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Understanding Fault
Tolerance and
Reliability

Most people who use computers regularly
have encountered a failure, either in the
form of a software crash, disk failure, power

loss, or bus error. In some instances these failures
are no more than annoyances; in others they result
in significant losses. The latter result will probably
become more common than the former, as society’s
dependence on automated systems increases.

The ideal system would be perfectly reliable and
never fail. This, of course, is impossible to achieve
in practice: System builders have finite resources to
devote to reliability and consumers will only pay so
much for this feature. Over the years, the industry
has used various techniques to best approximate the
ideal scenario. The discipline of fault-tolerant and
reliable computing deals with numerous  issues per-
taining to different aspects of system development,
use, and maintenance.

The expression “disaster waiting to happen” is
often used to describe causes of failure that are seem-
ingly well known, but have not been adequately
accounted for in the system design. In these cases
we need to learn from experience how to avoid fail-
ure. 

Not all failures are avoidable, but in many cases
the system or system operator could have taken cor-
rective action that would have prevented or miti-
gated the failure. The main reason we don’t prevent
failures is our inability to learn from our mistakes.
It often takes more than one occurrence of the same
failure before corrective action is taken.

EXPRESSING FAULT TOLERANCE
The two most common ways the industry

expresses a system’s ability to tolerate failure are
reliability and availability.

Reliability is the likelihood that a system will
remain operational (potentially despite failures) for
the duration of a mission. For instance, the require-
ment might be stated as a 0.999999 availability for
a 10-hour mission. In other words, the probability
of failure during the mission may be at most 10-6.
Very high reliability is most important in critical
applications such as the space shuttle or industrial
control, in which failure could mean loss of life.

Availability expresses the fraction of time a sys-
tem is operational. A 0.999999 availability means
the system is not operational at most one hour in a
million hours. It is important to note that a system
with high availability may in fact fail. However, its
recovery time and failure frequency must be small
enough to achieve the desired availability. High
availability is important in many applications,
including airline reservations and telephone switch-
ing, in which every minute of downtime translates
into significant revenue loss.

UNDERSTANDING FAULT TOLERANCE
Systems fail for many reasons. The system might

have been specified erroneously, leading to an incor-
rect design. Or the system might contain a fault that
manifests only under certain conditions that weren’t
tested. The environment may cause a system to fail.
Finally, aging components may cease to work prop-
erly. It’s relatively easy to visualize and understand
random failures caused by aging hardware. It’s much
more difficult to grasp how failures might be caused
by incorrect specifications, design flaws, substan-
dard implementation, poor testing, and operator
errors. And many times failures are caused by a com-
bination of these conditions.

In addition, a system can fail at several levels. The

Future systems will be more complex and so more susceptible to failure.
Despite many proposals in the past three decades, fault tolerance remains
out of the reach of the average computer user. The industry needs
techniques that add reliability without adding significant cost.
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system or subsystem itself may fail, its human opera-
tor may fail and introduce errors, or the two factors
may interact to cause a failure (when there is a mis-
match between system operation and operator under-
standing). Operator error is the most common cause
of failure. But many errors attributed to operators are
actually caused by designs that require an operator to
choose an appropriate recovery action without much
guidance and without any automated help. The oper-
ator who chooses correctly is a hero; the one who
chooses incorrectly  becomes  a scapegoat. The bigger
question here is whether these catastrophic situations
could have been avoided if the system had been
designed in an appropriate, safe manner.

Importance of design
Piecemeal design approaches are not desirable. A

good fault-tolerant system design requires a careful
study of design, failures, causes of failures, and system
response to failures. Such a study should be carried
out in detail before the design begins and must remain
part of the design process.

Planning to avoid failures—fault avoidance—is the
most important aspect of fault tolerance. Proper
design of fault-tolerant systems begins with the
requirements specification. A designer must analyze
the environment and determine the failures that must
be tolerated to achieve the desired level of reliability.
Some failures are more probable than others. Some
failures are transient and others are permanent. Some
occur in hardware, others in software. To optimize
fault tolerance, it is important (yet difficult) to esti-
mate actual failure rates for each possible failure.

The next obvious step is to design the system to tol-
erate faults that occur while the system is in use. The
basic principle of fault-tolerant design is redundancy,
and there are three basic techniques to achieve it: spa-
tial (redundant hardware), informational (redundant
data structures), and temporal (redundant computa-
tion).

Redundancy costs both money and time. The
designers of fault-tolerant systems, therefore, must
optimize the design by trading off the amount of
redundancy used and the desired level of fault toler-
ance. Temporal redundancy usually requires recom-
putation and typically results in a slower recovery
from failure compared to spatial redundancy. On the
other hand, spatial redundancy increases hardware
costs, weight, and power requirements.

Many fault tolerance techniques can be imple-
mented using only special hardware or software, and
some techniques require a combination of these.
Which approach is used depends on the system
requirements: Hardware techniques tend to provide
better performance at an increased hardware cost;
software techniques increase software design costs.

Software techniques, however, are more flexible
because software can be changed after the system has
been built.

Here we describe the six most widely used hard-
ware and software techniques.

Modular redundancy and N-version programming
Modular redundancy uses multiple, identical repli-

cas of hardware modules and a voter mechanism. The
voter compares the outputs from the replicas and
determines the correct output using, for example,
majority vote. Modular redundancy is a general tech-
nique—it can tolerate most hardware faults in a
minority of the hardware modules.

N-version programming can tolerate both hard-
ware and software faults. The basic idea is to write
multiple versions of a software module. A voter
receives outputs from these versions and determines
the correct output. The different versions are written
by different teams, with the hope that these  versions
will not contain the same bugs. N-version program-
ming can therefore tolerate some software bugs that
affect a minority of the replicas. However, it does not
tolerate correlated faults, which may be catastrophic.
In a correlated fault, the reason for failure may be
common to two modules. For example, two modules
may share a single power supply or a single clock.
Failure of either may make both modules fail.

Error-control coding
Replication is effective but expensive. For certain

applications, such as RAMs and buses, error-correct-
ing codes can be used, and they require much less
redundancy than replication. Hamming and Reed-
Solomon codes are among those commonly used.

Checkpoints and rollbacks
A checkpoint is a copy of an application’s state

saved in some storage that is immune to the failures
under consideration. A rollback restarts the execution
from a previously saved checkpoint. When a failure
occurs, the application’s state is rolled back to the pre-
vious checkpoint and restarted from there. This tech-
nique can be used to recover from transient as well as
permanent hardware failures and certain types of soft-
ware failures. Both uniprocessor and distributed appli-
cations can use rollback recovery.

Recovery blocks
The recovery block technique uses multiple alternates

to perform the same function. One module is the pri-
mary module; the others are secondary modules. When
the primary module completes execution, its outcome
is checked by an acceptance test. If the output is not
acceptable, a secondary module executes, and so on,
until either an acceptable output is obtained or the alter-
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Beyond Fault Tolerance
Timothy C.K. Chou, Oracle Corporation

While the cost of hardware and software drops
every year, the cost of downtime only
increases. Whether measured by lost pro-

ductivity, lost revenue, or poor customer satisfaction,
downtime is becoming a significant part of the cost
of computer-based services. Although many believe
the state of the art in fault-tolerant technology is ade-
quate, the following data shows that the industry has
a long way to go.

State of the art
Availability is usually expressed in terms of the per-

centage of time a system is available to users. While
this is a valid metric, a much more useful metric is
outage minutes. Outage minutes are directly mea-
surable, understandable, and—most important—
they can be translated directly to cost. Most people
are comfortable with a system that is “99 percent
available,” but if that means 5,000 outage minutes at
a cost of $1,000 each minute, the cost of this 99 per-
cent availability is actually $5 million per year.

There is little publicly available data about the
number of outage minutes computer systems expe-
rience. One study found that the average mainframe
experiences 57,000 outage minutes per year.1

Another calculated Internet downtime at 15,000 out-
age minutes per year.2 The US telecommunications
industry requirement is that voice switches be down
no more than two hours in 40 years, which is less
than five outage minutes per year. Experience has
shown that well-managed production systems can
run in the range of 500 to 5,000 outage minutes per
year. Many production systems do not run even this
well.

All applications do not have the same cost of
unavailability. A 1995 survey of 450 companies con-
cluded that the average cost per outage minute for
business systems is $1,300.3 The famous nine-hour
breakdown of AT&T’s long distance network in
early 1990 cost AT&T some $60 to $75 million in
lost revenues—more than $100,000 per outage
minute. The Gartner Group has calculated that an
average LAN system has an annual downtime cost
of more than $600,000.4

Whatever the numbers, the costs are  driving both
IT and MIS departments to consider availability as
one of their most important issues.

7 × 24 Framework
Building systems that are always available (7 × 24

systems) is a complex, multidimensional problem.
Developers need a framework or model that lets them

discuss these challenges from both a customer and a
technology view.

Customer view
Consumer demand for services drives demand for

availability, and so end-user availability is the only
interesting metric. It is not enough to consider the avail-
ability of the hardware, the operating system, or even
the database-management system. Today’s applications
consist of several components: the servers, the network,
and the clients.

Figure A shows the customer view of the 7 × 24
Framework I developed. Across the top are the number
of outage minutes/year. The left side shows the com-
ponents seen by the customer’s application: server, net-
work, and client. Each of these is further divided into
its major components: hardware, system software
(operating system, database management, middleware,
and networking), and applications software. Using this
matrix, developers can plot where actual faults are
occurring and their magnitude. For example, the num-
bers in Figure A are the outage minutes experienced by
a very well run production system over a 12-month
period. By plotting outage minutes data this way, orga-
nizations can invest their R&D funds in the areas that
will have the most impact on their customers. Although
the industry has tended to focus on the upper-left quad-
rant (hardware faults), this matrix shows that in fact
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Figure A. Customer view of 7 × 24 Framework.
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system and application faults have a greater magnitude
in terms of outage minutes.

Technology view
There are two ways to obtain zero outage minutes:

decrease the number of faults and decrease the time to
recover from a fault. Five classes of faults are relevant:
physical, design, operator, environmental, and recon-
figuration.

The technical challenge is to eliminate or tolerate all
faults in all classes for a range of hardware and soft-
ware components. Figure B shows the technology view
of the 7 × 24 Framework. The notch under physical
faults reflects the fact that there is no such thing as a
physical software failure. Again, I have plotted actual
data into the matrix: the number of faults and the total
number of outage minutes attributed to those faults.

Physical faults. High-quality hardware design will
continue to be a prerequisite to building reliable 7 ×
24 systems. Beyond that, commodity cluster-manage-
ment software will enable every system to tolerate per-
manent physical faults. As we move to smaller and
smaller VLSI implementations, transient hardware
faults will predominate; today about 80 percent of all
hardware faults are transient. (If your PC fails only to
seem okay on rebooting, you just experienced a tran-
sient fault.) Transient faults are particularly nasty:
They are difficult to diagnose and, worse, can corrupt
data. We need research to determine how transient
faults affect logic and memory circuits and how VLSI
scaling will affect transient fault rates.

Soon systems will be built from devices with more than
100 million transistors. At these densities it will be impos-

sible to prove design correctness or to exhaustively test
production parts. Here research must focus on improv-
ing the CAD tools to ensure design correctness and on
developing new design-for-test methods and online tech-
niques to detect faults before they can corrupt data.

Design faults. Design faults are the primary cause for
software failures, although of course there are hard-
ware design faults as well. The Year 2000 problem is a
well-known design fault. While the progress in reduc-
ing hardware design faults can be largely attributed to
the stuck-at fault model, no such model exists for soft-
ware. What software fault models do exist are inaccu-
rate, because there have been few documented,
quantitative experiments to determine why software
fails. The Software Engineering Institute has done much
to document different maturity levels as they relate to
software productivity. Is there experimental data to
show that an organization rated at a higher CMM level
delivers more reliable software? Research is needed to
define a software fault model based on outage profiles.

Bugs greatly contribute  to software downtime.
Software engineering technology does offer improve-
ments: An analysis of “excellent” software engineer-
ing versus “average” groups has shown a 2:1 difference
in the number of permanent design faults found in each
1,000 lines of code developed.6

Just as in hardware, transient software faults account
for an increasingly large percentage of bugs found in
the field. The software manufacturing process typically
removes deterministic, predictable design faults. Once
in production, software suffers from a large number of
state-dependent faults. Process-pair technology, which
allows a backup process to shadow a primary process,

Figure B. Technology
view of 7 × 24 Frame-
work.
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has a demonstrated ability to tolerate transient software
faults. One study, using a sample of 2,000 systems rep-
resenting 10 million system hours, revealed that about
99.3 percent of the faults affecting a primary/backup
spooling group affected just one member of the group
but left the spooling process running correctly.5

Advanced technologies such as process pairs are diffi-
cult to program. Research is needed to incorporate this
technology into modern programming environments.

Operator faults. Some say the best technology is a
mean dog, installed between the operator and the con-
sole to keep the operator from introducing error. Mean
dogs may not be practical, but automating the operator
function can dramatically affect  speed and accuracy:
Production systems have demonstrated a 50 percent
reduction of outage minutes using automated recovery.

Automation is a good first step, but there has been
very little research into how to build fault-tolerant oper-
ator interfaces. Studies in this area done for aviation
and military applications have not yet crossed over into
the broader computer industry. As in the case of soft-
ware, there is no operator fault model. The industry
needs an operator fault model based on outage profiles.
In the absence of this fundamental research, continued
investment in automated operations, recovery, and
security is important.

Environmental faults. Environmental faults include
disasters such as earthquakes as well as simple power
failures. The National Power Lab reports that the aver-
age computer room experiences 443 power glitches
(264 sags, 128 surges, 36 spikes, and 15 outages) each
year. Downtime attributed to the environment was
believed to be at 30 percent in 1990 and projected to
be well over 50 percent by the late 1990s.7,8

The telecommunications industry has taken the lead
in creating technology to tolerate hardware failures
caused by environmental factors. The generic Network
Equipment Building Standard (NEBS) specification, for
example, defines requirements for office equipment that
can tolerate an 8.2 earthquake. Increasingly, many com-
puter systems are deployed in buildings with motor-
generator pairs, batteries, universal power supplies, and
other ac sources. Computers are powered with dc
sources. Rather than have this array of equipment con-
verting ac to dc to ac to dc, NEBS-compliant equipment
is designed to be powered directly off a –48V dc outlet.

Environmental fault-tolerant software also requires
database technology that can synchronize two servers
installed far enough apart to tolerate these faults.
Technology to address this problem is driven by three
parameters: the degree of synchronization, the time
required to resynchronize after failure, and the distance
between the databases. A remote database facility,
extended mirroring, and other techniques are some
solutions requiring  more research.

Reconfiguration faults. While the other four classes
include unplanned faults, this class of faults includes
“planned outages” such as taking a system down to
add a disk or change a piece of software. Systems built
for 7 × 24 availability have no window for mainte-
nance or upgrades. In order to physically reconfigure
a database today, you have to shut down the commu-
nications, shut down the middleware, move the data,
update the file labels, recompile the query language,
write the database to disk, restart the middleware, and
restart communications—a series of operations that
can take hundreds of minutes. Some technology exists
to solve parts of this problem, but much work remains.

While computer technology has made great strides in
reliability, current demands are beginning to exceed

our ability to deliver solutions. While hardware is getting
more reliable and fault tolerant, there remains much to
be done in developing systems that can tolerate design,
operator, environmental, and reconfiguration faults. ❖
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nates are exhausted. Recovery blocks can tolerate soft-
ware failures because the alternates are usually imple-
mented with different approaches (algorithms).

DEPENDABILITY EVALUATION
Once a fault-tolerant system is designed, it must be

evaluated to determine if its architecture meets relia-
bility and dependability objectives. There are two
ways to evaluate dependability: using an analytical
model or injecting faults.

An analytical model (such as a Markov model) can
help developers determine a system’s possible states
and the rates or probabilities of transitions among
them. Such a model can then be used to evaluate dif-
ferent dependability metrics for a system.
Unfortunately, it is very complex to analyze models
accurately, so this approach is not viable for many
systems.

Various types of faults can be injected into a sys-
tem, again to determine various dependability met-
rics. Faults can be injected into simulated or real
systems, or into a system that is part simulation, part
real. Fault injection can be used to evaluate hardware
or software. To choose an approach, developers must
consider the characteristics of the system under con-
sideration, the desired metrics, and the desired accu-
racy of the metrics.

The increased complexity of future systems will
make them even more susceptible to failure. Yet,
despite many proposals in the past three

decades, fault tolerance remains out of the reach of
the average computer user. The industry needs low-
cost techniques that can provide an added measure
of fault tolerance and reliability to the computers
used by the vast majority of users. For this to hap-
pen, the extra costs associated with fault tolerance
(especially monitoring and performance) must be
minimized.

Next to failures caused by software and computer
operators, hardware failures are comparatively easy
to understand. Past research has been much more
effective in obtaining solutions for tolerating hard-
ware failures, so now the pressure is on to develop
solutions for software and operators. The search for
better solutions is expected to continue well into the
next millennium. ❖
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For More Information
Sources of information on fault-tolerant and reli-

able computing include:

• The electronic newsletter of the IEEE
Computer Society’s Technical Committee on
Fault-Tolerance (contact Arun Somani at
somani@ee.washington.edu).

• Conferences and symposiums, including the
International Symposium on Fault-Tolerant
Computing (http://denali.ee.washington.edu/~
webroot/ftcs97.html), Symposium on Reliable
Distributed Systems, Pacific Rim International
Symposium on Fault-Tolerant Systems (flai@
cc.ee.ntu. edu.tw), European Dependable
Computing Conference, and Dependable
Computing for Critical Applications.

• Special issues of IEEE Transactions on
Computers (January 1998, February 1995,
and May 1992) and Computer (July 1990).


