SD Card located in subfolder. */

 if (fdelete ("M:\\Working folder\\Temporary log.txt") == 0) {

 printf ("Deleted: Temporary log.txt\n");

 }

 /* Delete a folder from SD Card (if empty). */

Page 560

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 if (fdelete "M:\\Working folder\\") == 0) {

 printf ("Deleted: Working folder.\n");

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 561

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

feof
Summary

#include <stdio.h>

int feof (

 FILE *stream); /* file stream to check */

Description The feof function determines if the end of stream has been reached. Once the
end-of-file is reached, subsequent read operations return an end-of-file indicator
until the file position changes (via a call to fseek or rewind).

The feof function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The feof function returns a value of 0 if no attempts have been made to read past
the end of the stream. A non-zero value is returned once an attempt is made to
read past the end-of-file.

See Also ferror, ftell, rewind

Example
#include <rtl.h>

#include <stdio.h>

void tst_feof (void) {

 FILE *fin;

 char ch;

 if (fin = fopen ("Test_feof") != NULL) {

 // Read all characters from the file

 while (!eof (fin)) {

 ch = fgetc (fin);

 }

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 562

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ferror
Summary

#include <stdio.h>

int ferror (

 FILE *stream); /* file stream to check */

Description The ferror function tests for a read or write error on stream. If an error has
occurred, the error indicator for stream remains set until the file is closed (using
fclose) or rewound (using rewind).

The ferror function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The ferror function returns a value of 0 if no error has occurred. Otherwise, a
non-zero value is returned.

See Also fclose, feof, rewind

Example
#include <rtl.h>

#include <stdio.h>

void tst_ferror (void) {

 FILE *fin;

 char ch;

 if (fin = fopen ("Test_ferror") != NULL) {

 // Read all characters from the file

 while (!eof (fin)) {

 ch = fgetc (fin);

 if (ferror (fin)) {

 printf ("File read error!\n");

 break;

 }

 }

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 563

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ffind
Summary

#include <rtl.h>

int ffind (

 const char *pattern, /* pattern to match files to */

 FINFO *info); /* file info structure */

Description The ffind function searches the Flash File System directory for files matching the
specified pattern filter. Matching file information is stored in the info structure.
ffind is invoked once for each matching file until a non-zero value is returned.

The pattern filter may include an optional drive prefix. If the drive prefix is
excluded, ffind uses the default drive specified in the File_Config.c configuration
file.

The following drive prefixes are allowed in pattern argument:

Drive Prefix Storage Medium
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

The pattern filter must include a filename pattern to match. Wildcards may be
included in the filename. For example:

Pattern Description
"*"
"*.*"

Search for all files in the directory.

"abc*" Search for files that begin with abc.
"*.htm" Search for files that end with .htm.
"abc*.text" Search for files that begin with abc and that end with .text.

The ffind function is in the RL-FlashFS library. The prototype is defined in rtl.h.

Note

 Before invoking the ffind function, you must set the fileID member of the
info structure to 0. For example:

 ..

 info.fileID = 0;

 while (ffind ("R:*.*",&info) == 0) {

 ..

This member of the info structure is used to identify the first call to ffind.

 Flash File System filenames are null-teminated strings.

 The dot character ('.') has no special meaning for the Flash File System. It is
not used as a separator for the file name and file type.

Return Value The ffind function returns a value of 0 to indicate a new file matching the pattern
was found. A non-zero return value indicates no matching files were found.

If a matching file was found, the info structure is set to the information for the
matching file. info contains the:

Page 564

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 Filename: The filename is a string limited to a maximum of 32 characters.

 File Size: The file size is the length of the file in bytes.

 File ID: The file ID is a file identification number assigned to a file by the
Flash File System.

See Also ffree

Example
#include <rtl.h>

void file_directory (void) {

 FINFO info;

 /* 'info.fileID' must initially be set to 0. */

 info.fileID = 0;

 while (ffind ("R:*.*",&info) == 0) {

 printf ("\n%-32s %5d bytes, ID: %04d",

 info.name,

 info.size,

 info.fileID);

 }

 if (info.fileID == 0) {

 printf ("\nNo files...");

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 565

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fflush
Summary

#include <stdio.h>

int fflush (

 FILE *stream); /* stream to flush */

Description The fflush function flushes the specified file stream. If the file associated with
stream is open for output, the contents of the buffer associated with the stream
are written to the file.

The fflush function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Note

 This function writes the File Allocation Record to the file system along with
the file data. Unlike the fclose function, the fflush function leaves the file
open for continued writes.

Return Value The fflush function returns a value of 0 if successful. A return value of EOF
indicates an error.

See Also fclose, fopen

Example
#include <rtl.h>

#include <stdio.h>

void main (void) {

 FILE *fout;

 int i;

 fout = fopen ("Flush.test","r");

 if (fout == NULL) {

 printf ("File open error!\n");

 }

 else {

 for (i = 'A'; i < 'Z'; i++) {

 fputc (i, fout);

 }

 // Now flush the file buffers

 fflush (fout);

 fputs ("Write to an empty file buffer.", fout);

 fclose (fout);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 566

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fformat
Summary

#include <rtl.h>

int fformat (

 const char *drive); /* drive to format */

Description The fformat function formats the Flash File System storage media on the specified
drive. If the drive string is empty (""), fformat uses the default drive specified in
the File_Config.c configuration file.

The following values are allowed for the drive argument:

drive Storage Medium
"" Default System drive
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

All Flash File System drives must be formatted before any files are created on the
devices.

 Flash devices must be formatted once when the system is started the first
time. They are erased sector by sector as specified in the FS_FLASHDEV.C
configuration file.

 RAM devices must be formatted every time when the system starts. They
are cleared sector by sector to an erased value (0x00 by default).

 Non-volatile and zero-power RAM devices must be formatted once when
the system is started the first time. Since these devices are battery backed
up and do not lose their contents when power is removed. They do not
require reformatting each time the system starts. Non-volatile and
zero-power RAM devices are cleared sector by sector to an erased value
(0x00 by default).

 The Memory Card must be formatted before its first use. If a Memory Card
has been formatted once, there is no need to format it again. The function
formats the Memory Card optimized for 12-bit, 16-bit AND 32-bit FAT type.
Cluster size and Cluster 2 alignment are optimized for the best Card
performance. The Flash File System supports SD, SDHC and MMC Flash
Memory Cards with a maximum capacity of 32 GBytes.

The fformat function is in the RL-FlashFS library. The prototype is defined in rtl.h.

Note

 The fformat function erases all files written to the drive.

 The fformat function closes all opened files on the drive. All existing file
handles become invalid. Reading or writing to such files after formatting the
drive may produce unpredictable results or file corruption.

 When formatting a Memory Card, you can specify a drive label in the
argument drive using the format "M:Drive_Label". The label is written to the
drive after the formatting completes. The drive label must have a maximum
length of 11 characters and cannot include spaces or special characters.

 The fformat function for Memory Card can accept additional paramters in
the argument string:

Page 567

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /FAT32 - tells the format function to format the Memory Card using
32-bit FAT file system.

 /WIPE - tells the format function to clear all the saved data on the
Memory Card. All sectors on the Memory Card are overwritten with the
default value of 0xFF. Note that this command might take long time to
execute on high capacity memory cards.

The following example will format the Memory Card with 12-bit or 16-bit FAT
file system and clear all the data:

fformat ("M:SD_CARD /WIPE");

Return Value The fformat function returns a value of 0 when formatting is successful. A non-zero
return value indicates an error was encountered.

See Also fcheck, fdelete

Example
#include <rtl.h>

void tst_fformat (void) {

 /* Format a Flash Drive. */

 if (fformat ("F:") != 0) {

 printf ("Flash File System format failed.\n");

 }

 else {

 printf ("Flash File System initialized.\n");

 }

 /* Format an SD Memory Card with Volume Label. */

 if (fformat ("M:SD_CARD") != 0) {

 printf ("SD Memory Card format failed.\n");

 }

 else {

 printf ("SD Memory Card formatted.\n");

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 568

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ffree
Summary

#include <rtl.h>

U64 ffree (

 const char *drive); /* drive to check for free space */

Description The ffree function calculates the free space in the Flash File System on the
specified drive. If the drive string is empty ("") the default drive specified in the
File_Config.c configuration file is used.

The following values are allowed for the drive argument:

drive Storage Medium
"" Default System drive
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

Flash devices are organized as a number of fixed-size memory blocks. When
erasing a block, Flash devices require that the entire block (not just a portion) is
erased. So, to change data in a Flash block, you must first erase the entire block.

Multiple files may be stored in a single Flash block. In fact, a Flash block can
simultaneously hold valid file data, invalid file data (which has been programmed
but not yet erased), and free space.

When some, but not all, of the files stored in a single block are erased by the Flash
File System, the whole Flash block is not erased because it still contains valid data.
Only the allocation information of deleted files is destroyed. Programmed data is
invalidated but remains present in flash block. When all data programmed into a
Flash block is invalidated, the system finally erases it.

Memory is managed similarly in a RAM-base File System. The ffree function returns
the size of free memory. Invalidated data is considered to be used memory. It is
normal, when you have stored two small files and subsequently deleted one of
them, to obtain the same return value from ffree as when both of the files were
present.

The ffree function is in the RL-FlashFS library. The prototype is defined in rtl.h.

Note

 The amount of free space reported by ffree may be misleading due to the
memory management algorithm.

Return Value The ffree function returns the amount of free space on drive in bytes.

See Also ffind, fformat

Example
#include <rtl.h>

void free_space (void) {

 printf ("Flash Drive free: %lld bytes.\n", ffree("F:"));

 printf ("Ram Drive free: %lld bytes.\n", ffree("R:"));

 printf ("SD Card Drive 1 free: %lld bytes.\n", ffree("M0:"));

 printf ("SD Card Drive 2 free: %lld bytes.\n", ffree("M1:"));

}

Page 569

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 570

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fgetc
Summary

#include <stdio.h>

int fgetc (

 FILE *stream); /* stream to read from */

Description The fgetc function reads a single character from stream and updates the file
pointer to point to the next character.

The fgetc function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fgetc function returns the character read as an int type. An EOF is returned for
error or end-of-file conditions.

Use the feof or ferror functions to distinguish an error from end-of-file.

See Also feof, ferror, fgets, fputc, ungetc

Example
#include <rtl.h>

#include <stdio.h>

void tst_fgetc (void) {

 FILE *fin;

 int ch;

 fin = fopen ("Test.txt","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 // dump the text file to a screen

 while ((ch = fgetc (fin)) != EOF) {

 putchar (ch);

 }

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 571

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fgets
Summary

#include <stdio.h>

char *fgets (

 char *string, /* string to write to */

 int n, /* length of string */

 FILE *stream); /* file stream to read from */

Description The fgets function reads a string from the input stream and stores it in string.
Characters are read from the current stream position...

 ...up to and including the first new-line ('\n'),

 ...up to the end of the stream,

 ...until the number of characters read is equal to n-1,

whichever comes first.

A null character ('\0') is appended to string.

The fgets function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fgets function returns string if successful. NULL is returned to indicate an
error or end-of-file condition.

Use the feof or ferror functions to distinguish an error from end-of-file.

See Also feof, ferror, fgetc, fputs

Example
#include <rtl.h>

#include <stdio.h>

void tst_fgets (void) {

 FILE *fin;

 char line[80];

 fin = fopen ("Test.txt","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 while (fgets (line, sizeof (line), fin) != NULL) {

 puts (line);

 }

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 572

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

finit
Summary

#include <rtl.h>

int finit (

 const char *drive); /* drive to initialize */

Description The finit function initializes the Flash File System. It must be called before any
other file system function.

The argument drive specifies the drive to be initialized. The following values are
allowed for the drive argument:

drive Initialized Drives
NULL All enabled drives
"" Default system drive
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

The finit function is in the RL-FlashFS library. The prototype is defined in rtl.h.

Note

 If the finit function is not invoked before other file system functions, the
Flash File System may crash.

 Calling the finit for the drive, which is not enabled in the File_Config.c will
fail.

Return Value The finit function returns a value of 0 if successful. A non-zero return value
indicates an error.

See Also funinit

Example
#include <rtl.h>

void main (void) {

 /* Initialize the FlashFS. */

 finit (NULL);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 573

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

FIQ_Handler
Summary

#include <demo.h>

void FIQ_Handler (

 void);

Description The FIQ_Handler function outputs the audio data from the host to the speaker.
the function is implemented as a fast interrupt request function that runs every
31.25 μs. It scales the audio data according to the volume and mute settings
before writing the value to the speaker’s register. The function also calculates the
loudness over 32 ms and outputs this using the LEDs.

Modify this function to suit the application product hardware.

The FIQ_Handler function is part of the Application layer of the RL-USB Software
Stack.

Note

 The function starts to write (DataRun=1) to the speaker register when at
least half the buffer (DataBuf) contains data. The function stops writing
(DataRun=0) to the speaker register when no data are available in the
buffer.

Return Value None.

See Also ADC_IF_GetRequest, ADC_IF_SetRequest

Example
#include <demo.h>

void FIQ_Handler (void) {

 …

 val = DataBuf[DataOut]; // Get the audio data sent by the

host

 …

 val *= volume; // Adjust the data according to

the volume

 …

 if (Mute) {

 val = 0x8000; // Change the data to mute value

 }

 DACR = val & 0xFFC0; // Write the data to the speaker

register

 …

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 574

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fopen
Summary

#include <stdio.h>

FILE *fopen (

 const char *filename, /* pathname of file */

 const char *mode); /* type of access */

Description The fopen function opens the file specified by filename. Any valid string is allowed
for filename. The filename may contain a drive prefix which specifies the medium
where the file should be opened. If the drive prefix is omitted the default drive
specified in the FILE_CONFIG.C configuration file is used.

The following drive prefixes are allowed in filename argument:

Drive Prefix Storage Medium
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

The mode defines the type of access permitted for the file. It may have one of the
following values.

Mode Description
"r" Opens a file for reading. If the file does not exist fopen fails.
"w" Opens an empty file for writing. If the file already exists, its

contents are destroyed. If the file does not exist, an empty file is
opened for writing.

"a" Opens a file for writing. If the file already exists, data is appended
at the end of file. If the file does not exist, an empty file is opened
for writing.

For the M: and U: drives, a filename must contain a path, othervise a file from the
root folder will be referenced or created. To create a subfolder parameter
filename must containg also a path. If the specified subfolder does not exist, the
system will create one and then create a file in this subfolder.

The fopen function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Note

 The fopen function must be called to create a file handle before any other
file functions are invoked.

 Use the "w" mode with care as it can destroy existing files.

 Read/write modes are currently not supported.

 You cannot open more than one file stream for writing to the same
filename. If filename is open for writing, subsequent calls to fopen for
writing to filename fail until you close filename using the fclose function.

Return Value The fopen function returns a pointer to the open file stream structure. A null
pointer value indicates an error.

See Also fclose, fflush

Example
#include <rtl.h>

#include <stdio.h>

Page 575

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

void tst_fopen (void) {

 FILE *f;

 /* Read a file from default drive. */

 f = fopen ("Test.txt","r");

 if (f == NULL) {

 printf ("File not found!\n");

 }

 else {

 // process file content

 fclose (f);

 }

 /* Create a file in subfolder on SD card. */

 f = fopen ("M:\\Temp_Files\\Dump_file.log","w");

 if (f == NULL) {

 printf ("Failed to create a file!\n");

 }

 else {

 // write data to file

 fclose (f);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 576

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fprintf
Summary

#include <stdio.h>

int fprintf (

 FILE *stream, /* file stream to write to */

 const char *format, /* format string */

 ...); /* additional arguments */

Description The fprintf function formats a series of strings and numeric values and writes the
resulting string to stream. The fmtstr argument is a pointer to a format string
which has the same form and function as the printf function's format string. The
list of arguments are converted and output according to the corresponding format
specifications in fmtstr.

The fprintf function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fprintf function returns the number of bytes actually written to stream.

See Also fscanf

Example
#include <rtl.h>

#include <stdio.h>

void tst_fprintf (void) {

 FILE *fout;

 int i = 56;

 fout = fopen ("Test.txt","w");

 if (fout == NULL) {

 printf ("File open error!\n");

 }

 else {

 fprintf (fout, "printf test: val = %i fval =%f\n", i, i *

3.45);

 fclose (fout);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 577

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fputc
Summary

#include <stdio.h>

int fputc (

 int c, /* character to write */

 FILE *stream); /* file stream to write to */

Description The fputc function writes a single character, c, to stream and increments the file
pointer.

The fputc function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fputc function returns the character written. A return value of EOF indicates an
error.

See Also fgetc, fputs, ungetc

Example
#include <rtl.h>

#include <stdio.h>

void tst_fputc (void) {

 FILE *fout;

 int ch;

 fout = fopen ("Test.txt","w");

 if (fout == NULL) {

 printf ("File open error!\n");

 }

 else {

 // copy the stdin to a file

 while ((ch = getchar ()) != EOF) {

 fputc (ch, fout);

 }

 fclose (fout);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 578

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fputs
Summary

#include <stdio.h>

int fputs (

 const char *string, /* string to output */

 FILE *stream); /* file stream to write to */

Description The fputs function writes string to the output file stream at the current file
position.

The fputs function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fputs function returns 0 if successful. A return value of EOF indicates an error.

See Also fgets, fputc

Example
#include <rtl.h>

#include <stdio.h>

void tst_fputs (void) {

 FILE *fout;

 fout = fopen ("Test.txt","w");

 if (fout == NULL) {

 printf ("File open error!\n");

 }

 else {

 fputs("This is an example for fputs.\n", fout);

 fclose (fout);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 579

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fread
Summary

#include <stdio.h>

U32 fread (

 void *buffer, /* storage buffer for data */

 U32 size, /* size of each item */

 U32 count, /* number of items to read */

 FILE *stream); /* file stream to read from */

Description The fread function reads, from the input stream, up to count items of size bytes
and stores them in buffer. The file pointer associated with stream is increased by
the number of bytes actually read.

The fread function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fread function returns the number complete items actually read. This number
may be less than count if an error occurs or if the end-of-file is reached.

Use the feof or ferror functions to distinguish an error from end-of-file.

See Also feof, ferror, fgetc, fgets, fwrite

Example
#include <rtl.h>

#include <stdio.h>

void tst_fread (void) {

 int count[10];

 FILE *fin;

 fin = fopen ("Counter.log","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 fread (&count[0], sizeof (int), 10, fin);

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 580

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

frename
Summary

#include <rtl.h>

int frename (

 const char *oldname, /* old filename */

 const char *newname); /* new filename */

Description The frename function changes the filename of the oldname to newname. oldname
must be the name of an existing file and newname must be a valid filename that is
not the name of an existing file.

The oldname may contain a drive prefix and optional path information (for M: and U:
drives), that specifies where the file exists. If the drive prefix is omitted the default
drive specified in File_Config.c configuration file is used.

The following drive prefixes are allowed in oldname argument:

Drive Prefix Storage Medium
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

The frename function is in the RL-FlashFS library. The prototype is defined in rtl.h.

note

 For compatibility, the rename function is also defined.

Return Value The frename function returns a value of 0 if successful. A non-zero return value
indicates an error.

See Also fdelete, fformat

Example
#include <rtl.h>

void tst_frename (void) {

 if (frename ("F:Test.txt", "New name.txt") == 0) {

 printf ("Rename Successful.\n");

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 581

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fs_get_date
Summary

#include <rtl.h>

U32 fs_get_date (void);

Description The fs_get_date function returns the current date. The Flash File System calls the
function to update the file write or file access date in the File Information Record.
The function packs the year, month, and day values in the 3 least significant bytes
of the 4-byte return value.

The fs_get_date function is part of RL-FlashFS. The prototype is defined in
file_config.h. You can customize the function in fs_time.c

note

 You must complete the fs_get_date function yourself.

 To replace the default file time functions from the FlashFS library with your
own, both fs_get_time and fs_get_date functions must be provided in
your project.

Return Value The fs_get_date function returns the current date.

See Also fs_get_time

Example
U32 fs_get_date (void) {

 /* Return Current Date for FAT File Time stamp. */

 U32 d,m,y,date;

 /* Modify here, add a system call to read RTC. */

 /* Day: 1 - 31 */

 /* Month: 1 - 12 */

 /* Year: 1980 - 2107 */

 d = 1;

 m = 11;

 y = 2006;

 date = (y << 16) | (m << 8) | d;

 return (date);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 582

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fs_get_time
Summary

#include <rtl.h>

U32 fs_get_time (void);

Description The fs_get_time function returns the current time. The Flash File System calls the
function to update the file write or file access time in the File Information Record.
The function packs the hour, minute, and second values in the 3 least significant
bytes of the 4-byte return value.

The fs_get_time function is part of RL-FlashFS. The prototype is defined in
file_config.h. You can customize the function in fs_time.c

note

 You must complete the fs_get_time function yourself.

 To replace the default file time functions from the FlashFS library with your
own, both fs_get_time and fs_get_date functions must be provided in
your project.

Return Value The fs_get_time function returns the current time.

See Also fs_get_date

Example
U32 fs_get_time (void) {

 /* Return Current Time for FAT File Time stamp. */

 U32 h,m,s,time;

 /* Modify here, add a system call to read RTC. */

 /* Hours: 0 - 23 */

 /* Minutes: 0 - 59 */

 /* Seconds: 0 - 59 */

 h = 12;

 m = 0;

 s = 0;

 time = (h << 16) | (m << 8) | s;

 return (time);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 583

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fscanf
Summary

#include <stdio.h>

int fscanf (

 FILE *stream, /* file stream to read from */

 const char *fmtstr, /* format string */

 ...); /* additional arguments */

Description The fscanf function reads formatted data from stream. Data input are stored in the
locations specified by arguments according to the format string fmtstr. Each
arguments must be a pointer to a variable that corresponds to the type defined in
fmtstr.

The fscanf function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fscanf function returns the number of input fields that were successfully
converted.

See Also fprintf

Example
#include <rtl.h>

#include <stdio.h>

void tst_fread (void) {

 int index, count;

 FILE *fin;

 fin = fopen ("Counter.log","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 fscanf ("%d, %d",&index, &count);

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 584

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fseek
Summary

#include <stdio.h>

int fseek (

 FILE *stream, /* file stream */

 long offset, /* file position offset */

 int origin); /* initial offset origin */

Description The fseek function moves the file pointer associated with stream to the location
that is offset bytes from origin. The next operation on the stream takes place at
this new location.

The origin may be one of the following manifest constant values:

Origin Value Description
SEEK_CUR Current position of file pointer.
SEEK_END End of the file.
SEEK_SET Beginning of the file.

The fseek function may reposition the file pointer anywhere in the file or past the
end of the file. Attempts to position the file pointer before the beginning of the file
causes an error.

The fseek function clears the end-of-file indicator.

The fseek function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Note

 Seeking within a file opened for "w" mode is currently unsupported.

Return Value The fseek function returns a value of 0 if successful or a value of EOF if
unsuccessful.

See Also ftell, rewind

Example
#include <rtl.h>

#include <stdio.h>

void tst_fseek (void) {

 FILE *fin;

 char ch;

 fin = fopen ("Test.txt","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 // Read the 5th character from file

 fseek (fin, 5L, SEEK_SET);

 ch = fgetc (fin);

 // Read the last character from file

 fseek (fin, -1L, SEEK_END);

 ch = fgetc (fin);

 fclose (fin);

 }

}

Page 585

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 586

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ftell
Summary

#include <stdio.h>

U32 ftell (

 FILE *stream); /* file stream */

Description The ftell macro gets the current file position associated with stream. The file
position is an offset relative to the beginning of the stream.

The ftell function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The ftell macro returns the current file position.

See Also fseek

Example
#include <rtl.h>

#include <stdio.h>

void tst_ftell (void) {

 U32 fpos;

 char line[80];

 FILE *fin;

 fin = fopen ("Counter.log","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 fgets (&line, sizeof (char), fin);

 // Get position after read

 fpos = ftell (fin);

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 587

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ftp_fclose
Summary

#include <net_config.h>

void *ftp_fclose (

 FILE* file); /* Pointer to the file to close. */

Description The ftp_fclose function closes the file identified by the file stream pointer in the
function argument.

The ftp_fclose function is in the FTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The ftp_fclose function does not return any value.

See Also ftp_fopen, ftp_fread, ftp_fwrite

Example
void ftp_fclose (void *file) {

 /* Close the file opened for reading or writing. */

 fclose (file);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 588

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ftp_fdelete
Summary

#include <net_config.h>

BOOL ftp_fdelete (

 U8* fname); /* Pointer to name of file to delete. */

Description The ftp_fdelete function deletes the file specified by fname.

The ftp_fdelete function is in the FTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The ftp_fdelete function returns __TRUE when the file is successfully deleted. It
returns __FALSE on failure.

See Also ftp_ffind, ftp_frename

Example
BOOL ftp_fdelete (U8 *fname) {

 /* Delete a file, return __TRUE on success. */

 if (fdelete((char *)fname) == 0) {

 return (__TRUE);

 }

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 589

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ftp_ffind
Summary

#include <net_config.h>

U16 ftp_ffind (

 U8 code, /* Function request code. */

 U8* buf, /* Pointer to the buffer to write to. */

 U8* mask, /* Pattern to match files to. */

 U16 buflen); /* Length of the output buffer. */

Description The ftp_ffind function searches the File System directory for files matching the
specified mask filter. Matching file information is stored to the output buffer
specified with buf. The output data must be formatted in the FTP folder listing
format.

Parameter code specifies the request type for the ftp_ffind function.

Code Request Type
0 Read file size.
1 Read last-modified time of a file.
2 List file names only (first call).
3 List file directory in extended format (first call).
4 List file names only (subsequent call).
5 List file dorectory in extended format (subsequent call).

Parameter buflen specifies the size of output buffer buf.

The ftp_ffind function is in the FTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The ftp_ffind function returns the number of bytes written to the buf.

See Also ftp_fdelete, ftp_frename

Example
U16 ftp_ffind (U8 code, U8 *buf, U8 *mask, U16 len) {

 /* Find file names and other file information. */

 static FINFO info;

 U32 rlen,v;

 U8 *tp;

 if (code < 4) {

 /* First call to ffind, initialize the info. */

 info.fileID = 0;

 }

 rlen = 0;

next:

 if (ffind ((char *)mask, &info) == 0) {

 /* File found, print file information. */

 if (info.name[0] == '.') {

 if ((info.name[1] == 0) || (info.name[1] == '.' &&

info.name[2]) == 0) {

 /* Ignore the '.' and '..' folders. */

 goto next;

 }

 }

 switch (code) {

Page 590

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 case 0:

 /* Return file size as decimal number. */

 rlen = sprintf ((char *)buf,"%d\r\n", info.size);

 break;

 case 1:

 /* Return last-modified time in format "YYYYMMDDhhmmss".

*/

 rlen = sprintf ((char *)buf,"%04d%02d%02d",

 info.time.year, info.time.mon,

info.time.day);

 rlen += sprintf ((char *)&buf[rlen],"%02d%02d%02d\r\n",

 info.time.hr, info.time.min,

info.time.sec);

 break;

 case 2:

 case 4:

 /* List file names only. */

 rlen = sprintf ((char *)buf,"%s\r\n", info.name);

 break;

 case 3:

 case 5:

 /* List directory in extended format. */

 rlen = sprintf ((char *)buf,"%02d-%02d-%02d",

 info.time.mon, info.time.day,

info.time.year%100);

 /* Convert time to "AM/PM" format. */

 v = info.time.hr % 12;

 if (v == 0) v = 12;

 if (info.time.hr < 12) tp = "AM";

 else tp = "PM";

 rlen += sprintf ((char *)&buf[rlen],"

%02d:%02d%s",v,info.time.min,tp);

 if (info.attrib & ATTR_DIRECTORY) {

 rlen += sprintf ((char *)&buf[rlen],"%-21s","

<DIR>");

 }

 else {

 rlen += sprintf ((char *)&buf[rlen],"%21d", info.size);

 }

 rlen += sprintf ((char *)&buf[rlen]," %s\r\n",

info.name);

 break;

 }

 }

 return (rlen);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 591

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ftp_fopen
Summary

#include <net_config.h>

void *ftp_fopen (

 U8* fname, /* Pointer to name of file to open. */

 U8* mode); /* Pointer to mode of operation. */

Description The ftp_fopen function opens a file for reading or writing. The argument fname
specifies the name of the file to open. The mode defines the type of access
permitted for the file. It can have one of the following values:

Mode Description
"r" Opens the file for reading. If the file does not exist, fopen fails.
"w" Opens an empty file for writing if the file does not exist. If the file

already exists, its contents are cleared.

The ftp_fopen function is in the FTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The ftp_fopen function returns a pointer to the opened file. The function returns
NULL if it cannot open the file.

See Also ftp_fclose, ftp_fread, ftp_fwrite

Example
void *ftp_fopen (U8 *fname, U8 *mode) {

 /* Open file 'fname' for reading or writing. */

 return (fopen ((const char *)fname, (const char *)mode));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 592

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ftp_fread
Summary

#include <net_config.h>

U16 ftp_fread (

 FILE* file, /* Pointer to the file to read from. */

 U8* buf, /* Pointer to buffer, to store the data. */

 U16 len); /* Number of bytes to read. */

Description The ftp_fread reads len bytes from the file identified by the file stream pointer in
the function argument. The argument buf is a pointer to the buffer where the
function stores the read data.

The ftp_fread function is in the FTP_uif.c module. The prototype is defined in
net_config.h.

note

 The ftp_fread function must read len bytes. The FTP Server stops reading
and closes the file if the return value is less than len bytes.

Return Value The ftp_fread function returns the number of bytes read from the file.

See Also ftp_fclose, ftp_fopen, ftp_fwrite

Example
U16 ftp_fread (void *file, U8 *buf, U16 len) {

 /* Read 'len' bytes from file to buffer 'buf'. The file will be

*/

 /* closed, when the number of bytes read is less than 'len'.

*/

 return (fread (buf, 1, len, file));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 593

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ftp_frename
Summary

#include <net_config.h>

BOOL ftp_frename (

 U8* fname, /* Pointer to old filename. */

 U8* newn); /* Pointer to new filename. */

Description The ftp_frename function changes the filename of the fname to newn. fname must
be the name of an existing file and newn must be a valid filename that is not the
name of an existing file.

The ftp_frename function is in the FTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The ftp_frename function returns __TRUE when the file is successfully renamed. It
returns __FALSE on failure.

See Also ftp_fdelete, ftp_ffind

Example
BOOL ftp_frename (U8 *fname, U8 *newn) {

 /* Rename a file, return __TRUE on success. */

 if (frename((char *)fname, (char *)newn) == 0) {

 return (__TRUE);

 }

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 594

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ftp_fwrite
Summary

#include <net_config.h>

U16 ftp_fwrite (

 FILE* file, /* Pointer to the file to write to. */

 U8* buf, /* Pointer to the buffer containing the data.

*/

 U16 len); /* Number of bytes to write. */

Description The ftp_fwrite function writes a block of data to the file identified by the file
stream pointer. The argument buf points to the buffer containing the data that is
to be written to the file. The argument len specifies the number of bytes to write to
the file.

The ftp_fwrite function is in the FTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The ftp_fwrite function returns the number of bytes written to the file.

See Also ftp_fclose, ftp_fopen, ftp_fread

Example
U16 ftp_fwrite (FILE *file, U8 *buf, U16 len) {

 /* Write 'len' bytes from buffer 'buf' to a file. */

 return (fwrite (buf, 1, len, file));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 595

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

funinit
Summary

#include <rtl.h>

int funinit (

 const char *drive); /* drive to uninitialize */

Description The funinit function uninitializes the Flash File System. It can be used if during the
application run time the drive volume to be disabled for whatever reason (for
example lowering power consumption). After this function is called only the finit
function should be called for reinitialization of the drive.

The argument drive specifies the drive to be uninitialized. The following options
are allowed for the drive argument:

drive UnInitialized Drives
NULL All enabled drives
"" Default system drive
"F:" or "F0:" Flash drive
"S:" or "S0:" SPI Flash drive
"R:" or "R0:" RAM drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

The funinit function is in the RL-FlashFS library. The prototype is defined in rtl.h.

Return Value The finit function returns a value of 0 if successful. A non-zero return value
indicates an error.

See Also finit

Example
#include <rtl.h>

void main (void) {

 FILE *f;

 /* Initialize the M: drive. */

 if (finit ("M:") == 0) {

 /* Update a log file on SD card. */

 f = fopen ("M:\\Logs\\Test_file.log","a");

 if (f == NULL) {

 printf ("Failed to create a file!\n");

 }

 else {

 // write data to file

 fclose (f);

 }

 /* The drive is no more needed. */

 funinit ("M:");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 596

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

fwrite
Summary

#include <stdio.h>

U32 fwrite (

 const void *buffer, /* data to write to file */

 U32 size, /* size of each item */

 U32 count, /* number of items to write */

 FILE *stream); /* file stream to write to */

Description The fwrite function writes up to count items of size bytes from buffer to the file
stream. The file pointer associated with stream is increased by the number of bytes
actually written.

The fwrite function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The fwrite function returns the number of complete items actually written. This
number may be less than count if an error occurs.

See Also fputc, fputs, fread

Example
#include <rtl.h>

#include <stdio.h>

void tst_fwrite (void) {

 int count[10];

 FILE *fout;

 fout = fopen ("Counter.log","w");

 if (fout == NULL) {

 printf ("File open error!\n");

 }

 else {

 fwrite (&count[0], sizeof (int), 10, fout);

 fclose (fout);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 597

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

get_host_by_name
Summary

#include <rtl.h>

U8 get_host_by_name (

 U8* hostn, /* Pointer to the

hostname. */

 void (*cbfunc)(U8 event, U8* host_ip)); /* Function to call

when */

 /* the DNS request

ends. */

Description The get_host_by_name function resolves the IP address of a host from a
hostname. The argument hostn is a pointer to a NULL terminated string that
specifies the hostname. The function get_host_by_name starts the DNS client on
TCPnet, to send a request to the DNS server.

The argument cbfunc specifies a user provided callback function that the DNS client
calls when an event ends the DNS session. The DNS client specifies the event and
the host IP address (in case of DNS_EVT_SUCCESS) when calling the cbfunc
function.

Event Description
DNS_EVT_SUCCESS The IP address has been resolved. The argument host_ip

of the function cbfunc points to a 4-byte buffer containing
the IP address in dotted decimal notation.

DNS_EVT_NONAME The hostname was not found in the DNS server.
DNS_EVT_TIMEOUT The timeout has expired before the IP address could be

resolved.
DNS_EVT_ERROR A DNS communication protocol error has occurred. This can

also result from misplaced dots in the hostname or
incorrect name labels.

The get_host_by_name function is in the RL-TCPnet library. The prototype is
defined in rtl.h.

note

 The hostname argument hostn can also point to the dotted decimal IP
address in sting format (for example "192.168.0.100"). In this case, the
DNS client calls the cbfunc function immediately with the IP address.

Return Value The get_host_by_name function returns a code that specifies either the state of
the dns resolving process or an error. If the return code is an error, then the
current DNS request is ignored:

Return code Description
DNS_RES_OK The DNS resolving process has started.
DNS_ERROR_BUSY The DNS resolving process is still busy.
DNS_ERROR_LABEL The hostname label is too long.
DNS_ERROR_NAME The hostname is too long.
DNS_ERROR_NOSRV The DNS server IP address has not been specified.
DNS_ERROR_UDPSEND The UDP socket cannot send packets.

Example
static void dns_cbfunc (U8 event, U8 *ip);

void resolve_host (void) {

 U8 res;

 res = get_host_by_name ("www.keil.com",dns_cbfunc);

 switch (res) {

 case DNS_RES_OK:

 break;

Page 598

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 case DNS_ERROR_BUSY:

 printf("DNS Resolver is still busy. Request ignored.\n");

 break;

 case DNS_ERROR_LABEL:

 printf("Host name label too long.\n");

 break;

 case DND_ERROR_NAME:

 printf("Host name too long.\n");

 break;

 case DNS_ERROR_NOSRV:

 printf("DNS Server IP address not specified.\n");

 break;

 case DNS_ERROR_UDPSEND:

 printf("Error sending UDP packet.\n");

 break;

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 599

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

HID_GetReport
Summary

#include <hiduser.h>

bool HID_GetReport (

 void);

Description The HID_GetReport function sends the requested report data to the host by
writing the data into the endpoint 0 buffer (EP0Buf).

Call GetInReport to update the report variable (InReport). Modify the
HID_GetReport function to obtain your report data and copy them into the
endpoint buffer. The function supports the HID_REPORT_INPUT request only.

The HID_GetReport function is part of the USB Function Driver layer of the RL-USB
Software Stack.

Note

 If you modify the HID_GetReport function, then you must also modify the
corresponding endpoint function, USB_EndPoint1, because the host might
use either one of these functions to obtain the report data.

Return Value The HID_GetReport function returns:

 __TRUE if the host request is supported.

 __FLASE in any other case.

See Also HID_SetReport

Example
#include <hiduser.h>

bool HID_GetReport (void) {

 switch (SetupPacket.wValue.WB.H) {

 case HID_REPORT_INPUT:

 GetInReport (); // your function to update the

report vars.

 EP0Buf [0] = InReport; // copy report vars to the

endpoint buffer.

 break;

 …

 }

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 600

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

HID_SetReport
Summary

#include <hiduser.h>

bool HID_GetReport (

 void);

Description The HID_SetReport function obtains report data from the host by copying them
from the endpoint 0 buffer (EP0Buf).

The function calls SetOutReport to update other application variables. Modify the
HID_SetReport function to obtain as many bytes as your application needs from
the host. The HID_SetReport function supports the request
HID_REPORT_OUTPUT only.

The HID_SetReport function is part of the USB Function Driver layer of the RL-USB
Software Stack.

Note

 You must copy all your report data from the endpoint buffer, otherwise the
report data might be lost.

Return Value The HID_SetReport function returns:

 __TRUE if the host request is supported.

 __FLASE in any other case.

See Also HID_GetReport

Example
#include <hiduser.h>

bool HID_SetReport (void) {

 switch (SetupPacket.wValue.WB.H) {

 case HID_REPORT_INPUT:

 OutReport = EPoBuf [0]; // copy report vars to the

endpoint buffer.

 SetInReport (); // your function to update the

report vars.

 break;

 …

 }

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 601

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_accept_host
Summary

#include <net_config.h>

BOOL http_accept_host (

 U8* rem_ip, /* IP address of the remote host. */

 U16 rem_port); /* Remote port used for communication. */

Description The http_accept_host function checks if a connection from the remote host is
allowed or not. This allows remote host filtering. You can selectively decide which
hosts are allowed to connect to the web server and which are not allowed.

The argument rem_ip points to a buffer containing the four octets that make up
the ip address of the remote machine.The argument rem_port specifies the port on
the remote machine.

The http_accept_host function is in the HTTP_CGI.c module. The prototype is
defined in net_config.h.

note

 This function is optional. If it does not exist in the project, the library
default function is used instead. The library default function accepts all
remote hosts.

Return Value The http_accept_host function returns __TRUE if the connection from the remote
host is allowed. If the connection is not allowed, this function shall return __FALSE.

Example
BOOL http_accept_host (U8 *rem_ip, U16 rem_port) {

 if (rem_ip[0] == 192 &&

 rem_ip[1] == 168 &&

 rem_ip[2] == 1 &&

 rem_ip[3] == 1) {

 /* Accept a connection. */

 return (__TRUE);

 }

 /* Deny a connection. */

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 602

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_date
Summary

#include <net_config.h>

U32 http_date (

 RL_TIME* time); /* Modification time in RL format. */

Description The http_date function converts the RL time format to UTC time format. This time is
used by the Web server to control the browser local caching.

The argument time is the time provided in RL time format.

typedef struct { /* RL Time format */

 U8 hr; /* Hours [0..23] */

 U8 min; /* Minutes [0..59] */

 U8 sec; /* Seconds [0..59] */

 U8 day; /* Day [1..31] */

 U8 mon; /* Month [1..12] */

 U16 year; /* Year [1980..2107] */

} RL_TIME;

The http_date function is a system function that is in the RL-TCPnet library. The
prototype is defined in net_config.h.

Return Value The http_date function returns UTF time in binary seconds.

Example
U32 http_finfo (U8 *fname) {

 FINFO *info;

 U32 utc;

 info = (FINFO *)alloc_mem (sizeof (FINFO));

 info->fileID = 0;

 utc = 0;

 if (ffind ((const char *)fname, info) == 0) {

 /* File found, save creation date in UTC format. */

 utc = http_date (&info->time);

 }

 free_mem ((OS_FRAME *)info);

 return (utc);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 603

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_fclose
Summary

#include <net_config.h>

void http_fclose (

 FILE* file); /* Pointer to the file to close. */

Description The http_fclose function closes the file identified by the file stream pointer in the
function argument.

The http_fclose function is in the HTTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The http_fclose function does not return any value.

See Also http_fopen

Example
void http_fclose (void *file) {

 /* Close the file opened for reading. */

 fclose (file);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 604

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_fgets
Summary

#include <net_config.h>

BOOL http_fgets (

 FILE* file, /* Pointer to the file to read from. */

 U8* buf, /* Pointer to buffer, to store the read data.

*/

 U16 size); /* Maximum length of the string to read. */

Description The http_fgets reads up-to size bytes from the file identified by the file stream
pointer in the function argument. The argument buf is a pointer to the buffer where
the function stores the read data.

The http_fgets function is in the HTTP_uif.c module. The prototype is defined in
net_config.h.

note

 The http_fgets function is used by the script interpreter.

Return Value The http_fgets function returns __TRUE when the string was successfully read
from the file. Othervise, the function returns __FALSE.

See Also http_finfo, http_fread

Example
BOOL http_fgets (void *f, U8 *buf, U16 size) {

 /* Read a string from file to buffer 'buf'. The file will be

closed, */

 /* when this function returns __FALSE.

 */

 if (fgets ((char *)buf, size, f) == NULL) {

 return (__FALSE);

 }

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 605

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_finfo
Summary

#include <net_config.h>

U32 http_finfo (

 U8* fname); /* Pointer to name of file. */

Description The http_finfo reads the time, when the file identified by the fname was last
modified.

The http_finfo function is in the HTTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The http_finfo function returns last modification time in UTC format.

See Also http_fgets, http_fread

Example
U32 http_finfo (U8 *fname) {

 /* Read last modification time of a file. Return time in UTC

format. */

 FINFO *info;

 U32 utc;

 info = (FINFO *)alloc_mem (sizeof (FINFO));

 info->fileID = 0;

 utc = 0;

 if (ffind ((const char *)fname, info) == 0) {

 /* File found, save creation date in UTC format. */

 utc = http_date (&info->time);

 }

 free_mem ((OS_FRAME *)info);

 return (utc);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 606

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_fopen
Summary

#include <net_config.h>

void* http_fopen (

 U8* fname); /* Pointer to name of file to open. */

Description The http_fopen function opens a file for reading. The argument fname specifies the
name of the file to open. If the file does not exist, fopen fails.

The http_fopen function is in the HTTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The http_fopen function returns a pointer to the opened file. The function returns
NULL if it cannot open the file.

See Also http_fclose

Example
void *http_fopen (U8 *fname) {

 /* Open file 'fname' for reading. Return file handle. */

 return (fopen ((const char *)fname, "r"));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 607

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_fread
Summary

#include <net_config.h>

U16 http_fread (

 FILE* file, /* Pointer to the file to read from. */

 U8* buf, /* Pointer to buffer, to store the read data.

*/

 U16 len); /* Number of bytes to read. */

Description The http_fread reads len bytes from the file identified by the file stream pointer in
the function argument. The argument buf is a pointer to the buffer where the
function stores the read data.

The http_fread function is in the HTTP_uif.c module. The prototype is defined in
net_config.h.

note

 The http_fread function must read len bytes. The Web Server stops
reading and closes the file if the return value is less than len bytes.

Return Value The http_fread function returns the number of bytes read from the file.

See Also http_fgets, http_finfo

Example
U16 http_fread (void *f, U8 *buf, U16 len) {

 /* Read 'len' bytes from file to buffer 'buf'. The file will be

*/

 /* closed, when the number of read bytes is less than 'len'.

*/

 return (fread (buf, 1, len, f));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 608

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_get_content_type
Summary

#include <net_config.h>

U8 *http_get_content_type (void);

Description The http_get_content_type function returns a pointer to the Content-Type html
header, which was received in the xml post request. You can use this function to
check for the content type, which was submitted by the Silverlight web service
application

The http_get_content_type function is a system function that is in the RL-TCPnet
library. The prototype is defined in net_config.h.

note

 When a Silverlight web service application sends a request to a web
server, it specifies the Content-Type in the HTTP header that is sent to the
web server. This information is processed by TCPnet and stored internally.

Return Value The http_get_content_type function returns a pointer to the content type header,
which is a null-terminated string.

See Also cgi_process_data, cgx_content_type

Example
void cgi_process_data (U8 code, U8 *dat, U16 len) {

 U8 *pType;

 switch (code) {

 case 4:

 /* XML encoded content type, last packet. */

 pType = http_get_content_type ();

 if (strcmp (pType,"text/xml; charset=utf-8") == 0) {

 /* 'utf-8' character set */

 ..

 }

 else {

 /* Not 'utf-8' */

 ..

 }

 return;

 case 5:

 /* XML encoded as under 4, but with more to follow. */

 return;

 default:

 /* Ignore all other codes. */

 return;

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 609

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_get_info
Summary

#include <net_config.h>

void http_get_info (

 REMOTEM* info); /* Pointer to memory where the IP address

gets stored */

Description The http_get_info function obtains information about the remote machine and
records the remote machine's IP address and MAC address in the memory pointed
to by the info argument.

The http_get_info function is a system function that is in the RL-TCPnet library.
The prototype is defined in net_config.h.

Note

 You can use the IP address or MAC address information to restrict which
remote machines are allowed to perform system changes.

 For PPP and SLIP links, the function records 00-00-00-00-00-00 as the MAC
address in info.

Return Value The http_get_info function does not return any value, but the information about
the remote machine gets stored in the info argument.

See Also cgi_func

Example
U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi) {

 REMOTEM info;

 U16 len = 0;

 ..

 http_get_info (&info);

 /* Print a remote IP address. */

 len = sprintf(buf,"Your IP: %d.%d.%d.%d",info.IpAdr[0],

info.IpAdr[1],

 info.IpAdr[2],

infn.IpAdr[3]);

 /* Print a remote ethernet MAC address. */

 len += sprintf(buf+len,"Your MAC:

%02x-%02x-%02x-%02x-%02x-%02x",

 info.HwAdr[0],

info.HwAdr[1],

 info.HwAdr[2],

info.HwAdr[3],

 info.HwAdr[4],

info.HwAdr[5]);

 ..

 return (len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 610

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_get_lang
Summary

#include <net_config.h>

U8* http_get_lang (void);

Description The http_get_lang function retrieves the preferred language setting from the
browser. You can use this information to implement automatic language selection
for your embedded web pages.

The http_get_lang function is a system function that is in the RL-TCPnet library.
The prototype is defined in net_config.h.

Note

 When a web browser requests a web page, it specifies the preferred
language in the HTTP header that is sent to the web server. This
information is processed by TCPnet and stored internally.

 You can set the language preference in Internet Explorer by selecting Tools
-> Internet Options -> Languages. In Mozilla Firefox, you can set the
language preference by selecting Tools -> Options -> Content ->
Languages.

Return Value The http_get_lang function returns a pointer to the language code, which is a
null-terminated string.

See Also cgi_func

Example
U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi) {

 U16 len = 0;

 U8 *lang;

 switch (env[0]) {

 ..

 case 'e':

 /* Browser Language - file 'language.cgi' */

 lang = http_get_lang();

 if (strcmp (lang, "en") == 0) {

 lang = "English";

 }

 else if (strcmp (lang, "en-us") == 0) {

 lang = "English USA";

 }

 else if (strcmp (lang, "de") == 0) {

 lang = "German";

 }

 else if (strcmp (lang, "de-at") == 0) {

 lang = "German AT";

 }

 else if (strcmp (lang, "fr") == 0) {

 lang = "French";

 }

 else {

 lang = "Unknown";

 }

 len = sprintf(buf,&env[2],lang,http_get_lang());

Page 611

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 break;

 }

 return (len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 612

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_get_session
Summary

#include <net_config.h>

U8 http_get_session (void);

Description The http_get_session returns the current session number of the HTTP server
running on TCPnet. The session number can be any value between 0 and
HTTP_NUMSESS. You can customize the defined value of HTTP_NUMSESS in
net_config.h.

The http_get_session function is a system function that is in the RL-TCPnet library.
The prototype is defined in net_config.h.

note

 Storing the HTTP query string in a single global variable can result in the
HTTP server sending the wrong reply to a client when several clients try to
access a dynamic HTTP page at the same time. Hence it is better to have a
separate variable for each session, for example an array of query strings.

Return Value The http_get_session function returns the current session number of the HTTP
server.

See Also cgi_func

Example
/* Should be the same value as set in 'Net_Config.c' file. */

#define HTTP_NUMSESS 10

U32 answer[HTTP_NUMSESS];

U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi) {

 U16 len = 0;

 U32 http_session;

 ..

 http_session = http_get_session ();

 len += sprintf (buf+len,"Answer is: %d",answer[http_session]);

 ..

 return (len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 613

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

http_get_var
Summary

#include <net_config.h>

U8* http_get_var (

 U8* env, /* Pointer to a string of environment

variables */

 void* ansi, /* Buffer to store the environment variable

value */

 U16 maxlen); /* Maximum length of environment variable

value */

Description The http_get_var function processes the string env, which contains the
environment variables, and identifies where the first variable ends. The function
obtains and stores the first variable and its value into the buffer pointed by ansi, in
ansi format.

The maxlen specifies the maximum length that can be stored in the ansi buffer. If
the decoded environment variable value is longer than this limit, the function
truncates it to maxlen to fit it into the buffer.

The http_get_var function is a system function that is in the RL-TCPnet library. The
prototype is defined in net_config.h.

Note

 The http_get_var function can process environment variables from the GET
and POST methods.

 You can call this function from the HTTP_CGI.c module.

 The web browser uses environment variables to return user-entered
information that is requested in the HTTP input form.

Return Value The http_get_var function returns a pointer to the remaining environment
variables to process. It returns NULL if there are no more environment variables to
process.

See Also cgi_process_data, cgi_process_var

Example
void cgi_process_var (U8 *qs) {

 U8 var[40];

 do {

 /* Loop through all the parameters. */

 qs = http_get_var (qs, var, 40);

 /* Check the returned string, 'qs' now points to the next. */

 if (var[0] != 0) {

 /* Returned string is non 0-length. */

 if (str_scomp (var, "ip=") == __TRUE) {

 /* My IP address parameter. */

 sscanf (&var[3],

"%bd.%bd.%bd.%bd",&LocM.IpAdr[0],&LocM.IpAdr[1],

&LocM.IpAdr[2],&LocM.IpAdr[3]);

 }

 else if (str_Scomp (var, "msk=") == __TRUE) {

 /* Net mask parameter. */

Page 614

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 sscanf (&var[4],

"%bd.%bd.%bd.%bd",&LocM.NetMask[0],&LocM.NetMask[1],

&LocM.NetMask[2],&LocM.NetMask[3]);

 }

 else if (str_scomp (var, "gw=") == __TRUE) {

 ..

 }

 }

 } while (qs);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 615

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

igmp_join
Summary

#include <rtl.h>

BOOL igmp_join (

 U8 *group_ip); /* IP Address of the Host Group. */

Description The igmp_join function requests that this host become a member of the host
group identified by group_ip. Before any datagrams destined to a particular group
can be received, an upper-layer protocol must ask the IP module to join that
group.

The igmp_join function is in the RL-TCPnet library. The prototype is defined in rtl.h.

Return Value The igmp_join function returns __TRUE when this host successfully joined a host
group. Otherwise, the function returns __FALSE.

See Also igmp_leave, udp_mcast_ttl, udp_send

Example
U8 sgroup[4] = { 238, 0, 100, 1};

 ..

if (igmp_join (sgroup) == __TRUE) {

 printf ("This Host is a member of group: %d.%d.%d.%d\n",

 sgroup[0],sgroup[1],sgroup[2],sgroup[3]);

}

else {

 printf ("Failed to join a host group.\n");

}

 ..

Copyright © Keil, An ARM Company. All rights reserved.

Page 616

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

igmp_leave
Summary

#include <rtl.h>

BOOL igmp_leave (

 U8 *group_ip); /* IP Address of the Host Group. */

Description The igmp_leave function requests that this host gives up its membership in the
host group identified by group_ip. After the upper-layer has requested to leave the
host group, datagrams destined to a particular group can not be received, but are
silently discarded by the IP-layer.

The igmp_leave function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

Return Value The igmp_leave function returns __TRUE when this host successfully left a host
group. Otherwise, the function returns __FALSE.

See Also igmp_join, udp_mcast_ttl, udp_send

Example
U8 sgroup[4] = { 238, 0, 100, 1};

 ..

if (igmp_leave (sgroup) == __TRUE) {

 printf ("This Host has left the group: %d.%d.%d.%d\n",

 sgroup[0],sgroup[1],sgroup[2],sgroup[3]);

}

else {

 printf ("Failed to leave a group, this host is not a

member.\n");

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 617

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

init_ethernet
Summary

#include <net_config.h>

void init_ethernet (void);

Description The init_ethernet function initializes the ethernet controller. The function:

 enables the sending and receiving of packets

 sets the MAC ethernet address

 sets the interrupt configuration registers of the ethernet controller if the
ethernet controller is configured for interrupt mode.

The init_ethernet function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 The MAC address of the ethernet interface is typically configured by writing
the six byte MAC address into the dedicated registers of the ethernet
controller.

 You must provide the init_ethernet function if the ethernet controller you
use is different from the ones provided in the TCPnet source.

 The TcpNet system frequently calls init_ethernet during its startup.

Return Value The init_ethernet function does not return any value.

See Also interrupt_ethernet, poll_ethernet, send_frame

Example
void init_ethernet (void) {

 /* Initialize the EMAC ethernet controller. */

 U32 regv,tout,id1,id2;

 /* Power Up the EMAC controller. */

 PCONP |= 0x40000000;

 /* Enable P1 Ethernet Pins. */

 if (MAC_MODULEID == OLD_EMAC_MODULE_ID) {

 /* For the first silicon rev.'-' ID P1.6 should be set. */

 PINSEL2 = 0x50151105;

 }

 else {

 /* on rev. 'A' and later, P1.6 should NOT be set. */

 PINSEL2 = 0x50150105;

 }

 PINSEL3 = (PINSEL3 & ~0x0000000F) | 0x00000005;

 /* Reset all EMAC internal modules. */

 MAC_MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX |

MAC1_RES_MCS_RX |

 MAC1_SIM_RES | MAC1_SOFT_RES;

 MAC_COMMAND = CR_REG_RES | CR_TX_RES | CR_RX_RES;

 /* A short delay after reset. */

Page 618

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 for (tout = 100; tout; tout--);

 /* Initialize MAC control registers. */

 MAC_MAC1 = MAC1_PASS_ALL;

 MAC_MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;

 MAC_MAXF = ETH_MAX_FLEN;

 MAC_CLRT = CLRT_DEF;

 MAC_IPGR = IPGR_DEF;

 /* Enable Reduced MII interface. */

 MAC_COMMAND = CR_RMII | CR_PASS_RUNT_FRM;

 /* Reset Reduced MII Logic. */

 MAC_SUPP = SUPP_RES_RMII;

 for (tout = 100; tout; tout--);

 MAC_SUPP = 0;

 /* Put the DP83848C in reset mode */

 write_PHY (PHY_REG_BMCR, 0x8000);

 /* Wait for hardware reset to end. */

 for (tout = 0; tout < 0x100000; tout++) {

 regv = read_PHY (PHY_REG_BMCR);

 if (!(regv & 0x8800)) {

 /* Reset complete, device not Power Down. */

 break;

 }

 }

 /* Check if this is a DP83848C PHY. */

 id1 = read_PHY (PHY_REG_IDR1);

 id2 = read_PHY (PHY_REG_IDR2);

 if (((id1 << 16) | (id2 & 0xFFF0)) == DP83848C_ID) {

 /* Configure the PHY device */

#if defined (_10MBIT_)

 /* Connect at 10MBit */

 write_PHY (PHY_REG_BMCR, PHY_FULLD_10M);

#elif defined (_100MBIT_)

 /* Connect at 100MBit */

 write_PHY (PHY_REG_BMCR, PHY_FULLD_100M);

#else

 /* Use autonegotiation about the link speed. */

 write_PHY (PHY_REG_BMCR, PHY_AUTO_NEG);

 /* Wait to complete Auto_Negotiation. */

 for (tout = 0; tout < 0x100000; tout++) {

 regv = read_PHY (PHY_REG_BMSR);

 if (regv & 0x0020) {

 /* Autonegotiation Complete. */

 break;

 }

Page 619

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

#endif

 }

 /* Check the link status. */

 for (tout = 0; tout < 0x10000; tout++) {

 regv = read_PHY (PHY_REG_STS);

 if (regv & 0x0001) {

 /* Link is on. */

 break;

 }

 }

 /* Configure Full/Half Duplex mode. */

 if (regv & 0x0004) {

 /* Full duplex is enabled. */

 MAC_MAC2 |= MAC2_FULL_DUP;

 MAC_COMMAND |= CR_FULL_DUP;

 MAC_IPGT = IPGT_FULL_DUP;

 }

 else {

 /* Half duplex mode. */

 MAC_IPGT = IPGT_HALF_DUP;

 }

 /* Configure 100MBit/10MBit mode. */

 if (regv & 0x0002) {

 /* 10MBit mode. */

 MAC_SUPP = 0;

 }

 else {

 /* 100MBit mode. */

 MAC_SUPP = SUPP_SPEED;

 }

 /* Set the Ethernet MAC Address registers */

 MAC_SA0 = ((U32)own_hw_adr[5] << 8) | (U32)own_hw_adr[4];

 MAC_SA1 = ((U32)own_hw_adr[3] << 8) | (U32)own_hw_adr[2];

 MAC_SA2 = ((U32)own_hw_adr[1] << 8) | (U32)own_hw_adr[0];

 /* Initialize Tx and Rx DMA Descriptors */

 rx_descr_init ();

 tx_descr_init ();

 /* Receive Broadcast, Multicast and Perfect Match Packets */

 MAC_RXFILTERCTRL = RFC_MCAST_EN | RFC_BCAST_EN |

RFC_PERFECT_EN;

 /* Enable EMAC interrupts. */

 MAC_INTENABLE = INT_RX_DONE | INT_TX_DONE;

Page 620

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Reset all interrupts */

 MAC_INTCLEAR = 0xFFFF;

 /* Enable receive and transmit mode of MAC Ethernet core */

 MAC_COMMAND |= (CR_RX_EN | CR_TX_EN);

 MAC_MAC1 |= MAC1_REC_EN;

 /* Configure VIC for EMAC interrupt. */

 VICVectAddr21 = (U32)interrupt_ethernet;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 621

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

init_modem
Summary

#include <net_config.h>

void init_modem (void);

Description The init_modem function initializes the modem driver. The function:

 sets the default state of the RTS and DTR control lines if they are used

 initializes the driver status variables and buffers.

The init_modem function for the null modem is in the RL-TCPnet library. The
prototype is defined in net_config.h. If you want to use a standard modem
connection, you must copy std_modem.c into your project directory.

note

 The TcpNet system calls init_modem during its startup.

Return Value The init_modem function does not return any value.

See Also modem_dial, modem_hangup, modem_listen

Example
void init_modem (void) {

 /* Initializes the modem variables and control signals DTR &

RTS. */

 mlen = 0;

 mem_set (mbuf, 0, sizeof(mbuf));

 wait_for = 0;

 wait_conn = 0;

 modem_st = MODEM_IDLE;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 622

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

init_serial
Summary

#include <net_config.h>

void init_serial (void);

Description The init_serial function initializes the serial driver. The function:

 sets the baud rate

 initializes the UART

 enables the interrupts for transmission and reception of data.

The init_serial function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 The TcpNet system calls init_serial during its startup.

 You must provide the init_serial function if the serial controller you use is
different from the ones provided in the TCPnet source.

Return Value The init_serial function does not return any value.

See Also com_getchar, com_putchar, com_tx_active

Example
void init_serial (void) {

 /* Initialize the serial interface */

 rbuf.in = 0;

 rbuf.out = 0;

 tbuf.in = 0;

 tbuf.out = 0;

 tx_active = __FALSE;

 /* Enable RxD1 and TxD1 pins. */

 PINSEL0 = 0x00050000;

 /* 8-bits, no parity, 1 stop bit */

 U1LCR = 0x83;

 /* 19200 Baud Rate @ 15MHz VPB Clock */

 U1DLL = 49;

 U1DLM = 0;

 U1LCR = 0x03;

 /* Enable RDA and THRE interrupts. */

 U1IER = 0x03;

 /* Enable UART1 interrupts. */

 VICVectAddr14 = (U32)handler_UART1;

 VICVectCntl14 = 0x27;

 VICIntEnable = 1 << 7;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 623

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

init_TcpNet
Summary

#include <rtl.h>

void init_TcpNet (void);

Description The init_TcpNet function initializes the TCPnet system resources, protocols, and
applications.

The init_TcpNet function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 You must call the init_TcpNet function at system startup to properly
initialize the TCPnet environment.

Return Value The init_TcpNet function does not return any value.

See Also main_TcpNet

Example
#include <rtl.h>

void main (void) {

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 while (1);

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 624

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

int_disable_eth
Summary

#include <net_config.h>

void int_disable_eth (void);

Description The int_disable_eth function disables the ethernet controller interrupts.

The int_disable_eth function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 You must provide the int_disable_eth function if the ethernet controller
you use is different from the ones provided in the TCPnet source.

 You must provide the int_disable_eth function only if you want to use the
ethernet driver in interrupt mode.

 The TCPnet system calls int_disable_eth to disable the ethernet interrupts
when entering critical or non-reentrant sections such as memory
management functions.

Return Value The int_disable_eth function does not return any value.

See Also int_enable_eth, interrupt_ethernet

Example
void int_disable_eth (void) {

 /* Ethernet Interrupt Disable function. */

 VICIntEnClr = 1 << 21;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 625

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

int_enable_eth
Summary

#include <net_config.h>

void int_enable_eth (void);

Description The int_enable_eth function enables the ethernet controller interrupts.

The int_enable_eth function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 You must provide the int_enable_eth function if the ethernet controller you
use is different from the ones provided in the TCPnet source.

 You must provide the int_enable_eth function only if you want to use the
ethernet driver in interrupt mode.

 The TCPnet system calls int_enable_eth to re-enable the ethernet
interrupts when exiting critical sections such as memory management
functions.

Return Value The int_enable_eth function does not return any value.

See Also int_disable_eth, interrupt_ethernet

Example
void int_enable_eth (void) {

 /* Ethernet Interrupt Enable function. */

 VICIntEnable = 1 << 21;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 626

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

interrupt_ethernet
Summary

#include <net_config.h>

void interrupt_ethernet (void) __irq

Description The interrupt_ethernet function is the ethernet controller interrupt request
function that gets called immediately when the ethernet controller receives a new
frame. The function first allocates a block of memory. It then reads and copies the
packet from the ethernet controller into the allocated memory. The function puts
the memory block pointer into the received frames queue by calling the
put_in_queue function.

The interrupt_ethernet function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 You must provide the interrupt_ethernet function if the ethernet controller
you use is different from the ones provided in the TCPnet source.

 You must provide the interrupt_ethernet function only if you want to use
the ethernet controller in interrupt mode.

 When you call alloc_mem to allocate the block of memory, ensure that the
most significant bit in its argument size is set to 1. This is to prevent system
hang error when it is out of memory.

Return Value The interrupt_ethernet function does not return any value.

See Also init_ethernet, send_frame

Example
static void interrupt_ethernet (void) __irq {

 /* EMAC Ethernet Controller Interrupt function. */

 OS_FRAME *frame;

 U32 idx,int_stat,RxLen,info;

 U32 *sp,*dp;

 while ((int_stat = (MAC_INTSTATUS & MAC_INTENABLE)) != 0) {

 MAC_INTCLEAR = int_stat;

 if (int_stat & INT_RX_DONE) {

 /* Packet received, check if packet is valid. */

 idx = MAC_RXCONSUMEINDEX;

 while (idx != MAC_RXPRODUCEINDEX) {

 info = Rx_Stat[idx].Info;

 if (!(info & RINFO_LAST_FLAG)) {

 goto rel;

 }

 RxLen = (info & RINFO_SIZE) - 3;

 if (RxLen > ETH_MTU || (info & RINFO_ERR_MASK)) {

 /* Invalid frame, ignore it and free buffer. */

 goto rel;

 }

 /* Flag 0x80000000 to skip sys_error() call when out of

memory. */

 frame = alloc_mem (RxLen | 0x80000000);

 /* if 'alloc_mem()' has failed, ignore this packet. */

Page 627

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 if (frame != NULL) {

 dp = (U32 *)&frame->data[0];

 sp = (U32 *)Rx_Desc[idx].Packet;

 for (RxLen = (RxLen + 3) >> 2; RxLen; RxLen--) {

 *dp++ = *sp++;

 }

 put_in_queue (frame);

 }

rel: if (++idx == NUM_RX_FRAG) idx = 0;

 /* Release frame from EMAC buffer. */

 MAC_RXCONSUMEINDEX = idx;

 }

 }

 if (int_stat & INT_TX_DONE) {

 /* Frame transmit completed. */

 }

 }

 /* Acknowledge the interrupt. */

 VICVectAddr = 0;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 628

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ioc_getcb
Summary

#include <file_config.h>

FAT_VI *ioc_getcb (

 const char *drive); /* Drive to get control block of */

Description The ioc_getcb function retrieves a handle for the FAT Media control interface. It
must be called before any other ioc functions are called.

The argument drive specifies the drive letter to retrieve the handle for. The
following values are allowed for the drive argument:

drive Initialized Drives
"" or NULL Default system drive
"M:" or "M0:" Memory Card drive 0
"M1:" Memory Card drive 1
"U:" or "U0:" USB Flash drive 0
"U1:" USB Flash drive 1
"N:" or "N0:" NAND Flash drive

The ioc_getcb function is in the RL-FlashFS library. The prototype is defined in
file_config.h.

Note

 If the IOC Media interface is available for FAT media only.

Return Value The ioc_getcb function returns a pointer to media control block on success. A NULL
return value indicates an error.

See Also ioc_init, ioc_read_info, ioc_read_sect, ioc_uninit, ioc_write_sect

Example
#include <File_Config.h>

FAT_VI *mc0; /* Media Control Block */

void main (void) {

 ..

 mc0 = ioc_getcb (NULL);

 if (ioc_init (mc0) == 0) {

 ioc_read_info (&info, mc0); /* Default drive is M0:

*/

 USBD_MSC_BlockSize = 512;

 USBD_MSC_BlockGroup = mc0->CaSize + 2; /* Cache buffer from

File_Config.c */

 USBD_MSC_BlockCount = info.block_cnt * (info.read_blen /

512);

 USBD_MSC_MemorySize = USBD_MSC_BlockCount * info.read_blen;

 USBD_MSC_BlockBuf = (U8 *)mc0->CaBuf;

 usbd_connect(__TRUE); /* USB Connect */

 set_cursor (0, 1);

 lcd_print (" PC Interface "); /* PC Interface */

 }

 else {

 LED_On(LED_MSK); /* Card Failure! */

 set_cursor (0, 1);

 lcd_print (" Card Failure! ");

Page 629

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 630

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ioc_init
Summary

#include <file_config.h>

int ioc_init (

 FAT_VI *vi); /* Pointer to media control block */

Description The ioc_init function initializes the FAT Media Device. This function calls the Init
function of the underlying SPI, MCI or NAND media driver. It must be called before
any ioc read or ioc write functions are called.

The argument vi specifies the media control block. The value for this argument
was retrieved in ioc_getcb function.

The ioc_init function is in the RL-FlashFS library. The prototype is defined in
file_config.h.

Note

 If the IOC Media interface is available for FAT media only.

Return Value The ioc_init function returns a value of 0 if successful. A non-zero return value
indicates an error.

See Also ioc_getcb, ioc_read_info, ioc_read_sect, ioc_uninit, ioc_write_sect

Example
#include <File_Config.h>

FAT_VI *mc0; /* Media Control Block */

int main (void) {

 Media_INFO info;

 ..

 mc0 = ioc_getcb (NULL); /* Default drive is M0:

*/

 if (ioc_init (mc0) == 0) {

 ioc_read_info (&info, mc0);

 USBD_MSC_BlockSize = 512;

 USBD_MSC_BlockCount = info.block_cnt * (info.read_blen /

512);

 USBD_MSC_MemorySize = USBD_MSC_BlockCount * info.read_blen;

 usbd_connect(__TRUE);

 lcd_print ("PC Interface");

 }

 else {

 lcd_print ("Card Failure!");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 631

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ioc_read_info
Summary

#include <file_config.h>

BOOL ioc_read_info (

 Media_INFO *cfg); /* Structure where to write the read

info */

 FAT_VI *vi); /* Pointer to media control block */

Description The ioc_read_info function reads the media configuration info to a structure. This
information is used by host file system to check if the Storage Media is compatible,
or for formatting the Storage Media.

The host file system is usually a PC in a configuration, where the embedded
system is running USB Device stack, and SD Card is used as a Mass Storage Media
for the PC.

The argument vi specifies the media control block. The value for this argument
was retrieved in ioc_getcb function.

The ioc_read_info function is in the RL-FlashFS library. The prototype is defined in
file_config.h.

Note

 If the IOC Media interface is available for FAT media only.

Return Value The ioc_read_info function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also ioc_getcb, ioc_init, ioc_read_sect, ioc_uninit, ioc_write_sect

Example
#include <File_Config.h>

FAT_VI *mc0; /* Media Control Block */

int main (void) {

 Media_INFO info;

 ..

 mc0 = ioc_getcb (NULL); /* Default drive is M0:

*/

 if (ioc_init (mc0) == 0) {

 ioc_read_info (&info, mc0);

 USBD_MSC_BlockSize = 512;

 USBD_MSC_BlockCount = info.block_cnt * (info.read_blen /

512);

 USBD_MSC_MemorySize = USBD_MSC_BlockCount * info.read_blen;

 usbd_connect(__TRUE);

 lcd_print ("PC Interface");

 }

 else {

 lcd_print ("Card Failure!");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 632

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ioc_read_sect
Summary

#include <file_config.h>

BOOL ioc_read_sect (

 U32 sect, /* Absolute sector address. */

 U8 *buf, /* Location where to write the read data.

*/

 U32 cnt, /* Number of sectors to read. */

 FAT_VI *vi); /* Pointer to media control block */

Description The ioc_read_sect function reads reads one or more sectors from the FAT Media
Device to a buffer.

The argument buf is a pointer to the buffer that stores the data. The argument
sect specifies the starting sector from where the data are read. The argument cnt
specifies the number of sectors to be read.

The argument vi specifies the media control block. The value for this argument
was retrieved in ioc_getcb function.

The ioc_read_sect function is in the RL-FlashFS library. The prototype is defined in
file_config.h.

Note

 If the IOC Media interface is available for FAT media only.

 Sector size is 512 bytes.

Return Value The ioc_read_sect function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also ioc_getcb, ioc_init, ioc_read_info, ioc_uninit, ioc_write_sect

Example
#include <File_Config.h>

FAT_VI *mc0; /* Media Control Block */

void usbd_msc_read_sect (U32 block, U8 *buf, U32 num_of_blocks) {

 ioc_read_sect (block, buf, num_of_blocks, mc0);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 633

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ioc_uninit
Summary

#include <file_config.h>

int ioc_uninit (

 FAT_VI *vi); /* Pointer to media control block */

Description The ioc_uninit function uninitializes the FAT Media Device. This function calls the
UnInit function of the underlying SPI, MCI or NAND media driver. It must be called
before the Media control is returned back to the RL-FlashFS FAT library.

The argument vi specifies the media control block. The value for this argument
was retrieved in ioc_getcb function.

The ioc_uninit function is in the RL-FlashFS library. The prototype is defined in
file_config.h.

Note

 If the IOC Media interface is available for FAT media only.

Return Value The ioc_uninit function returns a value of 0 if successful. A non-zero return value
indicates an error.

See Also ioc_getcb, ioc_init, ioc_read_info, ioc_read_sect, ioc_write_sect

Example
#include <File_Config.h>

FAT_VI *mc0; /* Media Control Block */

int main (void) {

 Media_INFO info;

 ..

 mc0 = ioc_getcb (NULL); /* Default drive is M0:

*/

 if (ioc_init (mc0) == 0) {

 ioc_read_info (&info, mc0);

 lcd_print ("PC Interface");

 ..

 ioc_uninit (mc0); / Stop using SD Card for

Mass Storage. */

 }

 else {

 lcd_print ("Card Failure!");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 634

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ioc_write_sect
Summary

#include <file_config.h>

BOOL ioc_write_sect (

 U32 sect, /* Absolute sector address. */

 U8 *buf, /* Pointer to buffer with the data to write

*/

 U32 cnt, /* Number of sectors to write. */

 FAT_VI *vi); /* Pointer to media control block */

Description The ioc_write_sect function writes one or more sectors from a buffer to the FAT
Media Device.

The argument sect specifies the starting sector to where data are written. The
argument buf is a pointer to the buffer that holds the data that should be written.
The argument cnt specifies the number of sectors to be written.

The argument vi specifies the media control block. The value for this argument
was retrieved in ioc_getcb function.

The ioc_write_sect function is in the RL-FlashFS library. The prototype is defined
in file_config.h.

Note

 If the IOC Media interface is available for FAT media only.

 Sector size is 512 bytes.

Return Value The ioc_write_sect function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also ioc_getcb, ioc_init, ioc_read_info, ioc_read_sect, ioc_uninit

Example
#include <File_Config.h>

FAT_VI *mc0; /* Media Control Block */

void usbd_msc_write_sect (U32 block, U8 *buf, U32 num_of_blocks)

{

 ioc_write_sect(block, buf, num_of_blocks, mc0);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 635

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

isr_evt_set
Summary

#include <rtl.h>

void isr_evt_set (

 U16 event_flags, /* Bit pattern of event flags to set */

 OS_TID task); /* The task that the events apply to */

Description The isr_evt_set function sets the event flags for the task identified by the function
argument. The function only sets the event flags whose corresponding bit is set to
1 in the event_flags argument.

The isr_evt_set function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You can call the isr_evt_set function only from the IRQ interrupt service
routine. You cannot call it from the FIQ interrupt service routine.

 When the isr_evt_set function is called too frequently, it forces too many
tick timer interrupts and the task manager task scheduler is executed most
of the time. It might happen that two isr_evt_set functions for the same
task are called before the task gets a chance to run from one of the event
waiting functions (os_evt_wait_). Of course one event is lost because
event flags are not counting objects.

Return Value The isr_evt_set function does not return any value.

See Also os_evt_clr, os_evt_set, os_evt_wait_and, os_evt_wait_or

Example
#include <rtl.h>

void timer1 (void) __irq {

 ..

 isr_evt_set (0x0008, tsk1);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 636

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

isr_mbx_check
Summary

#include <rtl.h>

OS_RESULT isr_mbx_check (

 OS_ID mailbox); /* The mailbox to check for free space */

Description The isr_mbx_check function determines the number of messages that can still be
added into the mailbox identified by the function argument. You can avoid losing
the message by calling the isr_mbx_check function to check for available space in
the mailbox before calling the isr_mbx_send function to send a message.

The isr_mbx_check function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 You can call the isr_mbx_check function only from the IRQ interrupt
service routine. You cannot call it from the FIQ interrupt service routine.

Return Value The isr_mbx_check function returns the number of message entries in the
mailbox that are free.

See Also isr_mbx_send, os_mbx_declare, os_mbx_init

Example
#include <rtl.h>

os_mbx_declare (mailbox1, 20);

void timer1 (void) __irq {

 ..

 if (isr_mbx_check (mailbox1) != 0) {

 isr_mbx_send (mailbox1, msg);

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 637

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

isr_mbx_receive
Summary

#include <rtl.h>

OS_RESULT isr_mbx_receive (

 OS_ID mailbox, /* The mailbox to put the message in */

 void** message); /* Location to store the message pointer

*/

Description The isr_mbx_receive function gets a pointer to a message from the mailbox if the
mailbox is not empty. The function puts the message pointer from the mailbox into
the location pointed by the message argument. The isr_mbx_receive function
does not cause the current task to sleep even if there is no message in the
mailbox. Hence this function can be called from an interrupt function.

You can use the isr_mbx_receive function to receive a message or a protocol
frame (for example TCP-IP, UDP, and ISDN) in an interrupt function.

The isr_mbx_receive function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 You must declare and initialize the mailbox object before you perform any
operation on it.

 You can call the isr_mbx_receive function only from IRQ interrupt
functions. You cannot call it from the FIQ interrupt function.

 When you get the message from the mailbox, you must free the memory
block containing the message to avoid running out of memory.

 When you get the message from the mailbox, space is created in the
mailbox for a new message.

Return Value The isr_mbx_receive function returns the completion value:

Return Value Description
OS_R_MBX A message was available and was read from the

mailbox.
OS_R_OK No message was available in the mailbox.

See Also isr_mbx_send, os_mbx_declare, os_mbx_init, os_mbx_wait

Example
#include <rtl.h>

os_mbx_declare (mailbox1, 20);

void *msg;

void EtherInt (void) __irq {

 ..

 if (isr_mbx_receive (mailbox1, &msg) == OS_R_MBX) {

 /* Transmit Ethernet frame. */

 }

 else {

 /* No message was available, stop transmitter */

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 638

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

isr_mbx_send
Summary

#include <rtl.h>

void isr_mbx_send (

 OS_ID mailbox, /* The mailbox to put the message in

*/

 void* message_ptr); /* Pointer to the message */

Description The isr_mbx_send function puts the pointer to the message message_ptr in the
mailbox if the mailbox is not already full. The isr_mbx_send function does not
cause the current task to sleep even if there is no space in the mailbox to put the
message.

When an interrupt receives a protocol frame (for example TCP-IP, UDP, or ISDN),
you can call the isr_mbx_send function from the interrupt to pass the protocol
frame as a message to a task.

The isr_mbx_send function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 You must declare and initialize the mailbox object before you perform any
operation on it.

 You can call the isr_mbx_send function only from IRQ interrupt functions.
You cannot call it from FIQ interrupt functions.

 If the mailbox is full, the RTX kernel ignores the message since it cannot be
put into the mailbox, and calls the error function. Thus before sending a
message using isr_mbx_send, you must use the isr_mbx_check function
to check if the mailbox is full.

Return Value The isr_mbx_send function does not return any value.

See Also isr_mbx_check, isr_mbx_receive, os_mbx_declare, os_mbx_init

Example
#include <RTL.h>

os_mbx_declare (mailbox1, 20);

void timer1 (void) __irq {

 ..

 isr_mbx_send (mailbox1, msg);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 639

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

isr_sem_send
Summary

#include <rtl.h>

void isr_sem_send (

 OS_ID semaphore); /* The semaphore whose token count is

incremented */

Description The isr_sem_send function increments the number of tokens in the semaphore
object.

The isr_sem_send function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 You must initialize the semaphore object using the os_sem_init function
before you can perform any operation on the semaphore.

 You can call the isr_sem_send function only from IRQ interrupt functions
and not from the FIQ interrupt function.

Return Value The isr_sem_send function does not return any value.

See Also os_sem_init, os_sem_send, os_sem_wait

Example
#include <rtl.h>

OS_SEM semaphore1;

void timer1 (void) __irq {

 ..

 isr_sem_send (semaphore1);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 640

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

isr_tsk_get
Summary

#include <rtl.h>

OS_TID isr_tsk_get (void);

Description The isr_tsk_get function identifies the interrupted task by returning its task ID.

The isr_tsk_get function is in the RL-RTX library. The prototype is defined in rtl.h.

Return Value The isr_tsk_get function returns the task identifier number (TID) of the interrupted
task.

See Also os_tsk_self

Example
#include <rtl.h>

void os_error (U32 err_code) {

 /* This function is called when a runtime error is detected. */

 OS_TID err_task;

 switch (err_code) {

 case OS_ERR_STK_OVF:

 /* Identify the task with stack overflow. */

 err_task = isr_tsk_get();

 break;

 case OS_ERR_FIFO_OVF:

 break;

 case OS_ERR_MBX_OVF:

 break;

 }

 for (;;);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 641

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

main_TcpNet
Summary

#include <rtl.h>

void main_TcpNet (void);

Description The main_TcpNet is the main TcpNet function. It handles:

 protocol timeouts

 ARP address cache

 polling of the ethernet controller for received data.

When main_TcpNet receives data from the remote machine, it calls the
appropriate TCPnet protocol functions to process the data and then passes the
resulting data to the user application.

The main_TcpNet function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 You must call main_TcpNet frequently. Otherwise the TCPnet system fails
to run.

Return Value The main_TcpNet function does not return any value.

See Also init_TcpNet

Example
#include <rtl.h>

void main (void) {

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 while (1);

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 642

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.BusMode
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*BusMode) (

 U32 mode); /* SD/MMC Bus mode */

 ..

} const MCI_DRV;

Description The BusMode function sets the bus mode of the MCI interface to push-pull or
open-drain. The push-pull mode is used for SD and SDHC Memory Cards, while
open-drain mode is used for MMC Memory Cards.

The argument mode specifies the requested bus mode:

Mode Description
BUS_OPEN_DRAIN Open drain bus mode.
BUS_PUSH_PULL Push-pull bus mode.

The BusMode function is in the MCI driver. The prototype is defined in
file_config.h. You have to customize the function in your own MCI driver.

Return Value The BusMode function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also mci.BusSpeed, mci.BusWidth, mci.CheckMedia, mci.Command, mci.Delay,
mci.Init, mci.ReadBlock, mci.SetDma, mci.UnInit, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL BusMode (U32 mode) {

 /* Set MCI Bus mode to Open Drain or Push Pull. */

 switch (mode) {

 case BUS_OPEN_DRAIN:

 MCI_POWER |= 0x40;

 return (__TRUE);

 case BUS_PUSH_PULL:

 MCI_POWER &= ~0x40;

Page 643

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 return (__TRUE);

 }

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 644

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.BusSpeed
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*BusSpeed) (

 U32 kbaud); /* Bus speed in kilo-baud */

 ..

} const MCI_DRV;

Description The BusSpeed function sets the transfer speed on the MCI interface to the
requested baud rate. When SD/MMC Memory Card is initialized, low speed transfer
(400 kBit/s maximum) is used. When the Card initialization is complete, the high
speed MCI data transfer is used.

The argument kbaud specifies the requested baud rate.

The BusSpeed function is in the MCI driver. The prototype is defined in
file_config.h. You have to customize the function in your own MCI driver.

 It is important to set the actual MCI speed equal to (or less than) the
requested baud rate kbaud, but not higher than the requested baud rate.
The error might happen due to the integer math used for the calculation of
a divide factor.

Return Value The BusSpeed function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also mci.BusMode, mci.BusWidth, mci.CheckMedia, mci.Command, mci.Delay,
mci.Init, mci.ReadBlock, mci.SetDma, mci.UnInit, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL BusSpeed (U32 kbaud) {

 /* Set a MCI clock speed to desired value. */

 U32 div;

 /* baud = MCLK / (2 x (div + 1)) */

 div = (__MCLK/2000 + kbaud - 1) / kbaud;

 if (div > 0) div--;

Page 645

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 if (div > 0xFF) div = 0xFF;

 MCI_CLOCK = (MCI_CLOCK & ~0xFF) | 0x300 | div;

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 646

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.BusWidth
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*BusWidth) (

 U32 width); /* SD/MMC Bus width */

 ..

} const MCI_DRV;

Description The BusWidth function sets the bus width of the MCI interface to 1-bit or 4-bit
data bus. The 4-bit mode is used for SD and SDHC Memory Cards, while 1-bit mode
is used for MMC Memory Cards.

The argument width specifies the requested bus mode:

Width Description
1 1-bit bus width mode.
4 4-bit bus width mode.

The BusWidth function is in the MCI driver. The prototype is defined in
file_config.h. You have to customize the function in your own MCI driver.

Return Value The BusWidth function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also mci.BusMode, mci.BusSpeed, mci.CheckMedia, mci.Command, mci.Delay,
mci.Init, mci.ReadBlock, mci.SetDma, mci.UnInit, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL BusWidth (U32 width) {

 /* Set MCI Bus width. */

 switch (width) {

 case 1:

 MCI_CLOCK &= ~0x0800;

 return (__TRUE);

 case 4:

 MCI_CLOCK |= 0x0800;

Page 647

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 return (__TRUE);

 }

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 648

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.CheckMedia
Summary

#include <file_config.h>

typedef struct {

 ..

 U32 (*CheckMedia) (void); /* Optional, NULL if not

existing */

} const MCI_DRV;

Description The CheckMedia is a user-provided routine that checks the SD/MMC Memory Card
status. It reads the Card Detect (CD) and Write Protect (WP) digital inputs. If CD
and WP digital inputs from SD Card socket are not connected, this function might
be omitted. In this case enter the NULL value for CheckMedia into the MCI Driver
control block. It is also possible to provide this function, which always returns
M_INSERTED status.

The CheckMedia function is in the MCI driver. The prototype is defined in
file_config.h. You have to customize the function in your own MCI driver.

Return Value The CheckMedia function returns the or-ed status of the following values:

 M_INSERTED
SD Card is inserted in the socket.

 M_PROTECTED
SD Card is read-only. Lock slider is in position Locked.

See Also mci.BusMode, mci.BusSpeed, mci.BusWidth, mci.Command, mci.Delay, mci.Init,
mci.ReadBlock, mci.SetDma, mci.UnInit, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static U32 CheckMedia (void) {

 /* Read CardDetect and WriteProtect SD card socket pins. */

 U32 stat = 0;

 if (!(IOPIN0 & 0x04)) {

 /* Card is inserted (CD=0). */

 stat |= M_INSERTED;

 }

 if ((IOPIN0 & 0x20)) {

Page 649

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Write Protect switch is active (WP=1). */

 stat |= M_PROTECTED;

 }

 return (stat);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 650

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.Command
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*Command) (

 U8 cmd, /* Command code for SD Card */

 U32 arg, /* Command Argument */

 U32 resp_type, /* Command Response type */

 U32 *rp); /* Buffer to recive a response */

 ..

} const MCI_DRV;

Description The Command function is a user-provided routine that sends a command to the
flash memory card. SD/MMC commands are used to control the operation of the
flash memory card such as: read block, write block, read card specific data, etc.

Parameter cmd is one of available SD/MMC Commands, parameter arg is a 32-bit SD
Command Argument.

The resp_type argument specifies the expected response time:

Type Description
RESP_NONE No response expected.
RESP_SHORT 4-byte short response expected.
RESP_LONG 16-byte long response expected.

The argument rp is a pointer to a buffer where the received response should be
written.

The Command function is in the MCI driver. The prototype is defined in
file_config.h. You have to customize the function in your own MCI driver.

Return Value The Command function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also mci.BusMode, mci.BusSpeed, mci.BusWidth, mci.CheckMedia, mci.Delay,
mci.Init, mci.ReadBlock, mci.SetDma, mci.UnInit, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL Command (U8 cmd, U32 arg, U32 resp_type, U32 *rp) {

 /* Send a Command to Flash card and get a Response. */

Page 651

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 U32 cmdval,stat;

 cmd &= 0x3F;

 cmdval = 0x400 | cmd;

 switch (resp_type) {

 case RESP_SHORT:

 cmdval |= 0x40;

 break;

 case RESP_LONG:

 cmdval |= 0xC0;

 break;

 }

 /* Send the command. */

 MCI_ARGUMENT = arg;

 MCI_COMMAND = cmdval;

 if (resp_type == RESP_NONE) {

 /* Wait until command finished. */

 while (MCI_STATUS & MCI_CMD_ACTIVE);

 MCI_CLEAR = 0x7FF;

 return (__TRUE);

 }

 for (;;) {

 stat = MCI_STATUS;

 if (stat & MCI_CMD_TIMEOUT) {

 MCI_CLEAR = stat & MCI_CLEAR_MASK;

 return (__FALSE);

 }

 if (stat & MCI_CMD_CRC_FAIL) {

 MCI_CLEAR = stat & MCI_CLEAR_MASK;

 if ((cmd == SEND_OP_COND) ||

 (cmd == SEND_APP_OP_COND) ||

 (cmd == STOP_TRANS)) {

 MCI_COMMAND = 0;

 break;

 }

 return (__FALSE);

 }

 if (stat & MCI_CMD_RESP_END) {

 MCI_CLEAR = stat & MCI_CLEAR_MASK;

 break;

 }

 }

 if ((MCI_RESP_CMD & 0x3F) != cmd) {

 if ((cmd != SEND_OP_COND) &&

 (cmd != SEND_APP_OP_COND) &&

 (cmd != ALL_SEND_CID) &&

 (cmd != SEND_CSD)) {

 return (__FALSE);

 }

Page 652

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

 /* Read MCI response registers */

 rp[0] = MCI_RESP0;

 if (resp_type == RESP_LONG) {

 rp[1] = MCI_RESP1;

 rp[2] = MCI_RESP2;

 rp[3] = MCI_RESP3;

 }

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 653

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.Delay
Summary

#include <file_config.h>

typedef struct {

 ..

 void (*Delay) (

 U32 us); /* Time to wait in micro seconds. */

 ..

} const MCI_DRV;

Description The Delay function is a user-provided routine that delays the program execution in
the MCI Driver. The argument us specifies the delay time in micro-seconds.

The Delay function is in the MCI driver. The prototype is defined in file_config.h.
You have to customize the function in your own MCI driver.

Return Value The Delay function does not return any value.

See Also mci.BusMode, mci.BusSpeed, mci.BusWidth, mci.CheckMedia, mci.Command,
mci.Init, mci.ReadBlock, mci.SetDma, mci.UnInit, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static void Delay (U32 us) {

 /* Approximate delay in micro seconds. */

 U32 i;

 for (i = WAIT_CNT(__CPUCLK, us); i; i--);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 654

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.Init
Summary

#include <file_config.h>

typedef struct {

 BOOL (*Init) (void);

 ..

} const MCI_DRV;

Description The Init function is a user-provided routine that initializes the Memory Card
Interface controller. It is invoked by the finit function on system startup.

The Init function is in the MCI driver. The prototype is defined in file_config.h. You
have to customize the function in your own MCI driver.

note

 The Flash File System calls the Init function at system startup. The FlashFS
might call the function again if SD/MMC Flash Memory Card Hot Swapping is
used.

Return Value The Init function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also mci.BusMode, mci.BusSpeed, mci.BusWidth, mci.CheckMedia, mci.Command,
mci.Delay, mci.ReadBlock, mci.SetDma, mci.UnInit, mci.WriteBlock

Example
/* USB-MSC Device Driver Control Block */

FAT_DRV usb0_drv = {

 Init,

 UnInit,

 ReadSector,

 WriteSector,

 ReadInfo,

 CheckMedia

};

static BOOL Init (U32 mode) {

 /* Initialize USB Host. */

 U32 cnt;

 if (mode == DM_IO) {

 /* Initialise USB hardware. */

 media_ok = __FALSE;

 return (usbh_init());

 }

 if (mode == DM_MEDIA) {

 for (cnt = 0; cnt < 1000; cnt++) {

 usbh_engine();

 if (usbh_msc_status () == __TRUE) {

 media_ok = __TRUE;

 return (__TRUE);

 }

 Delay (500);

Page 655

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

 }

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 656

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.ReadBlock
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*ReadBlock) (

 U32 bl, /* Absolute block (sector) address. */

 U8 *buf, /* Location where to write the data. */

 U32 cnt); /* Number of blocks (sectors) to read.*/

 ..

} const MCI_DRV;

Description The ReadBlock function is a user-provided routine that reads the data from
SD/MMC Memory Card to a buffer. The argument buf is a pointer to the buffer that
stores the data. The argument bl specifies the starting block from where the data
are read. The argument cnt specifies the number of block to be read.

When the RL-FlashFS library wants to read the data from SD Memory Card, it calls
the MCI Driver functions in the following sequence:

1. SetDma - sets the DMA to receive data.
This can be used if DMA must be set prior to sending an SD command. (like
for Atmel MCI peripheral). If this function does not exist (a NULL pointer in
the MCI Driver control block), then it is not called.

2. Command - sends a command READ_BLOCK or READ_MULT_BLOCK to SD
Memory Card.

3. ReadBlock - reads a block of data from SD memory Card, or simply waits
for the DMA transfer to finish.

The ReadBlock function is in the MCI driver. The prototype is defined in
file_config.h. You have to customize the function in your own MCI driver.

Return Value The ReadBlock function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also mci.BusMode, mci.BusSpeed, mci.BusWidth, mci.CheckMedia, mci.Command,
mci.Delay, mci.Init, mci.SetDma, mci.UnInit, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL ReadBlock (U32 bl, U8 *buf, U32 cnt) {

Page 657

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Read one or more 512 byte blocks from Flash Card. */

 U32 i;

 /* Set MCI Transfer registers. */

 MCI_DATA_TMR = DATA_RD_TOUT_VALUE;

 MCI_DATA_LEN = cnt * 512;

 /* Start DMA Peripheral to Memory transfer. */

 DmaStart (DMA_READ, buf);

 MCI_DATA_CTRL = 0x9B;

 for (i = DMA_TOUT; i; i--) {

 if (GPDMA_RAW_INT_TCSTAT & 0x01) {

 /* Data transfer finished. */

 return (__TRUE);

 }

 }

 /* DMA Transfer timeout. */

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 658

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.SetDma
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*SetDma) (/* Optional, NULL for local or non DMA */

 U32 mode, /* DMA mode read or write */

 U8 *buf, /* Buffer location with/for the data */

 U32 cnt); /* Number of blocks to read or write */

 ..

} const MCI_DRV;

Description The SetDma function sets the DMA for sending or receiving data. It can be used to
set the DMA mode before the SD Comand is sent to SD Memory Card. Some MCI
controllers require to activate the DMA at the same time when the SD Comand is
being sent to SD Memory Card.

The argument mode specifies the requested DMA mode:

Mode Description
DMA_READ Setup DMA for reading from SD Memory Card.
DMA_WRITE Setup DMA for writing to SD Memory Card.

The argument buf is a pointer to the buffer that holds the data that should be
written or where the data should be read to. The argument cnt specifies the
number of block to be written or read.

When the RL-FlashFS library wants to write data to or read data from the SD
Memory Card, it calls the MCI Driver functions in the following sequence:

1. SetDma - sets the DMA to write or read data.
This can be used if DMA must be set prior to sending an SD command. (like
for Atmel MCI peripheral). If this function does not exist (a NULL pointer in
the MCI Driver control block), then it is not called.

2. Command - sends a write or read command to SD Memory Card.

3. WriteBlock - writes a block of data to SD Memory Card or
ReadBlock - reads a block of data from SD Memory Card.

The SetDma function is in the MCI driver. The prototype is defined in file_config.h.
You have to customize the function in your own MCI driver.

Return Value The SetDma function returns a value of __TRUE if successful or a value of __FALSE
if unsuccessful.

See Also mci.BusMode, mci.BusSpeed, mci.BusWidth, mci.CheckMedia, mci.Command,
mci.Delay, mci.Init, mci.ReadBlock, mci.UnInit, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

Page 659

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 WriteBlock,

 SetDma,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL SetDma (U32 mode, U8 *buf, U32 cnt) {

 /* Configure DMA for read or write. */

 pMCI->MCI_CR = AT91C_MCI_MCIDIS;

 pMCI->MCI_PTCR = AT91C_PDC_TXTDIS | AT91C_PDC_RXTDIS;

 pMCI->MCI_BLKR = (512 << 16) | cnt;

 if (mode == DMA_READ) {

 /* Transfer data from card to memory. */

 pMCI->MCI_RPR = (U32)buf;

 pMCI->MCI_RCR = (512 >> 2) * cnt;

 pMCI->MCI_PTCR = AT91C_PDC_RXTEN;

 }

 else {

 /* Transfer data from memory to card. */

 pMCI->MCI_TPR = (U32)buf;

 pMCI->MCI_TCR = (512 >> 2) * cnt;

 }

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 660

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.UnInit
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*UnInit) (void);

 ..

} const MCI_DRV;

Description The UnInit function is a user-provided routine in the MCI driver that uninitializes
the MCI controller. It is invoked by the funinit function.

It can be used if during the application run time the embedded flash or SD Card
drive to be disabled for whatever reason (for example lowering power
consumption). After this function is called only the finit function should be called for
reinitialization of the drive.

The UnInit function is in the MCI driver. The prototype is defined in file_config.h.
You have to customize the function in your own MCI driver.

Return Value The UnInit function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also mci.BusMode, mci.BusSpeed, mci.BusWidth, mci.CheckMedia, mci.Command,
mci.Delay, mci.Init, mci.ReadBlock, mci.SetDma, mci.WriteBlock

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL UnInit (void) {

 /* Reset the MCI peripheral to default state. */

 /* Power down, switch off VCC for the Flash Card. */

 MCI_POWER = 0x00;

 /* Clear all pending interrupts. */

 MCI_COMMAND = 0;

 MCI_DATA_CTRL = 0;

 MCI_CLEAR = 0x7FF;

 /* Disable MCI pins. */

Page 661

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 PINSEL1 &= ~0x00003FC0;

 PINSEL4 &= ~0x0FC00000;

 /* Power Down the MCI controller. */

 PCONP &= ~0x10000000;

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 662

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

mci.WriteBlock
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*WriteBlock) (

 U32 bl, /* Absolute block (sector) address. */

 U8 *buf, /* Location with the data to write. */

 U32 cnt); /* Number of blocks to write. */

 ..

} const MCI_DRV;

Description The WriteBlock function is a user-provided routine that writes data blocks to
SD/MMC Memory Card. The argument bl specifies the starting block to where data
are written. The argument buf is a pointer to the buffer that holds the data that
should be written. The argument cnt specifies the number of blocks to be written.

When the RL-FlashFS library wants to write data to SD Memory Card, it calls the
MCI Driver functions in the following sequence:

1. SetDma - sets the DMA to send data.
This can be used if DMA must be set prior to sending an SD command. (like
for Atmel MCI peripheral). If this function does not exist (a NULL pointer in
the MCI Driver control block), then it is not called.

2. Command - sends a command WRITE_BLOCK or WRITE_MULT_BLOCK to
SD Memory Card.

3. WriteBlock - writes a block of data to SD Memory Card, or simply waits for
the DMA transfer to finish.

The WriteBlock function is in the MCI driver. The prototype is defined in
file_config.h. You have to customize the function in your own MCI driver.

Return Value The WriteBlock function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also mci.BusMode, mci.BusSpeed, mci.BusWidth, mci.CheckMedia, mci.Command,
mci.Delay, mci.Init, mci.ReadBlock, mci.SetDma, mci.UnInit

Example
/* MCI Device Driver Control Block */

MCI_DRV mci0_drv = {

 Init,

 UnInit,

 Delay,

 BusMode,

 BusWidth,

 BusSpeed,

 Command,

 ReadBlock,

 WriteBlock,

 NULL,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL WriteBlock (U32 bl, U8 *buf, U32 cnt) {

Page 663

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Write a cnt number of 512 byte blocks to Flash Card. */

 U32 i,j;

 for (j = 0; j < cnt; buf += 512, j++) {

 /* Set MCI Transfer registers. */

 MCI_DATA_TMR = DATA_WR_TOUT_VALUE;

 MCI_DATA_LEN = 512;

 /* Start DMA Memory to Peripheral transfer. */

 DmaStart (DMA_WRITE, buf);

 MCI_DATA_CTRL = 0x99;

 for (i = DMA_TOUT; i; i--) {

 if (GPDMA_RAW_INT_TCSTAT & 0x01) {

 /* Data transfer finished. */

 break;

 }

 }

 if (i == 0) {

 /* DMA Data Transfer timeout. */

 return (__FALSE);

 }

 if (cnt == 1) {

 break;

 }

 /* Wait until Data Block sent to Card. */

 while (MCI_STATUS != (MCI_DATA_END | MCI_DATA_BLK_END)) {

 if (MCI_STATUS & (MCI_DATA_CRC_FAIL | MCI_DATA_TIMEOUT)) {

 /* Error while Data Block sending occured. */

 return (__FALSE);

 }

 }

 /* Wait 2 SD clocks */

 for (i = WAIT_2SD_CLK(__CPUCLK); i; i--);

 }

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 664

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

modem_dial
Summary

#include <net_config.h>

void modem_dial (

 U8* dialnum); /* Pointer to string containing the number

to dial. */

Description The modem_dial function dials the target number of the remote modem to connect
to the remote host. The function:

 resets and initializes the local modem

 dials the remote modem

 waits for the response "CONNECT"

 ends the connection (hangup) if a timeout occurs.

The argument dialnum points to a null terminated ascii string containing the phone
number of remote modem.

The modem_dial function for the null modem is in the RL-TCPnet library. The
prototype is defined in net_config.h. If you want to use a standard modem
connection, you must copy std_modem.c into your project directory.

note

 The TCPnet system calls modem_dial when it wants to initiate a serial
modem connection to a remote host.

 The modem_dial function sends commands to the local modem to perform
the steps needed to dial the remote modem. If the local modem does not
respond with the message "OK", the function resends the commands a few
times before giving up on trying to get connected.

 The modem driver functions must not use waiting loops because loops
block the TCPnet system.

Return Value The modem_dial function does not return any value.

See Also init_modem, modem_hangup, modem_listen

Example
void modem_dial (U8 *dialnum) {

 /* Modem dial target number 'dialnum' */

 dial_num = dialnum;

 listen_mode = 0;

 step = 0;

 proc_dial ();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 665

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

modem_hangup
Summary

#include <net_config.h>

void modem_hangup (void);

Description The modem_hangup function disconnects the modem connection. The function:

 sends an escape sequence to the modem and activates modem command
mode

 sends a hangup command to the modem

 waits for further calls if TCPnet is in listening mode.

The modem_hangup function for the null modem is in the RL-TCPnet library. The
prototype is defined in net_config.h. If you want to use a standard modem
connection, you must copy std_modem.c into your project directory.

note

 The TcpNet system calls modem_hangup when it wants to disconnect the
serial modem connection either from client mode or from server mode.

 The modem_hangup function sends commands to the local modem to
perform the steps needed to disconnect. If the local modem does not
respond with the message "OK", the function resends the commands a few
times before giving up on trying to get disconnected. If the modem does
not respond correctly to the hangup command, the modem driver tries to
reset the local modem.

 The modem driver functions must not use waiting loops because loops
block the TCPnet system.

Return Value The modem_hangup function does not return any value.

See Also init_modem, modem_dial, modem_listen

Example
void modem_hangup (void) {

 /* This function clears DTR to force the modem to hang up if

*/

 /* it was on line and/or make the modem to go to command mode.

*/

 step = 0;

 proc_hangup ();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 666

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

modem_listen
Summary

#include <net_config.h>

void modem_listen (void);

Description The modem_listen function puts the local modem in answering mode to accept
any incoming call. The function:

 resets and initializes the local modem

 waits for the message "RING"

 accepts the incoming call

 waits for further calls if the line gets disconnected.

The modem_listen function for the null modem is in the RL-TCPnet library. The
prototype is defined in net_config.h. If you want to use a standard modem
connection, you must copy std_modem.c into your project directory.

note

 The TCPnet system calls modem_listen when the PPP or SLIP network
daemon is running in server mode.

 The modem_listen function sends commands to the local modem to
perform the steps needed to listen for incoming calls. If the local modem
does not respond with the message "OK", the function resends the
commands a few times before giving up on trying to get into listen mode.

 The modem driver functions must not use waiting loops because loops
block the TCPnet system.

Return Value The modem_listen function does not return any value.

See Also init_modem, modem_dial, modem_hangup

Example
void modem_listen (void) {

 /* This function puts Modem into Answering Mode. */

 step = 0;

 listen_mode = 1;

 proc_listen ();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 667

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

modem_online
Summary

#include <net_config.h>

BOOL modem_online (void);

Description The modem_online function checks to see if the local modem is connected (online)
to a remote modem.

The modem_online function for the null modem is in the RL-TCPnet library. The
prototype is defined in net_config.h. If you want to use a standard modem
connection, you must copy std_modem.c into your project directory.

Return Value The modem_online function returns __TRUE if the local modem is online.
Otherwise, it returns __FALSE.

See Also modem_process, modem_run

Example
BOOL modem_online (void) {

 /* Checks if the modem is online. Return false when not. */

 if (modem_st == MODEM_ONLINE) {

 return (__TRUE);

 }

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 668

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

modem_process
Summary

#include <net_config.h>

BOOL modem_process (

 U8 ch); /* New character sent by the modem. */

Description The modem_process function processes characters that the local modem sends to
the TCPnet system. The function stores each character in a buffer and checks the
buffer for a valid modem response. The argument ch is the new character that is
available from the modem.

The modem_process function for the null modem is in the RL-TCPnet library. The
prototype is defined in net_config.h. If you want to use a standard modem
connection, you must copy std_modem.c into your project directory.

note

 TCPnet calls modem_process when a new character is available from the
local modem when TCPnet is in modem command mode.

 TCPnet is in modem command mode when it is in the process of instructing
the local modem to dial, listen, or disconnect (hangup) from the remote
modem.

 The modem driver functions must not use waiting loops because loops
block the TCPnet system.

Return Value The modem_process function returns __TRUE when it receives the response
"CONNECT" from the local modem. This means that the local modem has connected
to the remote modem. Otherwise, it returns __FALSE.

See Also modem_online, modem_run

Example
BOOL modem_process (U8 ch) {

 /* Modem character process event handler. This function is

called when */

 /* a new character has been received from the modem in command

mode */

 if (modem_st == MODEM_IDLE) {

 mlen = 0;

 return (__FALSE);

 }

 if (mlen < sizeof(mbuf)) {

 mbuf[mlen++] = ch;

 }

 /* Modem driver is processing a command */

 if (wait_for) {

 /* 'modem_run()' is waiting for modem reply */

 if (str_scomp (mbuf,reply) == __TRUE) {

 wait_for = 0;

 delay = 0;

 if (wait_conn) {

 /* OK, we are online here. */

 wait_conn = 0;

 modem_st = MODEM_ONLINE;

 /* Inform the parent process we are online now. */

Page 669

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 return (__TRUE);

 }

 }

 }

 /* Watch the modem disconnect because we do not use CD line */

 if (mem_comp (mbuf,"NO CARRIER",10) == __TRUE) {

 set_mode ();

 }

 if (ch == '\r' || ch == '\n') {

 flush_buf ();

 }

 /* Modem not connected, return FALSE */

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 670

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

modem_run
Summary

#include <net_config.h>

void modem_run (void);

Description The modem_run function is the main thread that performs the command sending
actions needed to dial, listen, or disconnect from the remote modem (when TCPnet
and the local modem are in command mode). The modem_run function also
performs the timeout delays that are necessary when waiting for a response from
the local modem and when sending successive commands.

The modem_run function for the null modem is in the RL-TCPnet library. The
prototype is defined in net_config.h. If you want to use a standard modem
connection, you must copy std_modem.c into your project directory.

note

 The TCPnet system calls modem_run on every system timer tick interrupt,
which occurs at 100 ms intervals by default. Because of this regular
interval, the modem_run function can implement delays using a simple
counter.

 The modem driver functions must not use waiting loops because loops
block the TCPnet system. Hence, calling the modem_run function every
timer tick interval is ideal.

 The functions modem_dial, modem_listen, and modem_hangup only
initiate the command sending process with the modem. The modem_run
function then continues the process until completion.

Return Value The modem_run function does not return any value.

See Also modem_online, modem_process

Example
void modem_run (void) {

 /* This is a main thread for MODEM Control module. It is called

on every */

 /* system timer timer tick to implement delays easy. By default

this is */

 /* every 100ms. The 'sytem tick' timeout is set in

'Net_Config.c' */

 if (delay) {

 if (--delay) {

 return;

 }

 }

 switch (modem_st) {

 case MODEM_IDLE:

 case MODEM_ERROR:

 /* Modem idle or in error */

 break;

 case MODEM_ONLINE:

 /* Modem is online - connected */

 break;

Page 671

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 case MODEM_DIAL:

 /* Dial target number */

 proc_dial ();

 break;

 case MODEM_LISTEN:

 /* Activate answering mode */

 proc_listen ();

 break;

 case MODEM_HANGUP:

 /* Hangup and reset the modem */

 proc_hangup ();

 break;

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 672

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MSC_Inquiry
Summary

#include <mscuser.h>

void MSC_Inquiry (

 void);

Description Sends the vendor ID, product ID, and product revision number to the host.

Return Value None.

See Also MSC_MemoryRead, MSC_MemoryVerify, MSC_MemoryWrite

Example
#include <mscuser.h>

void MSC_Inquiry (void) {

…

 BulkBuf [4] = "K"; // Vendor ID = Keil. Modify it for your

product.

 BulkBuf [4] = "e";

 BulkBuf [4] = "i";

 BulkBuf [4] = "l";

 BulkBuf [4] = " ";

 BulkBuf [4] = " ";

 BulkBuf [4] = " ";

 BulkBuf [4] = " ";

…

 DataInTransfer (); // Send the BulkBuf buffer to the host.

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 673

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MSC_MemoryRead
Summary

#include <mscuser.h>

void MSC_MemoryRead (

 void);

Description The function MSC_MemoryRead sends data from the onboard RAM to the host.
The number of bytes it sends is either the maximum packet size or the number of
bytes requested by the host, whichever is lower. Modify this function to suit the
application requirements.

The function MSC_MemoryRead is part of the USB Function Driver layer of the
RL-USB Software Stack.

Return Value None.

See Also MSC_MemoryVerify, MSC_MemoryWrite

Example
#include <mscuser.h>

void MSC_MemoryRead (void) {

U32 n;

 …

 // Call your function to read from the flash card.

 Flash_MemoryRead(Offset, n, &Memory);

 // Send the data through the endpoint.

 USB_WriteEP(MSC_EP_IN, &Memory, n);

 …

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 674

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MSC_MemoryVerify
Summary

#include <mscuser.h>

void MSC_MemoryVerify (

 void);

Description The function MSC_MemoryVerify checks whether the data written to the onboard
RAM is identical to the data sent by the host. The number of bytes it checks is the
number of bytes sent by the host. Modify this function to suit the application
requirements.

The function MSC_MemoryVerify is part of the USB Function Driver layer of the
RL-USB Software Stack.

Return Value None.

See Also MSC_MemoryRead, MSC_MemoryWrite

Example
#include <mscuser.h>

void MSC_MemoryVerify (void) {

U32 n;

 …

 // Call your function to read from the flash card.

 Flash_MemoryRead(Offset, BulkLen, &Memory);

 for (n=0; n < BulkLen; n++) {

 if (Memory [n] != BulkBuf [n]) {

 MemOK = __FALSE;

 break;

 }

 }

 …

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 675

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

MSC_MemoryWrite
Summary

#include <mscuser.h>

void MSC_MemoryWrite (

 void);

Description The MSC_MemoryWrite function copies data from the host to the onboard RAM.
Modify this function to suit the application requirements. The MSC_MemoryWrite
function is part of the USB Function Driver layer of the RL-USB Software Stack.

Return Value None.

See Also MSC_MemoryRead, MSC_MemoryVerify

Example
#include <mscuser.h>

void MSC_MemoryWrite (void) {

U32 n;

…

 // Copy the buffer BulkBuf to the flash card.

 Flash_MemoryWrite (Offset, BulkLen, &BulkBuf);

…

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 676

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

nand.BlockErase
Summary

#include <file_config.h>

typedef struct {

 ..

 U32 (*BlockErase) (

 U32 row, /* Block starting address */

 NAND_DRV_CFG *cfg); /* Device configuration */

} const NAND_DRV;

Description The BlockErase function is a user-provided routine that erases the NAND flash
block. The argument row specifies the starting address of flash block to be erased.

The cfg argument specifies the device configuration for the NAND driver. This
configuration contains also device specific default data positions as described in
Page data Layout.

The BlockErase function is in the NAND driver. The prototype is defined in
file_config.h. You have to customize the function in your own NAND driver.

Return Value The BlockErase function returns the following values:

 RTV_NOERR
Flash block erased successfully.

 ERR_NAND_HW_TOUT
Hardware data transfer timeout.

 ERR_NAND_ERASE
Block erase has failed.

See Also nand.Init, nand.PageRead, nand.PageWrite, nand.UnInit

Example
/* NAND Device Driver Control Block */

NAND_DRV nand0_drv = {

 Init,

 UnInit,

 PageRead,

 PageWrite,

 BlockErase

};

static U32 BlockErase (U32 row, NAND_DRV_CFG *cfg) {

 if (!StatusFlag (NAND_CON_READY)) { /* Wait for

controller ready */

 return ERR_NAND_HW_TOUT;

 }

 MLC_CMD = NAND_CMD_ERASE1ST; /* Erase command 1

 */

 SetAddr (row, cfg->AddrCycles); /* Set address

 */

 MLC_CMD = NAND_CMD_ERASE2ND; /* Erase command 2

 */

Page 677

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 if (!StatusFlag (NAND_CON_READY)) { /* Wait for

controller ready */

 return ERR_NAND_HW_TOUT;

 }

 if (!StatusFlag (NAND_CHIP_BUSY)) { /* Wait while NAND

busy */

 return ERR_NAND_HW_TOUT;

 }

 MLC_CMD = NAND_CMD_STATUS; /* Write Read Status

command */

 if ((U8)MLC_DATAX(0) & NAND_STAT_FAIL) { /* Check if command

successful */

 return ERR_NAND_ERASE; /* Block Erase Failed

 */

 }

 return RTV_NOERR;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 678

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

nand.Init
Summary

#include <file_config.h>

typedef struct {

 U32 (*Init) (

 NAND_DRV_CFG *cfg); /* Device configuration */

 ..

} const NAND_DRV;

Description The Init function is a user-provided routine that initializes the Flash programming
algorithm for a NAND flash memory device. It is invoked by the finit function on
system startup.

The cfg argument specifies the device configuration for the NAND driver. This
configuration contains also device specific default data positions as described in
Page data Layout. The Init function can overwrite those data positions, if they are
different from default.

The Init function is in the NAND driver. The prototype is defined in file_config.h.
You have to customize the function in your own NAND driver.

Return Value The Init function returns the following values:

 RTV_NOERR
NAND Flash initialized successfully.

 ERR_NAND_HW_TOUT
NAND Flash Reset Command failed.

 ERR_NAND_UNSUPPORTED
NAND Flash Page size invalid.

See Also nand.BlockErase, nand.PageRead, nand.PageWrite, nand.UnInit

Example
/* NAND Device Driver Control Block */

NAND_DRV nand0_drv = {

 Init,

 UnInit,

 PageRead,

 PageWrite,

 BlockErase

};

static U32 Init (NAND_DRV_CFG *cfg) {

 U32 pgSz, cyc;

 pgSz = cfg->PageSize;

 switch (pgSz) {

 case 528:

 case 2112:

 break;

 default:

 return ERR_NAND_UNSUPPORTED;

 }

 FLASHCLK_CTRL = 0x00000022; /* Setup NAND Flash

Page 679

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Clock Control */

 MLC_CEH = 0; /* Force nCE assert

 */

 MLC_CMD = NAND_CMD_RESET; /* Reset NAND Flash

 */

 if (!StatusFlag (NAND_CHIP_BUSY)) { /* Wait while NAND

busy */

 return ERR_NAND_HW_TOUT;

 }

 cyc = cfg->AddrCycles; /* Get address cycles

 */

 MLC_LOCK_PR = 0xA25E; /* Unlock MLC_ICR

register */

 MLC_ICR = ((cyc == 4) << 1) |

 ((pgSz == 2112) << 2);

 MLC_LOCK_PR = 0xA25E; /* Unlock MLC_TIME

register */

 MLC_TIME_REG = (3 << 24) | (11 << 19) | (4 << 16) | (2 << 12) |

 (4 << 8) | (3 << 4) | (4 << 0);

 P3_OUTP_SET |= (1 << 19); /* Disable write

protect */

 return RTV_NOERR;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 680

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

nand.PageRead
Summary

#include <file_config.h>

typedef struct {

 ..

 U32 (*PageRead) (

 U32 row, /* Page address */

 U8 *buf, /* Pointer to data buffer */

 NAND_DRV_CFG *cfg); /* Device configuration */

 ..

} const NAND_DRV;

Description The ReadPage function is a user-provided routine that reads the data from NAND
Flash device to a buffer. The argument buf is a pointer to the buffer that receives
the read data. The argument row specifies the starting page from where the data
are read.

The cfg argument specifies the device configuration for the NAND driver. This
configuration contains also device specific default data positions as described in
Page data Layout.

The PageRead function is in the NAND driver. The prototype is defined in
file_config.h. You have to customize the function in your own NAND driver.

Return Value The PageRead function returns the following values:

 RTV_NOERR
Page read successfully.

 ERR_NAND_HW_TOUT
Hardware data transfer timeout.

 ERR_ECC_COR
ECC corrected the error in page data. Read page data is valid.

 ERR_ECC_UNCOR
ECC was not able to correct the error in page data. Data read contains errors.

See Also nand.BlockErase, nand.Init, nand.PageWrite, nand.UnInit

Example
/* NAND Device Driver Control Block */

NAND_DRV nand0_drv = {

 Init,

 UnInit,

 PageRead,

 PageWrite,

 BlockErase

};

static U32 PageRead (U32 row, U8 *buf, NAND_DRV_CFG *cfg) {

 U32 i, sec, ecc;

 U32 *p = (U32 *)buf;

 MLC_CMD = NAND_CMD_READ1ST; /* Read command (1st

cycle) */

 if (cfg->PageSize > 528) {

 MLC_CMD = NAND_CMD_READ2ND; /* Read command (2nd

Page 681

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

cycle) */

 }

 SetAddr (row << 8, cfg->AddrCycles); /* Set address

 */

 ecc = ECC_NOERR;

 for (sec = 0; sec < cfg->SectorsPerPage; sec++) {

 MLC_ECC_AUTO_DEC_REG = 0x00; /* Auto Decode

 */

 if (!StatusFlag (NAND_CON_READY)) { /* Wait for

controller ready */

 return ERR_NAND_HW_TOUT;

 }

 if (!StatusFlag (NAND_ECC_READY)) { /* Wait for ECC ready

 */

 return ERR_NAND_HW_TOUT;

 }

 if (MLC_ISR & NAND_ERR_DET) { /* Check for decode

error */

 ecc |= ECC_CORRECTED;

 }

 if (MLC_ISR & NAND_DEC_FAIL) {

 ecc |= ECC_UNCORRECTED;

 }

 for (i = 0; i < (528 >> 2); i++) {

 p++ = MLC_BUFFX (i); / Read main + spare

area */

 }

 }

 if (ecc & ECC_UNCORRECTED) {

 /* ECC was not able to correct the data within page */

 return ERR_ECC_UNCOR;

 }

 if (ecc & ECC_CORRECTED) {

 /* ECC corrected the data within page*/

 return ERR_ECC_COR;

 }

 return RTV_NOERR;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 682

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

nand.PageWrite
Summary

#include <file_config.h>

typedef struct {

 ..

 U32 (*PageWrite) (

 U32 row, /* Page address */

 U8 *buf, /* Pointer to data buffer */

 NAND_DRV_CFG *cfg); /* Device configuration */

 ..

} const NAND_DRV;

Description The PageWrite function is a user-provided routine that writes the data from buffer
to a NAND Flash device. The argument buf is a pointer to the buffer that contains
the data. The argument row specifies the starting page to where the data are
written.

The cfg argument specifies the device configuration for the NAND driver. This
configuration contains also device specific default data positions as described in
Page data Layout.

The PageWrite function is in the NAND driver. The prototype is defined in
file_config.h. You have to customize the function in your own NAND driver.

Return Value The PageWrite function returns the following values:

 RTV_NOERR
Page written successfully.

 ERR_NAND_HW_TOUT
Hardware data transfer timeout.

 ERR_NAND_PROG
Page write has failed.

See Also nand.BlockErase, nand.Init, nand.PageRead, nand.UnInit

Example
/* NAND Device Driver Control Block */

NAND_DRV nand0_drv = {

 Init,

 UnInit,

 PageRead,

 PageWrite,

 BlockErase

};

static U32 PageWrite (U32 row, U8 *buf, NAND_DRV_CFG *cfg) {

 U32 i, sec;

 U32 *p = (U32 *)buf;

 if (!StatusFlag (NAND_CON_READY)) { /* Wait for

controller ready */

 return ERR_NAND_HW_TOUT;

 }

Page 683

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 MLC_CMD = NAND_CMD_PROG1ST; /* Programm command 1

 */

 SetAddr (row << 8, cfg->AddrCycles); /* Set address

 */

 for (sec = 0; sec < cfg->SectorsPerPage; sec++) {

 MLC_ECC_ENC_REG = 0; /* Start Encode Cycle

 */

 for (i = 0; i < (528 >> 2); i++) /* Write main + spare

area */

 MLC_BUFFX(i) = *p++;

 MLC_ECC_AUTO_ENC_REG = 0; /* Auto encode

 */

 if (!StatusFlag (NAND_CON_READY)) { /* Wait for

controller ready */

 return ERR_NAND_HW_TOUT;

 }

 }

 MLC_CMD = NAND_CMD_PROG2ND; /* Programm command 2

 */

 if (!StatusFlag (NAND_CON_READY)) { /* Wait for

controller ready */

 return ERR_NAND_HW_TOUT;

 }

 if (!StatusFlag (NAND_CHIP_BUSY)) { /* Wait while NAND

busy */

 return ERR_NAND_HW_TOUT;

 }

 MLC_CMD = NAND_CMD_STATUS; /* Send status

command */

 if ((U8)MLC_DATAX(0) & NAND_STAT_FAIL) {

 return ERR_NAND_PROG; /* Programming failed

 */

 }

 return RTV_NOERR;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 684

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

nand.UnInit
Summary

#include <file_config.h>

typedef struct {

 ..

 U32 (*UnInit) (

 NAND_DRV_CFG *cfg); /* Device configuration */

 ..

} const NAND_DRV;

Description The UnInit function is a user-provided routine that uninitializes the Flash
programming algorithm for a NAND flash memory device. It is invoked by the funinit
function.

The cfg argument specifies the device configuration for the NAND driver. This
configuration contains also device specific default data positions as described in
Page data Layout.

It can be used if during the application run time the embedded flash needs to be
disabled for whatever reason (for example lowering power consumption). After this
function is called only the finit function should be called for reinitialization of
embedded flash device.

The UnInit function is in the NAND driver. The prototype is defined in file_config.h.
You have to customize the function in your own NAND driver.

Return Value The UnInit function returns the following values:

 RTV_NOERR
NAND Flash uninitialized successfully.

See Also nand.BlockErase, nand.Init, nand.PageRead, nand.PageWrite

Example
/* NAND Device Driver Control Block */

NAND_DRV nand0_drv = {

 Init,

 UnInit,

 PageRead,

 PageWrite,

 BlockErase

};

static U32 UnInit (NAND_DRV_CFG *cfg) {

 return RTV_NOERR;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 685

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_dly_wait
Summary

#include <rtl.h>

void os_dly_wait (

 U16 delay_time); /* Length of time to pause */

Description The os_dly_wait function pauses the calling task. The argument delay_time
specifies the length of the pause and is measured in number of system_ticks. You
can set the delay_time to any value between 1 and 0xFFFE.

The os_dly_wait function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You cannot intermix with a single task the wait method os_itv_wait ()
and os_dly_wait ().

Return Value The os_dly_wait function does not return any value.

See Also os_itv_set, os_itv_wait

Example
#include <rtl.h>

__task void task1 (void) {

 ..

 os_dly_wait (20);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 686

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_evt_clr
Summary

#include <rtl.h>

void os_evt_clr (

 U16 clear_flags, /* Bit pattern of event flags to clear

*/

 OS_TID task); /* The task that the events apply to */

Description The os_evt_clr function clears the event flags for the task identified by the
function argument. The function only clears the event flags whose corresponding
bit is set to 1 in the clear_flags argument.

The os_evt_clr function is in the RL-RTX library. The prototype is defined in rtl.h.

Return Value The os_evt_clr function does not return any value.

See Also isr_evt_set, os_evt_set, os_evt_wait_and, os_evt_wait_or

Example
#include <rtl.h>

__task void task1 (void) {

 ..

 os_evt_clr (0x0002, tsk2);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 687

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_evt_get
Summary

#include <rtl.h>

U16 os_evt_get (void);

Description You can use the os_evt_get function to identify the event that caused the
os_evt_wait_or function to complete.

The os_evt_get function identifies this event by setting the corresponding flag in
the returned value. If more than one event occurred simultaneously, all their flags
are set in the returned value.

The os_evt_get function is in the RL-RTX library. The prototype is defined in rtl.h.

 When the os_evt_wait_or function has been waiting on more than one
event, it is not immediately known which event caused the
os_evt_wait_or function to return. This is why the os_evt_get function is
useful.

Return Value The os_evt_get function returns a bit pattern that identifies the events that
caused the os_evt_wait_or function to complete.

See Also os_evt_wait_or

Example
#include <RTL.h>

__task void task1 (void) {

 U16 ret_flags;

 if (os_evt_wait_or (0x0003, 500) == OS_R_EVT) {

 ret_flags = os_evt_get ();

 printf("Events %04x received.\n",ret_flags);

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 688

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_evt_set
Summary

#include <rtl.h>

void os_evt_set (

 U16 event_flags, /* Bit pattern of event flags to set */

 OS_TID task); /* The task that the events apply to */

Description The os_evt_set function sets the event flags for the task identified by the function
argument. The function only sets the event flags whose corresponding bit is set to
1 in the event_flags argument.

The os_evt_set function is in the RL-RTX library. The prototype is defined in rtl.h.

Return Value The os_evt_set function does not return any value.

See Also isr_evt_set, os_evt_clr, os_evt_wait_and, os_evt_wait_or

Example
#include <rtl.h>

__task void task1 (void) {

 ..

 os_evt_set (0x0003, tsk2);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 689

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_evt_wait_and
Summary

#include <rtl.h>

OS_RESULT os_evt_wait_and (

 U16 wait_flags, /* Bit pattern of events to wait for */

 U16 timeout); /* Length of time to wait for event */

Description The os_evt_wait_and function waits for all the events specified in the wait_flags
to occur. The function only waits on events whose corresponding flags have been
set to 1 in the wait_flags parameter. The function can wait on as many as 16
different events.

You can use the timeout argument to specific the length of time after which the
function must return even if none of the events have occurred. You can use any
value of timeout with the exception of 0xFFFF, which you can use to specify an
indefinite timeout. The unit of measure of the timeout argument is the number of
system intervals.

The os_evt_wait_and function returns when all of the events specified in the
wait_flags have occurred or when the timeout expires. If all events specified in
wait_flags have arrived, this function clears them before the function returns. The
function actually clears the events whose corresponding flags have been set to 1
in the wait_flags parameter. The other event flags are not changed.

The os_evt_wait_and function is in the RL-RTX library. The prototype is defined in
rtl.h.

note

 Each task has its own 16 bit wait flag.

Return Value The os_evt_wait_and function returns a value to indicate whether an event
occurred or the timeout expired.

Return Value Description
OS_R_EVT All the flags specified by wait_flags have been set.
OS_R_TMO The timeout has expired.

See Also os_evt_get, os_evt_wait_or

Example
#include <rtl.h>

__task void task1 (void) {

 OS_RESULT result;

 result = os_evt_wait_and (0x0003, 500);

 if (result == OS_R_TMO) {

 printf("Event wait timeout.\n");

 }

 else {

 printf("Event received.\n");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 690

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_evt_wait_or
Summary

#include <rtl.h>

OS_RESULT os_evt_wait_or (

 U16 wait_flags, /* Bit pattern of events to wait for */

 U16 timeout); /* Length of time to wait for event */

Description The os_evt_wait_or function waits for one of the events specified in the
wait_flags to occur. The function only waits on events whose corresponding flags
have been set to 1 in the wait_flags parameter. The function can wait on as many
as 16 different events.

You can use the timeout argument to specific the length of time after which the
function must return even if none of the events have occurred. You can use any
value of timeout with the exception of 0xFFFF, which you can use to specify an
indefinite timeout. The unit of measure of the timeout argument is the number of
system intervals.

The os_evt_wait_or function returns when at least one of the events specified in
the wait_flags has occurred or when the timeout expires. The event flag or flags
that caused the os_evt_wait_or function to complete are cleared before the
function returns. You can identify those event flags with os_evt_get function later.

The os_evt_wait_or function is in the RL-RTX library. The prototype is defined in
rtl.h.

note

 Each task has its own 16 bit wait flag.

Return Value The os_evt_wait_or function returns a value to indicate whether an event
occurred or the timeout expired.

Return Value Description
OS_R_EVT At least one of the flags specified by wait_flags has been

set.
OS_R_TMO The timeout has expired.

See Also os_evt_get, os_evt_wait_and

Example
#include <rtl.h>

__task void task1 (void) {

 OS_RESULT result;

 result = os_evt_wait_or (0x0003, 500);

 if (result == OS_R_TMO) {

 printf("Event wait timeout.\n");

 }

 else {

 printf("Event received.\n");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 691

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_itv_set
Summary

#include <rtl.h>

void os_itv_set (

 U16 interval_time); /* Time interval for periodic wake-up

*/

Description The os_itv_set function sets up the calling task for periodic wake-up after a time
interval specified by interval_time. You must use the os_itv_wait function to wait
for the completion of the time interval. The time interval is measured in units of
system ticks, and you can set it to any value between 1 and 0xFFFE.

The os_itv_set function is in the RL-RTX library. The prototype is defined in rtl.h.

Return Value The os_itv_set function does not return any value.

See Also os_dly_wait, os_itv_wait

Example
#include <rtl.h>

__task void task1 (void) {

 ..

 os_itv_set (50);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 692

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_itv_wait
Summary

#include <rtl.h>

void os_itv_wait (void);

Description The os_itv_wait function waits for a periodic time interval after which the RTX
kernel wakes up the calling task. You must set the time interval using the
os_itv_set function.

you can use the os_itv_wait function to perform a job at regular intervals
independent of the execution time of the task.

The os_itv_wait function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You cannot intermix with a single task the wait method os_itv_wait ()
and os_dly_wait ().

Return Value The os_itv_wait function does not return any value.

See Also os_dly_wait, os_itv_set

Example
#include <rtl.h>

__task void task1 (void) {

 ..

 os_itv_set (20);

 for (;;) {

 os_itv_wait ();

 /* do some actions at regular time intervals */

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 693

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_mbx_check
Summary

#include <rtl.h>

OS_RESULT os_mbx_check (

 OS_ID mailbox); /* The mailbox to check for free space */

Description The os_mbx_check function determines the number of messages that can still be
added into the mailbox identified by the function argument. You can avoid blocking
the current task by calling the os_mbx_check function to check for available space
in the mailbox before calling the os_mbx_send function to send a message.

The os_mbx_check function is in the RL-RTX library. The prototype is defined in
rtl.h.

Return Value The os_mbx_check function returns the number of message entries in the mailbox
that are free.

See Also isr_mbx_check, os_mbx_declare, os_mbx_send

Example
#include <rtl.h>

os_mbx_declare (mailbox1, 20);

__task void task1 (void) {

 ..

 if (os_mbx_check (mailbox1) == 0) {

 printf("Mailbox is full.\n");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 694

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_mbx_declare
Summary

#include <rtl.h>

#define os_mbx_declare(\

 name, \ /* Name of the mailbox */

 cnt) \ /* Number of message entries */

U32 name [4 + cnt]

Description The os_mbx_declare macro defines a mailbox object. The argument name is the
name of the mailbox object. The argument cnt is the number of messages that can
be entered into the mailbox object. A cnt value of 20 is sufficient in most cases.

The os_mbx_declare macro is part of RL-RTX. The definition is in rtl.h.

Return Value The os_mbx_declare macro does not return any value.

See Also os_mbx_init

Example
#include <rtl.h>

/* Declare a mailbox for 20 messages. */

os_mbx_declare (mailbox1, 20);

__task void task1 (void) {

 ..

 os_mbx_init (mailbox1, sizeof(mailbox1));

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 695

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_mbx_init
Summary

#include <rtl.h>

void os_mbx_init (

 OS_ID mailbox, /* The mailbox to initialize */

 U16 mbx_size); /* Number of bytes in the mailbox */

Description The os_mbx_init function initializes the mailbox object identified by the function
argument.

The argument mbx_size specifies the size of the mailbox, in bytes. However, the
number of message entries in the mailbox is defined by the os_mbx_declare
macro.

The os_mbx_init function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You must declare and initialize the mailbox before you perform any
operation on it.

Return Value The os_mbx_init function does not return any value.

See Also os_mbx_declare

Example
#include <rtl.h>

/* Declare a mailbox for 20 messages. */

os_mbx_declare (mailbox1, 20);

__task void task1 (void) {

 ..

 os_mbx_init (mailbox1, sizeof(mailbox1));

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 696

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_mbx_send
Summary

#include <rtl.h>

OS_RESULT os_mbx_send (

 OS_ID mailbox, /* The mailbox to put the message in */

 void* message_ptr, /* Pointer to the message */

 U16 timeout); /* Wait time for mailbox to be free */

Description The os_mbx_send function puts the pointer to a message, message_ptr, in the
mailbox, if the mailbox is not already full.

If the mailbox is full, the RTX kernel puts the calling task to sleep. The timeout
specifies the length of time the task can wait for a space to become available in
the mailbox. The kernel wakes up the task either when the timeout has expired or
when a space becomes available in the mailbox.

You can set the timeout to any value between 0 and 0xFFFE. You can set the
timeout to 0xFFFF for an indefinite timeout.

The os_mbx_send function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 You must declare and initialize the mailbox object before you perform any
operation on it.

 The unit of measure of the timeout argument is numbers of system
intervals.

 The message_ptr points to a block of allocated memory holding a message
of any type. The block of memory is allocated when the message is created
and freed by the destination task when the message is received.

Return Value The function returns the completion value:

Return Value Description
OS_T_TMO The timeout has expired.
OS_R_OK The message has been put in the mailbox.

See Also isr_mbx_send, os_mbx_declare, os_mbx_init, os_mbx_wait

Example
#include <RTL.h>

os_mbx_declare (mailbox1, 20);

OS_TID tsk1, tsk2;

__task void task1 (void);

__task void task2 (void);

__task void task1 (void) {

 void *msg;

 ..

 tsk2 = os_tsk_create (task2, 0);

 os_mbx_init (mailbox1, sizeof(mailbox1));

 msg = alloc();

 /* set message content here*/

 os_mbx_send (mailbox1, msg, 0xFFFF);

 ..

Page 697

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

}

__task void task2 (void) {

 void *msg;

 ..

 os_mbx_wait (mailbox1, &msg, 0xffff);

 /* process message content here */

 free (msg);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 698

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_mbx_wait
Summary

#include <rtl.h>

OS_RESULT os_mbx_wait (

 OS_ID mailbox, /* The mailbox to get message from */

 void** message, /* Location to store the message pointer

*/

 U16 timeout); /* Wait time for message to become

available */

Description The os_mbx_wait function gets a pointer to a message from the mailbox if the
mailbox is not empty. The function puts the message pointer from the mailbox into
the location pointed by the message argument.

If the mailbox is empty, the RTX kernel puts the calling task to sleep. The timeout
specifies the length of time the task can wait for a message. The kernel wakes up
the task either when the timeout expires or when a message becomes available in
the mailbox.

You can set the timeout to any value between 0 and 0xFFFE. You can set the
timeout to 0xFFFF for an indefinite timeout. If you specify the timeout to 0, the
calling task continues immediately even if there are higher priority tasks in the
ready list, irrespective of whether a message is present in the mailbox or not.

The os_mbx_wait function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You must declare and initialize the mailbox object before you perform any
operation on it.

 The unit of measure of the timeout argument is numbers of system
intervals.

 When you get the message from the mailbox, you must free the memory
block containing the message to avoid running out of memory.

 When you get the message from the mailbox, space is created in the
mailbox for a new message.

Return Value The os_mbx_wait function returns a completion value:

Return Value Description
OS_R_MBX The task has waited until a message was put in the

mailbox.
OS_R_TMO The timeout specified by timeout has expired before a

message was available in the mailbox.
OS_R_OK A message was available in the mailbox, and the task

continues without waiting.
See Also isr_mbx_receive, os_mbx_declare, os_mbx_init, os_mbx_send

Example
#include <rtl.h>

os_mbx_declare (mailbox1, 20);

__task void task1 (void){

 void *msg;

 ..

 if (os_mbx_wait (mailbox1, &msg, 10) == OS_R_TMO) {

 printf ("Wait message timeout!\n");

Page 699

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

 else {

 /* process message here */

 free (msg);

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 700

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_mut_init
Summary

#include <rtl.h>

void os_mut_init (

 OS_ID mutex); /* The mutex to initialize */

Description The os_mut_init function initializes the mutex object identified by the function
argument.

The os_mut_init function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You must define the mutex object of type OS_MUT. You can use the name
of the mutex object to identify it during operation.

Return Value The os_mut_init function does not return any value.

See Also os_mut_release, os_mut_wait

Example
#include <rtl.h>

OS_MUT mutex1;

__task void task1 (void) {

 ..

 os_mut_init (mutex1);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 701

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_mut_release
Summary

#include <rtl.h>

OS_RESULT os_mut_release (

 OS_ID mutex); /* The mutex to release */

Description The os_mut_release function decrements the internal counter of the mutex
identified by the function argument in order to release the mutex. Only when the
internal counter of the mutex is zero, the mutex is really free to be acquired by
another task.

The mutex object knows the task that currently owns it. Hence the owning task
can acquire and lock the mutex as many times as needed using the os_mut_wait
function. When a task that owns a mutex tries to acquire it again, the task does
not get blocked, but the mutex's internal counter is incremented. The task that
acquired the mutex must release the mutex as many times as it was acquired, so
that the internal counter of the mutex is decremented to 0.

This function also restores the original task's priority if priority inheritance has
been applied to the owning task of the mutex and his priority has been temporary
raised.

The os_mut_release function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 You must initialize the mutex object using the os_mut_init function before
you can perform any operation on it.

Return Value The os_mut_release function returns the completion value:

Return Value Description
OS_R_OK The mutex was successfully released
OS_R_NOK An error occurred. This can be either because the internal

counter of the mutex is not 0 or because the calling task is
not the owner of the mutex.

See Also os_mut_init, os_mut_wait

Example
#include <rtl.h>

OS_MUT mutex1;

void f1 (void) {

 os_mut_wait (mutex1, 0xffff);

 ..

 /* Critical region 1 */

 ..

 /* f2() will not block the task. */

 f2 ();

 os_mut_release (mutex1);

}

void f2 (void) {

 os_mut_wait (mutex1, 0xffff);

 ..

 /* Critical region 2 */

 ..

Page 702

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 os_mut_release (mutex1);

}

__task void task1 (void) {

 ..

 os_mut_init (mutex1);

 f1 ();

 ..

}

__task void task2 (void) {

 ..

 f2 ();

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 703

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_mut_wait
Summary

#include <rtl.h>

OS_RESULT os_mut_wait (

 OS_ID mutex, /* The mutex to acquire */

 U16 timeout); /* Length of time to wait */

Description The os_mut_wait function tries to acquire the mutex identified by the function
argument. If the mutex has not be locked by another task, the calling task
acquires and locks the mutex and might continue immediately. If the mutex has
been locked by another task, then the RTX kernel puts the calling task to sleep
until the mutex becomes unlocked or until the timeout expires.

You can specify any value between 0 and 0xFFFE for the timeout argument. You
must set timeout to 0xFFFF for an indefinite timeout period.

If you specify a value of 0 for the timeout, the calling task continues immediately
even if there is a higher priority task in the ready list.

This function also raises the priority of the owning task of the mutex, if it is lower
than the priority of the calling task. This programming method is called priority
inheritance and is used to eliminate priority inversion problems. When a mutex is
released, the original priority of the owning task will be restored.

The os_mut_wait function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 Timeout is measured in number of system intervals.

 You must initialize the mutex object using the os_mut_init function before
you can perform any operation on it.

Return Value The os_mut_wait function returns the completion value:

Return Value Description
OS_R_MUT The task waited until the mutex was released and has now

acquired and locked the mutex.
OS_R_TMO The timeout has expired.
OS_R_OK The mutex was available and the os_mut_wait function

returned to the calling task immediately.
See Also os_mut_init, os_mut_release

Example
#include <rtl.h>

OS_MUT mutex1;

void f1 (void) {

 os_mut_wait (mutex1, 0xffff);

 ..

 /* Critical region 1 */

 ..

 /* f2() will not block the task. */

 f2 ();

 os_mut_release (mutex1);

}

void f2 (void) {

 os_mut_wait (mutex1, 0xffff);

Page 704

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 ..

 /* Critical region 2 */

 ..

 os_mut_release (mutex1);

}

__task void task1 (void) {

 ..

 os_mut_init (mutex1);

 f1 ();

 ..

}

__task void task2 (void) {

 ..

 f2 ();

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 705

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_sem_init
Summary

#include <rtl.h>

void os_sem_init (

 OS_ID semaphore, /* The semaphore object to initialize

*/

 U16 token_count); /* Initial number of tokens */

Description The os_sem_init function initializes the semaphore object identified by the function
argument.

The argument token_count determines the number of tokens stored in the
semaphore initially.

The os_sem_init function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You must define the semaphore object of type OS_SEM. You can use the
name of the semaphore object to identify it during operation.

Return Value The os_sem_init function does not return any value.

See Also isr_sem_send, os_sem_send, os_sem_wait

Example
#include <rtl.h>

OS_SEM semaphore1;

__task void task1 (void) {

 ..

 os_sem_init (semaphore1, 0);

 os_sem_send (semaphore1);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 706

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_sem_send
Summary

#include <rtl.h>

OS_RESULT os_sem_send (

 OS_ID semaphore); /* The semaphore whose token count is

incremented */

Description The os_sem_send function increments the number of tokens in the semaphore
object identified by the function argument.

The os_sem_send function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 You must initialize the semaphore object using the os_sem_init function
before you can perform any operation on the semaphore.

Return Value The os_sem_send function always returns OS_R_OK.

See Also isr_sem_send, os_sem_init, os_sem_wait

Example
#include <rtl.h>

OS_SEM semaphore1;

__task void task1 (void) {

 ..

 os_sem_init (semaphore1, 0);

 os_sem_send (semaphore1);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 707

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_sem_wait
Summary

#include <rtl.h>

OS_RESULT os_sem_wait (

 OS_ID semaphore, /* The semaphore to get the token from */

 U16 timeout); /* Length of time to wait for the token */

Description The os_sem_wait function requests a token from the semaphore identified by the
function argument. If the token count in the semaphore is more than zero, the
function gives a token to the calling task and decrements the token count in the
semaphore. The calling task might then continue immediately or is put in the ready
list depending on the priorities of other tasks in the ready list and the value of
timeout.

If the token count in the semaphore is zero, the calling task is put to sleep by the
RTX kernel. When a token becomes available in the semaphore or when the
timeout period expires, the RTX kernel wakes the task and puts it in the ready list .

You can specify any value between 0 and 0xFFFE for the timeout argument. You
must set timeout to 0xFFFF for an indefinite timeout period.

If you specify a value of 0 for the timeout, the calling task continues immediately
even if there is a higher priority task in the ready list.

The os_sem_wait function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 Timeout is measured in number of system intervals.

 You must initialize the semaphore object using the os_sem_init function
before you can perform any operation on the semaphore.

Return Value The os_sem_wait function returns a completion value:

Return Value Description
OS_R_SEM The calling task has waited until a semaphore became

available.
OS_R_TMO The timeout expired before the token became available.
OS_R_OK A token was available and the function returned

immediately.
See Also isr_sem_send, os_sem_init, os_sem_send

Example
#include <rtl.h>

OS_SEM semaphore1;

__task void task1 (void) {

 ..

 os_sem_wait (semaphore1, 0xffff);

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 708

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_sys_init
Summary

#include <rtl.h>

void os_sys_init (

 void (*task)(void)); /* Task to start */

Description The os_sys_init function initializes and starts the Real-Time eXecutive (RTX)
kernel.

The task argument points to the task function to start after the kernel is initialized.
The RTX kernel gives the task a default priority of 1.

The os_sys_init function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 The os_sys_init function must be called from the main C function.

 The RTK kernel uses the default stack size, which is defined in rtx_config.c,
for the task.

Return Value The os_sys_init function does not return. Program execution continues with the
task identified by the task argument.

See Also os_sys_init_prio, os_sys_init_user

Example
#include <rtl.h>

void main (void) {

 os_sys_init (task1); /* start the kernel */

 while(1);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 709

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_sys_init_prio
Summary

#include <rtl.h>

void os_sys_init_prio (

 void (*task)(void), /* Task to start */

 U8 priority); /* Task priority (1-254) */

Description The os_sys_init_prio function initializes and starts the Real-Time eXecutive (RTX)
kernel.

The task argument points to the task to start after the kernel is initialized.

The priority argument specifies the priority for the task. The default task priority is
1. Priority 0 is reserved for the Idle Task. If a value of 0 is specified for the priority,
it is automatically replaced with a value of 1. Priority 255 is also reserved.

The os_sys_init_prio function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 The os_sys_init_prio function must be called from the main C function.

 The RTK kernel uses the default stack size, which is defined in rtx_config.c,
for the task.

 Priority value of 255 represents the most important task.

Return Value The os_sys_init_prio function does not return. Program execution continues with
the task identified by the task argument.

See Also os_sys_init, os_sys_init_user

Example
#include <rtl.h>

void main (void) {

 os_sys_init_prio (task1, 10);

 while(1);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 710

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_sys_init_user
Summary

#include <rtl.h>

void os_sys_init_user (

 void (*task)(void), /* Task to start */

 U8 priority, /* Task priority (1-254) */

 void* stack, /* Task stack */

 U16 size); /* Stack size */

Description The os_sys_init_user function initializes and starts the Real-Time eXecutive (RTX)
kernel. Use this function when you must specify a large stack for the starting task.

The task argument points to the task function to start after the kernel is initialized.

The priority argument specifies the priority for the task. The default task priority is
1. Priority 0 is reserved for the Idle Task. If a value of 0 is specified for the priority,
it is automatically replaced with a value of 1. Priority 255 is also reserved.

The stack argument points to a memory block reserved for the stack to use for the
task. The size argument specifies the size of the stack in bytes.

The os_sys_init_user function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 The os_sys_init_user function must be called from the main C function.

 The stack must be aligned at an 8-byte boundary and must be declared as
an array of type U64 (unsigned long long).

 The default stack size is defined in rtx_config.c.

 Priority value of 255 represents the most important task.

Return Value The os_sys_init_user function does not return. Program execution continues with
the task identified by the task argument.

See Also os_sys_init, os_sys_init_prio

Example
#include <rtl.h>

static U64 stk1[400/8]; /* 400-byte stack */

void main (void) {

 os_sys_init_user (task1, 10, &stk1, sizeof(stk1));

 while(1);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 711

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tmr_call
Summary

void os_tmr_call (

 U16 info); /* Identification of an expired timer. */

Description The os_tmr_call function is a user defined function that gets called by the RTX
kernel's task manager task scheduler, when the user defined timer expires. After
the os_tmr_call function returns, the task manager deletes this user timer.

The info argument contains the value that was specified when the timer was
created using os_tmr_create.

The os_tmr_call function is part of RL-RTX. The prototype is defined in rtl.h. You
can customize the function in rtx_config.c.

Note

 You can call any of the isr_ system functions from the os_tmr_call
function, but you cannot call any of the os_ system functions.

 Do not call os_tmr_kill for an expired user timer.

Return Value The os_tmr_call function does not return any value.

See Also os_tmr_create, os_tmr_kill

Example
void os_tmr_call (U16 info) {

 switch (info) {

 case 1: /* The supervised task is locked, */

 /* recovery actions required. */

 break;

 case 2: /* The second task is locked. */

 break;

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 712

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tmr_create
Summary

#include <rtl.h>

OS_ID os_tmr_create (

 U16 tcnt, /* Length of the timer. */

 U16 info); /* Argument to the callback function. */

Description The os_tmr_create function sets up and starts a timer. When the timer expires,
the RTX kernel calls the user defined os_tmr_call callback function and passes info
as an argument to the os_tmr_call function.

The tcnt argument specifies the length of timer, in number of system ticks. You can
specify tcnt to any value between 1 and 0xFFFF.

The os_tmr_create function is in the RL-RTX library. The prototype is defined in
rtl.h.

Return Value The os_tmr_create function returns a timer ID if the timer was successfully
created. Otherwise, it returns NULL.

See Also os_tmr_call, os_tmr_kill

Example
#include <rtl.h>

OS_TID tsk1;

OS_ID tmr1;

__task void task1 (void) {

 ..

 tmr1 = os_tmr_create (10, 1);

 if (tmr1 == NULL) {

 printf ("Failed to create user timer.\n");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 713

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tmr_kill
Summary

#include <rtl.h>

OS_ID os_tmr_kill (

 OS_ID timer); /* ID of the timer to kill */

Description The os_tmr_kill function deletes the timer identified by the function argument.
timer is a user timer that was created using the os_tmr_create function. If you
delete the timer before it expires, the os_tmr_call callback function does not get
called.

The os_tmr_kill function is in the RL-RTX library. The prototype is defined in rtl.h.

 Do not call os_tmr_kill for an expired user timer. It has already been
deleted by the system.

Return Value The os_tmr_kill function returns NULL if the timer is killed successfully. Otherwise,
it returns the timer value.

See Also os_tmr_call, os_tmr_create

Example
#include <rtl.h>

OS_TID tsk1;

OS_ID tmr1;

__task void task1 (void) {

 ..

 if (os_tmr_kill (tmr1) != NULL) {

 printf ("\nThis timer is not on the list.");

 }

 else {

 printf ("\nTimer killed.");

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 714

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_create
Summary

#include <rtl.h>

OS_TID os_tsk_create (

 void (*task)(void), /* Task to create */

 U8 priority); /* Task priority (1-254) */

Description The os_tsk_create function creates the task identified by the task function pointer
argument and then adds the task to the ready queue. It dynamically assigns a
task identifier value (TID) to the new task.

The priority argument specifies the priority for the task. The default task priority is
1. Priority 0 is reserved for the Idle Task. If a value of 0 is specified for the priority,
it is automatically replaced with a value of 1. Priority 255 is also reserved. If the
new task has a higher priority than the currently executing task, then a task
switch occurs immediately to execute the new task.

The os_tsk_create function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 The RTK kernel uses the default stack size, which is defined in rtx_config.c,
for the task.

 Priority value of 255 represents the most important task.

Return Value The os_tsk_create function returns the task identifier value (TID) of the new task.
If the function fails, for example due to an invalid argument, it returns 0.

See Also os_tsk_create_ex, os_tsk_create_user, os_tsk_create_user_ex

Example
#include <rtl.h>

OS_TID tsk1, tsk2;

__task void task1 (void) {

 ..

 tsk2 = os_tsk_create (task2, 1);

 ..

}

__task void task2 (void) {

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 715

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_create_ex
Summary

#include <rtl.h>

OS_TID os_tsk_create_ex (

 void (*task)(void *), /* Task to create */

 U8 priority, /* Task priority (1-254) */

 void* argv); /* Argument to the task */

Description The os_tsk_create_ex function creates the task identified by the task function
pointer argument and adds the task to the ready queue. The function dynamically
assigns a task identifier value (TID) to the new task. The os_tsk_create_ex
function is an extension to the os_tsk_create function that enables you to pass
an argument to the task.

The priority argument specifies the priority for the task. The default task priority is
1. Priority 0 is reserved for the Idle Task. If a value of 0 is specified for the priority,
it is automatically replaced with a value of 1. Priority 255 is also reserved. If the
new task has a higher priority than the currently executing task, then a task
switch occurs immediately to execute the new task.

The argv argument is passed directly to the task when it starts. An argument to a
task can be useful to differentiate between multiple instances of the same task.

The os_tsk_create_ex function is in the RL-RTX library. The prototype is defined in
rtl.h.

note

 The RTK kernel uses the default stack size, which is defined in rtx_config.c,
for the task.

Return Value The os_tsk_create_ex function returns the task identifier value (TID) of the new
task. If the function fails, for example due to an invalid argument, it returns 0.

See Also os_tsk_create, os_tsk_create_user, os_tsk_create_user_ex

Example
#include <rtl.h>

OS_TID tsk1, tsk2_0, tsk2_1;

int param[2] = {0, 1};

__task void task1 (void) {

 ..

 tsk2_0 = os_tsk_create_ex (task2, 1, ¶m[0]);

 tsk2_1 = os_tsk_create_ex (task2, 1, ¶m[1]);

 ..

}

__task void task2 (void *argv) {

 ..

 switch (*(int *)argv) {

 case 0:

 printf("This is a first instance of task2.\n");

 break;

 case 1:

 printf("This is a second instance of task2.\n");

 break;

Page 716

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 717

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_create_user
Summary

#include <rtl.h>

OS_TID os_tsk_create_user(

 void (*task)(void), /* Task to create */

 U8 priority, /* Task priority (1-254) */

 void* stk, /* Pointer to the task's stack */

 U16 size); /* Number of bytes in the stack */

Description The os_tsk_create_user function creates the task identified by the task function
pointer argument and then adds the task to the ready queue. It dynamically
assigns a task identifier value (TID) to the new task. This function enables you to
provide a separate stack for the task. This is useful when a task needs a bigger
stack for its local variables.

The priority argument specifies the priority for the task. The default task priority is
1. Priority 0 is reserved for the Idle Task. If a value of 0 is specified for the priority,
it is automatically replaced with a value of 1. Priority 255 is also reserved. If the
new task has a higher priority than the currently executing task, then a task
switch occurs immediately to execute the new task.

The stk argument is a pointer to the memory block reserved for the stack of this
task. The size argument specifies the number of bytes in the stack.

The os_tsk_create_user function is in the RL-RTX library. The prototype is defined
in rtl.h.

Note

 The stack must be aligned at an 8-byte boundary, and must be declared as
an array of type U64 (unsigned long long).

 The default stack size is defined in rtx_config.c.

Return Value The os_tsk_create_user function returns the task identifier value (TID) of the new
task. If the function fails, for example due to an invalid argument, it returns 0.

See Also os_tsk_create, os_tsk_create_ex, os_tsk_create_user_ex

Example
#include <rtl.h>

OS_TID tsk1,tsk2;

static U64 stk2[400/8];

__task void task1 (void) {

 ..

 /* Create task 2 with a bigger stack */

 tsk2 = os_tsk_create_user (task2, 1, &stk2, sizeof(stk2));

 ..

}

__task void task2 (void) {

 /* We need a bigger stack here. */

 U8 buf[200];

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 718

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_create_user_ex
Summary

#include <rtl.h>

OS_TID os_tsk_create_user_ex (

 void (*task)(void *), /* Task to create */

 U8 priority, /* Task priority (1-254) */

 void* stk, /* Pointer to the task's stack */

 U16 size, /* Size of stack in bytes */

 void* argv); /* Argument to the task */

Description The os_tsk_create_user_ex function creates the task identified by the task
function pointer argument and then adds the task to the ready queue. It
dynamically assigns a task identifier value (TID) to the new task. This function
enables you to provide a separate stack for the task. This is useful when a task
needs a bigger stack for its local variables. The os_tsk_create_user_ex function
is an extension to the os_tsk_create_user function that enables you to pass an
argument to the task.

The priority argument specifies the priority for the task. The default task priority is
1. Priority 0 is reserved for the Idle Task. If a value of 0 is specified for the priority,
it is automatically replaced with a value of 1. Priority 255 is also reserved. If the
new task has a higher priority than the currently executing task, then a task
switch occurs immediately to execute the new task.

The stk argument is a pointer to the memory block reserved for the stack of this
task. The size argument specifies the number of bytes in the stack.

The argv argument is passed directly to the task when it starts. An argument to a
task can be useful to differentiate between multiple instances of the same task.
Multiple instances of the same task can behave differently based on the argument.

The os_tsk_create_user_ex function is in the RL-RTX library. The prototype is
defined in rtl.h.

note

 The stack stk must be aligned at an 8-byte boundary and must be declared
as an array of type U64 (unsigned long long).

 The default stack size is defined in rtx_config.c.

Return Value The os_tsk_create_user_ex function returns the task identifier value (TID) of the
new task. If the function fails, for example due to an invalid argument, it returns 0.

See Also os_tsk_create, os_tsk_create_ex, os_tsk_create_user

Example
#include <rtl.h>

OS_TID tsk1,tsk2_0,tsk2_1;

static U64 stk2[2][400/8];

__task void task1 (void) {

 ..

 /* Create task 2 with a bigger stack */

 tsk2_0 = os_tsk_create_user_ex (task2, 1,

 &stk2[0], sizeof(stk2[0]),

 (void *)0);

 tsk2_1 = os_tsk_create_user_ex (task2, 1,

 &stk2[1], sizeof(stk2[1]),

Page 719

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 (void *)1);

 ..

}

__task void task2 (void *argv) {

 /* We need a bigger stack here. */

 U8 buf[200];

 ..

 switch ((int)argv) {

 case 0:

 printf("This is a first instance of task2.\n");

 break;

 case 1:

 printf("This is a second instance of task2.\n");

 break;

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 720

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_delete
Summary

#include <rtl.h>

OS_RESULT os_tsk_delete (

 OS_TID task_id); /* Id of the task to delete */

Description If a task has finished all its work or is not needed anymore, you can terminate it
using the os_tsk_delete function. The os_tsk_delete function stops and deletes
the task identified by task_id.

The os_tsk_delete function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 If task_id has a value of 0, the task that is currently running is stopped and
deleted. The program execution continues with the task with the next
highest priority in the ready queue.

 Deleting a task frees all dynamic memory resources allocated to that task.

Return Value The os_tsk_delete function returns OS_R_OK if the task was successfully stopped
and deleted. In all other cases, for example if the task with task_id does not exist
or is not running, the function returns OS_R_NOK.

See Also os_tsk_delete_self

Example
#include <rtl.h>

OS_TID tsk3;

__task void task2 (void) {

 tsk3 = os_tsk_create (task3, 0);

 ..

 if (os_tsk_delete (tsk3) == OS_R_OK) {

 printf("\n'task 3' deleted.");

 }

 else {

 printf ("\nFailed to delete 'task 3'.");

 }

}

__task void task3 (void) {

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 721

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_delete_self
Summary

#include <rtl.h>

void os_tsk_delete_self (void);

Description The os_tsk_delete_self function stops and deletes the currently running task. The
program execution continues with the task with the next highest priority in the
ready queue.

The os_tsk_delete_self function is in the RL-RTX library. The prototype is defined
in rtl.h.

Note

 Deleting a task frees all dynamic memory resources allocated to that task.

Return Value The os_tsk_delete_self function does not return. The program execution
continues with the task with the next highest priority in the ready queue.

See Also os_tsk_delete

Example
#include <rtl.h>

__task void task2 (void) {

 ..

 os_tsk_delete_self();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 722

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_pass
Summary

#include <rtl.h>

void os_tsk_pass (void);

Description The os_tsk_pass function passes control to the next task of the same priority in
the ready queue. If there is no task of the same priority in the ready queue, the
current task continues and no task switching occurs.

The os_tsk_pass function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 You can use this function to implement a task switching system between
several tasks of the same priority.

Return Value The os_tsk_pass function does not return any value.

See Also os_tsk_prio, os_tsk_prio_self

Example
#include <rtl.h>

OS_TID tsk1;

__task void task1 (void) {

 ..

 os_tsk_pass();

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 723

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_prio
Summary

#include <rtl.h>

OS_RESULT os_tsk_prio (

 OS_TID task_id, /* ID of the task */

 U8 new_prio); /* New priority of the task (1-254) */

Description The os_tsk_prio function changes the execution priority of the task identified by
the argument task_id.

If the value of new_prio is higher than the priority of the currently executing task, a
task switch occurs to enable the task identified by task_id to run. If the value of
new_prio is lower than the priority of the currently executing task, then the
currently executing task resumes its execution.

If the value of task_id is 0, the priority of the currently running task is changed to
new_prio.

The os_tsk_prio function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 The value of new_prio can be anything from 1 to 254.

 The new priority stays in effect until you change it.

 Priority 0 is reserved for the idle task. If priority 0 is specified to the
function, it is automatically replaced with the value of 1 by the RTX kernel.
Priority 255 is also reserved.

 A higher value for new_prio indicates a higher priority.

Return Value The os_tsk_prio function returns one of these values:

Return Value Description
OS_R_OK The priority of a task has been successfully changed.
OS_R_NOK The task with task_id does not exist or has not been

started.
See Also os_tsk_pass, os_tsk_prio_self

Example
#include <RTL.h>

OS_TID tsk1,tsk2;

__task void task1 (void) {

 ..

 os_tsk_prio_self (5);

 /* Changing the priority of task2 will cause a task switch. */

 os_tsk_prio(tsk2, 10);

 ..

}

__task void task2 (void) {

 ..

 /* Change priority of this task will cause task switch. */

 os_tsk_prio_self (1);

 ..

Page 724

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 725

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_prio_self
Summary

#include <rtl.h>

OS_RESULT os_tsk_prio_self (

 U8 new_prio); /* New priority of task (1-254) */

Description The os_tsk_prio_self macro changes the priority of the currently running task to
new_prio.

The os_tsk_prio_self function is in the RL-RTX library. The prototype is defined in
rtl.h.

Note

 The value of new_prio can be anything from 1 to 254.

 The new priority stays in effect until you change it.

 Priority 0 is reserved for the idle task. If priority 0 is specified to the
function, it is automatically replaced with the value of 1 by the RTX kernel.
Priority 255 is also reserved.

 A higher value for new_prio indicates a higher priority.

Return Value The os_tsk_prio_self function always returns OS_R_OK.

See Also os_tsk_pass, os_tsk_prio

Example
#include <rtl.h>

OS_TID tsk1;

__task void task1 (void) {

 ..

 os_tsk_prio_self(10); /* Increase its priority, for the

critical section */

 .. /* This is a critical section */

 ..

 os_tsk_prio_self(2); /* Decrease its priority at end of

critical section */

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 726

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

os_tsk_self
Summary

#include <rtl.h>

OS_TID os_tsk_self (void);

Description The os_tsk_self function identifies the currently running task by returning its task
ID.

The os_tsk_self function is in the RL-RTX library. The prototype is defined in rtl.h.

Return Value The os_tsk_self function returns the task identifier number (TID) of the currently
running task.

See Also isr_tsk_get, os_tsk_create, os_tsk_create_user

Example
#include <rtl.h>

OS_TID tsk1;

__task void task1 (void) {

 tsk1 = os_tsk_self();

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 727

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

poll_ethernet
Summary

#include <net_config.h>

void poll_ethernet (void);

Description The poll_ethernet function polls the ethernet status register for any received
ethernet packets. If there is a new packet, it allocates a block of memory. It then
reads and copies the packet from the ethernet controller into the allocated
memory. The function puts the pointer to the memory block into the received
frames queue by calling the put_in_queue function.

The poll_ethernet function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 You must provide the poll_ethernet function if the ethernet controller you
use is different from the ones provided in the TCPnet source.

 You must provide the poll_ethernet function only if you want to use the
ethernet driver in poll mode.

 The TcpNet system frequently calls poll_ethernet to poll for any received
ethernet packet.

Return Value The poll_ethernet function does not return any value.

See Also init_ethernet, send_frame

Example
void poll_ethernet (void) {

 /* Poll the Ethernet controller for received frames. If the

Ethernet */

 /* controller runs in interrupt mode, this function must be

empty. */

 OS_FRAME *frame;

 U32 State, RxLen;

 U32 val, *dp;

 LREG (U16, BSR) = 2;

 val = LREG (U8, B2_IST);

 if (!(val & (IST_RCV | IST_RX_OVRN))) {

 /* Nothing received yet. */

 return;

 }

 if (val & IST_RX_OVRN) {

 /* Clear the RX overrun bit. */

 LREG (U8, B2_ACK) = ACK_RX_OVRN;

 return;

 }

 State = LREG (U16, B2_FIFO);

 if (State & FIFO_REMPTY) {

 /* Check if empty packet. */

 return;

 }

Page 728

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Read status and packet length */

 LREG (U16, B2_PTR) = PTR_RCV | PTR_AUTO_INCR | PTR_READ;

 val = LREG (U32, B2_DATA);

 State = val & 0xFFFF;

 RxLen = (val >> 16) - 6;

 if (State & RFS_ODDFRM) {

 /* Odd number of bytes in a frame. */

 RxLen++;

 }

 if (RxLen > ETH_MTU) {

 /* Packet too big, ignore it and free MMU. */

 LREG (U16, BSR) = 2;

 LREG (U16, B2_MMUCR) = MMU_REMV_REL_RX;

 return;

 }

 frame = alloc_mem (RxLen);

 /* Make sure that block is 4-byte aligned */

 RxLen = (RxLen + 3) >> 2;

 dp = (U32 *)&frame->data[0];

 for (; RxLen; RxLen--) {

 *dp++ = LREG (U32, B2_DATA);

 }

 /* MMU free packet. */

 LREG (U16, BSR) = 2;

 LREG (U16, B2_MMUCR) = MMU_REMV_REL_RX;

 put_in_queue (frame);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 729

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ppp_close
Summary

#include <rtl.h>

void ppp_close (void);

Description The ppp_close function disconnects the PPP link between the two modems.

The ppp_close function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 You can call the ppp_close function when the PPP network daemon is
either in client mode or in server mode.

 Since it is the PPP client that starts a dial-up connection, it is also the PPP
client that usually disconnects the PPP link.

 The ppp_close function does not change the running mode of the PPP
daemon. If the PPP daemon was in server mode, PPP daemon re-initializes
the modem driver to accept further incoming calls.

Return Value The ppp_close function does not return any value.

See Also ppp_connect, ppp_is_up, ppp_listen

Example
#include <rtl.h>

void disconnect_link (void) {

 /* Disconnect a dial-up link. */

 ppp_close ();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 730

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ppp_connect
Summary

#include <rtl.h>

void ppp_connect (

 char const* dialnum, /* Pointer to string containing the

number to dial. */

 char const* user, /* Username for authentication. */

 char const* passw); /* Password for authentication. */

Description The ppp_connect function starts a dial-up connection to the remote PPP server by
starting the PPP daemon in client mode.

The argument dialnum points to a null terminated ASCII string containing the
phone number of the remote PPP server.

The argument user points to the username, and the argument passw points to the
password. The TcpNet system uses username and password for remote user
authentication using the Password Authentication Protocol (PAP). Both arguments
are null terminated ASCII strings.

The ppp_connect function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 You must call the ppp_connect function when you want to establish a
dial-up connection using PPP.

 If you use a direct cable connection, you can set dialnum to NULL because
the Null_Modem device driver ignores the argument dialnum.

Return Value The ppp_connect function does not return any value.

See Also ppp_close, ppp_is_up, ppp_listen

Example
#include <rtl.h>

void dial_remote (void) {

 /* Dial remote PPP Server. */

 ppp_connect ("04213372", "Keil", "test");

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 731

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ppp_is_up
Summary

#include <rtl.h>

BOOL ppp_is_up (void);

Description The ppp_is_up function determines the state of PPP link between the two
modems. It returns __TRUE if the PPP link state is "network" and IP frames can be
exchanged.

The ppp_is_up function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 You can call the ppp_is_up function when the PPP network daemon is
either in client mode or in server mode.

 You can also use the ppp_is_up function to continuously monitor the state
of the PPP link.

Return Value The ppp_is_up function returns __TRUE if the PPP link between the modems is up
and functional. The function returns __FALSE if the PPP link is down.

See Also ppp_close, ppp_connect, ppp_listen

Example
#include <rtl.h>

void connect_soc (void) {

 /* Connect TCP socket when PPP is up. */

 if(ppp_is_up()) {

 tcp_connect (socket_tcp, remip, 1000, 0);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 732

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ppp_listen
Summary

#include <rtl.h>

void ppp_listen (

 char const* user, /* Username for authentication. */

 char const* passw); /* Password for authentication. */

Description The ppp_listen function configures the PPP interface to accept incoming PPP
connections by starting the PPP daemon in server mode.

The argument user points to the username, and the argument passw points to the
password. The TcpNet system uses username and password for remote user
authentication using the Password Authentication Protocol (PAP). Both arguments
are null-terminated ASCII strings.

The ppp_listen function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 It is common to call the ppp_listen function at system startup.

Return Value The ppp_listen function does not return any value.

See Also ppp_close, ppp_connect, ppp_is_up

Example
#include <rtl.h>

void main (void) {

 init_TcpNet ();

 /* Activate the PPP interface. */

 ppp_listen ("Keil", "test");

 while (1) {

 timer_poll ();

 main_TcpNet ();

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 733

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

rewind
Summary

#include <stdio.h>

void rewind (

 FILE *stream); /* file stream to rewind */

Description The rewind function repositions the file pointer associated with stream to the
beginning of the file. Error and end-of-file indicators are cleared.

The rewind function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Return Value The rewind function does not return any value.

See Also fseek, ftell

Example
#include <rtl.h>

#include <stdio.h>

void tst_rewind (void) {

 char line[80];

 FILE *fin;

 fin = fopen ("Test.txt","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 while (fgets (&line, sizeof (line), fin) != NULL);

 // read again the first line

 rewind (fin);

 fgets (&line, sizeof (line), fin);

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 734

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

send_frame
Summary

#include <net_config.h>

void send_frame (

 OS_FRAME* frame); /* Pointer to the ethernet frame to

send. */

Description The send_frame function sends the ethernet frame packet using the ethernet
controller. The argument frame points to the ethernet frame constructed by the
TCPnet system. The component frame->length holds the total length of the frame
that needs to be transferred.

The send_frame function is part of RL-TCPnet. The prototype is defined in
net_config.h.

note

 You must provide the send_frame function if the ethernet controller you
use is different from the ones provided in the TCPnet source.

 The TCPnet system calls send_frame when it has constructed the ethernet
frame that needs to be sent to the network.

Return Value The send_frame function does not return any value.

See Also init_ethernet, poll_ethernet

Example
void send_frame (OS_FRAME *frame) {

 /* Send frame to EMAC ethernet controller */

 U32 idx,len;

 U32 *sp,*dp;

 idx = MAC_TXPRODUCEINDEX;

 sp = (U32 *)&frame->data[0];

 dp = (U32 *)Tx_Desc[idx].Packet;

 /* Copy frame data to EMAC packet buffers. */

 for (len = (frame->length + 3) >> 2; len; len--) {

 *dp++ = *sp++;

 }

 Tx_Desc[idx].Ctrl = (frame->length-1) | (TCTRL_INT |

TCTRL_LAST);

 /* Start frame transmission. */

 if (++idx == NUM_TX_FRAG) idx = 0;

 MAC_TXPRODUCEINDEX = idx;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 735

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

slip_close
Summary

#include <rtl.h>

void slip_close (void);

Description The slip_close function disconnects the SLIP link between the two modems.

The slip_close function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 You can call the slip_close function when the SLIP network daemon is
either in client mode or in server mode.

 Since it is the SLIP client that starts a dial-up connection, it is also the SLIP
client that usually disconnects the SLIP link.

 The slip_close function does not change the running mode of the SLIP
daemon. If the SLIP daemon was in server mode, SLIP daemon
re-initializes the modem driver to accept further incoming calls.

Return Value The slip_close function does not return any value.

See Also slip_connect, slip_is_up, slip_listen

Example
#include <rtl.h>

void disconnect_link (void) {

 /* Disconnect a dial-up link. */

 slip_close ();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 736

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

slip_connect
Summary

#include <rtl.h>

void slip_connect (

 char const* dialnum); /* Pointer to string containing the

number to dial. */

Description The slip_connect function starts a dial-up connection to the remote SLIP server by
starting the SLIP daemon in client mode.

The argument dialnum points to a null terminated ASCII string containing the
phone number of the remote SLIP server.

The slip_connect function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 You must call the slip_connect function when you want to establish a
dial-up connection using SLIP.

 If you use a direct cable connection, you can set dialnum to NULL because
the Null_Modem device driver ignores the argument dialnum.

Return Value The slip_connect function does not return any value.

See Also slip_close, slip_is_up, slip_listen

Example
#include <rtl.h>

void dial_remote (void) {

 /* Dial remote SLIP Server. */

 slip_connect ("04213372");

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 737

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

slip_is_up
Summary

#include <rtl.h>

BOOL slip_is_up (void);

Description The slip_is_up function determines the state of SLIP link between the two
modems. It returns __TRUE if IP frames can be exchanged over the SLIP link.

The slip_is_up function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 You can call the slip_is_up function when the SLIP network daemon is
either in client mode or in server mode.

 You can also use the slip_is_up function to continuously monitor the state
of the SLIP link.

Return Value The slip_is_up function returns __TRUE if the SLIP link between the modems is up
and functional. The function returns __FALSE if the SLIP link is down.

See Also slip_close, slip_connect, slip_listen

Example
#include <rtl.h>

void connect_soc (void) {

 /* Connect TCP socket when SLIP is up. */

 if(slip_is_up()) {

 tcp_connect (socket_tcp, remip, 1000, 0);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 738

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

slip_listen
Summary

#include <rtl.h>

void slip_listen (void);

Description The slip_listen function configures the SLIP interface to accept incoming SLIP
connections by starting the SLIP daemon in server mode.

The slip_listen function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 It is common to call the slip_listen function at system startup.

Return Value The slip_listen function does not return any value.

See Also slip_close, slip_connect, slip_is_up

Example
#include <rtl.h>

void main (void) {

 init_TcpNet ();

 /* Activate the SLIP interface. */

 slip_listen ();

 while (1) {

 timer_poll ();

 main_TcpNet ();

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 739

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

smtp_accept_auth
Summary

#include <net_config.h>

BOOL smtp_accept_auth (

 U8* srv_ip); /* IP address of SMTP server. */

Description The smtp_accept_auth function informs the TCPnet if the SMTP client should log
on to SMTP Server when sending e-mails. The TCPnet library calls this function and
asks the user what to do if the SMTP Server has advertised the user
authentication. It is now on the user to accept the authentication or not.

The argument srv_ip points to a buffer containing the four octets that make up the
ip address of the remote SMTP server.

The smtp_accept_auth function is part of RL-TCPnet. The prototype is defined in
net_config.h. You can customize the function in smtp_uif.c.

Return Value The smtp_accept_auth function returns __TRUE if the authentication is accepted
and __FALSE, when the user does not want to log on to SMTP server to send
e-mails.

If this function returns __FALSE, the smtp_cbfunc with the code 0 and 1 is not
called.

See Also smtp_cbfunc

Example
BOOL smtp_accept_auth (U8 *srv_ip) {

 if (srv_ip[0] == 192 &&

 srv_ip[1] == 168 &&

 srv_ip[2] == 1 &&

 srv_ip[3] == 253) {

 /* Our local SMTP server, no authentication. */

 return (__FALSE);

 }

 /* Log on to SMTP Server. */

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 740

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

smtp_cbfunc
Summary

#include <net_config.h>

U16 smtp_cbfunc (

 U8 code, /* Type of data requested by the SMTP Client.

*/

 U8* buf, /* Location where to write the requested data.

*/

 U16 buflen, /* Number of bytes in the output buffer. */

 U32* pvar); /* Pointer to a storage variable. */

Description The smtp_cbfunc function provides the email headers and data, in SMTP format,
when requested by the SMTP client running on the TCPnet system. The SMTP client
calls this function several times to compose the email message.

The argument code specifies the type of email section (user, header or data) that
the SMTP Client requires. This is shown in the table.

Code Email section Description
0 Username: Username for SMTP authentication
1 Password: Password for SMTP authentication
2 From: Email address of the sender
3 To: Email address of the recipient
4 Subject: Subject of the email
5 Data: Email body in plain ASCII format

The argument buf is a pointer to the output buffer where the smtp_cbfunc
function writes the requested data into. The argument buflen specifies the length
of the output buffer in bytes.

The argument pvar is a pointer to a variable that never gets altered by the SMTP
client. You can use *pvar as a repeat counter or simply to distinguish between
different calls of the smtp_cbfunc function.

The smtp_cbfunc function is part of RL-TCPnet. The prototype is defined in
net_config.h. You must customize the function in smtp_uif.c to compose the email
message correctly.

note

 The length of the output buffer, buflen might vary because buffer length is
determined by the TCP socket Maximum Segment Size (MSS) negotiation.
The buffer length is normally around 1400 bytes for local LAN. But this can
be reduced to 500 bytes or even less.

 If the smtp_cbfunc function writes more bytes than buflen into the output
buffer, then a system crash resulting from corruption of memory link
pointers is highly likely.

 The argument pcgi is private to each SMTP Session. The SMTP Client clears
the data in the pcgi pointer, to 0, before the smtp_cbfunc function is called
for the first time.

Return Value The smtp_cbfunc function returns the number of bytes written to the output
buffer, and it writes the repeat flag value in the most significant bit of the return
value.

If the return value's most significant bit is set to 1, the SMTP client running on
TCPnet calls the smtp_cbfunc function again with the same value for the
argument code, and pcgi, which holds the same content as previously set. The
function smtp_cbfunc can then enter more data into the buffer buf.

See Also smtp_accept_auth, smtp_connect

Example

Page 741

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

typedef struct {

 U8 id;

 U16 idx;

} MY_BUF;

#define MYBUF(p) ((MY_BUF *)p)

U16 smtp_cbfunc (U8 code, U8 *buf, U16 buflen, U32 *pvar) {

 U32 i,len = 0;

 switch (code) {

 case 0:

 /* Enter Username for SMTP Server authentication. */

 len = str_copy (buf, "user");

 break;

 case 1:

 /* Enter Password for SMTP Server authentication. */

 len = str_copy (buf, "password");

 break;

 case 2:

 /* Enter email address of the sender. */

 len = str_copy (buf, "mcb@keil.com");

 break;

 case 3:

 /* Enter email address of the recipient. */

 len = str_copy (buf, "somebody@keil.com");

 break;

 case 4:

 /* Enter email subject. */

 len = str_copy (buf, "Reported measurements");

 break;

 case 5:

 /* Enter email data. */

 switch (MYBUF(pvar)->id) {

 case 0:

 /* First call, enter an email header text. */

 len = str_copy (buf, "Here is the log file:\r\n\r\n");

 MYBUF(pvar)->id = 1;

 MYBUF(pvar)->idx = 1;

 goto rep;

 case 1:

 /* Add email message body. */

 for (len = 0; len < buflen-150;) {

 /* Let's use as much of the buffer as possible. */

 /* This will produce less packets and speedup the

transfer. */

Page 742

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 len += sprintf ((char *)(buf+len), "%d.

",MYBUF(pvar)->idx);

 for (i = 0; i < 8; i++) {

 len += sprintf ((char *)(buf+len), "AD%d= %d

",i,AD_in(i));

 }

 len += str_copy (buf+len, "\r\n");

 if (++MYBUF(pvar)->idx > 500) {

 MYBUF(pvar)->id = 2;

 break;

 }

 }

 /* Request a repeated call, bit 15 is a repeat flag. */

rep: len |= 0x8000;

 break;

 case 2:

 /* Last one, add a footer text to this email. */

 len = str_copy (buf, "OK, that is all. \r\nBye..\r\n");

 break;

 }

 }

 return ((U16)len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 743

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

smtp_connect
Summary

#include <rtl.h>

BOOL smtp_connect (

 U8* ipadr, /* IP address of the SMTP

server. */

 U16 port, /* Port number of SMTP server.

*/

 void (*cbfunc)(U8 event)); /* Function to call when the

SMTP session ends. */

Description The smtp_connect function starts the SMTP client on the TCPnet system. This
causes the SMTP client to then start an SMTP session by connecting to an SMTP
server on the TCP port specified in the function argument.

The argument ipadr points to an array of 4 bytes containing the dotted-decimal
notation of the IP address of the SMTP server to connect to.

The argument cbfunc points to a function that the SMTP client running on TCPnet
calls when the SMTP session ends. The cbfunc is an event callback function that
uses the event argument of the cbfunc function to signal one of the following SMTP
events:

Event Description
SMTP_EVT_SUCCESS The email has been successfully sent.
SMTP_EVT_TIMEOUT SMTP Server response has timed out, and hence the SMTP

client has aborted the operation. The email has not been
sent.

SMTP_EVT_ERROR Protocol error occurred when sending the email. The email
has not been sent.

The smtp_connect function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 The standard SMTP port is TCP port 25.

 Your application, running on TCPnet, can call the smtp_connect function to
connect to an SMTP server to send emails.

Return Value The smtp_connect function returns __TRUE if the SMTP client has been
successfully started. Otherwise it returns __FALSE.

See Also smtp_cbfunc

Example
static void smtp_cback (U8 event);

void send_email (void) {

 U8 smtpip[4] = {192,168,2,253};

 if (smtp_connect (smtpip, 25, smtp_cback) == 0) {

 printf("E-mail not sent, SMTP Client not ready.\n");

 }

 else {

 printf("SMTP Client started.\n");

 }

}

Page 744

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

static void smtp_cback (U8 event) {

 switch (event) {

 case SMTP_EVT_SUCCESS:

 printf ("Email successfully sent\n");

 break;

 case SMTP_EVT_TIMEOUT:

 /* Timeout, try again. */

 printf ("Mail Server timeout.\n");

 break;

 case SMTP_EVT_ERROR:

 /* Error, try again. */

 printf ("Error sending email.\n");

 break;

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 745

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

snmp_set_community
Summary

#include <net_config.h>

BOOL snmp_set_community (

 const char *community); /* Pointer to a Community string. */

Description The snmp_set_community function changes the SNMP community to a new
community identified with a parameter community.

Parameter community is a pointer to a 0-terminated string. The maximum length of
the community string is limited to 18 characters.

Return Value The snmp_set_community function returns __TRUE when the SNMP community
has been changed successfully. On error, this function returns __FALSE.

See Also snmp_trap

Example
void send_alarm (void) {

 /* Send a trap message when alarm input is activated.*/

 U16 obj[2];

 /* Change the community to "private". */

 snmp_set_community ("private");

 /* Add "KeyIn" value to trap message. */

 obj[0] = 1;

 obj[1] = 8; /* Index of "KeyIn" entry in MIB table. */

 snmp_trap (NULL, 6, 1, obj);

 /* Restore the community to "public". */

 snmp_set_community ("public");

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 746

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

snmp_trap
Summary

#include <net_config.h>

BOOL snmp_trap (

 U8* man_ip, /* Pointer to the IP address of Trap

Manager. */

 U8 gen_trap, /* Generic Trap value. */

 U8 spec_trap, /* Specific Trap value. */

 U16* obj_list); /* Pointer to the list of objects. */

Description The snmp_trap function sends a trap message to the Trap Manager. Parameter
man_ip specifies the IP address of the Trap server, where the trap message is
destined to. If the IP address of the Trap Manager is not specified (parameter
man_ip is NULL), the IP address of Trap Server configured in Net_Config.c is used
instead.

Parameter gen_trap specifies the generic trap type:

Type Description
0 coldStart trap
1 warmStart trap
2 linkDown trap
3 linkUp trap
4 authenticationFailure trap
5 egpNeighborLoss trap
6 enterpriseSpecific trap

Parameter spec_trap specifies the specific trap type. It must be set to 0 for all
generic traps from 0 to 5. It defines a specific trap type for generic
enterpriseSpecific trap.

Parameter obj_list specifies the objects from the MIB table, which will be included
in the trap message variable-bindings. This parameter is a pointer to the object
list array. This array is of variable size. The first element specifies the count of
objects in the object list array, followed by the object MIB index values.

Array Index Array Value
obj[0] number of objects n
obj[1] MIB index of first object
obj[2] MIB index of second object

.. ..
obj[n] MIB index of last object

If obj_list parameter is NULL, or obj[0] = 0, no object values will be binded to the
trap message.

The snmp_trap function is a system function that is in the RL-TCPnet library. The
prototype is defined in net_config.h.

 The maximum number of objects that can be binded to the trap message is
limited to 20 objects.

Return Value The snmp_trap function returns __TRUE when the SNMP trap message has been
sent successfully. On error, this function returns __FALSE.

See Also snmp_set_community

Example
void send_alarm (void) {

 /* Send a trap message when alarm input is activated.*/

 U16 obj[2];

Page 747

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Add "KeyIn" value to trap message. */

 obj[0] = 1;

 obj[1] = 8; /* Index of "KeyIn" entry in MIB table. */

 snmp_trap (NULL, 6, 1, obj);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 748

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

spi.BusSpeed
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*BusSpeed) (

 U32 kbaud); /* Bus speed in kilo-baud */

 ..

} const SPI_DRV;

Description The BusSpeed function sets the transfer speed on the SPI interface to requested
baud rate. When SD/MMC Flash Cards are initialized from native to SPI mode, low
speed transfer (400 kBit/s maximum) is used. When the Card initialization is
complete, the high speed SPI data transfer is used.

The argument kbaud specifies the requested baud rate.

The BusSpeed function is in the SPI driver. The prototype is defined in
file_config.h. You have to customize the function in your own SPI driver.

 It is important to set the actual SPI speed equal to (or less than) the
requested baud rate kbaud, but not higher than the requested baud rate.
The error might happen due to the integer math used for the calculation of
a divide factor.

Return Value The BusSpeed function returns a value of __TRUE if successful or a value of
__FALSE if unsuccessful.

See Also spi.CheckMedia, spi.Init, spi.RecBuf, spi.Send, spi.SendBuf, spi.SetSS,
spi.UnInit

Example
/* SPI Device Driver Control Block */

SPI_DRV spi0_drv = {

 Init,

 UnInit,

 Send,

 SendBuf,

 RecBuf,

 BusSpeed,

 SetSS,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL BusSpeed (U32 kbaud) {

 /* Set an SPI clock to required baud rate. */

 U32 div;

 div = (__PCLK/1000 + kbaud - 1) / kbaud;

 if (div == 0) div = 0x02;

 if (div & 1) div++;

 if (div > 0xFE) div = 0xFE;

 SSPCPSR = div;

 return (__TRUE);

Page 749

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 750

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

spi.CheckMedia
Summary

#include <file_config.h>

typedef struct {

 ..

 U32 (*CheckMedia) (void); /* Optional, NULL if not

existing */

} const SPI_DRV;

Description The CheckMedia is a user-provided routine that checks the SD/MMC Memory Card
status. It reads the Card Detect (CD) and Write Protect (WP) digital inputs. If CD
and WP digital inputs from SD Card socket are not connected, this function might
be omitted. In this case enter the NULL value for CheckMedia into the SPI Driver
control block. It is also possible to provide this function, which always returns
M_INSERTED status.

The CheckMedia function is in the SPI driver. The prototype is defined in
file_config.h. You have to customize the function in your own SPI driver.

Return Value The CheckMedia function returns the or-ed status of the following values:

 M_INSERTED
SD Card is inserted in the socket.

 M_PROTECTED
SD Card is read-only. Lock slider is in position Locked.

See Also spi.BusSpeed, spi.Init, spi.RecBuf, spi.Send, spi.SendBuf, spi.SetSS, spi.UnInit

Example
/* SPI Device Driver Control Block */

SPI_DRV spi0_drv = {

 Init,

 UnInit,

 Send,

 SendBuf,

 RecBuf,

 BusSpeed,

 SetSS,

 CheckMedia /* Can be NULL if not

existing */

};

static U32 CheckMedia (void) {

 /* Read CardDetect and WriteProtect SD card socket pins. */

 U32 stat = 0;

 if (!(IOPIN0 & 0x04)) {

 /* Card is inserted (CD=0). */

 stat |= M_INSERTED;

 }

 if ((IOPIN0 & 0x20)) {

 /* Write Protect switch is active (WP=1). */

 stat |= M_PROTECTED;

 }

 return (stat);

Page 751

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 752

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

spi.Init
Summary

#include <file_config.h>

typedef struct {

 BOOL (*Init) (void);

 ..

} const SPI_DRV;

Description The Init function is a user-provided routine that initializes the SPI serial interface.
It is invoked by the finit function on system startup.

The Init function is in the SPI driver. The prototype is defined in file_config.h. You
have to customize the function in your own SPI driver.

Return Value The Init function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also spi.BusSpeed, spi.CheckMedia, spi.RecBuf, spi.Send, spi.SendBuf, spi.SetSS,
spi.UnInit

Example
/* SPI Device Driver Control Block */

SPI_DRV spi0_drv = {

 Init,

 UnInit,

 Send,

 SendBuf,

 RecBuf,

 BusSpeed,

 SetSS,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL Init (void) {

 /* Initialize and enable the SSP Interface module. */

 /* SSEL is GPIO, output set to high. */

 IODIR0 |= 1<<20;

 IOSET0 = 1<<20;

 /* SCK1, MISO1, MOSI1 are SSP pins. */

 PINSEL1 = (PINSEL1 & ~0x000003FC) | 0x000000A8;

 /* Enable SPI in Master Mode, CPOL=0, CPHA=0. */

 SSPCR0 = 0x0007;

 SSPCR1 = 0x0002;

 SSPCPSR = 0xFE;

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 753

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

spi.RecBuf
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*RecBuf) (

 U8 *buf, /* buffer to read data to */

 U32 sz); /* size of the data to read */

 ..

} const SPI_DRV;

Description The RecBuf is a user-provided routine that receives the data from the SPI interface
into the buffer buf for sz bytes.

This function is used to receive large data packets. Typically several 512-byte FAT
sectors or large data buffers for the Embedded File System.

The RecBuf function is in the SPI driver. The prototype is defined in file_config.h.
You have to customize the function in your own SPI driver.

 This function might be implemented in DMA mode for faster transfer.

Return Value The RecBuf function returns a value of __TRUE if successful or a value of __FALSE
if unsuccessful.

See Also spi.BusSpeed, spi.CheckMedia, spi.Init, spi.Send, spi.SendBuf, spi.SetSS,
spi.UnInit

Example
/* SPI Device Driver Control Block */

SPI_DRV spi0_drv = {

 Init,

 UnInit,

 Send,

 SendBuf,

 RecBuf,

 BusSpeed,

 SetSS,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL RecBuf (U8 *buf, U32 sz) {

 /* Receive SPI data to buffer. */

 U32 i;

 for (i = 0; i < sz; i++) {

 SSPDR = 0xFF;

 /* Wait while Rx FIFO is empty. */

 while (!(SSPSR & RNE));

 buf[i] = SSPDR;

 }

 return (__TRUE);

}

Page 754

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 755

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

spi.Send
Summary

#include <file_config.h>

typedef struct {

 ..

 U8 (*Send) (

 U8 outb); /* Byte to send to SPI interface. */

 ..

} const SPI_DRV;

Description The Send function sends one byte of data over the SPI interface, and it receives a
byte of data from the SPI interface. The Flash File System calls the function to send
or receive commands, status values, or data to the SD/MMC Flash Memory Card or
to the SPI Data Flash Memory.

The argument outb is the command or data to transmit over the SPI interface.

The Send function is in the SPI driver. The prototype is defined in file_config.h.
You have to customize the function in your own SPI driver.

Return Value The Send function returns a byte received on the SPI data input.

See Also spi.BusSpeed, spi.CheckMedia, spi.Init, spi.RecBuf, spi.SendBuf, spi.SetSS,
spi.UnInit

Example
/* SPI Device Driver Control Block */

SPI_DRV spi0_drv = {

 Init,

 UnInit,

 Send,

 SendBuf,

 RecBuf,

 BusSpeed,

 SetSS,

 CheckMedia /* Can be NULL if not

existing */

};

static U8 Send (U8 outb) {

 /* Send and Receive a byte on SPI interface. */

 SSPDR = outb;

 /* Wait if RNE cleared, Rx FIFO is empty. */

 while (!(SSPSR & RNE));

 return (SSPDR);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 756

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

spi.SendBuf
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*SendBuf) (

 U8 *buf, /* buffer containing the data */

 U32 sz); /* size of the data buffer */

 ..

} const SPI_DRV;

Description The SendBuf function is a user-provided routine that sends the contents of buf to
the SPI interface for sz bytes.

This function is used to send large data packets. Typically several 512-byte FAT
sectors or large data buffers for the Embedded File System.

The SendBuf function is in the SPI driver. The prototype is defined in file_config.h.
You have to customize the function in your own SPI driver.

 This function might be implemented in DMA mode for faster transfer.

Return Value The SendBuf function returns a value of __TRUE if successful or a value of __FALSE
if unsuccessful.

See Also spi.BusSpeed, spi.CheckMedia, spi.Init, spi.RecBuf, spi.Send, spi.SetSS,
spi.UnInit

Example
/* SPI Device Driver Control Block */

SPI_DRV spi0_drv = {

 Init,

 UnInit,

 Send,

 SendBuf,

 RecBuf,

 BusSpeed,

 SetSS,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL SendBuf (U8 *buf, U32 sz) {

 /* Send buffer to SPI interface. */

 U32 i;

 for (i = 0; i < sz; i++) {

 SSPDR = buf[i];

 /* Wait if Tx FIFO is full. */

 while (!(SSPSR & TNF));

 SSPDR;

 }

 /* Wait until Tx finished, drain Rx FIFO. */

Page 757

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 while (SSPSR & (BSY | RNE)) {

 SSPDR;

 }

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 758

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

spi.SetSS
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*SetSS) (

 U32 ss); /* Enable/Disable SPI Slave Select */

 ..

} const SPI_DRV;

Description The SetSS function enables or disables Slave Select on the SPI interface. The
argument ss specifies state of the Slave Select signal.

The SetSS function is in the SPI driver. The prototype is defined in file_config.h.
You have to customize the function in your own SPI driver.

Return Value The SetSS function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also spi.BusSpeed, spi.CheckMedia, spi.Init, spi.RecBuf, spi.Send, spi.SendBuf,
spi.UnInit

Example
/* SPI Device Driver Control Block */

SPI_DRV spi0_drv = {

 Init,

 UnInit,

 Send,

 SendBuf,

 RecBuf,

 BusSpeed,

 SetSS,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL SetSS (U32 ss) {

 /* Enable/Disable SPI Chip Select (drive it high or low). */

 if (ss) {

 /* SSEL is GPIO, output set to high. */

 IOSET0 = 1<<20;

 }

 else {

 /* SSEL is GPIO, output set to low. */

 IOCLR0 = 1<<20;

 }

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 759

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

spi.UnInit
Summary

#include <file_config.h>

typedef struct {

 ..

 BOOL (*UnInit) (void);

 ..

} const SPI_DRV;

Description The UnInit function is a user-provided routine in the SPI driver that uninitializes
the SPI serial interface. It is invoked by the funinit function.

It can be used if during the application run time the embedded flash or SD Card
drive to be disabled for whatever reason (for example lowering power
consumption). After this function is called only the finit function should be called for
reinitialization of the drive.

The UnInit function is in the SPI driver. The prototype is defined in file_config.h.
You have to customize the function in your own SPI driver.

Return Value The UnInit function returns a value of __TRUE if successful or a value of __FALSE if
unsuccessful.

See Also spi.BusSpeed, spi.CheckMedia, spi.Init, spi.RecBuf, spi.Send, spi.SendBuf,
spi.SetSS

Example
/* SPI Device Driver Control Block */

SPI_DRV spi0_drv = {

 Init,

 UnInit,

 Send,

 SendBuf,

 RecBuf,

 BusSpeed,

 SetSS,

 CheckMedia /* Can be NULL if not

existing */

};

static BOOL UnInit (void) {

 /* Return SSP interface to default state. */

 IODIR0 &= ~(1<<20);

 PINSEL1 &= ~0x000003FC;

 SSPCR1 = 0x0000;

 SSPCR0 = 0x0000;

 SSPCPSR = 0x00;

 return (__TRUE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 760

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_abort
Summary

#include <rtl.h>

BOOL tcp_abort (

 U8 socket); /* TCP socket to abort. */

Description The tcp_abort function closes the TCP connection immediately by sending a TCP
frame with the RESET flag set to the remote machine. The argument socket
specifies the handle of the socket whose connection is to be closed.

The tcp_abort function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 TCPnet calls the listener callback function when the connection has
aborted.

 After calling tcp_abort you cannot use the socket to send or receive any
data.

 After calling tcp_abort the socket still remains allocated until you release
it.

Return Value The tcp_abort function returns __TRUE if the connection has been closed
successfully. Otherwise, the function returns __FALSE.

See Also tcp_close, tcp_release_socket

Example
#include <rtl.h>

void disconnect_tcp (U8 tcp_soc) {

 ..

 /* This TCP connection needs to close immediately */

 tcp_abort (tcp_soc);

 /* Socket will not be needed anymore */

 tcp_release_socket (tcp_soc);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 761

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_check_send
Summary

#include <rtl.h>

BOOL tcp_check_send (

 U8 socket); /* TCP socket to check whether it can send

data. */

Description The tcp_check_send function determines if the TCP socket can send data. It does
this by checking whether the TCP connection has been established and whether
the socket has received an acknowledgement from the remote machine for the
previously sent data. The argument socket specifies the handle of the socket to
check.

The tcp_check_send function is in the RL-TCPnet library. The prototype is defined
in rtl.h.

Return Value The tcp_check_send function returns __TRUE if the socket is ready to send data.
Otherwise, the function returns __FALSE.

See Also tcp_get_state

Example
#include <rtl.h>

void send_data () {

 U8 remip[4] = {192,168,1,100};

 U8 *sendbuf;

 switch (tcp_get_state (socket_tcp)) {

 case TCP_STATE_FREE:

 case TCP_STATE_CLOSED:

 /* Connection idle, send Connect Request. */

 tcp_connect (socket_tcp, Rem_IP, 1001, 0);

 break;

 case TCP_STATE_CONNECT:

 /* We are connected, send command to remote peer. */

 if (tcp_check_send (socket_tcp)) {

 /* OK, socket is ready to send data. */

 sendbuf = tcp_get_buf (2);

 sendbuf[0] = BLINKLED;

 sendbuf[1] = p2;

 tcp_send (socket_tcp, sendbuf, SENDLEN);

 }

 break;

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 762

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_close
Summary

#include <rtl.h>

BOOL tcp_close (

 U8 socket); /* TCP socket to close. */

Description The tcp_close function initiates the procedure to close the TCP connection. It
might take some time to close the connection. The argument socket specifies the
handle of the socket whose connection is to be closed.

The tcp_close function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 TCPnet calls the listener callback function when the connection has closed.

 After calling tcp_close you cannot use the socket to send or receive any
data.

 After calling tcp_close the socket still remains allocated until you release
it.

Return Value The tcp_close function returns __TRUE if the connection closing procedure has
been started successfully. Otherwise, the function returns __FALSE.

See Also tcp_abort, tcp_release_socket

Example
#include <rtl.h>

void disconnect_tcp (U8 tcp_soc) {

 ..

 /* This TCP connection is no longer needed */

 tcp_close (tcp_soc);

 /* Release TCP Socket in tcp event callback function */

 /* when event TCP_EVT_CLOSE occured. */

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 763

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_connect
Summary

#include <rtl.h>

BOOL tcp_connect (

 U8 socket, /* Socket handle of the local machine. */

 U8* remip, /* Pointer to IP address of remote machine.

*/

 U16 remport, /* Port number of remote machine. */

 U16 locport); /* Port number of local machine. */

Description The tcp_connect function initiates a connection to a remote server. The argument
socket is a handle to the socket to use for communication on the local machine. The
argument locport specifies the port to use for communication on the local machine.
If locport is set to 0, TCPnet automatically allocates the first free TCP port.

The argument remip points to the buffer containing the ip address octets of the
remote server to connect to. The argument remport specifies the TCP port number
on the remote machine to communicate with.

The tcp_connect function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 Only a socket of type TCP_TYPE_CLIENT or TCP_TYPE_CLIENT_SERVER can
call the tcp_connect function.

Return Value The tcp_connect function returns __TRUE when the connection establishment
procedure has been started successfully. Otherwise, the function returns __FALSE.

See Also tcp_abort, tcp_close, tcp_listen

Example
#include <RTL.h>

U8 tcp_soc;

U16 tcp_callback (U8 soc, U8 event, U8 *ptr, U16 par) {

 /* This function is called on TCP event */

 ..

 return (0);

}

void main (void) {

 U8 rem_ip[4] = {192,168,1,110};

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 tcp_soc = tcp_get_socket (TCP_TYPE_SERVER, 0, 30,

tcp_callback);

 if (tcp_soc != 0) {

 /* Start Connection */

 tcp_connect (tcp_soc, rem_ip, 80, 1000);

 }

Page 764

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 while (1);

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 765

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_get_buf
Summary

#include <rtl.h>

U8* tcp_get_buf (

 U16 size); /* Number of bytes to be sent. */

Description The tcp_get_buf function allocates memory for the TCP send buffer into which your
application can write the outgoing data packet. The argument size specifies the
number of data bytes that the application wants to send.

After the TCP frame has been sent and an acknowledgement has been received
from the remote host, TCPnet automatically de-allocates the memory used by the
send buffer.

A default Maximum Segment Size of 1460 bytes is defined at startup. However,
when establishing a connection with a remote machine, TCPnet might negotiate a
different (smaller) value for the Maximum Segment Size.

The tcp_get_buf function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 Your application must call the tcp_get_buf function each time it wants to
send a TCP data packet.

 The size of the allocated memory must not exceed the TCP Maximum
Segment Size (1460 bytes).

 Writing more data than the allocated size of the data buffer overwrites the
Memory Manager Block links and causes TCPnet to crash.

Return Value The tcp_get_buf function returns a pointer to the allocated memory. If memory
allocation fails, TCPnet calls the sys_error function with the code
ERR_MEM_ALLOC.

See Also tcp_max_dsize, tcp_send

Example
#include <rtl.h>

#include <string.h>

void send_datalog () {

 U8 *sendbuf;

 U16 maxlen;

 maxlen = tcp_max_dlen (tcp_soc);

 sendbuf = tcp_get_buf (maxlen);

 memcpy (sendbuf, data_buf, maxlen);

 tcp_send (tcp_soc, sendbuf, maxlen);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 766

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_get_socket
Summary

#include <rtl.h>

U8 tcp_get_socket (

 U8 type, /* Type of TCP socket. */

 U8 tos, /* Type Of Service. */

 U16 tout, /* Idle timeout period before

disconnecting. */

 U16 (*listener)(/* Function to call when a TCP event

occurs. */

 U8 socket, /* Socket handle of the local machine. */

 U8 event, /* TCP event such as connect, or close. */

 U8* ptr, /* Pointer to IP address of remote

machine, */

 /* or to buffer containing received

data. */

 U16 par)); /* Port number of remote machine, or

length */

 /* of received data. */

Description The tcp_get_socket function allocates a free TCP socket. The function initializes all
the state variables of the TCP socket to the default state.

The argument type specifies the type of the TCP socket.

Socket Type Description
TCP_TYPE_SERVER The TCP socket is able to listen on the TCP port for

incoming connections.
TCP_TYPE_CLIENT The TCP socket is able to initiate a connection to a

remote server.
TCP_TYPE_CLIENT_SERVER The TCP socket is able to listen to incoming

connections and to initiate a connection to a
remote server.

TCP_TYPE_DELAY_ACK This attribute improves the performance for
applications sending large amounts of data like
HTTP server. You can combine this attribute with
the other attributes using the bitwise-or (|)
operation.

TCP_TYPE_FLOW_CTRL The TCP socket is able to control TCP Data Flow.
You can combine this attribute with the other
attributes using the bitwise-or (|) operation.

TCP_TYPE_KEEP_ALIVE The TCP socket is able to send keep-alive packets
when timeout expires. You can combine this
attribute with the other attributes using the
bitwise-or (|) operation.

The argument tos specifies the IP Type Of Service. The most common value for tos
is 0.

The argument tout specifies the idle timeout in seconds. The TCP connection is
supervised by the keep alive timer. When the connection has been idle for more
than tout seconds, TCPnet disconnects the the TCP connection or sends a
keep-alive packet if TCP_TYPE_KEEP_ALIVE attribute is set.

The argument listener is the event listening function of the TCP socket. TCPnet
calls the listener function whenever a TCP event occurs. The arguments to the
listener function are:

 socket: TCP socket handle of the local machine.

 event: Specifies the type of event that occurred as shown in the table

Page 767

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

below.

 ptr: If event is TCP_EVT_DATA, ptr points to a buffer containing the received
data. For all other events, ptr points to the IP address of the remote
machine.

 par: If event is TCP_EVT_DATA, par specifies the number of bytes of data
received. For all other events, par specifies the port number used by the
remote machine.

TCPnet uses the return value of the callback function listener only when the event
is TCP_EVT_CONREQ. It uses the return value to decide whether to accept or
reject an incoming connection when the TCP socket is listening. If the listener
function returns 1, TCPnet accepts the incoming connection. If the listener function
returns 0, TCPnet rejects the incoming connection. You can thus define the
listener function to selectively reject incoming connections from particular IP
addresses.

Event Type Description
TCP_EVT_CONREQ A Connect Request has been received from a remote client

that wants to connect to the server running on TCPnet.
TCP_EVT_CONNECT The TCP socket has connected to the remote machine.
TCP_EVT_CLOSE The TCP connection has been properly closed.
TCP_EVT_ABORT The TCP connection has been aborted.
TCP_EVT_ACK Acknowledgement has been received from the remote host

for the previously sent data.
TCP_EVT_DATA A TCP data packet has been received.

The tcp_get_socket function is in the RL-TCPnet library. The prototype is defined
in rtl.h.

note

 You must call the tcp_get_socket function before any other function calls
to the TCP socket.

 You must define the listener function to use with the TCP socket.

 You must use the TCP_TYPE_KEEP_ALIVE attribute for a longstanding
connection.

Return Value The tcp_get_socket function returns the handle of the allocated TCP socket. If the
function could not allocate a socket, it returns 0.

See Also tcp_connect, tcp_listen, tcp_release_socket, tcp_reset_window

Example
#include <rtl.h>

U8 tcp_soc;

U16 tcp_callback (U8 soc, U8 event, U8 *ptr, U16 par) {

 /* This function is called on TCP event */

 ..

 switch (event) {

 case TCP_EVT_CONREQ:

 /* Remote host is trying to connect to our TCP socket. */

 /* 'ptr' points to Remote IP, 'par' holds the remote port.

*/

 ..

 /* Return 1 to accept connection, or 0 to reject connection

*/

 return (1);

 case TCP_EVT_ABORT:

Page 768

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Connection was aborted */

 ..

 break;

 case TCP_EVT_CONNECT:

 /* Socket is connected to remote peer. */

 ..

 break;

 case TCP_EVT_CLOSE:

 /* Connection has been closed */

 ..

 break;

 case TCP_EVT_ACK:

 /* Our sent data has been acknowledged by remote peer */

 ..

 break;

 case TCP_EVT_DATA:

 /* TCP data frame has been received, 'ptr' points to data

*/

 /* Data length is 'par' bytes */

 ..

 break;

 }

 return (0);

}

void main (void) {

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 tcp_soc = tcp_get_socket (TCP_TYPE_SERVER, 0, 30,

tcp_callback);

 if (tcp_soc != 0) {

 /* Start listening on TCP port 80 */

 tcp_listen (tcp_soc, 80);

 }

 while (1);

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 769

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_get_state
Summary

#include <rtl.h>

U8 tcp_get_state (

 U8 socket); /* TCP socket to get the state of. */

Description The tcp_get_state function determines the current state of the TCP socket. Your
application can use the tcp_get_state function to monitor the progress when
establishing a connection or when closing the connection. The most useful state
values are TCP_STATE_CLOSED, TCP_STATE_LISTEN, and TCP_STATE_CONNECT.
The argument socket specifies the handle of the socket to get the state of.

The tcp_get_state function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

Return Value The tcp_get_state function returns the current state of the TCP socket.

State Description
TCP_STATE_FREE Socket is free and not allocated yet. The function cannot

return this value.
TCP_STATE_CLOSED Socket is allocated to an application but the connection

is closed.
TCP_STATE_LISTEN Socket is listening for incoming connections.
TCP_STATE_SYN_REC Socket has received a TCP packet with the flag SYN set.
TCP_STATE_SYN_SENT Socket has sent a TCP packet with the flag SYN set.
TCP_STATE_FINW1 Socket has sent a FIN packet, to start the closing of the

connection.
TCP_STATE_FINW2 Socket has received acknowledgement from the remote

machine for the FIN packet it sent out from the local
machine. Socket is now waiting for a FIN packet from
the remote machine.

TCP_STATE_CLOSING Socket has received a FIN packet from the remote
machine independently

TCP_STATE_LAST_ACK Socket is waiting for the last ACK packet to the FIN
packet it sent out.

TCP_STATE_TWAIT Socket is waiting on a 2 ms timeout before closing the
connection.

TCP_STATE_CONNECT Socket has established a TCP connection. You can
transfer data only in this state.

See Also tcp_check_send

Example
#include <rtl.h>

void send_data () {

 U8 remip[4] = {192,168,1,100};

 U8 *sendbuf;

 switch (tcp_get_state (socket_tcp)) {

 case TCP_STATE_FREE:

 case TCP_STATE_CLOSED:

 /* Connection idle, send Connect Request. */

 tcp_connect (socket_tcp, Rem_IP, 1001, 0);

 break;

 case TCP_STATE_CONNECT:

 /* We are connected, send command to remote peer. */

 if (tcp_check_send (socket_tcp)) {

 /* OK, socket is ready to send data. */

 sendbuf = tcp_get_buf (2);

Page 770

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 sendbuf[0] = BLINKLED;

 sendbuf[1] = p2;

 tcp_send (socket_tcp, sendbuf, SENDLEN);

 }

 break;

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 771

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_listen
Summary

#include <rtl.h>

BOOL tcp_listen (

 U8 socket, /* TCP socket to listen with. */

 U16 locport); /* TCP port number to listen at. */

Description The tcp_listen function opens a socket for incoming connections by causing the
socket to listen at a local TCP port. The argument socket specifies the handle for
the socket to listen with on the local machine. The argument locport specifies the
TCP port number to listen at.

The tcp_listen function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 TCPnet server applications (such as Telnet and HTTP server) must open a
TCP socket for listening.

 Only sockets of type TCP_TYPE_SERVER or TCP_TYPE_CLIENT_SERVER can
call the tcp_listen function.

Return Value The tcp_listen function returns __TRUE if the TCP socket has started listening
without errors. Otherwise, the function returns __FALSE.

See Also tcp_abort, tcp_close, tcp_connect

Example
#include <rtl.h>

U8 tcp_soc;

U16 tcp_callback (U8 soc, U8 event, U8 *ptr, U16 par) {

 /* This function is called on TCP event */

 ..

 switch (event) {

 case TCP_EVT_CONREQ:

 /* Remote host is trying to connect to our TCP socket. */

 /* 'ptr' points to Remote IP, 'par' holds the remote port.

*/

 ..

 /* Return 1 to accept connection, or 0 to reject connection

*/

 return (1);

 case TCP_EVT_ABORT:

 /* Connection was aborted */

 ..

 break;

 case TCP_EVT_CONNECT:

 /* Socket is connected to remote peer. */

 ..

 break;

 case TCP_EVT_CLOSE:

 /* Connection has been closed */

 ..

 break;

Page 772

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 case TCP_EVT_ACK:

 /* Our sent data has been acknowledged by remote peer */

 ..

 break;

 case TCP_EVT_DATA:

 /* TCP data frame has been received, 'ptr' points to data

*/

 /* Data length is 'par' bytes */

 ..

 break;

 }

 return (0);

}

void main (void) {

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 tcp_soc = tcp_get_socket (TCP_TYPE_SERVER, 0, 30,

tcp_callback);

 if (tcp_soc != 0) {

 /* Start listening on TCP port 80 */

 tcp_listen (tcp_soc, 80);

 }

 while (1);

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 773

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_max_dsize
Summary

#include <rtl.h>

U16 tcp_max_dsize (

 U8 socket); /* TCP socket to get the MSS of. */

Description The tcp_max_dsize function determines the maximum number of data bytes that
can be sent in the TCP packet (Maximum Segment Size). The argument socket
specifies the handle of the TCP socket to get the Maximum Segment Size of.

A default Maximum Segment Size of 1460 bytes is defined at startup. However,
when establishing a connection with a remote machine, TCPnet might negotiate a
different (smaller) value for the Maximum Segment Size.

The tcp_max_dsize function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

Return Value The tcp_max_dsize function returns the maximum number of data bytes that can
be sent in each TCP packet.

See Also tcp_get_buf, tcp_send

Example
#include <rtl.h>

#include <string.h>

void send_datalog () {

 U8 *sendbuf;

 U16 maxlen;

 maxlen = tcp_max_dsize (tcp_soc);

 sendbuf = tcp_get_buf (maxlen);

 memcpy (sendbuf, data_buf, maxlen);

 tcp_send (tcp_soc, sendbuf, maxlen);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 774

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_release_socket
Summary

#include <rtl.h>

BOOL tcp_release_socket (

 U8 socket); /* TCP socket to release. */

Description The tcp_release_socket function de-allocates the memory used by the TCP
socket. The argument socket specifies the handle of the socket to be released.

The tcp_release_socket function is in the RL-TCPnet library. The prototype is
defined in rtl.h.

note

 You must call the tcp_release_socket function when you do not need the
TCP socket any longer.

 After calling tcp_release_socket the socket is free to use by another
process.

Return Value The tcp_release_socket function returns __TRUE if the TCP socket has been
released successfully. Otherwise, the function returns __FALSE.

See Also tcp_abort, tcp_close, tcp_get_socket

Example
#include <rtl.h>

void disconnect_tcp (U8 tcp_soc) {

 ..

 /* This TCP connection needs to close immediately */

 tcp_abort (tcp_soc);

 /* Socket will not be needed anymore */

 tcp_release_socket (tcp_soc);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 775

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_reset_window
Summary

#include <rtl.h>

void tcp_reset_window (

 U8 socket); /* TCP socket to reset the window size. */

Description The tcp_reset_window function resets the TCP window size to a default value
defined with TCP_DEF_WINSIZE macro. The argument socket specifies the handle
of the socket to reset the window size of.

This function can only be used with sockets that have a TCP flow control enabled.
To enable a TCP flow control for the socket, tcp_get_socket function has to be
called with TCP_TYPE_FLOW_CTRL attribute set. This attribute enables using a
Sliding Window protocol.

In Flow Control mode, each received data packet reduces the receiving Window
Size by the number of data bytes received in the packet. Soon the window size
becomes very small or 0, remote host stops sending data and waits for a window
update. As soon as the received data is processed, we can call a
tcp_reset_window function to reopen the receiver window for further incoming
data.

Depending on the context, from where this function was called, it does the
following actions:

 resets the window size of the socket and returns if called from the callback
function. The window size is actually changed in the acknowledge packet
generated by TCPnet when the callback function returns.

 resets the window size and sends out a Window Update packet if called
from the other part of the user application.

 does nothing if the socket is not in TCP_STATE_CONNECT state and the
TCP_TYPE_FLOW_CTRL attribute not set for the socket.

The tcp_reset_window function is in the RL-TCPnet library. The prototype is
defined in rtl.h.

Return Value The tcp_reset_window function does not return any value.

See Also tcp_get_socket

Example
#include <rtl.h>

U8 tcp_soc;

U8 buf[TCP_DEF_WINSIZE];

U32 head, tail;

void send_to_uart (void) {

 /* Send the data received from TCP to UART. */

 if (uart_busy () || head == tail) {

 /* Do nothing if UART is busy or when 'buf' is empty. */

 return;

 }

 send_uart (buf[tail++]);

 if (tail == head) {

 /* The 'buf' is empty, all bytes sent out to UART. *.

Page 776

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 tail = 0;

 head = 0;

 tcp_reset_window (tcp_soc);

 }

}

U16 tcp_callback (U8 soc, U8 event, U8 *ptr, U16 par) {

 /* This function is called on TCP event */

 ..

 switch (event) {

 case TCP_EVT_CONREQ:

 /* Remote host is trying to connect to our TCP socket. */

 /* 'ptr' points to Remote IP, 'par' holds the remote port.

*/

 /* Return 1 to accept connection, or 0 to reject connection

*/

 return (1);

 case TCP_EVT_ABORT:

 /* Connection was aborted */

 tcp_soc = 0;

 break;

 case TCP_EVT_CONNECT:

 /* Socket is connected to remote peer. */

 tcp_soc = soc;

 break;

 case TCP_EVT_CLOSE:

 /* Connection has been closed */

 tcp_soc = 0;

 break;

 case TCP_EVT_ACK:

 /* Our sent data has been acknowledged by remote peer */

 break;

 case TCP_EVT_DATA:

 /* TCP data frame has been received, 'ptr' points to data

*/

 /* Data length is 'par' bytes */

 memcpy (&buf[head], ptr, par);

 head += par;

 break;

 }

 return (0);

}

void main (void) {

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 tcp_soc = tcp_get_socket (TCP_TYPE_SERVER | TCP_TYPE_FLOW_CTRL,

 0, 30, tcp_callback);

Page 777

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 if (tcp_soc != 0) {

 /* Start listening on TCP port 8080 */

 tcp_listen (tcp_soc, 8080);

 }

 head = 0;

 tail = 0;

 while (1);

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 send_to_uart ();

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 778

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tcp_send
Summary

#include <rtl.h>

BOOL tcp_send (

 U8 socket, /* TCP socket to send the data packet from. */

 U8* buf, /* Pointer to buffer containing the data to

send. */

 U16 dlen); /* Number of bytes of data to send. */

Description The tcp_send function sends the data packet to a remote machine. The argument
socket specifies the socket handle to use for communication on the local machine.

The argument buf points to the constructed TCP data packet. The argument dlen
specifies the number of bytes in the data packet to send.

The tcp_send function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 You must allocate the memory using tcp_get_buf before calling tcp_send.

 The socket must already be open and connected for communication.

Return Value The tcp_send function returns __TRUE when the TCP packet has been sent
successfully. Otherwise, the function returns __FALSE.

See Also tcp_check_send, tcp_get_buf, tcp_max_dsize

Example
#include <rtl.h>

#include <string.h>

void send_datalog () {

 U8 *sendbuf;

 U16 maxlen;

 maxlen = tcp_max_dsize (tcp_soc);

 sendbuf = tcp_get_buf (maxlen);

 memcpy (sendbuf, data_buf, maxlen);

 tcp_send (tcp_soc, sendbuf, maxlen);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 779

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tftp_fclose
Summary

#include <net_config.h>

void tftp_fclose (

 FILE* file); /* Pointer to the file to close. */

Description The tftp_fclose function closes the file identified by the file stream pointer in the
function argument.

The tftp_fclose function is in the TFTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The tftp_fclose function does not return any value.

See Also tftp_fopen, tftp_fread, tftp_fwrite

Example
void tftp_fclose (FILE *file) {

 /* Close the file, opened for reading or writing. This function

is */

 /* called, when the TFTP Session is closing.

 */

 fclose (file);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 780

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tftp_fopen
Summary

#include <net_config.h>

void* tftp_fopen (

 U8* fname, /* Pointer to name of file to open. */

 U8* mode); /* Pointer to mode of operation. */

Description The tftp_fopen function opens a file for reading or writing. The argument fname
specifies the name of the file to open. The mode defines the type of access
permitted for the file. It can have one of the following values.

Mode Description
"r" Opens the file for reading. If the file does not exist, fopen fails.
"w" Opens an empty file for writing if the file does not exist. If the file

already exists, its contents are cleared.

The tftp_fopen function is in the TFTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The tftp_fopen function returns a pointer to the opened file. The function returns
NULL if it cannot open the file.

See Also tftp_fclose, tftp_fread, tftp_fwrite

Example
void *tftp_fopen (U8 *fname, U8 *mode) {

 /* Open filename fname for reading or writing. */

 return (fopen(fname, mode));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 781

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tftp_fread
Summary

#include <net_config.h>

U16 tftp_fread (

 FILE* file, /* Pointer to the file to read from. */

 U32 fpos, /* Position in the file, to read from. */

 U8* buf); /* Pointer to buffer, to store the data. */

Description The tftp_fread reads a block of data from the file identified by the file stream
pointer in the function argument. The argument fpos is an offset relative to the
beginning of the stream. The offset specifies the file position to read from. The
argument buf is a pointer to the buffer where the function stores the read data.

The tftp_fread function is in the TFTP_uif.c module. The prototype is defined in
net_config.h.

note

 The tftp_fread function must read 512 bytes. The TFTP Server stops
reading and closes the TFTP session if the return value is less than 512
bytes.

Return Value The tftp_fread function returns the number of bytes read from the file.

See Also tftp_fclose, tftp_fopen, tftp_fwrite

Example
U16 tftp_fread (FILE *file, U32 fpos, U8 *buf)

 /* Read file data to sending buffer. Max. data length is */

 /* 512 bytes. Return number of bytes copied to buffer. */

 if (fpos != ftell (file)) {

 /* Rewind file position pointer back for 512 bytes. */

 fseek (file, fpos, SEEK_SET);

 }

 return (fread (buf, 1, 512, file));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 782

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tftp_fwrite
Summary

#include <net_config.h>

U16 tftp_fwrite (

 FILE* file, /* Pointer to the file to write to. */

 U8* buf, /* Pointer to the buffer containing the data.

*/

 U16 len); /* Number of bytes to write. */

Description The tftp_fwrite function writes a block of data to the file identified by the file
stream pointer. The argument buf points to the buffer containing the data that is
to be written to the file. The argument len specifies the number of bytes to write to
the file.

The tftp_fwrite function is in the TFTP_uif.c module. The prototype is defined in
net_config.h.

Return Value The tftp_fwrite function returns the number of bytes written to the file.

See Also tftp_fclose, tftp_fopen, tftp_fread

Example
U16 tftp_fwrite (FILE *file, U8 *buf, U16 len) {

 /* Write data to file. Return number of bytes actually written.

When */

 /* returned number of bytes 'len' is less than 512, TFTP

connection */

 /* will be closed.

 */

 return (fwrite (buf, 1, len, file));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 783

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

timer_tick
Summary

#include <rtl.h>

void timer_tick (void);

Description The timer_tick function sets the timer tick flag, which the TCPnet system uses to
measure time.

The timer_tick function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 The TCPnet system does not use any CPU timers. Hence, you must
generate the timing events by periodically calling the timer_tick function,
for example by using a timer interrupt function.

 Since all the TCPnet timeouts are very slow, you can also generate timer
events by polling for timer overflow.

 You must configure the parameter TICK_INTERVAL in net_config.c to the
period of your timer events, in milliseconds. You can set this to any value
between 10 and 200.

 It is better to set TICK_INTERVAL to a higher value because low value for
TICK_INTERVAL results in more frequent calls to system timer update
function, which reduces the performance of the TCPnet system.

Return Value The timer_tick function does not return any value.

See Also main_TcpNet

Example
#include <RTL.h>

static void timer_poll () {

 if (T1IR & 1) {

 T1IR = 1;

 /* Timer tick every 100 ms */

 timer_tick ();

 }

}

void main (void) {

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 while (1);

 /* Poll the system tick timer */

 timer_poll ();

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 ..

 }

}

Page 784

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 785

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tnet_cbfunc
Summary

#include <net_config.h>

U16 tnet_cbfunc (

 U8 code, /* Type of message requested by the telnet

server. */

 U8* buf, /* Location where to write the requested

message. */

 U16 buflen); /* Number of bytes in the output buffer. */

Description The tnet_cbfunc function provides the connection and login messages to the
telnet server running on TCPnet, when requested. The telnet server sends these
messages to the telnet client.

The argument code specifies the type of message that the telnet server requires.
This is shown in the table.

Code Message Description
0 Initial header To inform the user that the user's telnet client has

connected to the telnet server running on TCPnet.
1 Prompt string To inform the user that the telnet server is ready and

waiting for a command.
2 Login header Displayed only when user authentication is enabled.
3 Login username To inform the user to enter the username.
4 Login password To inform the user to enter the password.
5 Incorrect login To inform the user that the login is incorrect.
6 Timeout login To inform the user that the login has timed out.
7 Unsolicited

message
To write unsolicited messages from the high-layer user
application (for example a basic interpreter).

The argument buf points to the output buffer where the tnet_cbfunc must write
the message. The argument buflen specifies the length of the output buffer in
bytes.

The tnet_cbfunc function is part of RL-TCPnet. The prototype is defined in
net_config.h. You must customize the function in telnet_uif.c.

note

 The length of the output buffer, buflen, might vary because buffer length is
determined by the TCP socket Maximum Segment Size (MSS) negotiation.
The buffer length is normally around 1400 bytes for local LAN. But this can
be reduced to 500 bytes or even less.

 If the tnet_cbfunc function writes more bytes than buflen into the output
buffer, then a system crash resulting from corruption of memory link
pointers is highly likely.

 The telnet server does not automatically expand the carriage return (CR)
character. The tnet_cbfunc function must write the carriage return and line
feed (LF) characters into the the buffer to indicate the end of each
message.

Return Value The tnet_cbfunc function returns the number of bytes written to the output buffer.

See Also tnet_process_cmd

Example
U16 tnet_cbfunc (U8 code, U8 *buf, U16 buflen) {

 U16 len = 0;

 switch (code) {

 case 0:

Page 786

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 /* Write initial header after login. */

 len = str_copy (buf, tnet_header);

 break;

 case 1:

 /* Write a prompt string. */

 len = str_copy (buf, "\r\nMcb2100> ");

 break;

 case 2:

 /* Write Login header. */

 len = str_copy (buf, CLS "\r\nKeil Embedded Telnet Server

V1.00,"

 " please login...\r\n");

 break;

 case 3:

 /* Write 'username' prompt. */

 len = str_copy (buf, "\r\nUsername: ");

 break;

 case 4:

 /* Write 'Password' prompt. */

 len = str_copy (buf, "\r\nPassword: ");

 break;

 case 5:

 /* Write 'Login incorrect'.message. */

 len = str_copy (buf, "\r\nLogin incorrect");

 break;

 case 6:

 /* Write 'Login Timeout' message. */

 len = str_copy (buf, "\r\nLogin timed out after 60

seconds.\r\n");

 break;

 case 7:

 /* Write Unsolicited messages from the Application Layer

above. */

 len = sprintf ((S8 *)buf, "\r\nUnsolicited message nr.

%d\r\n",

 unsol_msg++);

 break;

 }

 return (len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 787

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tnet_ccmp
Summary

#include <net_config.h>

BOOL tnet_ccmp (

 U8* buf, /* Pointer to the message from the telnet

client. */

 U8* cmd); /* String containing the command to compare

with. */

Description The tnet_ccmp function compares the command part of the message in the buffer
buf with the string cmd.

The tnet_ccmp function is in the RL-TCPnet library. The prototype is defined in
net_config.h.

note

 The tnet_ccmp function is similar to the standard C string function strcmp.
The difference is that tnet_ccmp only compares the first string, in buf, that
is either terminated by the NULL character or followed by a space
character. Hence, you must pass the message from the telnet client using
buf and not using cmd.

 All the characters in the string cmd must be in capital letters because the
string in buf also has only capital letters. This is due to an internal
conversion before calling the tnet_ccmp function.

Return Value The tnet_ccmp function returns __TRUE if there is a match. It returns __FALSE, if
there is no match.

See Also tnet_process_cmd, tnet_set_delay

Example
U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U32 *pvar) {

 U16 len,val,ch;

 /* Simple Command line parser */

 len = strlen (cmd);

 if (tnet_ccmp (cmd, "BYE") == __TRUE) {

 /* 'BYE' command, send message and disconnect */

 len = str_copy (buf, "\r\nDisconnect...\r\n");

 /* Hi bit of return value is a disconnect flag */

 return (len | 0x8000);

 }

 if (tnet_ccmp (cmd, "ADIN") == __TRUE) {

 /* 'ADIN' command received */

 if (len >= 6) {

 sscanf (cmd+5,"%d",&ch);

 val = AD_in (ch);

 len = sprintf (buf,"\r\n ADIN %d = %d",ch,val);

 return (len);

 }

 }

 if (tnet_ccmp (cmd, "HELP") == __TRUE || tnet_ccmp (cmd, "?")

Page 788

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

== __TRUE) {

 /* 'HELP' command, display help text */

 len = str_copy (buf,tnet_help);

 return (len);

 }

 /* Unknown command, display message */

 len = str_copy (buf, "\r\n==> Unknown Command: ");

 len += str_copy (buf+len, cmd);

 return (len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 789

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tnet_get_info
Summary

#include <net_config.h>

void tnet_get_info (

 REMOTEM* info); /* Pointer to structure to copy */

 /* remote machine information into. */

Description The tnet_get_info function provides information about the remote machine that
has connected to the TCPnet telnet server. The argument info points to a structure
into which the function writes the IP address and MAC address of the remote
machine.

The tnet_get_info function is in the RL-TCPnet library. The prototype is defined in
net_config.h.

note

 You can use the tnet_get_info function to restrict which machines are
allowed to perform system changes.

 For PPP or SLIP links, the MAC address is set to 00-00-00-00-00-00.

Return Value The tnet_get_info function does not return any value.

See Also tnet_process_cmd

Example
U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U32 *pvar) {

 REMOTEM rm;

 U16 len;

 /* Simple Command line parser */

 len = strlen (cmd);

 if (tnet_ccmp (cmd, "RINFO") == __TRUE) {

 /* Display Remote Machine IP and MAC address. */

 tnet_get_info (&rm);

 len = sprintf (buf, "\r\n Remote IP : %d.%d.%d.%d",

rm.IpAdr[0],rm.IpAdr[1],

rm.IpAdr[2],rm.IpAdr[3]);

 len += sprintf (buf+len, "\r\n Remote MAC:

%02X-%02X-%02X-%02X-%02X-%02X",

rm.HwAdr[0],rm.HwAdr[1],

rm.HwAdr[2],rm.HwAdr[3],

rm.HwAdr[4],rm.HwAdr[5]);

 return (len);

 }

 ..

 return (len);

}

Page 790

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 791

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tnet_msg_poll
Summary

#include <net_config.h>

BOOL tnet_msg_poll (

 U8 session); /* Telnet Session handle. */

Description The tnet_msg_poll function polls the upper-layer user application for unsolicited
messages. The Telnet session handle identified with parameter session can be
used to identify the remote host when several Telnet connections are active at the
same time.

If this function returns __TRUE a telnet callback function is called immediatelly to
get the message.

Return Value The tnet_msg_poll function returns __TRUE when the upper-layer user application
has a pending message to send. Otherwise, the function returns __FALSE.

See Also tnet_cbfunc

Example
BOOL tnet_msg_poll (U8 session) {

 /* Poll for Unsolicited Messages from Server. Return TRUE to

the Telnet */

 /* Server when messages are available for the telnet 'session'.

 */

 if (session != 1) {

 /* Only 1st session may receive Unsolicited Messages. */

 return (__FALSE);

 }

 if (send_msg == __TRUE) {

 send_msg = __FALSE;

 /* Yes, message is available. */

 return (__TRUE);

 }

 /* No messages available. */

 return (__FALSE);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 792

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tnet_process_cmd
Summary

#include <net_config.h>

U16 tnet_process_cmd (

 U8* cmd, /* Pointer to command string from the telnet

client. */

 U8* buf, /* Location where to write the return message.

*/

 U16 buflen, /* Number of bytes in the output buffer. */

 U32* pvar); /* Pointer to a storage variable. */

Description The tnet_process_cmd function processes and executes the command requested
by the telnet client. The telnet server running on TCPnet calls the
tnet_process_cmd function when it receives the consecutive Carriage Return (CR)
and Line Feed (LF) character sequence from the telnet client (this is usually
produced by the user pressing Enter on the telnet client terminal).

The argument cmd points to the message containing the command that is received
from the telnet client. The argument buf points to the output buffer where the
tnet_process_cmd must write the message to be returned to the telnet client.
The argument buflen specifies the length of the output buffer in bytes.

The argument pvar is a pointer to a variable that never gets altered by the Telnet
Server. You can use *pvar as a repeat counter or simply to distinguish between
different calls of the tnet_process_cmd function.

The tnet_process_cmd function is part of RL-TCPnet. The prototype is defined in
net_config.h. You must customize the function in telnet_uif.c.

note

 The length of the output buffer, buflen, might vary because buffer length is
determined by the TCP socket Maximum Segment Size (MSS) negotiation.
The buffer length is normally around 1400 bytes for local LAN. But this can
be reduced to 500 bytes or even less.

 If the tnet_process_cmd function writes more bytes than buflen into the
output buffer, then a system crash resulting from corruption of memory link
pointers is highly likely.

 The telnet server does not automatically expand the CR character. The
tnet_process_cmd function must write the CR and LF characters into the
the buffer to indicate the end of each message.

 The argument pvar is private to each Telnet Session. The Telnet Server
clears the data in the pvar pointer, to 0, before the tnet_process_cmd
function is called for the first time in each session.

Return Value The tnet_process_cmd function returns the number of bytes written to the output
buffer. It also encodes the values of the repeat flag and the disconnect flag into
the return value.

If bit 14 (repeat flag) of the return value is set to 1, the telnet server running on
TCPnet calls the tnet_process_cmd function again with the argument cmd and
storage variable *pvar of the same value. The function tnet_process_cmd can
then enter more data into the buffer buf.

If bit 15 (disconnect flag) of the return value is set to 1, the telnet server
disconnects the telnet session.

See Also tnet_cbfunc, tnet_ccmp

Example
U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U32 *pvar) {

Page 793

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 U32 len,val,ch;

 /* Simple Command line parser */

 len = strlen (cmd);

 if (tnet_ccmp (cmd, "BYE") == __TRUE) {

 /* 'BYE' command, send message and disconnect */

 len = str_copy (buf, "\r\nDisconnect...\r\n");

 /* Hi bit of return value is a disconnect flag */

 return (len | 0x8000);

 }

 if (tnet_ccmp (cmd, "ADIN") == __TRUE) {

 /* 'ADIN' command received */

 if (len >= 6) {

 sscanf (cmd+5,"%d",&ch);

 val = AD_in (ch);

 len = sprintf (buf,"\r\n ADIN %d = %d",ch,val);

 return (len);

 }

 }

 if (tnet_ccmp (cmd, "HELP") == __TRUE || tnet_ccmp (cmd, "?")

== __TRUE) {

 /* 'HELP' command, display help text */

 len = str_copy (buf,tnet_help);

 return (len);

 }

 /* Unknown command, display message */

 len = str_copy (buf, "\r\n==> Unknown Command: ");

 len += str_copy (buf+len, cmd);

 return (len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 794

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tnet_set_delay
Summary

#include <net_config.h>

void tnet_set_delay (

 U16 dly); /* Length of time to wait. */

Description The tnet_set_delay function ensures that the telnet server does not call the
tnet_process_cmd function until a certain time period expires. After the time
interval, the telnet server can call the tnet_process_cmd function. The argument
dly specifies the time period to wait, in number of timer ticks.

The tnet_set_delay function is in the RL-TCPnet library. The prototype is defined in
net_config.h.

note

 For example, when monitoring an input channel, you can call the
tnet_set_delay function from the tnet_process_cmd to continuously
update the telnet client screen every 2 seconds. Pressing a key on the
remote telnet client stops the monitoring process.

Return Value The tnet_set_delay function does not return any value.

See Also tnet_process_cmd

Example
typedef struct {

 U8 id;

 U8 nmax;

 U8 idx;

} MY_BUF;

#define MYBUF(p) ((MY_BUF *)p)

U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U32 *pvar) {

 U16 len;

 switch (MYBUF(pvar)->id) {

 case 0:

 /* On first call to this function, the value of '*pvar' is

0 */

 break;

 case 1:

 /* Display measurements triggered by command 'MEAS' */

 ..

 return (len);

 case 2:

 /* Monitor analog input ADIN0. */

 len = sprintf (buf,"ADIN0 = %d",AD_in (0));

 /* Delay a call to this function for 2 seconds (20 *

100ms). */

 tnet_set_delay (20);

 /* Request a repeated call, bit 14 is a repeat flag. */

 len |= 0x4000;

 return (len);

Page 795

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 }

 /* Simple Command line parser */

 if (tnet_ccmp (cmd, "ADMON") == __TRUE) {

 /* Monitor the value of ADIN0 constantly on a screen. */

 len = str_copy (buf, CLS);

 MYBUF(cmd)->id = 2;

 return (len | 0x4000);

 }

 ..

 return (len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 796

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tsk_lock
Summary

#include <rtl.h>

void tsk_lock (void);

Description The tsk_lock function disables the RTX kernel timer interrupts and thereby
disables task switching.

The task_lock function is in the RL-RTX library. The prototype is defined in rtl.h.

Note

 For the duration when the timer interrupts are disabled, the RTX kernel
task scheduler is blocked, timeouts do not work, and the Round Robin task
scheduling is also blocked. Hence, it is highly recommended that disabling
of the RTX kernel timer interrupts is kept to a very short time period.

Return Value The tsk_lock function does not return any value.

See Also tsk_unlock

Example
#include <rtl.h>

void free_mem (void *ptr) {

 /* 'free()' is not reentrant. */

 tsk_lock ();

 free (ptr);

 tsk_unlock ();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 797

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

tsk_unlock
Summary

#include <rtl.h>

void tsk_unlock (void);

Description The tsk_unlock function enables the RTX kernel timer interrupts and thereby
enables task switching if they had been disabled by the tsk_lock function.

The tsk_unlock function is in the RL-RTX library. The prototype is defined in rtl.h.

Return Value The tsk_unlock function does not return any value.

See Also tsk_lock

Example
#include <rtl.h>

void free_mem (void *ptr) {

 /* 'free()' is not reentrant. */

 tsk_lock ();

 free (ptr);

 tsk_unlock ();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 798

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

udp_close
Summary

#include <rtl.h>

BOOL udp_close (

 U8 socket); /* Socket handle to close. */

Description The udp_close function closes the UDP socket identified in the function argument.
After calling the udp_close function, the UDP socket cannot send or receive any
data packet.

The udp_close function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 After closing the UDP socket, you can reopen it using the udp_open
function.

 The UDP socket still reserves memory after calling the udp_close function.
Hence, if you do not need the socket, you must release the memory using
the udp_release_socket function after calling udp_close.

Return Value The udp_close function returns __TRUE if the UDP socket is successfully closed.
Otherwise, the function returns __FALSE.

See Also udp_open, udp_release_socket

Example
#include <rtl.h>

void disconnect_udp (U8 udp_soc) {

 ..

 /* This UDP connection is no longer needed */

 udp_close (udp_soc);

 udp_release_socket (udp_soc);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 799

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

udp_get_buf
Summary

#include <rtl.h>

U8* udp_get_buf (

 U16 size); /* Number of bytes to be sent. */

Description The udp_get_buf function allocates memory for the UDP send buffer into which
your application can write the outgoing data packet. The argument size specifies
the number of data bytes that the application wants to send.

When the UDP frame has been sent, TCPnet automatically de-allocates the
memory used by the send buffer.

The udp_get_buf function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 Your application must call the udp_get_buf function each time it wants to
send a UDP data packet.

 The total size of the allocated memory must not exceed the UDP Maximum
Packet Size (1472 bytes).

 Writing more data than the allocated size of the data buffer overwrites the
Memory Manager Block links and causes TCPnet to crash.

Return Value The udp_get_buf function returns a pointer to the allocated memory. If memory
allocation fails, TCPnet calls the sys_error function with the code
ERR_MEM_ALLOC.

See Also udp_send

Example
#include <rtl.h>

#include <string.h>

void send_data () {

 char udp_msg[] = {"Hello World!"};

 U8 remip[4] = {192,168,1,100};

 U8 *sendbuf;

 U16 len;

 len = strlen (udp_msg);

 sendbuf = udp_get_buf (len);

 str_copy (sendbuf, udp_msg);

 /* Send 'Hello World!' to remote peer */

 udp_send (udp_soc, remip, 1000, sendbuf, len);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 800

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

udp_get_socket
Summary

#include <rtl.h>

U8 udp_get_socket (

 U8 tos, /* Type Of Service. */

 U8 opt, /* Option to calculate or verify the

checksum. */

 U16 (*listener)(/* Function to call when TCPnet receives a

data packet. */

 U8 socket, /* Socket handle of the local machine. */

 U8* remip, /* Pointer to IP address of remote

machine. */

 U16 port, /* Port number of remote machine. */

 U8* buf, /* Pointer to buffer containing the

received data. */

 U16 len)); /* Number of bytes in the received data

packet. */

Description The udp_get_socket function allocates a free UDP socket. The function initializes
all the state variables of the UDP socket to the default state.

The argument tos specifies the IP Type Of Service. The most common value for tos
is 0. The argument opt specifies the checksum option as shown in the table.

Option Value Description
UDP_OPT_SEND_CS Calculate the UDP checksum for the packets to be sent.
UDP_OPT_CHK_CS Check the UDP checksum on the received packets.

You can also set opt to UDP_OPT_SEND_CS|UDP_OPT_CHK_CS to enable both
options. This is recommended for a more secure UDP connection. You can also
disable both options by setting opt to 0 for fast system reaction time.

The argument listener is the event listening function of the UDP socket. TCPnet
calls the listener function whenever a UDP data packet is received. The arguments
to the listener function are:

 socket: UDP socket handle of the local machine.

 remip: pointer to the IP address of the remote machine.

 port: UDP port number on the remote machine.

 buf: pointer to buffer containing the received data.

 len: number of bytes in the received packet.

The udp_get_socket function is in the RL-TCPnet library. The prototype is defined
in rtl.h.

note

 You must call the udp_get_socket function before any other function calls
to the UDP socket.

 Ethernet packets are also protected by the ethernet CRC.

 Packets can be modified when passing through routers, proxy servers,
gateways, etc.

 You must define the listener function to use with the UDP socket.

Return Value The udp_get_socket function returns a handle to the allocated UDP socket. If a

Page 801

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

socket cannot be allocated, the function returns 0.

See Also udp_close, udp_open, udp_release_socket

Example
#include <rtl.h>

U8 udp_soc;

U16 udp_callback (U8 socket, U8 *remip, U16 remport, U8 *buf, U16

len) {

 /* This function is called when UDP data is received */

 /* Process received data from 'buf' */

 ..

 return (0);

}

void main (void) {

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 udp_soc = udp_get_socket (0, UDP_OPT_SEND_CS | UDP_OPT_CHK_CS,

udp_callback);

 if (udp_soc != 0) {

 /* Open UDP port 1000 for communication */

 udp_open (udp_soc, 1000);

 }

 while (1);

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 802

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

udp_mcast_ttl
Summary

#include <rtl.h>

BOOL udp_mcast_ttl (

 U8 socket, /* UDP socket to set Time to Live. */

 U8* ttl); /* TTL value - number of routers to cross. */

Description The udp_mcast_ttl function sets the Time to Live value for multicast packets of an
UDP socket identified with a parameter socket. A TTL value controls the number of
routers the packet can cross before being expired. For multicast message the
default TTL value is 1. If this function is not called a default TTL value of 1 is
assumed for all transmitted Multicast UDP datagrams.

The argument ttl specifies the TTL value for the UDP socket.

The udp_mcast_ttl function is in the RL-TCPnet library. The prototype is defined in
rtl.h.

note

 This TTL value is not used for unicast UDP datagrams.

Return Value The udp_mcast_ttl function returns __TRUE when the TTL value successfully
changed. Otherwise, the function returns __FALSE.

See Also udp_get_socket, udp_open, udp_send

Example
 ..

udp_soc = udp_get_socket (0, UDP_OPT_SEND_CS | UDP_OPT_CHK_CS,

udp_callback);

if (udp_soc != 0) {

 /* Open UDP port 1000 for communication */

 udp_open (udp_soc, 1000);

 /* Let UDP Multicast datagrams cross a router. */

 udp_mcast_ttl (udp_soc, 2);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 803

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

udp_open
Summary

#include <rtl.h>

BOOL udp_open (

 U8 socket, /* Socket handle to use for communication. */

 U16 locport); /* Local port to use for communication. */

Description The udp_open function opens the UDP socket identified by the argument socket for
communication. The argument locport specifies the local port that is to be used to
send and receive data packets.

The udp_open function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 If you specify 0 for locport, TCPnet automatically allocates the first free UDP
port for communication.

Return Value The udp_open function returns __TRUE if the socket is opened successfully.
Otherwise, the function returns __FALSE.

See Also udp_close, udp_get_socket

Example
#include <rtl.h>

U8 udp_soc;

U16 udp_callback (U8 socket, U8 *remip, U16 remport, U8 *buf, U16

len) {

 /* This function is called when UDP data is received */

 /* Process received data from 'buf' */

 ..

 return (0);

}

void main (void) {

 init ();

 /* Initialize the TcpNet */

 init_TcpNet ();

 udp_soc = udp_get_socket (0, UDP_OPT_SEND_CS | UDP_OPT_CHK_CS,

udp_callback);

 if (udp_soc != 0) {

 /* Open UDP port 1000 for communication */

 udp_open (udp_soc, 1000);

 }

 while (1);

 /* Run main TcpNet 'thread' */

 main_TcpNet ();

 ..

 }

}

Page 804

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 805

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

udp_release_socket
Summary

#include <rtl.h>

BOOL udp_release_socket (

 U8 socket); /* Socket handle to release. */

Description The udp_release_socket function releases the the socket identified in the function
argument and de-allocates its memory.

The udp_release_socket function is in the RL-TCPnet library. The prototype is
defined in rtl.h.

note

 Once the socket is released, TCPnet can allocate the socket to another
process.

 You must call the udp_release_socket function when you do not need the
UDP socket any longer.

Return Value The udp_release_socket function returns __TRUE if the UDP socket is successfully
released. Otherwise, the function returns __FALSE.

See Also udp_close, udp_get_socket

Example
#include <rtl.h>

void disconnect_udp (U8 udp_soc) {

 ..

 /* This UDP connection is no longer needed */

 udp_close (udp_soc);

 udp_release_socket (udp_soc);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 806

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

udp_send
Summary

#include <rtl.h>

BOOL udp_send (

 U8 socket, /* UDP socket to send the data packet from. */

 U8* remip, /* Pointer to the IP address of the remote

machine. */

 U16 remport, /* Port number of remote machine to send the

data to. */

 U8* buf, /* Pointer to buffer containing the data to

send. */

 U16 dlen); /* Number of bytes of data to send. */

Description The udp_send function sends the data packet to a remote machine. The argument
socket specifies the socket handle to use for communication on the local machine.

The argument remip points to a buffer containing the four octets that make up the
ip address of the remote machine. The argument remport specifies the port on the
remote machine to send the data packet to.

The argument buf points to the constructed UDP data packet. The argument dlen
specifies the number of bytes in the data packet to send.

The udp_send function is in the RL-TCPnet library. The prototype is defined in rtl.h.

note

 You must allocate the memory using udp_get_buf before calling udp_send
.

 The socket must already be open for communication before you can send
data.

 The same UDP socket, using the same local port, can communicate with
several remote machines using UDP ports. The user application must
handle proper multiplexing of outgoing packets and demultiplexing of
received packets.

Return Value The udp_send function returns __TRUE when the UDP packet has been sent
successfully. Otherwise, the function returns __FALSE.

See Also udp_get_buf

Example
#include <rtl.h>

#include <string.h>

void send_data () {

 char udp_msg[] = {"Hello World!"};

 U8 remip[4] = {192,168,1,100};

 U8 *sendbuf;

 U16 len;

 len = strlen (udp_msg);

 sendbuf = udp_get_buf (len);

 str_copy (sendbuf, udp_msg);

 /* Send 'Hello World!' to remote peer */

 udp_send (udp_soc, remip, 1000, sendbuf, len);

}

Page 807

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Copyright © Keil, An ARM Company. All rights reserved.

Page 808

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ungetc
Summary

#include <stdio.h>

int ungetc (

 int c, /* character to un-get */

 FILE *stream); /* file stream to unget from */

Description The ungetc function stores the character c back into the input stream and clears
the EOF indicator. Subsequent calls to fgetc and other stream input functions
return c.

The ungetc function is in the RL-FlashFS library. The prototype is defined in stdio.h.

Note

 The ungetc function may be invoked only once between calls to functions
that read from the stream. Subsequent calls to ungetc fail with an EOF
return value.

Return Value The <ungetc function returns the character c if successful. A return value of EOF
indicates an error.

See Also fgetc, fputc

Example
#include <rtl.h>

#include <stdio.h>

void main (void) {

 int c;

 FILE *fin;

 fin = fopen ("Test.txt","r");

 if (fin == NULL) {

 printf ("File not found!\n");

 }

 else {

 // Skip leading spaces

 while ((c = fgetc (fin)) == ' ');

 // Unget the first non-space

 ungetc (c, fin);

 ungetc (c, fin); // This call fails with EOF

 // The file pointer is now positioned

 // to a non-space character

 fclose (fin);

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 809

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_Core
Summary

#include <usbuser.h>

void USB_Core (

 void);

Description The USB_Core function handles the USB core events sent by the host (such as the
set interface event). The USB_Core function handles the USB core events that
have been enabled in usbcfg.h or using the Configuration Wizard. See
Configuration Parameters on page 1-34 for a list of USB core events and how to
enable them.

The USB_Core function is part of the USB Core Device layer of the RL-USB
Software Stack. You can Modify this function to provide your own special handling
code for the USB core events.

USB_Core is a continuously running task.

Return Value None.

See Also USB_Device

Example
#include <usbuser.h>

void USB_Core (void) __task

{

…

#if USB_INTERFACE_EVENT

 if (evt & USB_EVT_SET_IF) { // Set Interface event

 // write your Set Interface event handling code here

 }

#endif

…

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 810

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_Device
Summary

#include <usbuser.h>

void USB_Device (

 void);

Description The USB_Device function handles the USB device events sent by the host (such
as the suspend event). The USB_Device function only handles the device events
that you enable in usbcfg.h or using the Configuration Wizard. See Configuration
Parameters on page 1-34 for a list of USB device events and how to enable them.

The USB_Device function is part of the USB Core Driver layer of the RL-USB
Software Stack.

You can modify this function to provide your own special handling code for the USB
device events.

USB_Device is a continuously running task and must not be invoked from the
application.

Return Value None.

See Also USB_ISR

Example
#include <usbuser.h>

void USB_Device (void) __task {

…

#if USB_SOF_EVENT

 if (evt & USB_EVT_SOF) { // Start of Frame event

 // write your Start-Of-Frame event handling code here

 }

#endif

…

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 811

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_EndPointNumber
Summary

#include <usbuser.h>

void USB_EndPointNumber (/* Number [1 ..

15] */

 void);

Description The USB_EndPointNumber function handles data transfers to and from an specific
endpoint denoted by Number.

The function receives the requests from the main USB interrupt service routine
USB_ISR. RL-USB enables the function only if the appropriate endpoint is enabled
in usbcfg.h.

Modify or add code that suits the application to the USB_EndPointNumber
function. When enabled, each USB_EndPointNumber function is a continuously
running task.

The USB_EndPointNumber function is part of the USB Core Driver layer of the
RL-USB Software Stack.

Return Value None.

See Also USB_ISR, USB_ReadEP, USB_WriteEP

Example
#include <usbuser.h>

void USB_EndPoint7 (void) __task {

 for (;;) {

 os_evt_wait_or (USB_EVT_IN, 0xFFFF); /* Wait for IN

packet to arrive from host */

 GetInReport ();

 USB_WriteEP (0x81, &InReport, sizeof (InReport));

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 812

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_EndPoint0
Summary

#include <usbcore.h>

void USB_EndPoint0 (void);

Description The USB_EndPoint0 function handles all the requests sent to Endpoint0 (mainly
done by the interrupt routine USB_ISR). This includes the standard and class
specific setup requests and any data transfer using Endpoint0.

The USB_EndPoint0 function is part of the USB Core Driver layer of the RL-USB
software stack. There is no requirement to modify this function.

Return Value None.

See Also USB_EndPointNumber, USB_ISR

Example It is not required to invoke USB_EndPoint0 because it is a continuously running
task.

Copyright © Keil, An ARM Company. All rights reserved.

Page 813

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_IRQHandler
Summary

#include <usb.h>

void USB_IRQHandler (

 void);

Description The USB_IRQHandler function is just a generic name for USB Host OHCI controller
Interrupt Handler Routine. As different platforms have different predefined IRQ
Handler routine names this function might not be called USB_IRQHandler. This
function must call USB Host library function USBH_OHCI_IRQHandler() as this
function handles USB Host OHCI controller specific interrupts.

The USB_IRQHandler function is part of the RL-USB-Host Software Stack.

You can modify this function to suit different microcontroller interrupt system.

note

 This function will need to be changed if OHCI controller is used on a chip
that does not yet have a low level driver provided.

Return Value None.

Example
#include <usb.h>

void USB_IRQHandler (void) {

 USBH_OHCI_IRQHandler();

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 814

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_ISR
Summary

#include <usbhw.h>

void USB_ISR (

 void);

Description The USB_ISR function receives all the USB requests from the controller hardware
and sends the appropriate USB event to the corresponding task for processing.

It is not required to modify this function.

The USB_ISR function is part of the USB Device Controller Driver layer of the
RL-USB Software Stack.

Return Value None.

See Also USB_Core, USB_Device, USB_EndPointNumber

Example It is not required to invoke USB_ISR, since it is a continuously active interrupt
service routine.

Copyright © Keil, An ARM Company. All rights reserved.

Page 815

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_ReadEP
Summary

#include <usbhw.h>

U32 USB_ReadEP (

 U32 EPNum, /* Endpoint number and direction

*/

 U8 *pData); /* Pointer to buffer to write to

*/

Description The USB_ReadEP function reads data from the USB controller’s endpoint buffer to
the local software buffer.

When new data are available, the USB_EndPointNumber function can call
USB_ReadEP to obtain the data. The EPNum parameter contains the endpoint
number (0-15) in the first 4 bits, and the direction in bit 7. Usually, the direction bit
is 0, denoting an OUT endpoint. pData is the pointer to the buffer to store the data
received from the endpoint.

It is not required to modify this function.

The USB_ReadEP function is part of the USB Device Controller Driver layer of the
RL-USB Software Stack.

Return Value The USB_ReadEP function returns the number of bytes read from the endpoint
buffer.

See Also USB_EndPointNumber, USB_WriteEP

Example
#include <usbhw.h>

void MSC_BulkOut (void) {

 BulkLen = USB_ReadEP (MSC_EP_OUT, BulkBuf);

 switch (BulkStage) {

 case MSC_BS_CBW:

 MSC_GetCBW ();

 break;

 …

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 816

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_TaskInit
Summary

#include <usbuser.h>

void USB_TaskInit (

 void);

Description The USB_TaskInit function creates all the USB event handling and endpoint tasks
for endpoints that have been enabled in usbcfg.h. See Configuration Parameters
on page 1-34 for how to enable the endpoints.

The USB_TaskInit function gives a fixed priority for the tasks. You can modify the
priorities to suit your application’s requirements.

The USB_TaskInit function is part of the USB Core Driver layer of the RL-USB
Software Stack. There is no requirement to modify this function.

Return Value None.

See Also USB_Device, USB_EndPointNumber

Example
#include <usbuser.h>

void USB_TaskInit (void) {

…

#if (USB_EP_EVENT & (1 << 4))

 // Create task for endpoint 4 with a priority of 2

 USB_EPTask [4] = os_tsk_create (USB_EndPoint4, 2);

#endif

…

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 817

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

USB_WriteEP
Summary

#include <usbhw.h>

U32 USB_WriteEP(

 U32 EPNum, /* Endpoint number and direction

*/

 U8 *pData, /* Pointer to data buffer

*/

 U32 cnt); /* Number of bytes to write

*/

Description The USB_WriteEP function writes data into the endpoint buffer. When the host
computer requests new data, the USB_EndPointNumber function can call
USB_WriteEP to send the data. The argument EPNum contains the endpoint
number (0-15) in the first 4 bits, and the direction in bit 7. Usually, the direction bit
is one (1) denoting an IN endpoint.

It is not required to modify this function.

The USB_WriteEP function is part of the USB Device Controller Driver layer of the
RL-USB Software Stack.

Return Value The USB_WriteEP function returns the number of bytes written to the endpoint
buffer.

See Also USB_EndPointNumber, USB_ReadEP

Example
#include <usbhw.h>

void USB_EndPoint1 (void) __task {

 for (;;) {

 os_evt_wait_or (USB_EVT_IN, 0xFFFF); /* Wait for

USB_EVT_IN event */

 GetInReport ();

 USB_WriteEP (0x81, &InReport, sizeof (InReport));

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 818

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_adc_init
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_adc_init (

 void);

Description The function usbd_adc_init initializes the USB Device for audio support. This
function is called automatically and needs no invocation in the code.

The function usbd_adc_init is part of the USB Device Function Driver layer of the
RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_connect, usbd_init

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 ..

 // usbd_adc_init() is

invoked automatically by USB Device Core

 usbd_init (); // USB Device

Initialization

 usbd_connect (__TRUE); // USB Device Connect

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 819

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_cdc_init
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_cdc_init (

 void);

Description The function usbd_cdc_init initializes the USB Device for CDC support. This
function is called automatically and needs no invocation in the code.

The function usbd_cdc_init is part of the USB Device Function Driver layer of the
RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_cdc_ser_availchar, usbd_cdc_ser_closeport, usbd_cdc_ser_initport,
usbd_cdc_ser_linestate, usbd_cdc_ser_openport, usbd_cdc_ser_read,
usbd_cdc_ser_write, usbd_connect, usbd_init, usbd_vcom_chkserstate,
usbd_vcom_serial2usb, usbd_vcom_usb2serial

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 ..

 // usbd_cdc_init() is

invoked automatically by USB Device Core

 usbd_init (); // USB Device

Initialization

 usbd_connect (__TRUE); // USB Device Connect

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 820

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_cdc_ser_availchar
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_cdc_ser_availchar (

 S32* availChar); // available character pending at

port

Description The function usbd_cdc_ser_availchar checks whether a character, availChar, is
pending at the serial port.

The function usbd_cdc_ser_availchar is part of the USB Device Function Driver
layer of the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_cdc_init, usbd_cdc_ser_closeport, usbd_cdc_ser_initport,
usbd_cdc_ser_linestate, usbd_cdc_ser_openport, usbd_cdc_ser_read,
usbd_cdc_ser_write, usbd_connect, usbd_init, usbd_vcom_chkserstate,
usbd_vcom_serial2usb, usbd_vcom_usb2serial

Copyright © Keil, An ARM Company. All rights reserved.

Page 821

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_cdc_ser_closeport
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_cdc_ser_closeport (

 void);

Description The function usbd_cdc_ser_closeport closes the serial communication port.

The function usbd_cdc_ser_closeport is part of the USB Device Function Driver
layer of the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_cdc_init, usbd_cdc_ser_availchar, usbd_cdc_ser_initport,
usbd_cdc_ser_linestate, usbd_cdc_ser_openport, usbd_cdc_ser_read,
usbd_cdc_ser_write, usbd_connect, usbd_init, usbd_vcom_chkserstate,
usbd_vcom_serial2usb, usbd_vcom_usb2serial

Copyright © Keil, An ARM Company. All rights reserved.

Page 822

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_cdc_ser_initport
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_cdc_ser_initport (

 U32 baudrate, // baud rate

 U32 databits, // data packet size

 U32 parity, // parity control bit

 U32 stopbits); // stop bits

Description The function usbd_cdc_ser_initport initializes the serial communication port with a
baud rate of baudrate, data packet size data, parity control bit parity, and the
number of stop bits stopbits.

The function usbd_cdc_ser_initport is part of the USB Device Function Driver layer
of the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_cdc_init, usbd_cdc_ser_availchar, usbd_cdc_ser_closeport,
usbd_cdc_ser_linestate, usbd_cdc_ser_openport, usbd_cdc_ser_read,
usbd_cdc_ser_write, usbd_connect, usbd_init, usbd_vcom_chkserstate,
usbd_vcom_serial2usb, usbd_vcom_usb2serial

Copyright © Keil, An ARM Company. All rights reserved.

Page 823

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_cdc_ser_linestate
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_cdc_ser_linestate (

 U16* lineState); // serial line status

Description The function usbd_cdc_ser_linestate checks the line state of the serial port. The
argument lineState is a pointer to the variable that stores the status. The variable
is set with each read or write attempt to the COM port.

The function usbd_cdc_ser_linestate is part of the USB Device Function Driver
layer of the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_cdc_init, usbd_cdc_ser_availchar, usbd_cdc_ser_closeport,
usbd_cdc_ser_initport, usbd_cdc_ser_openport, usbd_cdc_ser_read,
usbd_cdc_ser_write, usbd_connect, usbd_init, usbd_vcom_chkserstate,
usbd_vcom_serial2usb, usbd_vcom_usb2serial

Copyright © Keil, An ARM Company. All rights reserved.

Page 824

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_cdc_ser_openport
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_cdc_ser_openport (

 void);

Description The function usbd_cdc_ser_openport opens the serial communication port.

The function usbd_cdc_ser_openport is part of the USB Device Function Driver
layer of the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_cdc_init, usbd_cdc_ser_availchar, usbd_cdc_ser_closeport,
usbd_cdc_ser_initport, usbd_cdc_ser_linestate, usbd_cdc_ser_read,
usbd_cdc_ser_write, usbd_connect, usbd_init, usbd_vcom_chkserstate,
usbd_vcom_serial2usb, usbd_vcom_usb2serial

Copyright © Keil, An ARM Company. All rights reserved.

Page 825

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_cdc_ser_read
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

S32 usbd_cdc_ser_read (

 S8* buffer, // character buffer

 const S32* length); // buffer length, in bytes

Description The function usbd_cdc_ser_read reads data, buffer, with the length length from
the serial port. The argument buffer is a pointer to the data block that should be
read. The argument length is a pointer that specifies the length of the data block.

The function usbd_cdc_ser_read is part of the USB Device Function Driver layer of
the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value Number of bytes read from the serial port.

See Also usbd_cdc_ser_availchar, usbd_cdc_ser_closeport, usbd_cdc_ser_initport,
usbd_cdc_ser_openport, usbd_cdc_ser_write, usbd_connect, usbd_init,
usbd_vcom_chkserstate, usbd_vcom_serial2usb, usbd_vcom_usb2serial

Copyright © Keil, An ARM Company. All rights reserved.

Page 826

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_cdc_ser_write
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

S32 usbd_cdc_ser_write (

 const S8* buffer, // data buffer

 S32* length); // buffer length, in bytes

Description The function usbd_cdc_ser_write writes data with the length to the serial port.
The argument buffer is a pointer to the data buffer. The argument length is a
pointer specifiying the amount of data, in bytes, that should be written.

The function usbd_cdc_ser_write is part of the USB Device Function Driver layer of
the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value Number of bytes written to the serial port.

See Also usbd_cdc_init, usbd_cdc_ser_availchar, usbd_cdc_ser_closeport,
usbd_cdc_ser_initport, usbd_cdc_ser_linestate, usbd_cdc_ser_openport,
usbd_cdc_ser_read, usbd_connect, usbd_init, usbd_vcom_chkserstate,
usbd_vcom_serial2usb, usbd_vcom_usb2serial

Copyright © Keil, An ARM Company. All rights reserved.

Page 827

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_connect
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_connect (

 BOOL Conn); // Enable or disable the USB

controller

Description The function usbd_connect connects or disconnect the USB device controller to the
bus. Invoke usbd_connect with Conn set to 1 (__TRUE) to ensure that the host
can recognize the device.

Valid values for Conn are:

 0 or (__FALSE) to disconnect the USB Device.

 1 or (__TRUE) to connect the USB Device.

The function usbd_connect is part of the USB Device Core Driver layer of the
RL-USB Device Software Stack.

Return Value None.

See Also usbd_adc_init, usbd_cdc_init, usbd_hid_init, usbd_init, usbd_msc_init,
usbd_reset_core

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 ..

 usbd_init (); // Initialize USB Device

hardware

 usbd_connect (__TRUE); // Enable the USB Device

controller

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 828

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_hid_getinreport
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_hid_getinreport (

 U8* buf); // pointer to the buffer to store the

data

Description The function usbd_hid_getinreport prepares data that will be returned to the USB
Host when it asks for it. The argument buf is a pointer to the buffer that stores the
report data.

The function usbd_hid_getinreport is part of the USB Device Function Driver layer
of the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_connect, usbd_hid_init, usbd_hid_setoutreport, usbd_init

Copyright © Keil, An ARM Company. All rights reserved.

Page 829

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_hid_init
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_hid_init (

 void);

Description The function usbd_hid_init initializes the USB Device for HID support. This function
is called automatically and needs no invocation in the code.

The function usbd_hid_init is part of the USB Device Function Driver layer of the
RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_connect, usbd_hid_getinreport, usbd_hid_setoutreport, usbd_init

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 ..

 // usbd_hid_init() is

invoked automatically by USB Device Core

 usbd_init (); // USB Device

Initialization

 usbd_connect (__TRUE); // USB Device Connect

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 830

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_hid_setoutreport
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_hid_setoutreport (

 U8* buf); // pointer to the buffer to store the

data

Description The function usbd_hid_setoutreport processes the data received from the USB
Host. The argument buf is a pointer to the buffer that contains the report data.

The function usbd_hid_setoutreport is part of the USB Device Function Driver layer
of the RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_connect, usbd_hid_getinreport, usbd_hid_init, usbd_init

Copyright © Keil, An ARM Company. All rights reserved.

Page 831

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_init
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_init (

 void);

Description The function usbd_init initializes the USB Device Controller Core and Hardware
Driver (such as the USB clock). It starts all the tasks and sets up the main USB
interrupt service routine. In any application, the usbd_init function must be called
before invoking any other USB function. The function does not initialize any
non-USB hardware features.

The usbd_init function is part of the USB Device Core Driver layer of the RL-USB
Software Stack.

Return Value None.

See Also usbd_adc_init, usbd_cdc_init, usbd_connect, usbd_hid_init, usbd_msc_init,
usbd_reset_core

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 ..

 usbd_init(); // Initialize USB

Device hardware

 usbd_connect(__TRUE); // Enable the USB

Device controller

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 832

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_msc_init
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_msc_init (

 void);

Description The function usbd_msc_init initializes the USB Device for MSC support. This
function is called automatically and needs no invocation in the code.

The function usbd_msc_init is part of the USB Device Function Driver layer of the
RL-USB Device Software Stack.

Modify this function to the application needs.

Return Value None.

See Also usbd_connect, usbd_init, usbd_msc_read_sect, usbd_msc_write_sect

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 ..

 // usbd_msc_init() is

invoked automatically by USB Device Core

 usbd_init (); // USB Device

Initialization

 usbd_connect (__TRUE); // USB Device Connect

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 833

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_msc_read_sect
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_msc_read_sect (

 U32 block, // starting data block to be read

 U8* buf, // pointer to the buffer to store the

data

 U32 num_of_blocks); // number of blocks to be read

);

Description The function usbd_msc_read_sect reads the data that should be returned to the
USB Host that requested it. The argument block specifies the starting block from
where the data should be read. The argument buf is a pointer to the buffer where
the read data should be stored. The argument num_of_blocks specifies the number
of blocks that should be read.

The function usbd_msc_read_sect is part of the USB Device Function Driver layer
of the RL-USB Device Software Stack.

Modifying this function to the application needs.

Return Value None.

See Also usbd_connect, usbd_init, usbd_msc_init, usbd_msc_write_sect

Copyright © Keil, An ARM Company. All rights reserved.

Page 834

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_msc_write_sect
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_msc_write_sect (

 U32 block, // starting block to where write data

 U8* buf, // pointer to the buffer that stores

the data

 U32 num_of_blocks); // number of blocks to be written

);

Description The function usbd_msc_write_sect writes data received from the USB Host. The
argument block specifies the starting block to where data should be written. The
argument buf is a pointer to the buffer that holds the data that should be written.
The argument num_of_blocks specifies the number of blocks that should be
written.

The function usbd_msc_write_sect is part of the USB Device Function Driver layer
of the RL-USB Device Software Stack.

Modifying this function to the application needs.

Return Value None.

See Also usbd_connect, usbd_init, usbd_msc_init, usbd_msc_read_sect

Copyright © Keil, An ARM Company. All rights reserved.

Page 835

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_reset_core
Summary

#include <RTL.h>

#include <rl_usb.h>

#include <usb.h>

void usbd_reset_core (

 void);

Description The function usbd_reset_core resets the USB Device Core. Invoke this function if
connection errors are reported.

The function usbd_reset_core is part of the USB Device Core Driver layer of the
RL-USB Device Software Stack.

Return Value None;

See Also usbd_connect, usbd_init

Copyright © Keil, An ARM Company. All rights reserved.

Page 836

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_vcom_chkserstate
Summary

#include <RTL.h>

#include <rl_usb.h>

void usbd_vcom_chkserstate (

 void);

Description The function usbd_vcom_chkserstate checks the state of the serial
communication port.

The function usbd_vcom_chkserstate is part of the USB Device Function Driver
layer of the RL-USB Device Software Stack.

It is not required to modify this function.

Return Value None.

See Also usbd_cdc_init, usbd_cdc_ser_availchar, usbd_cdc_ser_closeport,
usbd_cdc_ser_initport, usbd_cdc_ser_linestate, usbd_cdc_ser_openport,
usbd_cdc_ser_read, usbd_cdc_ser_write, usbd_connect, usbd_init,
usbd_vcom_serial2usb, usbd_vcom_usb2serial

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 usbd_init(); // USB Device

Initialization

 usbd_connect(__TRUE); // USB Device Connect

 while (1) { // Loop forever

 ..

 usbd_vcom_chkserstate(); // Check serial

connection

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 837

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_vcom_serial2usb
Summary

#include <RTL.h>

#include <rl_usb.h>

void usbd_vcom_serial2usb (

 void);

Description The function usbd_vcom_serial2usb sends data from the serial communication
port to the USB CDC Device.

The function usbd_vcom_serial2usb is part of the USB Device Function Driver
layer of the RL-USB Device Software Stack.

It is not required to modify this function.

Return Value None.

See Also usbd_cdc_init, usbd_cdc_ser_availchar, usbd_cdc_ser_closeport,
usbd_cdc_ser_initport, usbd_cdc_ser_linestate, usbd_cdc_ser_openport,
usbd_cdc_ser_read, usbd_cdc_ser_write, usbd_connect, usbd_init,
usbd_vcom_chkserstate, usbd_vcom_usb2serial

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 usbd_init (); // USB Device

Initialization

 usbd_connect (__TRUE); // USB Device Connect

 while (1) { // Loop forever

 ..

 usbd_vcom_serial2usb (); // Send data from serial

COM port to USB CDC Device

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 838

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbd_vcom_usb2serial
Summary

#include <RTL.h>

#include <rl_usb.h>

void usbd_vcom_usb2serial (

 void);

Description The function usbd_vcom_usb2serial sends data from the USB CDC Device to a
serial communication port.

The function usbd_vcom_serial2usb is part of the USB Device Function Driver
layer of the RL-USB Device Software Stack.

It is not required to modify this function.

Return Value None.

See Also usbd_cdc_init, usbd_cdc_ser_availchar, usbd_cdc_ser_closeport,
usbd_cdc_ser_initport, usbd_cdc_ser_linestate, usbd_cdc_ser_openport,
usbd_cdc_ser_read, usbd_cdc_ser_write, usbd_connect, usbd_init,
usbd_vcom_chkserstate, usbd_vcom_serial2usb

Example
#include <RTL.h>

#include <rl_usb.h>

int main (void) {

 usbd_init (); // USB Device

Initialization

 usbd_connect (__TRUE); // USB Device Connect

 while (1) { // Loop forever

 ..

 usbd_vcom_usb2serial (); // Send data from USB

CDC Device to serial COM port

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 839

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_connected
Summary

#include <rl_usb.h>

USBH_ERROR usbh_connected (

 void);

Description The usbh_connected function returns the connect status of USB host root port.
The usbh_connected function is used for checking if there is a device present on
the USB host bus.

The usbh_connected function is part of the of the RL-USB-Host software stack.

Return Value The usbh_connected function returns one of the following manifest constants.

 USBH_OK
Success.

 USBH_NO_CONNECTED_ERROR
Indicates that no device is connected on USB host bus.

See Also usbh_engine, usbh_init, usbh_uninit

Example
#include <rl_usb.h>

int main (void) {

 ..

 if (usbh_connected() == USBH_OK) { // If device is connected

 ..

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 840

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_engine
Summary

#include <rl_usb.h>

void usbh_engine (

 void);

Description The usbh_engine function handles USB host events. It automatically executes
enumeration when new device is connected and it uninitializes and releases
resources when device is disconnected. The usbh_engine function should be called
periodically to enable proper response to USB host events.

The usbh_engine function is part of the of the RL-USB-Host software stack.

Return Value None.

See Also usbh_connected, usbh_init, usbh_uninit

Example
#include <rl_usb.h>

int main (void) {

 ..

 usbh_init(); // Initialize USB host

stack and hardware

 ..

 while (1) {

 ..

 usbh_engine(); // Handle USB host events

 ..

 }

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 841

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_hid_kbd_getkey
Summary

#include <rl_usb.h>

int usbh_hid_kbd_getkey (

 void);

Description The function usbh_hid_kbd_getkey retrieves the keyboard signal.

The usbh_hid_kbd_getkey function is part of the of the RL-USB Host Class
Driver software layer.

Return Value Value of retrieved keyboard signal.

See Also usbh_engine, usbh_hid_mouse_getdata, usbh_init

Example
#include <rl_usb.h>

int getline (char *line, int n) {

 char c;

 ..

 c = (char)(usbh_hid_kbd_getkey ()); /* Read key from HID

keyboard */

 ..

)

Copyright © Keil, An ARM Company. All rights reserved.

Page 842

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_hid_mouse_getdata
Summary

#include <rl_usb.h>

BOOL usbh_hid_mouse_getdata (

 U8* btn,

 S8* x,

 S8* y,

 S8* wheel);

Description The function usbh_hid_mouse_getdata retrieves the signals sent by an USB
mouse. The argument btn is a pointer indicating the mouse button pressed. The
arguments x and y are pointers indicating relative location change of the mouse
pointer. The argument wheel is a pointer indicating the mouse wheel change.

The usbh_hid_mouse_getdata function is part of the of the RL-USB Host Class
Driver software layer.

Return Value A boolean value indicating whether the mouse has been used.

See Also usbh_engine, usbh_hid_kbd_getkey, usbh_init

Example
#include <rl_usb.h>

void getmouse (void) {

 ..

 if (usbh_hid_mouse_getdata (U8 *btn, S8 *x, S8 *y, S8 *wheel))

{ /* mouse moved */

 ..

 }

)

Copyright © Keil, An ARM Company. All rights reserved.

Page 843

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_init
Summary

#include <rl_usb.h>

USBH_ERROR usbh_init (

 void);

Description The usbh_init function initializes the USB Host Stack and USB Host Controller
Hardware. It prepares the USB Host Controller to detect connection or
disconnection of a device on the bus and does enumeration of connected device.
In any application, the usbh_init function must be called before calling any other
USB Host function. The function does not initialize any non-USB Host hardware
features.

The usbh_init function is part of the of the RL-USB-Host Software Stack.

Return Value The usbh_init function returns one of the following manifest constants.

 USBH_OK
Success.

 USBH_MEM_POOL_INIT_ERROR
Indicates that memory pool used for USB Host communication was not initialized
properly.

 USBH_HW_ERROR
Indicates that the initialization of hardware failed.

 USBH_EP_NOT_AVAILABLE_ERROR
Indicates that the there was on available resource for creating endpoint that will be
used as Control Endpoint 0.

See Also usbh_connected, usbh_engine, usbh_uninit

Example
#include <rl_usb.h>

int main (void) {

 ..

 usbh_init(); // Initialize USB host

stack and hardware

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 844

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_msc_read
Summary

#include <rl_usb.h>

BOOL usbh_msc_read (

 U32 blk_adr,

 U8* ptr_data,

 U16 blk_num);

Description The function usbh_msc_read reads data from a mass storage device. The
argument blk_adr is the address of starting block to be read. The arguments
ptr_data is a pointer indicating the location where data will be read. The argument
blk_num is a value indicating the number of blocks to be read.

The usbh_msc_read function is part of the of the RL-USB Host Class Driver
software layer.

Return Value A boolean value indicating whether the read process was successful.

See Also usbh_engine, usbh_init, usbh_msc_read_config, usbh_msc_status,
usbh_msc_write

Copyright © Keil, An ARM Company. All rights reserved.

Page 845

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_msc_read_config
Summary

#include <rl_usb.h>

BOOL usbh_msc_read_config (

 U32* tot_blk_num,

 U32* blk_sz);

Description The function usbh_msc_read_config reads the configuration parameters of a
mass storage device. The argument tot_blk_num is a pointer indicating the total
number of blocks on the device. The argument blk_sz is a pointer indicating the
block size.

The usbh_msc_read_config function is part of the of the RL-USB Host Class
Driver software layer.

Return Value A boolean value indicating whether the USB Device configuration could be read.

See Also usbh_engine, usbh_init, usbh_msc_read, usbh_msc_status, usbh_msc_write

Copyright © Keil, An ARM Company. All rights reserved.

Page 846

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_msc_status
Summary

#include <rl_usb.h>

BOOL usbh_msc_status (

 void);

Description The function usbh_msc_status checks whether a mass storage device is
connected.

The usbh_msc_status function is part of the of the RL-USB Host Class Driver
software layer.

Return Value Returns a boolean value indicating that a mass storage device has been
connected.

See Also usbh_engine, usbh_init, usbh_msc_read, usbh_msc_read_config,
usbh_msc_write

Example
#include <rl_usb.h>

int main (void) {

 ..

 init_msd (); // Initialize mass

storage device

 while (1) {

 usbh_engine();

 if (!usbh_msc_status()) { // If device is not

connected

 usbh_engine();

 }

 ..

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 847

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_msc_write
Summary

#include <rl_usb.h>

BOOL usbh_msc_write (

 U32 blk_adr,

 U8* ptr_data,

 U16 blk_num);

Description The function usbh_msc_write writes data to a mass storage device. The
argument blk_adr is the address of staring block to be written. The argument
ptr_data is a pointer indicating the location of data to be written. The argument
blk_num is a value indicating the number of blocks to be written.

The usbh_msc_write function is part of the of the RL-USB Host Class Driver
software layer.

Return Value A boolean value indicating whether the write process was successful.

See Also usbh_engine, usbh_init, usbh_msc_read, usbh_msc_read_config,
usbh_msc_status

Copyright © Keil, An ARM Company. All rights reserved.

Page 848

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_ohci_hw_delay
Summary

#include <rl_usb.h>

void usbh_ohci_hw_delay (

 U32 delay); /* Delay. */

Description The usbh_ohci_hw_delay function provides a functionality to the USB host for
OHCI controller to delay execution for a specified time. This function is used by USB
Host OHCI controller driver for hardware specific request that require specific
timing, for example for hardware initialization and port resetting.

The usbh_ohci_hw_delay function is part of the RL-USB-Host software stack.

You can modify this function to suit different CPU clock settings. This function will
need to be changed if OHCI controller is used on a chip that does not yet have a
low level driver provided.

note

 Delay base for usbh_ohci_hw_delay function is 100 us.

Return Value None.

See Also usbh_ohci_hw_init, usbh_ohci_hw_irq_dis, usbh_ohci_hw_irq_en,
usbh_ohci_hw_power, usbh_ohci_hw_reg_rd, usbh_ohci_hw_reg_wr,
usbh_ohci_hw_uninit

Example
void usbh_ohci_hw_delay (U32 delay) {

 delay <<= 10;

 while (delay--) {

 __nop(); __nop(); __nop(); __nop(); __nop(); __nop();

__nop(); __nop();

 }

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 849

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_ohci_hw_init
Summary

#include <rl_usb.h>

USBH_ERROR usbh_ohci_hw_init (

 void);

Description The usbh_ohci_hw_init function is used for initialization of hardware (clocks, pins)
for the USB host OHCI controller.

The usbh_ohci_hw_init function is part of the RL-USB-Host software stack.

You can modify this function to suit different OHCI controller hardware. This
function will need to be changed if OHCI controller is used on a chip that does not
yet have a low level driver provided.

Return Value The usbh_ohci_hw_init function returns one of the following manifest constants.

 USBH_OK
Success.

 USBH_HW_ERROR
Indicates that the initialization of hardware failed.

See Also usbh_ohci_hw_delay, usbh_ohci_hw_irq_dis, usbh_ohci_hw_irq_en,
usbh_ohci_hw_power, usbh_ohci_hw_reg_rd, usbh_ohci_hw_reg_wr,
usbh_ohci_hw_uninit

Example
USBH_ERROR usbh_ohci_hw_init (void) {

 U32 tout;

 LPC_SC->PCONP |= (1UL << 31);

 LPC_USB->OTGClkCtrl |= 0x19;

 for (tout = 100; ; tout--) {

 if ((LPC_USB->OTGClkSt & 0x19) == 0x19)

 break;

 if (!tout)

 return (USBH_HW_ERROR);

 }

 LPC_USB->OTGStCtrl |= 0x03;

 LPC_PINCON->PINSEL1 &= ~((3 << 26) | (3 << 28));

 LPC_PINCON->PINSEL1 |= ((1 << 26) |

 (1 << 28));

 LPC_PINCON->PINSEL3 &= ~((3 << 4) | (3 << 6) | (3 << 12) | (3

<< 22));

 LPC_PINCON->PINSEL3 |= ((1 << 4) |

 (2 << 6) |

 (2 << 12) |

 (2 << 22));

 NVIC_SetPriority (USB_IRQn, 0);

Page 850

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

 return (USBH_OK);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 851

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_ohci_hw_irq_dis
Summary

#include <rl_usb.h>

USBH_ERROR usbh_ohci_hw_irq_dis (

 void);

Description The usbh_ohci_hw_irq_dis function is used for disabling the interrupt of the USB
host OHCI controller.

The usbh_ohci_hw_irq_dis function is part of the RL-USB-Host software stack.

You can modify this function to suit different OHCI controller interrupt system. This
function will need to be changed if OHCI controller is used on a chip that does not
yet have a low level driver provided.

Return Value The usbh_ohci_hw_irq_dis function returns one of the following manifest
constants.

 USBH_OK
Success.

See Also usbh_ohci_hw_delay, usbh_ohci_hw_init, usbh_ohci_hw_irq_en,
usbh_ohci_hw_power, usbh_ohci_hw_reg_rd, usbh_ohci_hw_reg_wr,
usbh_ohci_hw_uninit

Example
USBH_ERROR usbh_ohci_hw_irq_dis (void) {

 NVIC_DisableIRQ (USB_IRQn);

 return (USBH_OK);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 852

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_ohci_hw_irq_en
Summary

#include <rl_usb.h>

USBH_ERROR usbh_ohci_hw_irq_en (

 void);

Description The usbh_ohci_hw_irq_en function is used for enabling the interrupt of the USB
host OHCI controller.

The usbh_ohci_hw_irq_en function is part of the RL-USB-Host software stack.

You can modify this function to suit different OHCI controller interrupt system. This
function will need to be changed if OHCI controller is used on a chip that does not
yet have a low level driver provided.

Return Value The usbh_ohci_hw_irq_en function returns one of the following manifest
constants.

 USBH_OK
Success.

See Also usbh_ohci_hw_delay, usbh_ohci_hw_init, usbh_ohci_hw_irq_dis,
usbh_ohci_hw_power, usbh_ohci_hw_reg_rd, usbh_ohci_hw_reg_wr,
usbh_ohci_hw_uninit

Example
USBH_ERROR usbh_ohci_hw_irq_en (void) {

 NVIC_EnableIRQ (USB_IRQn);

 return (USBH_OK);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 853

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_ohci_hw_power
Summary

#include <rl_usb.h>

USBH_ERROR usbh_ohci_hw_power (

 U32 on); /* Requested power state. */

Description The usbh_ohci_hw_power function is used for supplying or removing power on
the USB host OHCI controller port.

The usbh_ohci_hw_power function is part of the RL-USB-Host software stack.

You can modify this function to suit different OHCI controller hardware. This
function will need to be changed if OHCI controller is used on a chip that does not
yet have a low level driver provided.

Return Value The usbh_ohci_hw_power function returns one of the following manifest
constants.

 USBH_OK
Success.

See Also usbh_ohci_hw_delay, usbh_ohci_hw_init, usbh_ohci_hw_irq_dis,
usbh_ohci_hw_irq_en, usbh_ohci_hw_reg_rd, usbh_ohci_hw_reg_wr,
usbh_ohci_hw_uninit

Example
USBH_ERROR usbh_ohci_hw_power (U32 on) {

 if (on) {

 usbh_ohci_hw_reg_wr(oHcRhStatus,

usbh_ohci_hw_reg_rd(oHcRhStatus) | USBH_OHCI_HcRhStatus_LPSC);

 } else {

 usbh_ohci_hw_reg_wr(oHcRhStatus,

usbh_ohci_hw_reg_rd(oHcRhStatus) | USBH_OHCI_HcRhStatus_LPS);

 }

 return (USBH_OK);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 854

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_ohci_hw_reg_rd
Summary

#include <rl_usb.h>

U32 usbh_ohci_hw_reg_rd (

 U32 reg_ofs); /* Register offset. */

Description The usbh_ohci_hw_reg_rd function is used for reading a value from the USB host
OHCI register.

The usbh_ohci_hw_reg_rd function is part of the RL-USB-Host software stack.

You can modify this function to suit different OHCI controller register interface. This
function will need to be changed if OHCI controller is used on a chip that does not
yet have a low level driver provided.

Return Value The usbh_ohci_hw_reg_rd function returns 32-bit value read from OHCI register.

See Also usbh_ohci_hw_delay, usbh_ohci_hw_init, usbh_ohci_hw_irq_dis,
usbh_ohci_hw_irq_en, usbh_ohci_hw_power, usbh_ohci_hw_reg_wr,
usbh_ohci_hw_uninit

Example
U32 usbh_ohci_hw_reg_rd (U32 reg_ofs) {

 return (*((U32 *)(USBH_OHCI_ADDR + reg_ofs)));

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 855

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_ohci_hw_reg_wr
Summary

#include <rl_usb.h>

void usbh_ohci_hw_reg_wr (

 U32 reg_ofs, /* Register offset. */

 U32 val); /* Value to write to register. */

Description The usbh_ohci_hw_reg_wr function is used for writing a value to the USB host
OHCI register.

The usbh_ohci_hw_reg_wr function is part of the RL-USB-Host software stack.

You can modify this function to suit different OHCI controller register interface. This
function will need to be changed if OHCI controller is used on a chip that does not
yet have a low level driver provided.

Return Value None.

See Also usbh_ohci_hw_delay, usbh_ohci_hw_init, usbh_ohci_hw_irq_dis,
usbh_ohci_hw_irq_en, usbh_ohci_hw_power, usbh_ohci_hw_reg_rd,
usbh_ohci_hw_uninit

Example
void usbh_ohci_hw_reg_wr (U32 reg_ofs, U32 val) {

 *((U32 *)(USBH_OHCI_ADDR + reg_ofs)) = val;

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 856

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_ohci_hw_uninit
Summary

#include <rl_usb.h>

USBH_ERROR usbh_ohci_hw_uninit (

 void);

Description The usbh_ohci_hw_uninit function is used for uninitialization of hardware (clocks,
pins) for the USB host OHCI controller.

The usbh_ohci_hw_uninit function is part of the RL-USB-Host software stack.

You can modify this function to suit different OHCI controller hardware. This
function will need to be changed if OHCI controller is used on a chip that does not
yet have a low level driver provided.

Return Value The usbh_ohci_hw_init function returns one of the following manifest constants.

 USBH_OK
Success.

 USBH_HW_ERROR
Indicates that the initialization of hardware failed.

See Also usbh_ohci_hw_delay, usbh_ohci_hw_init, usbh_ohci_hw_irq_dis,
usbh_ohci_hw_irq_en, usbh_ohci_hw_power, usbh_ohci_hw_reg_rd,
usbh_ohci_hw_reg_wr

Example
USBH_ERROR usbh_ohci_hw_uninit (void) {

 U32 tout;

 LPC_USB->OTGStCtrl &= ~0x03;

 LPC_PINCON->PINSEL3 &= ~((3 << 4) | (3 << 6) | (3 << 12) | (3

<< 22));

 LPC_PINCON->PINSEL1 &= ~((3 << 26) | (3 << 28));

 LPC_USB->OTGClkCtrl &= ~0x19;

 for (tout = 100; ; tout--) {

 if ((LPC_USB->OTGClkSt & 0x19) == 0)

 break;

 if (!tout)

 return (USBH_HW_ERROR);

 }

 LPC_SC->PCONP &= ~(1UL << 31);

 return (USBH_OK);

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 857

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

usbh_uninit
Summary

#include <usb.h>

USBH_ERROR usbh_uninit (

 void);

Description The usbh_uninit function uninitializes the USB Host Stack and USB Host Controller
Hardware. It can be used if during the application run time USB Host Stack needs
to be disabled for whatever reason (for example lowering power consumption).
After usbh_uninit function is called only usbh_init should be called for
reinitialization of USB Host Stack and USB Host Controller Hardware.

The usbh_uninit function is part of the of the RL-USB-Host software stack.

Return Value The usbh_uninit function returns one of the following manifest constants.

 USBH_OK
Success.

 USBH_EP_INVALID_ERROR
Indicates that Control Endpoint 0 was invalid.

 USBH_HW_ERROR
Indicates that the uninitialization of hardware failed.

See Also usbh_connected, usbh_engine, usbh_init

Example
#include <usb.h>

int main (void) {

 ..

 usbh_init(); // Initialize USB host

stack and hardware

 ..

 usbh_uninit(); // Uninitialize USB host

stack and hardware

 ..

}

Copyright © Keil, An ARM Company. All rights reserved.

Page 858

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Library Files

The Real-Time Library includes the following library files, which are located in the
\Keil\ARM\RV31\LIB folder.

Library File Description
RTX_ARM_L.LIB Real-Time eXecutive kernel library (RL-RTX) for ARM7™ and ARM9™ devices -

Little Endian.
RTX_ARM_B.LIB Real-Time eXecutive kernel library (RL-RTX) for ARM7™ and ARM9™ devices -

Big Endian.
RTX_CM1.LIB Real-Time eXecutive kernel library (RL-RTX) for Cortex™-M0 and Cortex™-M1

devices - Little Endian.
RTX_CM1_B.LIB Real-Time eXecutive kernel library (RL-RTX) for Cortex™-M0 and Cortex™-M1

devices - Big Endian.
RTX_CM3.LIB Real-Time eXecutive kernel library (RL-RTX) for Cortex™-M3 devices - Little

Endian.
RTX_CM3_B.LIB Real-Time eXecutive kernel library (RL-RTX) for Cortex™-M3 devices - Big

Endian.
RTX_CM4.LIB Real-Time eXecutive kernel library (RL-RTX) for Cortex™-M4 devices - Little

Endian.
RTX_CM4_B.LIB Real-Time eXecutive kernel library (RL-RTX) for Cortex™-M4 devices - Big

Endian.
RTX_CR4.LIB Real-Time eXecutive kernel library (RL-RTX) for Cortex™-R4 devices - Little

Endian.
RTX_CR4_B.LIB Real-Time eXecutive kernel library (RL-RTX) for Cortex™-R4 devices - Big

Endian.
FS_ARM_L.LIB Flash File System library (RL-FlashFS) for ARM7™ and ARM9™ devices - Little

Endian.
FS_CM3.LIB Flash File System library (RL-FlashFS) for Cortex™-M3 devices - Little Endian.
TCP_ARM_L.LIB TCP/IP library without debug messages (RL-TCPnet) for ARM7™ and ARM9™

devices - Little Endian.
TCP_CM1.LIB TCP/IP library without debug messages (RL-TCPnet) for Cortex™-M1 devices

- Little Endian.
TCP_CM3.LIB TCP/IP library without debug messages (RL-TCPnet) for Cortex™-M3 devices

- Little Endian.
TCPD_ARM_L.LIB TCP/IP library containing debug messages (RL-TCPnet) for ARM7™ and

ARM9™ devices - Little Endian.
TCPD_CM1.LIB TCP/IP library containing debug messages (RL-TCPnet) for Cortex™-M0 and

Cortex™-M1 devices - Little Endian.
TCPD_CM3.LIB TCP/IP library containing debug messages (RL-TCPnet) for Cortex™-M3

devices - Little Endian.
USB_ARM_L.LIB USB library containing host and device mode (RL-USB) for ARM7™ and ARM9™

devices - Little Endian.
USB_CM3.LIB USB library containing host and device mode (RL-USB) for Cortex™-M3

devices - Little Endian.

Note
 Depending on the target architecture, one of either file RTX_ARM_L.LIB, RTX_ARM_B.LIB,

RTX_CM1.LIB, RTX_CM1_B.LIB, RTX_CM3.LIB, RTX_CM3_B.LIB, RTX_CM4.LIB,
RTX_CM4_B.LIB, RTX_CR4.LIB, or RTX_CR4_B.LIB is included automatically into the link
process when you select the RTX kernel (in the µVision IDE) as the operating system for the
project. To use any of the other RL-ARM™ library files, the user must explicitly add them to
the link process of the application.

 There is no object library for RL-CAN driver. Include the RL-CAN source files manually in the
project.

Copyright © Keil, An ARM Company. All rights reserved.

Page 859

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Appendix

This appendix provides additional details about the RL-ARM™ Real-Time Library:

 µVision Debug Dialogs
 Glossary

Copyright © Keil, An ARM Company. All rights reserved.

Page 860

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

A. µVision Debug Dialogs

A kernel-aware dialog displays all aspects of the RTX Kernel and the tasks in your program. It can
also display files when the Flash File System is used. It may be used also with your target
hardware, if you are debugging your application over ULINK® USB-JTAG adapter.

When you select the RTX Kernel from the Peripherals menu, µVision® loads Kernel-Aware debug
DLL - ARTXARM.DLL. This file is located in \KEIL\ARM\BIN\ folder.

The following pages are available:

 Active Tasks - shows currently active tasks and their status.
 System - shows the system information of the application.
 File System - shows the files stored in file system and some file information.

Note
 The ARTXARM.DLL must know the exact format of the kernel and Flash File System control

variables. If the format of a variable is changed in a new RL-ARM release, then this DLL is
also updated. The ARTXARM debug pages may display erroneous results if you are using an
incompatible ARTXARM.DLL driver.

Copyright © Keil, An ARM Company. All rights reserved.

Page 861

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.keil.com/ulink/
http://www.processtext.com/abcchm.html

B. Glossary

Active task

A task which is created and not yet destroyed.

Context switch

A task takes over the CPU from another task, after an event for this task occurred, and
provided, this task has a higher priority than the currently running task.

Cooperative multitasking

Tasks of same priority keep in possession of the CPU resources until they relinquish it to
other tasks.

Event

A signal or message which triggers some kind of processing.

Interrupt service routine

A function into which the program vectors into on occurrence of an hardware or software
interrupt.

ISR

Abbreviation for interrupt service routine

Multi-tasking

A set of tasks which share one or more CPUs for concurrent processing.

Memory pool

A list of memory blocks having the same size which can get allocated and de allocated
dynamically by application functions.

Preemption

The process which moves a currently running task into the ready state, when a task with
higher priority gets ready to run.

Priority

The importance of a task. Important or time-critical task can get control over the CPU
resources even if another task of lower priority is currently executing.

Polling

A task which runs in an infinite loop without waiting for events.

Round robin

A technique to force running tasks to the ready state and thus allowing ready tasks of the
same priority to get control over the CPU resources.

Task

A function which does some processing in concurrence with other functions.

Socket

A socket is one endpoint of a two-way communication link between two programs running
on the network. It is bound to a port number so that the TCP/UDP layer can identify the
application that data is destined to be sent.

Page 862

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

Port number

A port number identifies both a computer and also a "channel" within that computer where
network communication will take place.

Copyright ©
Keil, An ARM
Company. All

rights reserved.

Page 863

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

	[Trial version] RL-RTX
	[Trial version] Overview
	[Trial version] Product Description
	[Trial version] Basic Functions
	[Trial version] Interprocess Communications

	[Trial version] Product Specification
	[Trial version] Technical Data
	[Trial version] Timing Specifications

	[Trial version] How To Use
	[Trial version] Your First RTX Application

	[Trial version] Theory of Operation
	[Trial version] Timer Tick Interrupt
	[Trial version] System Task Manager
	[Trial version] Task Management
	[Trial version] Idle Task
	[Trial version] System Resources
	[Trial version] Scheduling Options
	[Trial version] Pre-emptive Scheduling
	[Trial version] Round-Robin Scheduling
	[Trial version] Cooperative Multitasking

	[Trial version] Priority Inversion
	[Trial version] Stack Management
	[Trial version] User Timers
	[Trial version] Interrupt Functions

	[Trial version] Configuring RTX Kernel
	[Trial version] Basic RTX Configuration
	[Trial version] Tasks
	[Trial version] Stack Size
	[Trial version] Stack Checking
	[Trial version] Run in Privileged Mode
	[Trial version] Hardware Timer
	[Trial version] Round-Robin Multitasking
	[Trial version] User Timers
	[Trial version] FIFO Queue Buffer
	[Trial version] Error Function
	[Trial version] Idle Task

	[Trial version] Advanced RTX Configuration
	[Trial version] HW Resources Required
	[Trial version] Configuration Macros

	[Trial version] Library Files

	[Trial version] Using RTX Kernel
	[Trial version] Writing Programs
	[Trial version] Include Files
	[Trial version] Defining Tasks
	[Trial version] Multiple Instances
	[Trial version] External References
	[Trial version] Using a Mailbox
	[Trial version] SWI Functions
	[Trial version] SVC Functions

	[Trial version] Debugging
	[Trial version] System Info
	[Trial version] Task Info
	[Trial version] Event Viewer

	[Trial version] Usage Hints
	[Trial version] ARM Version
	[Trial version] Cortex Version

	[Trial version] Create New RTX Application

	[Trial version] Function Overview
	[Trial version] Event Flag Management Routines
	[Trial version] Mailbox Management Routines
	[Trial version] Memory Allocation Routines
	[Trial version] Mutex Management Routines
	[Trial version] Semaphore Management Routines
	[Trial version] System Functions
	[Trial version] Task Management Routines
	[Trial version] Time Management Routines
	[Trial version] User Timer Management Routines

	[Trial version] RL-FlashFS
	[Trial version] Embedded File System
	[Trial version] Memory Organization
	[Trial version] Allocation Information
	[Trial version] File Data Fragments

	[Trial version] Technical Data
	[Trial version] Configuring RL-FlashFS
	[Trial version] Configuration
	[Trial version] File System
	[Trial version] Flash Drive
	[Trial version] Sector Layout
	[Trial version] Flash Driver
	[Trial version] Converting FlashDev.c
	[Trial version] Converting FlashPrg.c

	[Trial version] SPI Flash Drive
	[Trial version] SPI Sector Layout
	[Trial version] SPI Flash Driver

	[Trial version] RAM Drive
	[Trial version] Memory Card Drive
	[Trial version] MCI Driver
	[Trial version] SPI Driver
	[Trial version] File Time Support

	[Trial version] USB Flash Drive
	[Trial version] FAT Driver

	[Trial version] NAND Flash Drive
	[Trial version] NAND Driver
	[Trial version] Page Data Layout

	[Trial version] Source Files

	[Trial version] Using RL-FlashFS
	[Trial version] Flash Device Applications
	[Trial version] Using Dedicated Flash Devices
	[Trial version] Using One Large Flash Device
	[Trial version] Using Internal Flash Devices

	[Trial version] Using RAM Devices
	[Trial version] Using Memory Card Devices
	[Trial version] File Naming Convention
	[Trial version] Hot Insertion
	[Trial version] Root Directory Limitation

	[Trial version] Debugging

	[Trial version] Function Overview
	[Trial version] File I/O Routines
	[Trial version] File Maintenance Routines
	[Trial version] File Time Support Routines
	[Trial version] Flash Driver Routines
	[Trial version] FAT Driver Routines
	[Trial version] MCI Driver Routines
	[Trial version] SPI Driver Routines
	[Trial version] NAND Driver Routines
	[Trial version] IOC Interface Routines
	[Trial version] System Functions

	[Trial version] RL-TCPnet
	[Trial version] TCP Socket
	[Trial version] Opening TCP Connection
	[Trial version] TCP Active Open
	[Trial version] TCP Passive Open
	[Trial version] Sending TCP Data
	[Trial version] Example for Sending Data
	[Trial version] Multiple TCP Connections

	[Trial version] UDP Socket
	[Trial version] Opening UDP Connection
	[Trial version] Sending UDP Data
	[Trial version] When DHCP Enabled
	[Trial version] When ARP Cache Empty

	[Trial version] Example for Sending Data
	[Trial version] IP Multicasting
	[Trial version] Multiple UDP Connections

	[Trial version] Configuring TCPnet
	[Trial version] Static Configuration
	[Trial version] System
	[Trial version] Ethernet Interface
	[Trial version] ARP
	[Trial version] IGMP

	[Trial version] PPP Interface
	[Trial version] SLIP Interface
	[Trial version] UDP Socket
	[Trial version] TCP Socket
	[Trial version] HTTP Server
	[Trial version] Telnet Server
	[Trial version] TFTP Server
	[Trial version] FTP Server
	[Trial version] DNS Client
	[Trial version] SMTP Client
	[Trial version] SNMP Agent
	[Trial version] Error Function

	[Trial version] Runtime Configuration
	[Trial version] Library Files

	[Trial version] Using RL-TCPnet
	[Trial version] Stand Alone
	[Trial version] With RTX Kernel

	[Trial version] Applications
	[Trial version] HTTP Web Server
	[Trial version] Script Language
	[Trial version] CGI Functions

	[Trial version] Ajax Support
	[Trial version] Using XML
	[Trial version] XML Example
	[Trial version] How it works

	[Trial version] SOAP Support
	[Trial version] SOAP Interface
	[Trial version] Large POST Messages

	[Trial version] Web Pages
	[Trial version] Default Page
	[Trial version] Error Pages

	[Trial version] Web on SD Card
	[Trial version] Web Update
	[Trial version] File System Interface

	[Trial version] Http Caching
	[Trial version] How it works
	[Trial version] Internal Web
	[Trial version] External Web

	[Trial version] Using RAM File System
	[Trial version] FCARM File Converter
	[Trial version] PRINT Directive
	[Trial version] NOPRINT Directive
	[Trial version] PAGEWIDTH Directive
	[Trial version] PAGELENGTH Directive
	[Trial version] ROOT Directive

	[Trial version] Telnet Server
	[Trial version] Command Line Interface
	[Trial version] Sending Reply Message
	[Trial version] Short Reply
	[Trial version] Long Reply
	[Trial version] Continuous Screen Update

	[Trial version] TFTP Server
	[Trial version] File System Interface

	[Trial version] FTP Server
	[Trial version] File System Interface
	[Trial version] Supported Commands

	[Trial version] SMTP Client
	[Trial version] SNMP Agent
	[Trial version] MIB Database
	[Trial version] MIB Interface
	[Trial version] MIB Entry
	[Trial version] MIB Table

	[Trial version] DNS Resolver
	[Trial version] Starting DNS

	[Trial version] Device Drivers
	[Trial version] Ethernet Driver
	[Trial version] Interrupt Mode

	[Trial version] Modem Driver
	[Trial version] Serial Driver

	[Trial version] Using Serial Link
	[Trial version] Cable Connection
	[Trial version] Modem Connection
	[Trial version] Windows Dial-up
	[Trial version] Add Direct Serial Link
	[Trial version] New Dial-up Connection
	[Trial version] Configure PPP Dial-up
	[Trial version] Configure SLIP Dial-up

	[Trial version] Debugging
	[Trial version] Enabling Debug
	[Trial version] Debug Level
	[Trial version] Redirecting Output

	[Trial version] Function Overview
	[Trial version] CGI Routines
	[Trial version] Ethernet Routines
	[Trial version] FTP Routines
	[Trial version] HTTP Routines
	[Trial version] IGMP Routines
	[Trial version] Miscellaneous Routines
	[Trial version] Modem Routines
	[Trial version] PPP Routines
	[Trial version] Serial Routines
	[Trial version] SLIP Routines
	[Trial version] SMTP Routines
	[Trial version] SNMP Routines
	[Trial version] System Functions
	[Trial version] TCP Routines
	[Trial version] Telnet Routines
	[Trial version] TFTP Routines
	[Trial version] UDP Routines

	[Trial version] RL-CAN
	[Trial version] Overview
	[Trial version] Features
	[Trial version] Source Files
	[Trial version] Function Overview
	[Trial version] Initialization Routines
	[Trial version] Message Reception Routines
	[Trial version] Message Transmission Routines

	[Trial version] Errors
	[Trial version] Hardware Configuration
	[Trial version] NXP LPC17xx Devices
	[Trial version] Configuration

	[Trial version] NXP LPC21xx Devices
	[Trial version] Configuration
	[Trial version] Getting Started
	[Trial version] Simulation

	[Trial version] NXP LPC229x Devices
	[Trial version] Configuration

	[Trial version] NXP LPC23xx Devices
	[Trial version] Configuration

	[Trial version] NXP LPC24xx Devices
	[Trial version] Configuration

	[Trial version] NXP LPC29xx Devices
	[Trial version] Configuration

	[Trial version] ST STM32F103 Devices
	[Trial version] Configuration
	[Trial version] Getting Started
	[Trial version] Simulation

	[Trial version] ST STM32F105/7 Devices
	[Trial version] Configuration

	[Trial version] ST STR71x Devices
	[Trial version] Configuration
	[Trial version] Getting Started
	[Trial version] Simulation

	[Trial version] ST STR73x Devices
	[Trial version] Configuration
	[Trial version] Getting Started
	[Trial version] Simulation

	[Trial version] ST STR91x Devices
	[Trial version] Configuration
	[Trial version] Getting Started

	[Trial version] Toshiba TMPM36x Devices
	[Trial version] Configuration
	[Trial version] Getting Started

	[Trial version] Luminary LM3Sxxxx Devices
	[Trial version] Configuration

	[Trial version] Atmel AT91SAM7X Devices
	[Trial version] Hardware Configuration
	[Trial version] Getting Started

	[Trial version] Initialization
	[Trial version] Example Projects

	[Trial version] RL-USB
	[Trial version] RL-USB for USB Device Applications
	[Trial version] RL-USB Device Library
	[Trial version] RL-USB Device Features
	[Trial version] RL-USB Device Software Stack
	[Trial version] RL-USB Device Functions
	[Trial version] RL-USB Device Source Files
	[Trial version] RL-USB Device Configuration
	[Trial version] Audio Device (ADC) Options
	[Trial version] Communication Device (CDC) Options
	[Trial version] Human Interface Device (HID) Options
	[Trial version] Mass Storage Device (MSC) Options

	[Trial version] Create USB Device Applications
	[Trial version] Create ADC Applications
	[Trial version] Create CDC Applications
	[Trial version] Create HID Applications
	[Trial version] Create MSC Applications
	[Trial version] Create Composite Applications

	[Trial version] Test USB Device Applications
	[Trial version] Compliance Tests
	[Trial version] Test HID Client Application

	[Trial version] RL-USB for USB Host Applications
	[Trial version] RL-USB Host Library
	[Trial version] RL-USB Host Features
	[Trial version] RL-USB Host Software Stack
	[Trial version] RL-USB Host Functions
	[Trial version] RL-USB Host Source Files
	[Trial version] RL-USB Host Configuration
	[Trial version] Host Controller Driver Configuration
	[Trial version] Host Class Driver Configuration

	[Trial version] Create USB Host Applications
	[Trial version] Create USB Host HID Applications
	[Trial version] HID_Kbd Example
	[Trial version] Create USB Host MSC Applications

	[Trial version] USB Concepts
	[Trial version] USB Transfer Rates
	[Trial version] USB Network
	[Trial version] Basic Communication Model
	[Trial version] USB Protocol
	[Trial version] Control Transfer
	[Trial version] Interrupt Transfer
	[Trial version] Isochronous Transfer
	[Trial version] Bulk Transfer

	[Trial version] Descriptors
	[Trial version] Device Configuration
	[Trial version] Device Descriptor
	[Trial version] Configuration Descriptor
	[Trial version] Interface Descriptor
	[Trial version] Endpoint Descriptor
	[Trial version] Device Qualifier Descriptor

	[Trial version] Example Programs
	[Trial version] RTX_ex1
	[Trial version] Traffic Example
	[Trial version] SD_File
	[Trial version] MSD_File
	[Trial version] File_ex1
	[Trial version] HTTP_demo
	[Trial version] Telnet_demo
	[Trial version] TFTP_demo

	[Trial version] Library Reference
	[Trial version] Data Types
	[Trial version] BIT
	[Trial version] BOOL
	[Trial version] CAN_ERROR
	[Trial version] CAN_msg
	[Trial version] FILE
	[Trial version] S8
	[Trial version] S16
	[Trial version] S32
	[Trial version] S64
	[Trial version] U8
	[Trial version] U16
	[Trial version] U32
	[Trial version] U64

	[Trial version] Include Files
	[Trial version] can_cfg.h
	[Trial version] file_config.h
	[Trial version] net_config.h
	[Trial version] rtl.h
	[Trial version] rtx_can.h
	[Trial version] rtx_config.h
	[Trial version] stdio.h

	[Trial version] Reference
	[Trial version] _alloc_box
	[Trial version] _calloc_box
	[Trial version] _declare_box
	[Trial version] _declare_box8
	[Trial version] _free_box
	[Trial version] _init_box
	[Trial version] _init_box8
	[Trial version] ADC_IF_GetRequest
	[Trial version] ADC_IF_SetRequest
	[Trial version] arp_cache_ip
	[Trial version] CAN_init
	[Trial version] CAN_receive
	[Trial version] CAN_request
	[Trial version] CAN_rx_object
	[Trial version] CAN_send
	[Trial version] CAN_set
	[Trial version] CAN_start
	[Trial version] CAN_tx_object
	[Trial version] cgi_func
	[Trial version] cgi_process_data
	[Trial version] cgi_process_var
	[Trial version] cgx_content_type
	[Trial version] com_getchar
	[Trial version] com_putchar
	[Trial version] com_tx_active
	[Trial version] dhcp_disable
	[Trial version] efs.EraseChip
	[Trial version] efs.EraseSector
	[Trial version] efs.Init
	[Trial version] efs.ProgramPage
	[Trial version] efs.ReadData
	[Trial version] efs.UnInit
	[Trial version] fanalyse
	[Trial version] fat.CheckMedia
	[Trial version] fat.Init
	[Trial version] fat.ReadInfo
	[Trial version] fat.ReadSect
	[Trial version] fat.UnInit
	[Trial version] fat.WriteSect
	[Trial version] fcheck
	[Trial version] fclose
	[Trial version] fdefrag
	[Trial version] fdelete
	[Trial version] feof
	[Trial version] ferror
	[Trial version] ffind
	[Trial version] fflush
	[Trial version] fformat
	[Trial version] ffree
	[Trial version] fgetc
	[Trial version] fgets
	[Trial version] finit
	[Trial version] FIQ_Handler
	[Trial version] fopen
	[Trial version] fprintf
	[Trial version] fputc
	[Trial version] fputs
	[Trial version] fread
	[Trial version] frename
	[Trial version] fs_get_date
	[Trial version] fs_get_time
	[Trial version] fscanf
	[Trial version] fseek
	[Trial version] ftell
	[Trial version] ftp_fclose
	[Trial version] ftp_fdelete
	[Trial version] ftp_ffind
	[Trial version] ftp_fopen
	[Trial version] ftp_fread
	[Trial version] ftp_frename
	[Trial version] ftp_fwrite
	[Trial version] funinit
	[Trial version] fwrite
	[Trial version] get_host_by_name
	[Trial version] HID_GetReport
	[Trial version] HID_SetReport
	[Trial version] http_accept_host
	[Trial version] http_date
	[Trial version] http_fclose
	[Trial version] http_fgets
	[Trial version] http_finfo
	[Trial version] http_fopen
	[Trial version] http_fread
	[Trial version] http_get_content_type
	[Trial version] http_get_info
	[Trial version] http_get_lang
	[Trial version] http_get_session
	[Trial version] http_get_var
	[Trial version] igmp_join
	[Trial version] igmp_leave
	[Trial version] init_ethernet
	[Trial version] init_modem
	[Trial version] init_serial
	[Trial version] init_TcpNet
	[Trial version] int_disable_eth
	[Trial version] int_enable_eth
	[Trial version] interrupt_ethernet
	[Trial version] ioc_getcb
	[Trial version] ioc_init
	[Trial version] ioc_read_info
	[Trial version] ioc_read_sect
	[Trial version] ioc_uninit
	[Trial version] ioc_write_sect
	[Trial version] isr_evt_set
	[Trial version] isr_mbx_check
	[Trial version] isr_mbx_receive
	[Trial version] isr_mbx_send
	[Trial version] isr_sem_send
	[Trial version] isr_tsk_get
	[Trial version] main_TcpNet
	[Trial version] mci.BusMode
	[Trial version] mci.BusSpeed
	[Trial version] mci.BusWidth
	[Trial version] mci.CheckMedia
	[Trial version] mci.Command
	[Trial version] mci.Delay
	[Trial version] mci.Init
	[Trial version] mci.ReadBlock
	[Trial version] mci.SetDma
	[Trial version] mci.UnInit
	[Trial version] mci.WriteBlock
	[Trial version] modem_dial
	[Trial version] modem_hangup
	[Trial version] modem_listen
	[Trial version] modem_online
	[Trial version] modem_process
	[Trial version] modem_run
	[Trial version] MSC_Inquiry
	[Trial version] MSC_MemoryRead
	[Trial version] MSC_MemoryVerify
	[Trial version] MSC_MemoryWrite
	[Trial version] nand.BlockErase
	[Trial version] nand.Init
	[Trial version] nand.PageRead
	[Trial version] nand.PageWrite
	[Trial version] nand.UnInit
	[Trial version] os_dly_wait
	[Trial version] os_evt_clr
	[Trial version] os_evt_get
	[Trial version] os_evt_set
	[Trial version] os_evt_wait_and
	[Trial version] os_evt_wait_or
	[Trial version] os_itv_set
	[Trial version] os_itv_wait
	[Trial version] os_mbx_check
	[Trial version] os_mbx_declare
	[Trial version] os_mbx_init
	[Trial version] os_mbx_send
	[Trial version] os_mbx_wait
	[Trial version] os_mut_init
	[Trial version] os_mut_release
	[Trial version] os_mut_wait
	[Trial version] os_sem_init
	[Trial version] os_sem_send
	[Trial version] os_sem_wait
	[Trial version] os_sys_init
	[Trial version] os_sys_init_prio
	[Trial version] os_sys_init_user
	[Trial version] os_tmr_call
	[Trial version] os_tmr_create
	[Trial version] os_tmr_kill
	[Trial version] os_tsk_create
	[Trial version] os_tsk_create_ex
	[Trial version] os_tsk_create_user
	[Trial version] os_tsk_create_user_ex
	[Trial version] os_tsk_delete
	[Trial version] os_tsk_delete_self
	[Trial version] os_tsk_pass
	[Trial version] os_tsk_prio
	[Trial version] os_tsk_prio_self
	[Trial version] os_tsk_self
	[Trial version] poll_ethernet
	[Trial version] ppp_close
	[Trial version] ppp_connect
	[Trial version] ppp_is_up
	[Trial version] ppp_listen
	[Trial version] rewind
	[Trial version] send_frame
	[Trial version] slip_close
	[Trial version] slip_connect
	[Trial version] slip_is_up
	[Trial version] slip_listen
	[Trial version] smtp_accept_auth
	[Trial version] smtp_cbfunc
	[Trial version] smtp_connect
	[Trial version] snmp_set_community
	[Trial version] snmp_trap
	[Trial version] spi.BusSpeed
	[Trial version] spi.CheckMedia
	[Trial version] spi.Init
	[Trial version] spi.RecBuf
	[Trial version] spi.Send
	[Trial version] spi.SendBuf
	[Trial version] spi.SetSS
	[Trial version] spi.UnInit
	[Trial version] tcp_abort
	[Trial version] tcp_check_send
	[Trial version] tcp_close
	[Trial version] tcp_connect
	[Trial version] tcp_get_buf
	[Trial version] tcp_get_socket
	[Trial version] tcp_get_state
	[Trial version] tcp_listen
	[Trial version] tcp_max_dsize
	[Trial version] tcp_release_socket
	[Trial version] tcp_reset_window
	[Trial version] tcp_send
	[Trial version] tftp_fclose
	[Trial version] tftp_fopen
	[Trial version] tftp_fread
	[Trial version] tftp_fwrite
	[Trial version] timer_tick
	[Trial version] tnet_cbfunc
	[Trial version] tnet_ccmp
	[Trial version] tnet_get_info
	[Trial version] tnet_msg_poll
	[Trial version] tnet_process_cmd
	[Trial version] tnet_set_delay
	[Trial version] tsk_lock
	[Trial version] tsk_unlock
	[Trial version] udp_close
	[Trial version] udp_get_buf
	[Trial version] udp_get_socket
	[Trial version] udp_mcast_ttl
	[Trial version] udp_open
	[Trial version] udp_release_socket
	[Trial version] udp_send
	[Trial version] ungetc
	[Trial version] USB_Core
	[Trial version] USB_Device
	[Trial version] USB_EndPoint<i>Number</i>
	[Trial version] USB_EndPoint0
	[Trial version] USB_IRQHandler
	[Trial version] USB_ISR
	[Trial version] USB_ReadEP
	[Trial version] USB_TaskInit
	[Trial version] USB_WriteEP
	[Trial version] usbd_adc_init
	[Trial version] usbd_cdc_init
	[Trial version] usbd_cdc_ser_availchar
	[Trial version] usbd_cdc_ser_closeport
	[Trial version] usbd_cdc_ser_initport
	[Trial version] usbd_cdc_ser_linestate
	[Trial version] usbd_cdc_ser_openport
	[Trial version] usbd_cdc_ser_read
	[Trial version] usbd_cdc_ser_write
	[Trial version] usbd_connect
	[Trial version] usbd_hid_getinreport
	[Trial version] usbd_hid_init
	[Trial version] usbd_hid_setoutreport
	[Trial version] usbd_init
	[Trial version] usbd_msc_init
	[Trial version] usbd_msc_read_sect
	[Trial version] usbd_msc_write_sect
	[Trial version] usbd_reset_core
	[Trial version] usbd_vcom_chkserstate
	[Trial version] usbd_vcom_serial2usb
	[Trial version] usbd_vcom_usb2serial
	[Trial version] usbh_connected
	[Trial version] usbh_engine
	[Trial version] usbh_hid_kbd_getkey
	[Trial version] usbh_hid_mouse_getdata
	[Trial version] usbh_init
	[Trial version] usbh_msc_read
	[Trial version] usbh_msc_read_config
	[Trial version] usbh_msc_status
	[Trial version] usbh_msc_write
	[Trial version] usbh_ohci_hw_delay
	[Trial version] usbh_ohci_hw_init
	[Trial version] usbh_ohci_hw_irq_dis
	[Trial version] usbh_ohci_hw_irq_en
	[Trial version] usbh_ohci_hw_power
	[Trial version] usbh_ohci_hw_reg_rd
	[Trial version] usbh_ohci_hw_reg_wr
	[Trial version] usbh_ohci_hw_uninit
	[Trial version] usbh_uninit

	[Trial version] Library Files

	[Trial version] Appendix
	[Trial version] A. µVision Debug Dialogs
	[Trial version] B. Glossary

