
Preliminary Information

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Using Lightweight IP with the
Nios II Processor Tutorial

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation

TU-N28304-1.1

Altera Corporation
Contents
About this Tutorial ... v
How to Find Information ... v
How to Contact Altera ... vi
Typographic Conventions.. vii

Lightweight IP Tutorial ... 1–1
Introduction .. 1–1
Hardware & Software Requirements ... 1–2
Tutorial Design Files ... 1–2
Software Development Flow ... 1–4

Create a New Nios II IDE Project ... 1–4
Configure the System Library .. 1–8
Examine the Simple Socket Server Project Files .. 1–15
Build & Run the Simple Socket Server Project ... 1–15
Interacting with the Simple Socket Server .. 1–17

Simple Socket Server Design Overview ...1–21
Nios II Software Architecture ... 1–21
Software Design Naming Convention .. 1–23
MicroC-OS/II Resources ... 1–24

Tasks ... 1–24
Inter-Task Communication Resources ... 1–25

lwIP Initialization ... 1–26
Simple Socket Server Commands and Structures ... 1–27

LED Command Definitions ... 1–27
SSS_Socket Structure .. 1–27

Simple Socket Server Implementation Details ... 1–27
Important lwIP Concepts ... 1–29

Error Handling ... 1–29
Creating Tasks that use the lwIP Sockets Interface ... 1–29
Task Priorities in the Simple Socket Server Design ... 1–30
TCP/IP Throughput Performance ... 1–32
Task Stack Size .. 1–32

Where to Go Next .. 1–33

Appendix A. Hardware Setup Details ..A–1

Appendix B. Optimizing lwIP Throughput ...B–1
Introduction .. B–1
lwIP Configuration Values .. B–1
Configuring Optimization & Debug Levels ... B–3
 iii

Contents
iv Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial

Altera Corporation
About this Tutorial
This tutorial introduces and familiarizes you with the lightweight IP
(lwIP) TCP/IP software component included in your Nios® II
development kit.

Table 1–1 shows the tutorial revision history.

How to Find
Information

■ The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click the binoculars toolbar icon to open the Find dialog
box.

■ Bookmarks serve as an additional table of contents.
■ Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
■ Numerous links, shown in green text, allow you to jump to related

information.

Table 1–1. Tutorial Revision History

Date Description

December 2004 Minor updates for clarity.

September 2004 First publication.
 v

How to Find Information Using Lightweight IP with the Nios II Processor Tutorial
How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.
vi Altera Corporation

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

About this Tutorial How to Find Information
Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, check box options, and dialog box options
are shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation vii

How to Find Information Using Lightweight IP with the Nios II Processor Tutorial
viii Altera Corporation

Altera Corporation
December 2004
Lightweight IP Tutorial
Introduction This tutorial familiarizes you with the lightweight IP (lwIP) TCP/IP
software component included in your Nios II development kit. Topics
covered include:

■ Configuring and initializing the lwIP software component
■ Managing a TCP/IP connection with MicroC/OS-II real-time

operating system (RTOS) tasks
■ Using the Nios II IDE to develop programs with the lwIP software

component

The Nios II IDE offers software designers a rich development platform for
Nios II applications. The Nios II IDE contains the MicroC/OS-II real-time
operating system (RTOS) and lightweight Internet Protocol (lwIP)
software component, providing designers with the ability to build
networked embedded systems applications for the Nios II processor
quickly. This tutorial provides step-by-step instructions for building a
simple program based on the MicroC/OS-II RTOS and lwIP TCP/IP
networking stack.

This tutorial provides C design files that demonstrate communication
with a telnet client on a development host PC. The telnet client offers a
convenient way of issuing commands over a TCP/IP socket to the
Ethernet-connected lwIP stack running on the Nios II development board
with a simple TCP/IP socket-server example. This socket-server example
receives commands sent over a TCP/IP connection and manipulates
LEDs according to the commands. The example consists of a socket server
task that listens for commands on a TCP/IP port and dispatches those
commands to a set of LED management tasks.

Details on setup requirements for the lightweight Internet Protocol (lwIP)
software component and the MicroC-OS/II real-time operating system
are covered.

1 The Nios II target system does not actually implement a full
telnet server.

f For complete details on MicroC/OS-II for the Nios II processor, refer to
the MicroC/OS-II Real-Time Operating System chapter in the Nios II
Software Developer’s Handbook.
 1–1

Hardware & Software Requirements
f For complete details on lwIP initialization and configuration for the Nios
II processor, refer to the Ethernet and Lightweight IP chapter in the Nios II
Software Developer’s Handbook

Hardware &
Software
Requirements

This tutorial requires the following hardware and software:

■ Quartus® II version 4.2 or later
■ Nios II development kit version 1.1 or later (Full kit required

including MicroC/OS-II and lwIP integration)
■ Nios development board, Stratix™ II Edition, Cyclone™ Edition,

Stratix Edition, or Stratix Professional Edition
■ Altera USB-Blaster™ Rev. B cable
■ RJ-45 connected Ethernet-cable on the same network as the PC

development host

1 To complete this tutorial, you must have the Nios II IDE
installed, and your Nios development board must be connected
to a host PC. See Appendix A, Hardware Setup Details for
detailed hardware-setup instructions.

Tutorial Design
Files

The tutorial software design is a C source code file collection, provided
with the Nios II development kit. You will find the lwIP tutorial software
design files in the <Nios II kit path>\examples\software\
simple_socket_server directory.

Figure 1–1. Simple Socket Server lwIP Tutorial Software Design Files

The Nios II development kit includes the reference hardware designs. The
software design will work with either the standard or full-featured
hardware reference design.
1–2 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
After you install the Nios II development kit, you can find the hardware
design files in the Nios II development kit directory structure. For
demonstration purposes, this tutorial uses the Nios II development kit,
Stratix Professional Edition, featuring the Stratix EP1S40 device, and uses
the verilog full-featured hardware reference design. The hardware
reference design files are located in the following directory:

<Nios II kit installation path>\examples\verilog\niosII_stratix_1s40
\full_featured

Throughout this tutorial, where path names are listed, replace
nios_II_stratix_1s40 with the matching directory for your particular Nios
development board, verilog with vhdl, and full_featured with standard
where appropriate to match your FPGA device, hardware description
language, and hardware reference design selection.

The following list of seven source-code files make up the Simple Socket
Server application for this lwIP tutorial.

■ alt_error_handler.c - Contains the implementation of three error
handlers, one each for the Simple Socket Server (SSS), lwIP, and
MicroC/OS-II.

■ alt_error_handler.h – Contains definitions and function prototypes
for the three software component specific error handlers.

■ led.c – Contains LED management tasks.

■ lwip_init.c – Defines main(), which initializes MicroC/OS-II and
lwIP, and init_done_func(); the lwIP callback function.

■ network_utilities.c – Defines functions to manipulate the MAC and
IP addresses.

■ simple_socket_server.c – Defines all of the tasks and functions
which utilize the lwIP sockets interface, and creates all of the
MicroC/OS-II resources.

■ simple_socket_server.h – Defines all of the task prototypes, task
priorities, and other MicroC/OS-II resources used in this tutorial.

Software
Development
Flow

The process for creating an lwIP and MicroC-OS/II software image for
the Nios II processor involves the following:

■ Creating a new Nios II IDE C/C++ application project with the
Simple Socket Server project template.
Altera Corporation 1–3
December 2004 Using the Lightweight IP with the Nios II Processor

Software Development Flow
■ Configuring the system library project, including MicroC/OS-II and
the lwIP software component.

■ Building the application project.
■ Running (and debugging where necessary) the application project.

Create a New Nios II IDE Project

In this section, you will create a new Nios II IDE project using a project
template. Perform the following steps:

1. Choose Programs> Altera> Nios II Development Kit > Nios II IDE
(Windows Start menu) to start the Nios II IDE.

2. Choose New> C/C++ Application (File menu). The first page of
New Project wizard opens.

3. Under Select Project Template, select Simple Socket Server. The
project name and project path are filled in for you automatically.

4. Click Browse under Select Target Hardware. Browse to the
full_featured hardware example directory for the Nios development
board that you are targeting, e.g., <Nios II kit
path>\examples\verilog\niosII_stratix_1s40\full_featured
directory.

5. Select SOPC Builder system file (.ptf) for the full_featured design,
e.g., full_1s40.ptf.
1–4 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
6. Click Open.

You are returned to the New Project wizard. As shown in Figure 1–2,
the SOPC Builder System box under Select Target Hardware
contains the path to the SOPC Builder system file (.ptf) for the
full_featured example design. Additionally, the CPU box contains
the name of the Nios II CPU as defined in SOPC Builder.

Figure 1–2. New Project Wizard - Page 1

7. Click Next to go to the second page of the New Project wizard.

8. Turn on Select or create a system library.
Altera Corporation 1–5
December 2004 Using the Lightweight IP with the Nios II Processor

Software Development Flow
9. Click New System Library Project to open the system library page
as shown in Figure 1–3.

Figure 1–3. New System Library Dialog Box

10. Type full_system_lib in the Name box.

11. Select MicroC/OS-II from the Select Type of RTOS box.
1–6 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
12. Click Finish to return to the New Project wizard. See Figure 1–4.

Figure 1–4. New Project Wizard - Page 2
Altera Corporation 1–7
December 2004 Using the Lightweight IP with the Nios II Processor

Software Development Flow
13. Click Finish to complete creating your new projects. The wizard
creates two projects in the Nios II IDE C/C++ Projects tab of the
C/C++ Development perspective as shown in Figure 1–5.

Figure 1–5. New Project in the C/C++ Development Perspective

Configure the System Library

After you create a new system library, you must configure it (e.g.,
defining stdin, stdout, stderr, and other parameters). See the Nios II
IDE online Nios II Software Development Tutorial for more details. For this
tutorial, you must configure MicroC/OS-II and lwIP software
components. Perform the following steps to configure the MicroC/OS-II
kernel.

1. Right-click on the system library, full_system_lib, in the Nios II IDE
C/C++ Projects view.

2. Choose Properties in the pop-up menu to open the properties
dialog box for the system library.
1–8 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
3. Click System Library to display the system library options as
shown in Figure 1–6.

Figure 1–6. System Library Options
Altera Corporation 1–9
December 2004 Using the Lightweight IP with the Nios II Processor

Software Development Flow
4. Click RTOS Options under RTOS. The MicroC/OS-II RTOS
Options dialog box opens, as shown in Figure 1–7.

Figure 1–7. MicroC/OS-II RTOS Options

5. Click the “+” in the left hand panel to expand the contents under
MicroC/OS-II as shown in Figure 1–7.

The MicroC/OS-II kernel is highly configurable. The options you
select in this dialog box determine which MicroC/OS-II options are
included in the binary image. Examine the options you can select by
clicking each of the options categories under MicroC/OS-II in the left
panel of the screen.

1 Although this example software design does not use all of the
MicroC/OS-II system calls, lwIP internally uses many more
MicroC/OS-II system calls than are used by the Simple Socket
Server application itself. Do not disable any system calls unless
you need to be very conservative with your code size
requirements. Be prepared to re-enable system calls that you try
to disable if the link stage of the build fails with unresolved
symbols.
1–10 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
f For details on the various MicroC/OS-II features, refer to the MicroC/OS-
II Real Time Operating System chapter in the Nios II Software Developer’s
Handbook.

6. For this tutorial, choose the default settings and click OK. You are
returned to the System Library options properties page.

7. Click Software Components.

8. Click the “+” in the left hand panel to expand the contents under
Lightweight TCP/IP Stack as shown in Figure 1–8.

Figure 1–8. Lightweight TCP/IP Stack Options

9. On the left panel, highlight Lightweight TCP/IP Stack.

The Software Components window displays options available for
the Lightweight TCP/IP Stack.

10. Under Altera Nios II Lightweight TCP/IP for MicroC/OS-II, turn
on Add this software component.
Altera Corporation 1–11
December 2004 Using the Lightweight IP with the Nios II Processor

Software Development Flow
There are 6 sub-pages of options (see Figure 1–8) in addition to the
main Lightweight TCP/IP Stack options page for further
customization of lwIP. Click on any of the 6 sub-headings in the left
panel to view the various options for each sub-page shown in the
right panel. For this tutorial we will use all of the defaults:

● IP Options – Forward IP Packets
● ARP Options – Size of the ARP Table
● UDP Options – Maximum number of UDP sockets
● TCP Options – Various resources maximums, as shown in

Figure 1–9
● DHCP Options – ARP to check the assigned address is not in

use.

Figure 1–9. lwIP TCP Options
1–12 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
● Memory Options – Configuration information for buffers used
in the TCP/IP stack as shown in Figure 1–10.

Figure 1–10. lwIP Memory Options

11. Click OK to complete configuration of lwIP.

12. Click OK in the system library properties page to complete
configuration of the system library.
Altera Corporation 1–13
December 2004 Using the Lightweight IP with the Nios II Processor

Software Development Flow
Examine the Simple Socket Server Project Files

You can click the “+” to the left of the simple_socket_server_0 folder icon
to view the source files as shown in Figure 1–11.

Figure 1–11. Simple Socket Server Project Files

You have finished creating and configuring both the
simple_socket_server_0 and the full_system_lib projects, and are ready
to build and run the example as described in the following section.

f For additional details on how to build and run programs with the Nios II
IDE, see the Nios II Software Development Tutorial in the Nios II IDE online
help.

Build & Run the Simple Socket Server Project

In this section, you will run the example design on a Nios development
board. You will build the application, configure the development board
with the full-featured hardware design, and download the executable
software file.

1. Choose Quartus II Programmer (Tools menu).

2. Choose Open (File menu) in the Quartus II Programmer.
1–14 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
3. Select the FPGA configuration file (.sof), for example,
full_featured.sof.

4. Click Open. You return to the Quartus II Programmer.

5. Turn on the Program/Configure option as shown in Figure 1–12.

Figure 1–12. Quartus II Programmer

6. Click Start to configure the FPGA on the development board.

7. Choose Exit (File menu) to close the Quartus II Programmer, or
minimize the Quartus II Programmer, and return to the Nios II IDE.
If the Quartus II Programmer asks if you want to save changes to
the chain1.cdf file, click No.

8. In the Nios II IDE, select the simple_socket_server_0 project in the
C/C++ Projects view of the C/C++ Development perspective.

1 You must have the simple_socket_server_0 project selected in
the C/C++ Projects view. You cannot build a project from the
Navigator view of the C/C++ Development perspective.

9. Choose Run As > Nios II Hardware (Run menu) to build the
program, download it to the board, and then run it.

The build process takes several minutes. After it builds the
executable, the Nios II IDE attempts to download it to your
development board using the default run configuration.
Altera Corporation 1–15
December 2004 Using the Lightweight IP with the Nios II Processor

Software Development Flow
f For additional information on using the Nios II IDE to build projects, set
up run configurations, and download programs to the board, see the
Nios II Software Development Tutorial within the Nios II IDE online help.

Interacting with the Simple Socket Server

After download, the seven-segment LED banks will begin to flash with
random patterns. The JTAG console and the LCD panel will display a
message stating that the program is waiting for the IP address to be
assigned by the DHCP server.

After two minutes, both the JTAG console and the LCD panel will display
either the obtained IP address from the DHCP server, or the static IP
address as defined in simple_socket_server.h due to the DHCP two-
minute time out.

v After the IP address is assigned, execute the following command
from a DOS command prompt, as shown in Figure 1–13.

telnet <IP_address> 30 r

Figure 1–13. Connecting to the Simple Socket Server
1–16 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
If the connection to port 30 on the Nios development board is successful,
the menu will be displayed in the DOS command window, as shown in
Figure 1–14.

Figure 1–14. Interacting with the Simple Socket Server via Telnet

You will press commands at the keyboard. Keys pressed at the DOS
command prompt get sent over the telnet connection via Ethernet to a
task listening on a socket for commands. This task responds to those
commands by sending instructions to another task to manipulate the
LEDs.

To exercise the functionality of the Simple Socket Server, enter commands
to the telnet session. Entering a number from zero through seven,
followed by a return, will cause the corresponding LEDs D0 – D7, to
toggle on–or–off on the Nios development board. Entering the letter S
will stop the random blinking LED pattern on the seven- segment LED
bank. Entering this S command again will restart the light show. To
reproduce the specific run-time behavior shown in Figure 1–14 and
Figure 1–15, do the following at the DOS command prompt:

1. Type the number 1 r

LED D1 is toggled. The Nios II IDE Console displays 2 messages:
“processing RX data” followed by “Value for LED_PIO_BASE set to
2”.

2. Type the number 2 r
Altera Corporation 1–17
December 2004 Using the Lightweight IP with the Nios II Processor

Software Development Flow
LED D2 is toggled. The Nios II IDE Console displays 2 messages:
“processing RX data” followed by “Value for LED_PIO_BASE set to
6”. The value for LED_PIO_BASE is displayed on the LEDs in binary
format.

3. Type the letter Sr

The seven-segment LED display stops flashing.

4. Type the letter Qr

This terminates the socket connection on the Nios development
board, and the telnet command exits.

Figure 1–14 on page 1–17 shows the initial state of the Simple Socket
Server Menu, along with commands 1, 2, S, and Q. Figure 1–15 shows the
corresponding output on the Nios II IDE console during the telnet
session.

Figure 1–15. Nios II IDE Console Output During Telnet Session
1–18 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
Simple Socket
Server Design
Overview

This section describes the simple socket server design. The discussion is
divided into the following subsections:

■ “Nios II Software Architecture” on page 1–20
This section describes the architectural model of a Nios II software
application and how it fits in with the rest of the Nios II system
software components.

■ “Software Design Naming Convention” on page 1–22
This section identifies the naming convention used in the example
design source code files.

■ “MicroC-OS/II Resources” on page 1–23
This section describes the tasks, queue, event flag, and semaphores
used to implement the Simple Socket Server software application.

■ “Simple Socket Server Commands and Structures” on page 1–26
This section details the actual commands passed over Ethernet to the
socket server task and on to the LED management tasks, as well as
the structure used to maintain the socket connection.

■ “lwIP Initialization” on page 1–25
This section describes the tutorial’s tasks and functions which are
required to establish and maintain the Ethernet TCP/IP socket
connection.

■ “Simple Socket Server Implementation Details” on page 1–26
This section details each of the functions for each software
component, including main(), MicroC/OS-II initialization, and the
details of each of the SSS, LED, and NETUTIL software modules.
Altera Corporation 1–19
December 2004 Using the Lightweight IP with the Nios II Processor

Simple Socket Server Design Overview
Nios II Software Architecture

The onion model in Figure 1–16 shows the architectural layers of a Nios II
software application.

Figure 1–16. Layered Software Model

Each layer encapsulates the specific implementation details of that layer,
providing a data abstraction for the next outer layer. Each layer is
described below:

■ Nios II Processor System Hardware — The core of the onion model
contains the Nios II soft core processor and hardware peripherals
implemented in the FPGA.

■ Software Device Drivers — The software device drivers layer contains
the software functions which manipulate the Ethernet and other
hardware peripherals. These drivers contain the physical details of
the peripheral devices, abstracting those details from the outer
layers.

Application

Application-Specific System Initialization
lwIP Software Components

MicroC/OS-II

HAL API

Software Device Drivers

Nios II Processor
System Hardware

Hardware

Software
1–20 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
■ HAL API — The hardware abstraction layer applications
programming interface provides a standardized interface to the
software device drivers, presenting a POSIX-like API to the outer
layers.

■ MicroC/OS-II — The MicroC/OS-II real-time operating system layer
provides multi-tasking and inter-task communication services to the
lwIP networking stack and Simple Socket Server application.

■ lwIP Software Component — The lwIP software component layer
provides networking services to the application layer and
application-specific system initialization layer via the sockets API.

■ Application-Specific System Initialization — The application-specific
system initialization layer includes the MicroC/OS-II and lwIP
software component initialization functions invoked from main(),
as well as creation of all application tasks, and all of the semaphores,
queue, and event flag real-time operating system inter-task
communication resources.

■ Application — The outermost application layer contains the Simple
Socket Server task, LED management tasks, and network utility
DHCP timeout task.
Altera Corporation 1–21
December 2004 Using the Lightweight IP with the Nios II Processor

Simple Socket Server Design Overview
Figure 1–17. Simple Socket Server Data Flow Diagram

Figure 1–17 illustrates the structure of the example design. The following
sections will describe in detail the function of each element in the
diagram. The diagram shows the state of the system after everything has
been initialized. The Ethernet packet containing a LED command sent
from a Telnet client program is received by the lwIP software component.
lwIP processes the incoming Ethernet packets via the TCP/IP protocol,
and presents the data packet to the socket server task via the sockets API.
The LED command contained within the data packet is then extracted
and posted into the LED command queue for processing by the LED
management tasks.

Software Design Naming Convention

The naming convention used in the Simple Socket Server design employs
capitalized acronyms for software module references as prefixes to
variables to identify public resources for each software module, while

LED
Management

Task

LED 7 Seg
Lightshow

Task

NETUTILS
DHCP

Timeout
Task

LWIP TCPIP
Task

SSS LED Event Flag

SSS LED Lightshow Sem

SSS Attained IP Address Sem

TCP/IP ethernet packet exchange with Telnet client on Host PC via lwIP sockets API

LWIP Rx
Ether Task

A single MicroC/OS-II software component function call

LWIP Software Component Interface consisting of many sockets function calls

SSS LED Command Q

S 2 1Q

lwIP Software Component

Ethernet packet

SSS Simple
Socket

ServerTask
OSSemPend

OSSemPost

OSSemPend

OSQPendOSQPost

OSFlagPost

OSSemPost

OSSemPost
1–22 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
lower-case variables with underscores indicate a private resource or
function used internally to a software module. The software modules are
named and have capitalized acronym identifiers as shown in Table 1–1.

MicroC-OS/II Resources

This section describes the tasks, queue, event flag, and semaphores used
to implement the Simple Socket Server application.

Tasks

The MicroC/OS-II tasks shown in Table 1–2 implement the simple socket
server application.

The tasks listed in Table 1–2 are all created directly by the application.
There are two additional software component layer tasks which
implement lwIP network stack and process incoming packets. The lwIP
network stack implementation task is created in the
lwip_stack_init() call with a priority of

Table 1–1. Software Module Acronyms & Names

Acronym Name

SSS Simple Socket Server software module

LED Light Emitting Diode Management software module

NETUTILS Network Utilities software module

LWIP Lightweight Internet Protocol software component

OS MicroC/OS-II Real-Time Operating System software component

Table 1–2. MicroC/OS-II Tasks for the Simple Socket Server

Task Description

SSSInitialTask() Initializes the operating system data structures and creates the other
tasks.

SSSSimpleSocketServerTask() Listens for a socket connection and handles the connection. This task
is written to handle only one connection at a time.

NETUTILSDHCPTimeoutTask() Sets a static IP address after two minutes if lwIP has not been able to
set a dynamic IP address due to lack of a successful DHCP server
response.

LEDManagementTask() Receives and executes commands via SSSLEDCommandQ passed
from SSSSimpleSocketServerTask().

LED7SegLightshowTask() Blinks random patterns on the seven-segment LED display.
Altera Corporation 1–23
December 2004 Using the Lightweight IP with the Nios II Processor

Simple Socket Server Design Overview
LWIP_TCPIP_TASK_PRIORITY. The packet receive-processing task gets
created in lwip_devices_init with a priority level of
LWIP_RX_ETHER_TASK_PRIORITY.

Inter-Task Communication Resources

The following global handles (or pointers) are used to create and
manipulate our MicroC/OS-II inter-task communication resources. All of
the resources begin with SSS, indicating a public resource provided by
the Simple Socket Server which is shared between software modules.
These resources are declared and created in the simple_socket_server.c
file.

SSSLEDCommandQ
SSSLEDCommandQ is a MicroC/OS-II message queue used to send
commands from the simple socket server task to the Nios development
board LED control task, LEDManagementTask().

SSSLEDEventFlag
SSSLEDEventFlag is the handle to our MicroC/OS-II LED Event Flag
Group. Each flag corresponds to one of the LEDs (D0–D7) on the Nios
development board.

SSSLEDLightshowSem
SSSLEDLightshowSem is the handle to our MicroC/OS-II LED
Lightshow Semaphore. The semaphore is checked by the
LED7SegLightshowTask each time it updates seven-segment LED
displays, U8 and U9. The LEDManagementTask() grabs the semaphore,
via pend, away from the LED7SegLightshowTask() to toggle the
lightshow off, and gives up the semaphore, via post, to toggle the
lightshow back on. The LEDManagementTask() does this in response to
the CMD_LEDS_LIGHTSHOW command sent from the
SSSSimpleSocketServerTask() when the user sends the toggle
lightshow command over the TCP/IP socket.

SSSAttainedIPAddressSem
SSSAttainedIPAddressSem is the handle to our MicroC/OS-II IP
address semaphore. The semaphore is posted when an IP address has
been set, either using a static value, or in response to a reply from a DHCP
server. An application can pend on this semaphore in order to wait for a
valid IP address before opening sockets, if desired.
1–24 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
lwIP Initialization

As described in “The lwIP Tasks” and “Initializing the Stack” sections of
the Ethernet & LightWeight IP chapter in the Nios II Software Developer’s
Handbook, lwIP must be initialized from the Simple Socket Server
application code as follows:

■ 2 lwIP functions must be called:
● lwip_stack_init(), called from main() in lwip_init.c
● lwip_devices_init(), called from init_done_func() in

lwip_init.c

■ 3 lwIP functions must be provided:
● init_done_func() which is defined in lwip_init.c for this

example
● get_mac_addr() and get_ip_addr() which are defined in

network_utilities.c for this example

The following tasks are created by sys_thread_new() in
init_done_func(). This function is an excellent place to create any
additional application tasks, via sys_thread_new(), which will use the
lwIP sockets interface.

■ SSSSimpleSocketServerTask(), defined in
simple_socket_server.c, is created with priority
SSS_SIMPLE_SOCKET_SERVER_TASK_PRIORITY.

■ NETUTILSDHCPTimeoutTask(), defined in network_utilities.c, is
created with priority
NETUTILS_DHCP_TIMEOUT_TASK_PRIORITY.

Two more lwIP tasks are created by sys_thread_new(). These two
system tasks make up the implementation of the lwIP networking stack
sockets interface.

In lwip_stack_init(), the main TCP/IP networking stack processing
task is created with priority LWIP_TCPIP_TASK_PRIORITY.

In lwip_devices_init(), the Ethernet packet receive-processing task
is created with priority LWIP_RX_ETHER_TASK_PRIORITY. This lwIP
task acts as the bottom half of a UNIX-style driver. When an Ethernet
packet is received, the Ethernet receive-interrupt handler clears the bit
and puts a message on the queue for this task. The high priority
lwip_dev_rx() task is responsible for reading in packets and
dispatching them to the lwIP main TCP/IP networking stack task.
Altera Corporation 1–25
December 2004 Using the Lightweight IP with the Nios II Processor

Simple Socket Server Design Overview
Simple Socket Server Commands and Structures

The lwIP example design uses the following data elements:

LED Command Definitions

These definitions are the actual commands passed from the telnet client
to the socket on the Nios development board, and on to the LED
management tasks. These commands are the elements which flow
through the data flow diagram shown in Figure 1–17 on page 1–22.

CMD_LEDS_BIT_0_TOGGLE '0'
CMD_LEDS_BIT_1_TOGGLE '1'
CMD_LEDS_BIT_2_TOGGLE '2'
CMD_LEDS_BIT_3_TOGGLE '3'
CMD_LEDS_BIT_4_TOGGLE '4'
CMD_LEDS_BIT_5_TOGGLE '5'
CMD_LEDS_BIT_6_TOGGLE '6'
CMD_LEDS_BIT_7_TOGGLE '7'
CMD_LEDS_LIGHTSHOW 'S'
CMD_QUIT 'Q'

SSS_Socket Structure

This structure is used to manage a single socket connection.

typedef struct SSS_SOCKET
{
 enum { READY, COMPLETE, CLOSE } state;
 int fd;
 int close;
 INT8U rx_buffer[SSS_RX_BUF_SIZE]; /* circular buffer */
 INT8U *rx_rd_pos; /* position we've read up to */
 INT8U *rx_wr_pos; /* position we've written up to */
} SSSConn;

Simple Socket Server Implementation Details

Below are the details of all of the simple socket server tasks and functions.

■ main() (lwip_init.c)
● Opens the LCD device
● Calls lwip_stack_init()
● Creates SSSInitialTask()
● Calls OS_Start() to begin multithreading

■ init_done_func() (lwip_init.c)
● Calls lwip_devices_init()
1–26 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
● Creates tasks which uses lwIP with sys_thread_new():
SSSSimpleSocketServerTask(),
NETUTILSDHCPTimeoutTask()

■ SSSInitialTask() (simple_socket_server.c) is used to initialize
the operating system data structures and to create the other tasks.
The task deletes itself because it is not needed after initialization
completes. The convention of creating a task that is used to initialize
the rest of the application is advocated by Micrium’s MicroC/OS-II
examples. This ensures that stack checking will initialize correctly if
that feature is enabled.

This task:

● Creates SSSLEDCommandQ, SSSLEDLightshowSemaphore,
and SSSLEDEventFlag real-time operating system resources.

● Creates non-lwIP using tasks, including the LED tasks.

■ Network utility task (network_utilities.c)

● NETUTILSDHCPTimeoutTask() sets a static IP address after 2
minutes if an IP address has not been set due to a DHCP server
response.

■ SSSSimpleSocketServerTask() (simple_socket_server.c)

● Creates a socket to serve a TCP/IP connection, binds to the
socket, and listens for TCP/IP connection requests from a client.

● Calls sss_handle_accept() for an incoming TCP/IP
connection.

● Calls sss_handle_receive() to serve the TCP/IP
connection. If you require multiple TCP/IP connections, you
could modify this task to create other tasks to handle each
individual TCP/IP connection.

● Calls sss_reset_connection(), sss_send_menu(), and
sss_exec_command().

● When data packets are received, the LED commands are
extracted and passed to the LEDManagementTask() via the
SSSLEDCommandQ.

■ LED Tasks (leds.c)
Altera Corporation 1–27
December 2004 Using the Lightweight IP with the Nios II Processor

Important lwIP Concepts
● LEDManagementTask() consumes LED commands received
on the SSSLEDCommandQ. The commands received are
executed by toggling the SSSLEDLightshowSem semaphore
in response to the command CMD_LEDS_LIGHTSHOW, or posting
to the SSSLEDEventFlag to manipulate LEDS D0 – D7 in
response to CMD_LEDS_BIT_TOGGLE commands. The
application is terminated in response to the CMD_QUIT
command.

● LED7SegLightshowTask() blinks random patterns on the
seven-segment LED display. This task suspends and resumes its
LED update based on the SSSLEDLightshowSem semaphore,
controlled by a single command sent to the
LEDManagementTask(), CMD_LEDS_LIGHTSHOW.

Important lwIP
Concepts

The following topics are not easily categorized, but may have a significant
impact on your design.

Error Handling

Error Handling of SSS (our application), lwIP, and MicroC-OS/II system-
call error-codes are checked with a suite of error-handling functions
defined in alt_error_handler. All system, socket, and application
calls check for error conditions whenever an error could exist.

Creating Tasks that use the lwIP Sockets Interface

sys_thread_new() must be used to create any tasks which will use
lwIP networking services. Tasks which do not use networking services
should be created with OSTaskCreate(). Since all networking tasks are
created with 2048-byte task stacks, care should be taken to consolidate
networking functionality into networking tasks. Networking tasks can
hand off large processing jobs that are independent of networking to
other tasks. This task load segmentation has the advantage of increasing
control over memory usage for task stacks, as well as greater control over
prioritization of jobs.

On the other hand, be careful not to over utilize job distribution among
several tasks at the same time. There are two reasons:

1. Additional tasks require additional CPU execution time to do task
context-switching.

2. There are a limited number of priorities. Each task must have its
own priority in MicroC/OS-II, and you do not want to run out of
task priorities.
1–28 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
Task Priorities in the Simple Socket Server Design

The priority of the tasks in the application have an affect on how the
application runs, or if the task functions correctly at all. The priorities of
the tasks in the simple socket server design are discussed below:

■ LWIP_RX_ETHER_TASK_PRIORITY sets the priority to a value of 3
for a task launched in lwip_devices_init(), called
lwip_dev_rx(). This task is a lwIP task which acts as the second
half of a UNIX-type Ethernet driver responsible for collecting
packets from the Ethernet device and passing them to the TCP/IP
stack. The priority of this task must be very high to avoid dropping
any packets.

■ LWIP_TCPIP_TASK_PRIORITY sets the priority to a value of 6 for
the lwIP main TCP/IP networking stack task, called
tcpip_thread(), launched by lwip_stack_init(). This lwIP
task processes packets passed from the lwip_dev_rx()task. In
order to maximize TCP/IP packet-throughput rate, the priority of
this task should be higher than application tasks that use lwIP.

■ NETUTILS_DHCP_TIMEOUT_TASK_PRIORITY sets a value for
priority of 2. The timeout task is intended for use during
development only, and sets a static IP address (defined by
IPADDR{0-3} macros in simple_socket_server.h) if no dynamic IP
address has been assigned after two minutes. Such a delay is not
appropriate for a deployed embedded application, which will
benefit from assignment of a static IP address.

■ SSS_INITIAL_TASK_PRIORITY is set to a very high value of 1 for
the first task that MicroC/OS-II runs. This task creates the resources
and all of the other tasks, before deleting itself. It is given a high
priority, not due to its high time-period rate or low latency
requirement, but simply to get all the real-time operating system
resources and tasks created before the other tasks start using the
resources or interacting with each other.

■ SSS_SIMPLE_SOCKET_SERVER_TASK_PRIORITY is set to a value
of 10, a priority which is lower than the consumer task
LEDManagementTask(). The priority of this application task is set
to be lower than all of the software components’ system service tasks.
In general, this practice allows for the best overall scheduling latency,
since the software component tasks are designed to operate for as
short a period of time as possible.

At the same time, SSSSimpleSocketServer_Task() remains a
high priority among the group of application task priorities, since it
needs to service incoming Ethernet packets via the socket interface
Altera Corporation 1–29
December 2004 Using the Lightweight IP with the Nios II Processor

Important lwIP Concepts
which could come in at a high rate. The priority of this producer task
is lower than the priority of its complementary queue message-
consuming partner, LEDManagementTask(). This relative priority
selection means that the SSSSimpleSocketServerTask() will
likely never fill up the queue, even given a high rate of packet input.
Thus, encounter of a queue full condition from the post to
SSSLEDCommandQ is avoided.

LEDManagementTask() is scheduled to remove one of the
messages from the SSSLEDCommandQ as soon as a command is
posted. The queue full condition must still be handled though, due
to a rare exception which is described in Appendix B, Optimizing
lwIP Throughput.

■ LED_MANAGEMENT_TASK_PRIORITY has a priority value of 7. The
LEDManagementTask() is a consumer task, and is assigned a
priority higher than its complementary producer task,
SSSSimpleSocketServerTask(). After
SSSSimpleSocketServerTask() posts a message to the
SSSLEDCommandQueue, the LEDManagementTask() task will get
scheduled to consume that queue message before the producer task
SSSSimpleSocketServerTask() can post another queue
message.

■ LED_7SEG_LIGHTSHOW_TASK_PRIORITY has a low priority value
of 18. This task should be our lowest priority task, since it acts like
our idle task. When the system is doing nothing else, it has time to
perform the minimally important job of flashing random number
patterns to the seven-segment LEDs. Using a low-priority task that
blinks LEDs can be a handy debug tool to check your system for task
starvation. Updated by the lowest priority task, the random pattern
will be changed on the seven-segment LEDs only if all other higher
priority tasks (with ready-to-run status) are getting scheduled for
CPU processing time. This test can identify task starvation, but this
test cannot detect a task dead-lock condition.

TCP/IP Throughput Performance

The following UDP throughput rates (in megabits per second) have been
measured for lwIP on a closed network consisting of only a PC connected
to a Nios development board, Stratix Edition. The closed network does
not have any other network devices connected, so no extraneous traffic is
generated. The benchmark program uses the lwIP sockets interface and
1–30 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Lightweight IP Tutorial
the MicroC/OS-II real-time operating system. The board runs at 50 MHz
and is configured with the standard reference design, with the exception
that the Nios II/s core is changed to a Nios II/f core. See Table 1–3.

TCP throughput performance will be lower due to the overhead of the
protocol.

Task Stack Size

Task stack space requirements will vary depending on how the Nios II
processor, HAL, RTOS, and individual software components are
configured. A quick empirical check of the Stk[] array values at run-
time, via the Nios II IDE memory window, is an easy way to examine the
top of a task stack. Examination of a task’s Stk[] array will reveal
differing values representing the used portion of the stack followed by a
lot of zeros where the stack has not yet reached. The amount of zeros until
the beginning of the next adjacent task stack shows how deep the stack
has grown since the last system reset.

Each task that will use the lwIP networking stack must be created with
the function sys_thread_new(). The implementation for
sys_thread_new() is located in sys_arch.c. sys_thread_new()
creates all tasks with a stack size of 2 kilowords (8192 bytes). Since this
parameter is not configurable through the sys_thread_new()
function, be aware that if you created a networking task which requires a
large amount of stack, you will need to modify sys_thread_new(),
defined in sys_arch.c, to use a larger stack size.

All tasks which make run-time library calls have space allocated from the
top of stack for the approximately 900 byte _reent structure. Each task
has its own copy of the structure positioned on the task’s stack. The size
of this structure alone reduces the amount of stack space, leaving just over
1 Kbyte for all the other stack needs of the task. Allocation of large local
structures of a Kbyte or more in a task created with sys_thread_new()
would cause all variables locally declared to be positioned in another
task’s stack! No compiler, linker, or run-time error messages are
generated to warn you in this scenario, which would result in
indeterminate run-time behavior that is difficult to diagnose. Therefore,

Table 1–3. UDP Throughput Rates

 Type Rate Measurement

UDP Transmit 5.16 Mbps

UDP Receive 3.44 Mbps
Altera Corporation 1–31
December 2004 Using the Lightweight IP with the Nios II Processor

Where to Go Next
tasks which utilize the sockets API should be designed such that any
processing of packet data is handed off to other tasks which have been
created with sufficient task stack sizes.

For more details on the _reent structure, see both the “The Newlib ANSI
C Standard Library” and the “Implementing MicroC/OS-II projects in the
Nios II IDE” sections of the MicroC/OS-II Real-Time Operating System
chapter in the Nios II Software Developer’s Handbook.

Where to Go
Next

This example is easily expandable to handle multiple TCP connections on
a single port. The SSSSimpleSocketServerTask() task could be
modified to create separate socket_connection_instance_
tasks() to handle multiple telnet connections.

There are many uses for an Ethernet connection in an embedded system.
A connection to the Internet can allow for the addition of many powerful
features for any embedded product, such as remote configurability via a
web browser, or remote software upgrade for corrections or feature
enhancements to a product already in the field.
1–32 Altera Corporation
Using Lightweight IP with the Nios II Processor Tutorial December 2004

Altera Corporation
December 2004
Appendix A. Hardware Setup
Details
To complete this tutorial, you must have the Nios II IDE installed, and
your Nios development board must be connected to a host PC on both the
Ethernet and USB/JTAG ports. For details on how to install the software
and connect the Nios development board with the USB Blaster cable, see
the Nios II Development Kit Getting Started User Guide.

For the Ethernet connection, connect both your PC and the Nios
development board to the same subnet on a network. To assign IP
addresses to the MAC addresses, use either a DHCP server, or set a static
IP address in the source header file simple_socket_server.h.

The full-featured reference hardware design for the Nios development
boards includes the Ethernet device required by this lwIP tutorial. The
Ethernet device included in these reference designs, along with the
physical MAC/PHY on each of the Stratix II, Stratix, Stratix Professional,
and Cyclone Edition Nios development boards, is the LAN91C111
Ethernet peripheral. The full 14-bit address width of the chip is used, with
the 8 peripheral registers accessible at locations base+0x300 through
base+0x030f . The Ethernet peripheral base address settings for the
full_featured hardware reference designs, along with IRQ setting, can be
examined in system.h.
 A–1

A–2 Altera Corporation
December 2004

Altera Corporation
December 2004
Appendix B. Optimizing lwIP
Throughput
Introduction This section discusses methods to improve throughput performance of
the lwIP TCP/IP stack. The following factors affect TCP/IP throughput:

■ The configuration values of the lwIP software component
■ Compiler flags to improve over-all code efficiency
■ Network congestion

The following sections discuss configuring the lwIP software component
and setting compiler flags.

lwIP
Configuration
Values

This tutorial used the default values for the lwIP software component,
which are a good starting point for most lwIP applications. The values in
Table B–1 provide higher throughput performance. However, these
values present a trade-off between speed and memory size.

The most significant parameter affecting TCP receive performance in the
table below is TCP_WND. The most significant parameter affecting TCP
transmit performance in the table below is TCP_SND_BUF.

To access the lwIP configuration values in the Nios II IDE, open the
System Properties page for the system library project, select Software
Components and expand the lwIP entry to reveal each of these pages as
shown in Figure 1–8 on page 1–11, Figure 1–9 on page 1–12, and
Figure 1–10 on page 1–13.

Table B–1. lwIP Speed-Optimized Configuration Values (Part 1 of 3)

system.h Macro lwIP Options
Page Default Value Optimal Value Description

MEM_SIZE Memory 32768 65536 TCP/IP Heap Size

MEMP_NUM_PBUF Memory 32 32 Maximum number of
buffers sent without
copying.

MEMP_NUM_NETBUF Memory 32 32 Maximum number of
packet buffers passed
between the
application and the
stack threads.
 B–1

lwIP Configuration Values
MEMP_NUM_UDP_PCB UDP 8 8 Maximum number of
UDP sockets.

MEMP_NUM_TCP_PCB TCP 8 8 Maximum number of
active sockets.

MEMP_NUM_TCP_PCB_LISTEN TCP 2 2 Maximum number of
listening sockets.

MEMP_NUM_API_MSG Memory 32 32 Maximum number of
pending API calls
from the application to
the protocol stack
thread.

MEMP_NUM_TCPIP_MSG Memory 32 32 Maximum number of
messages passed
from the protocol
stack thread to the
application.

ARP_TABLE_SIZE ARP 10 10 Size of the ARP table

IP_FORWARD IP 0 0 Forward IP packets
(only useful with 2 or
more network
interfaces).

DHCP_DOES_ARP_CHECK DHCP 1 1 Use ARP protocol to
verify that the DHCP
assigned address is
not already in use.

LWIP_UDP Lightweight
TCP/IP Stack
(Main page)

1 1 Enable UDP Protocol

LWIP_TCP Lightweight
TCP/IP Stack
(Main page)

1 1 Enable TCP Protocol

TCP_WND TCP 2048 32768 Maximum window
size (receive buffer
space in bytes).

TCP_MAXRTX TCP 4 4 Maximum
retransmissions

TCP_SYNMAXRTX TCP 4 4 Maximum
retransmissions of
SYN frames.

TCP_MSS TCP 1476 1476 Maximum Segment
Size

Table B–1. lwIP Speed-Optimized Configuration Values (Part 2 of 3)

system.h Macro lwIP Options
Page

Default Value Optimal Value Description
B–2 Altera Corporation
December 2004

Configuring
Optimization &
Debug Levels

In addition to configuring lwIP for performance, you can also tune the
compiler flag for high speed performance by selecting the highest level of
optimization, which is 3. You can reduce the code size footprint by setting
the level of debugging information to None. Both of these flags are
controlled by Nios II IDE fields on the project Properties page, under the
C/C++ Build section highlighted on the left pane. The Debug Level and
Optimization Level must be set twice to adjust both the application
project and the system library project.

1. In the Nios II IDE C/C++ Projects view, right-click the
simple_socket_server_0 application project and choose Properties.
The Properties page appears.

2. Select C/C++ Build in the left-hand pane of the Properties page.

3. Select General under Configuration settings on the Properties
page.

TCP_SND_BUF TCP 32768 32768 Maximum Send Buffer
Space

LWIP_STATS Lightweight
TCP/IP Stack
(Main page)

0 0 Enable Statistics

LWIP_DHCP Lightweight
TCP/IP Stack
(Main page)

1 1 Use DCHP

ICMP_TTL Lightweight
TCP/IP Stack
(Main page)

255 255 Time to Live

PBUF_POOL_BUFSIZE Lightweight
TCP/IP Stack
(Main page)

1536 1536 Maximum packet
buffer size

PBUF_POOL_SIZE Lightweight
TCP/IP Stack
(Main page)

16 16 Number of packet
buffers

LWIP_DEFAULT_IF Lightweight
TCP/IP Stack
(Main page)

lan91c111 lan91c111 Default MAC Interface

Table B–1. lwIP Speed-Optimized Configuration Values (Part 3 of 3)

system.h Macro lwIP Options
Page

Default Value Optimal Value Description
Altera Corporation B–3
December 2004

Configuring Optimization & Debug Levels
4. Select Optimize Most (-O3) as the Optimization Level value, and
select None as the Debug Level value, as shown in Figure B–1.

Figure B–1. Compiler Flag Optimized Configuration Values

Set the same options in the properties page for the full_system_lib
system library project.
B–4 Altera Corporation
December 2004

	Using Lightweight IP with the Nios II Processor
	Contents
	About this Tutorial
	How to Contact Altera
	Typographic Conventions

	Lightweight IP Tutorial
	Introduction
	Hardware & Software Requirements
	Tutorial Design Files
	Software Development Flow
	Create a New Nios II IDE Project
	Configure the System Library
	Examine the Simple Socket Server Project Files
	Build & Run the Simple Socket Server Project
	Interacting with the Simple Socket Server

	Simple Socket Server Design Overview
	Nios II Software Architecture
	Software Design Naming Convention
	MicroC-OS/II Resources
	Tasks
	Inter-Task Communication Resources

	lwIP Initialization
	Simple Socket Server Commands and Structures
	LED Command Definitions
	SSS_Socket Structure

	Simple Socket Server Implementation Details

	Important lwIP Concepts
	Error Handling
	Creating Tasks that use the lwIP Sockets Interface
	Task Priorities in the Simple Socket Server Design
	TCP/IP Throughput Performance
	Task Stack Size

	Where to Go Next

	Appendix A. Hardware Setup Details
	Appendix B. Optimizing lwIP Throughput
	Introduction
	lwIP Configuration Values
	Configuring Optimization & Debug Levels

