
Altera Corporation 11–1
May 2006

11. PIO Core with Avalon
Interface

Core Overview The parallel input/output (PIO) core provides a memory-mapped
interface between an Avalon® slave port and general-purpose I/O ports.
The I/O ports connect either to on-chip user logic, or to I/O pins that
connect to devices external to the FPGA.

The PIO core provides easy I/O access to user logic or external devices in
situations where a “bit banging” approach is sufficient. Some example
uses are:

■ Controlling LEDs
■ Acquiring data from switches
■ Controlling display devices
■ Configuring and communicating with off-chip devices, such as

application-specific standard products (ASSP)

The PIO core interrupt request (IRQ) output can assert an interrupt based
on input signals. The PIO core is SOPC Builder ready and integrates
easily into any SOPC Builder-generated system.

Functional
Description

Each PIO core can provide up to 32 I/O ports. An intelligent host such as
a microprocessor controls the PIO ports by reading and writing the
register-mapped Avalon interface. Under control of the host, the PIO core
captures data on its inputs and drives data to its outputs. When the PIO
ports are connected directly to I/O pins, the host can tristate the pins by
writing control registers in the PIO core. Figure 11–1 shows an example of
a processor-based system that uses multiple PIO cores to blink LEDs,
capture edges from on-chip reset-request control logic, and control an off-
chip LCD display.

NII51007-6.0.0

11–2 Altera Corporation
May 2006

Quartus II Handbook, Volume 5

Figure 11–1. An Example System Using Multiple PIO Cores

When integrated into an SOPC Builder-generated system, the PIO core
has two user-visible features:

■ A memory-mapped register space with four registers: data,
direction, interruptmask, and edgecapture.

■ 1 to 32 I/O ports.

The I/O ports can be connected to logic inside the FPGA, or to device pins
that connect to off-chip devices. The registers provide an interface to the
I/O ports via the Avalon interface. See Table 11–2 on page 11–7 for a
description of the registers. Some registers are not necessary in certain
hardware configurations, in which case the unnecessary registers do not
exist. Reading a non-existent register returns an undefined value, and
writing a non-existent register has no effect.

Data Input & Output

The PIO core I/O ports can connect to either on-chip or off-chip logic. The
core can be configured with inputs only, outputs only, or both inputs and
outputs. If the core will be used to control bidirectional I/O pins on the
device, the core provides a bidirectional mode with tristate control.

A
valon S

w
itch Fabric

CPU

PIO core
(output only)

Program
 and Data
Memory PIO

core
 (bidirectional)

IRQ

 LEDs

Edge
Capture

PIO
core

(input
only)

Reset
request

logic

Altera FPGA

4

11 LCD
 display

Altera Corporation 11–3
May 2006

PIO Core with Avalon Interface

The hardware logic is separate for reading and writing the data register.
Reading the data register returns the value present on the input ports (if
present). Writing data affects the value driven to the output ports (if
present). These ports are independent; reading the data register does not
return previously-written data.

Edge Capture

The PIO core can be configured to capture edges on its input ports. It can
capture low-to-high transitions, high-to-low transitions, or both.
Whenever an input detects an edge, the condition is indicated in the
edgecapture register. The type of edges to detect is specified at system
generation time, and cannot be changed via the registers.

IRQ Generation

The PIO core can be configured to generate an IRQ on certain input
conditions. The IRQ conditions can be either:

■ Level-sensitive—The PIO core hardware can detect a high level. A NOT
gate can be inserted external to the core to provide negative
sensitivity.

■ Edge-sensitive—The core’s edge capture configuration determines
which type of edge causes an IRQ

Interrupts are individually maskable for each input port. The interrupt
mask determines which input port can generate interrupts.

11–4 Altera Corporation
May 2006

Quartus II Handbook, Volume 5

Example
Configurations

Figure 11–2 shows a block diagram of the PIO core configured with input
and output ports, as well as support for IRQs.

Figure 11–2. PIO Core with Input & Output Ports & with IRQ Support

Figure 11–3 shows a block diagram of the PIO core configured in
bidirectional mode, without support for IRQs.

Figure 11–3. PIO Core with Bidirectional Ports

Avalon Interface

The PIO core’s Avalon interface consists of a single Avalon slave port. The
slave port is capable of fundamental Avalon read and write transfers. The
Avalon slave port provides an IRQ output so that the core can assert
interrupts.

Instantiating the
PIO Core in
SOPC Builder

The hardware feature set is configured via the PIO core’s SOPC Builder
configuration wizard. The following sections describe the available
options.

data
in

out

address

data

control

IRQ

 32

interruptmask

edgecapture

Avalon
interface

to on-chip
logic

direction

data
in

out

address

data

control

 32
Avalon

interface
to on-chip

logic

Altera Corporation 11–5
May 2006

PIO Core with Avalon Interface

The configuration wizard has two tabs, Basic Settings and Input
Options.

Basic Settings

The Basic Settings tab allows the designer to specify the width and
direction of the I/O ports.

■ The Width setting can be any integer value between 1 and 32. For a
value of n, the I/O ports become n-bits wide.

■ The Direction setting has four options, as shown in Table 11–1.

Input Options

The Input Options tab allows the designer to specify edge-capture and
IRQ generation settings. The Input Options tab is not available when
Output ports only is selected on the Basic Settings tab.

Edge Capture Register

When the Synchronously capture option is turned on, the PIO core
contains the edge capture register, edgecapture. The user must further
specify what type of edge(s) to detect:

■ Rising Edge
■ Falling Edge
■ Either Edge

The edge capture register allows the core to detect and (optionally)
generate an interrupt when an edge of the specified type occurs on an
input port.

Table 11–1. Direction Settings

Setting Description

Bidirectional (tristate) ports In this mode, each PIO bit shares one device pin for driving and capturing data.
The direction of each pin is individually selectable. To tristate an FPGA I/O pin,
set the direction to input.

Input ports only In this mode the PIO ports can capture input only.

Output ports only In this mode the PIO ports can drive output only.

Both input and output ports In this mode, the input and output ports buses are separate, unidirectional buses
of n bits wide.

11–6 Altera Corporation
May 2006

Quartus II Handbook, Volume 5

When the Synchronously capture option is turned off, the edgecapture
register does not exist.

Interrupt

When the Generate IRQ option is turned on, the PIO core is able to assert
an IRQ output when a specified event occurs on input ports. The user
must further specify the cause of an IRQ event:

■ Level—The core generates an IRQ whenever a specific input is high
and interrupts are enabled for that input in the interruptmask
register.

■ Edge—The core generates an IRQ whenever a specific bit in the edge
capture register is high and interrupts are enabled for that bit in the
interruptmask register.

When the Generate IRQ option is turned off, the interruptmask
register does not exist.

Device & Tools
Support

The PIO core supports all Altera® FPGA families.

Software
Programming
Model

This section describes the software programming model for the PIO core,
including the register map and software constructs used to access the
hardware. For Nios® II processor users, Altera provides the HAL system
library header file that defines the PIO core registers. The PIO core does
not match the generic device model categories supported by the HAL, so
it cannot be accessed via the HAL API or the ANSI C standard library.

f The Nios II Embedded Design Suite (EDS) provides several example
designs that demonstrate usage of the PIO core. In particular, the
count_binary.c example uses the PIO core to drive LEDs, and detect
button presses using PIO edge-detect interrupts.

Software Files

The PIO core is accompanied by one software file,
altera_avalon_pio_regs.h. This file defines the core’s register map,
providing symbolic constants to access the low-level hardware.

Altera Corporation 11–7
May 2006

PIO Core with Avalon Interface

Legacy SDK Routines

The PIO core is supported by the legacy SDK routines for the first-
generation Nios processor. For details on these routines, refer to the PIO
documentation that accompanied the first-generation Nios processor. For
details on upgrading programs based on the legacy SDK to the HAL
system library API, refer to AN 350: Upgrading Nios Processor Systems to the
Nios II Processor.

Register Map

An Avalon master peripheral, such as a CPU, controls and communicates
with the PIO core via the four 32-bit registers, shown in Table 11–2. The
table assumes that the PIO core’s I/O ports are configured to a width of n
bits.

data Register

Reading from data returns the value present at the input ports. If the PIO
core hardware is configured in output-only mode, reading from data
returns an undefined value.

Writing to data stores the value to a register that drives the output ports.
If the PIO core hardware is configured in input-only mode, writing to
data has no effect. If the PIO core hardware is in bidirectional mode, the
registered value appears on an output port only when the corresponding
bit in the direction register is set to 1 (output).

Table 11–2. Register Map for the PIO Core

Offset Register Name R/W (n-1) ... 2 1 0

0 data read access R Data value currently on PIO inputs

write access W New value to drive on PIO outputs

1 direction (1) R/W Individual direction control for each I/O port. A value of 0
sets the direction to input; 1 sets the direction to output.

2 interruptmask (1) R/W IRQ enable/disable for each input port. Setting a bit to 1
enables interrupts for the corresponding port.

3 edgecapture (1), (2) R/W Edge detection for each input port.

Notes to Table 11–2:
(1) This register may not exist, depending on the hardware configuration. If a register is not present, reading the

register returns an undefined value, and writing the register has no effect.
(2) Writing any value to edgecapture clears all bits to 0.

11–8 Altera Corporation
May 2006

Quartus II Handbook, Volume 5

direction Register

The direction register controls the data direction for each PIO port,
assuming the port is bidirectional. When bit n in direction is set to 1,
port n drives out the value in the corresponding bit of the data register.

The direction register only exists when the PIO core hardware is
configured in bidirectional mode. The mode (input, output, or
bidirectional) is specified at system generation time, and cannot be
changed at runtime. In input-only or output-only mode, the direction
register does not exist. In this case, reading direction returns an
undefined value, writing direction has no effect.

After reset, all bits of direction are 0, so that all bidirectional I/O ports are
configured as inputs. If those PIO ports are connected to device pins, the
pins are held in a high-impedance state.

interruptmask Register

Setting a bit in the interruptmask register to 1 enables interrupts for
the corresponding PIO input port. Interrupt behavior depends on the
hardware configuration of the PIO core. See “Interrupt Behavior” on
page 11–9.

The interruptmask register only exists when the hardware is
configured to generate IRQs. If the core cannot generate IRQs, reading
interruptmask returns an undefined value, and writing to
interruptmask has no effect.

After reset, all bits of interruptmask are zero, so that interrupts are
disabled for all PIO ports.

edgecapture Register

Bit n in the edgecapture register is set to 1 whenever an edge is detected
on input port n. An Avalon master peripheral can read the edgecapture
register to determine if an edge has occurred on any of the PIO input
ports. Writing any value to edgecapture clears all bits in the register.

The type of edge(s) to detect is fixed in hardware at system generation
time. The edgecapture register only exists when the hardware is
configured to capture edges. If the core is not configured to capture edges,
reading from edgecapture returns an undefined value, and writing to
edgecapture has no effect.

Altera Corporation 11–9
May 2006

PIO Core with Avalon Interface

Interrupt Behavior

The PIO core outputs a single interrupt-request (IRQ) signal that can
connect to any master peripheral in the system. The master can read
either the data register or the edgecapture register to determine which
input port caused the interrupt.

When the hardware is configured for level-sensitive interrupts, the IRQ is
asserted whenever corresponding bits in the data and interruptmask
registers are 1. When the hardware is configured for edge-sensitive
interrupts, the IRQ is asserted whenever corresponding bits in the
edgecapture and interruptmask registers are 1. The IRQ remains
asserted until explicitly acknowledged by disabling the appropriate bit(s)
in interruptmask, or by writing to edgecapture.

Software Files

The PIO core is accompanied by the following software file. This file
provide low-level access to the hardware. Application developers should
not modify the file.

■ altera_avalon_pio_regs.h—This file defines the core’s register map,
providing symbolic constants to access the low-level hardware. The
symbols in this file are used by device driver functions.

11–10 Altera Corporation
May 2006

Quartus II Handbook, Volume 5

	11. PIO Core with Avalon Interface
	Core Overview
	Functional Description
	Data Input & Output
	Edge Capture
	IRQ Generation

	Example Configurations
	Avalon Interface

	Instantiating the PIO Core in SOPC Builder
	Basic Settings
	Input Options
	Edge Capture Register
	Interrupt

	Device & Tools Support
	Software Programming Model
	Software Files
	Legacy SDK Routines
	Register Map
	data Register
	direction Register
	interruptmask Register
	edgecapture Register

	Interrupt Behavior
	Software Files

