Enhancing Performance
by Pipelining

COE608: Computer Organization
and Architecture

Dr. Gul N. Khan
http://www.ee.ryerson.ca/~gnkhan
Electrical and Computer Engineering

Ryerson University

Overview

¢ Introduction to Pipelining
¢ Laundry Example

¢ Pipelining and CPU Performance
¢ Pipelining Hazards
¢ Hazard Solutions

e Pipelined Datapath and Control
¢ Stalling, Forwarding and Flushing

Chapter 4 (Sections 4.5, 4.6, 4.7, 4.8 and part of 4.10/4.11) of Text

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 1

Introduction
Laundry Example

Consider Ann, Brian, Cathy, Dave each have
one load of clothes to wash, dry, and fold

OO

Washer takes 30 minutes

o

Dryer takes 30 minutes

-
©)
“Folder” takes 30 minutes
“Stasher” takes 30 minutes
to put clothes into drawers A

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 2

Sequential Laundry

6 IPM 7 8 9 10 11 12 1
| >
PTIETIET T 1R T E Y e e T BT T BT T \E T T BT

T 3030301301 30'30' 301301 30'30' 301301 30'30'30' 30
a ° ime
o8 &
k| D g

3 S .
0 @)
r*& = A
d

Sequential laundry takes 8 hours for 4 loads

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 3

Pipelined Laundry

Start work ASAP

6|PM 7 8 9 10 11 12 1 2AM

| >
T 30 3030 30 30'30I30I Iime
(S _A
O B A
|8 BELLA
O A
d
e
r

e Multiple tasks operating simultaneously using
different resources.

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 4

Pipelined Laundry

6 PM 7 8 9
T I Time>
R E——
a 30 1}0 30 30 30 30
A SR
S WA
08N @A
i OB 1 SR
e
r

e Pipelining doesn’t reduce latency of a single task.
It improves throughput of the entire workload

e Potential speedup = Number of (pipe) stages

e Pipeline rate limited by the slowest pipeline stage

e Unbalanced lengths of pipe stages reduce the
speedup

e Time to “fill” pipeline and time to “drain’ it
reduces the speedup.

e Stall due to dependencies??

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 5

Pipelining in the CPU

Improve performance by increasing instruction
throughput.

Five Natural Stages in an Instruction Execution

S I I N T B

Ifetch IReg/DecI Exec I Mem I Wr

Load Word Instruction Stages

e Ifetch: Instruction Fetch
* Fetch instruction from Instruction Memory

e Reg/Dec: Registers Fetch and Instruction
Decode

e Exec: Calculate the memory address
e Mem: Read data from the Data Memory
e Wr: Write data back to the register file

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 6

CPU Pipelining

Program(]
executionl] 2 4

order(] Time T T
(in instructions)

=

Instruction

fetch ALU

Iw $1, 100($0) Reg

Datal]

Reg
access

lw $2, 200($0) 8 ns

‘ Iw $3, 300($0)

Program(
execution(] 2 4

> Instruction |

fetch

Reg

ALU

Datal]
access

Reg

\ 4

<
<

8 ns

12

14

Instruction
fetch

order[] Time f J

(in instructions)
Iw $1, 100($0)

Instruction (|l

fetch Reg

Datall
acgess

ALU

Reg

Instruction (]

lw $2, 200($0) fetch

2ns

Reg ALU

Datal]
access

Reg

P

Iw $3, 300($0) 2 ns

v

Instruction(|!

Reg

fetch

ALU

Datall

Reg
access

+—— Pt PP t—— P 4—>

Ideal speedup is number of stages in the pipeline.

2ns 2ns

2ns

What makes pipelining easy?
e When all instructions are of the same length.
e Few instruction formats.

e Memory operands appear only in loads and stores.

What makes pipelining hard?
e Structural Hazards:
e Control Hazards:

e Data Hazards: An instruction depends on a
previous instruction.

2ns

2ns

v

8 ns

—»

© G.N. Khan

Computer Organization & Architecture-COE608: Pipelining

Page: 7

Single Cycle, Multiple Cycle
vs. Pipeline

< Cycle] —> i« Cycle 2 p:

CIk| | ! | -

Sin;gle Cycle Implementation:

Load I Store Waste

ECycle IECycle ZECycle 3§Cycle 4§Cycle SECycle 6§Cycle 7 ECycle 8§Cycle 9§Cyclé 10
Lo 1 4 1 1 °—f —& 1 I I

Load Store R-type
Ifetchl Reg I Exec I Mem I Wr I Ifetchl Reg I Exec I Mem I Ifetch

Load Ifetchl Reg I Exec I Mem I Wr

Store Ifetchl Reg | Exec | Mem

R-type Ifetchl Reg I Exec I Wr

Suppose we execute 100 instructions

* Single Cycle Machine
45 ns/cycle x 1 CPI x 100 inst = 4500 ns

* Multicycle Machine
10 ns/cycle x 4.6 CPI (mix of inst) X 100 inst = 4600 ns
* Ideal Pipelined Machine
10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 8

Pipeline Hazards

e Structural Hazards: attempt to use the same
resource two different ways at the same time

e Data Hazards: attempt to use an item before it
1s ready

Instruction depends on the results of a prior
instruction still in the pipeline
e Control Hazards: attempt to make a decision

before condition is evaluated
Branch instructions

The hazards can always be resolved by waiting.
Pipeline control must detect the hazards and
take actions (or delay action) to resolve
hazards.

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 9

Hazards

Structural Hazard: Single Memory

Time (clock cycles)

Load

Instr 1

Instr 2

o)

r

d |Instr 3
e

r

Mem.gf Reg|: 3

EMemf

Control Hazard

I Time (clock cycles) >
n : : % : : :
s Memli| Reg [. IReg|:
. |Add o i ¥ !Efri o kel AR
. {rrmtiey . AN e Hi o]
Beq emE & emF— eg;
" | Load _'_% EMem Reg
d (A : :
e 12 ;
v
© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 10

Control Hazard Solutions

Stall

It 1s possible to move the decision upward
to 2nd stage by adding hardware that
checks the registers as being read.

I Time (clock cycles)
n : : : : : :
s Mem}l| Reg [
. |Add 1 el ¥
r Mem? Reg

Beq : : E
o

Oad HMem | Reg | :

d :
r H H

v

e Predict: guess one branch direction then
backup if wrong.

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 11

Control Hazard Solutions

Redefine branch behavior (takes place after
next instruction) “delayed branch™

I Time (clock cycles)
n . . .
. |Add
r.
Beq
o : : :
; Misc Reg
e : :
r | Load Mem#- Regf
v : :
e Impact:

No clock cycle 1s wasted 1f one can find an
instruction to put in “slot”

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 12

Data Hazard

Data Hazard in r1
Dependencies backwards in time are hazards

Time (clock cycles) :
IF_: ID/RF:

add r1,r2,r3 | m IRg ™

sub r4,r1,r3 Im

N o0 3~

and r6,r1,r7

or r8,r1,r9

SN0 Q80

xor r10,r1,r11

\4

Time (clock cycles):
IF

add r1,r2,r3 | Im

sub r4,r1,r3

N o003~

and r6,r1,r7

or r8,r1,r9

SN0 A0

Jxor r10,r1,r11

“Forward” result from one stage to another.

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 13

Pipelining R-type and Load

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

cock L[L L LI

R-type| Ifetch |Reg/Dec] Exec | wr We hii:veapro!)lem!

R-type | Ifetch IReg/Decl Exec | Wr

Load | Ifetch IReg/DecI Exec I Mem I/ Wr

R-type| Ifetch IReg/Decl Exec i\Wr

R-type| Ifetch IReg/DecI Exec I Wr

Structural hazard:

e Two instructions try to write to the register file
at the same time.

Load uses Register File’s Write Port in Sth stage.
1 2 3 4 5
Load | Ifetch IReg/DecI Exec I Mem I Wr

R-type uses Register File’s Write Port 1n 4th stage.
1 2 3 4
R-type| Ifetch IReg/DecI Exec I Wr

Solution 7?99

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 14

Pipelining R-type and Load

Insert “Bubble” into the Pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Clock | I I I I I I I I
Ifetch | Reg/Dec] Exec | Wr : : E :

Load | Hetch | Reg/Dec] Exec | Mem | wr

R-type Ifetch IReg/DecI Exec Wr

R-type Ifetch IReg/Dec Pipeline)] Exec I Wr

R-type| Ifetch | Bubble| Reg/Dec] Exec | wr
Ifetch |Reg/Dec| Exec

Insert a “bubble” into the pipeline to
prevent 2 writes at the same cycle.

e The control logic can be complex.
e [ose instruction fetch and i1ssue opportunity.

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 15

Pipelining R-type and Load

Delay R-type’s register-write by one cycle:
e Now R-type instructions also use Reg File’s
write port at Stage 5.
e Mem stage 1s a NOOP stage: nothing 1s
being done.

1 2 3 4 5
R-type| Ifetch IReg/DecI Exec I Mem I Wr

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Clock_IIIIIIIIIIII!I!I_II_I

R-type| Ifetch IReg/DecI Exec I Mem I Wr

R-type | Ifetch IReg/DecI Exec I Meml Wr

Load | Ifetch IReg/DecI Exec I Meml Wr

R-type| Ifetch IReg/DecI Exec I Mem I Wr

R-type| Ifetch IReg/DecI Exec I Meml Wr

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 16

Stages 1n the Datapath

What do we need to add for splitting a datapath
into stages?

“xc=Z°

IF/ID ID/EX EX/MEM MEM/WB
s —{e
Address 2 register Read
s R data 1
b ead
Instruction = register 2 I~
memo: = — ~ Registers Read
v Write data2 [~ Address Read .
register data M
Data
Write u
data memory Ox
Write
data
16 . 32
Sign
@ \
0
M
u
X
1
IF/ID ID/EX EX/MEM MEM/WB
Add
Add result
H Read
Address £ register 1 R
3] ead
2 Read data 1
Instructi 2 register 2 Zero —
”;;‘r‘\fo'm - — Registers Read 5 ALU ALy
v e data 2 result Address Readl | f
jister M data M
u Data u
x memory X
¢ 0
Write
data

16 /\ 32
Sign

@

© G.N. Khan

Computer Organization & Architecture-COE608: Pipelining

Page: 17

Pipelined Datapath and Control

IF/ID

ID/EX

PC 1= Address

Instruction
memory

Read

register 1 Read

Read data 1

l Instruction

register 2
Registers Read

Write data 2

register

Write
data

Instruction
[15-0] 15 Sign

N |extend

Instruction
[20-16]

EX/MEM

Add Add!

result
Shift
left 2

ALU ALU

result

Instruction
[15-11]

Address

Data
memory

Write
data

Read
data

MEM/WB

l

Oxc=Z

© G.N. Khan

Computer Organization & Architecture-COE608: Pipelining

Page: 18

Pipeline Control

Execution/Address Calculation| Memory access stage | stage control
stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg [Mem to

Instruction Dst Op1 Opo0 Src_|Branch| Read | Write | write | Reg
R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
Sw X 0 0 1 0 0 1 0 X
begq X 0 1 0 1 0 0 0 X

Main Control generates the control signals during

Instruction Decode
e Exec (ExtOp, ALUSrc, ...) control signals are used 1 cycle later.
e Mem (MemWr Branch) control signals are used 2 cycles later.

e Wr (MemtoReg MemWr) control signals are used 3 cycles later.

Pass control signals along just like the data

| I I |
g Reg/Dec i Exec i Mem e Wr,
I | I I
Io] By (QBay | (2 o
ALUSrc ALUSrc
> - =
ot ALUOp = | ALUOp <3 I~
< Main = —r |2 =
5 RegDst =1| RegDst o =
=|— Control o < = g
B MW JZ| MemW]Z| MemW .
2y Branch @| Branch | Branch 03,
: : E z
MemtoReg MemtoReg > MemtoReg =~ | MemtoReg
RegWr RegWr > RegWr RegWr
© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 19

Datapath with Control

ID/EX

EX/MEM

“xc=Z©

P
MEM/WB

IF/ID

Add

Read
register 1 Read

Read data 1
Instruction regisw[égisters Read
ea .

memory Write data 2
register

PC——>| Address

l Instruction

Address %Z?g s
Data
memory

Write
data

OxeczZ—

Write
data

Instruction
16 32
[15-0] \ Sign
N Tlextend

-
P &l

Instruction
[20-16]

Instruction
[15-11]

“xcZ©

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 20

Dependencies

Problem: When starting next instruction before
the first 1s completed.

Dependencies that “go backward in time”
cause data hazards

Time (in clock cycles) »
Valueof 1 CC1 CcC2 CC3 CC4 CC5 CC6 cc7 CC8 CC9

register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Program(]
execution(]

order(]

(in instructions)]]]
sub $2,$1,$3 [IM Reg| | —I: DM
and $12, $2, $5 IM — J:I: H %— -I:DM *—~ [—HReg
or $13, $6, IM [J:I:] % ~|:DM— [Reg
add $14, 52, m | 1 % T DM [| Reg
sw $15, 100 M] I[u % %Reg
v

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 21

Software Solution

Have compiler guarantee no hazards
Where do we insert the “noops™ ?

sub $2, $1, $3

and $12, %2, $5
or $13, $6, $2
add $14, %2, $2

sw $15, 100($2)
Problem: this really slows down the application!

Use temporary results and don’t wait for them to be
written into register file
Forwarding to handle read/write to same register

* ALU forwarding

Time (in clock cycles)

CC1 CC2 CC3
Value of register $2: 10 10 10
Value of EX'MEM : X X X
Value of MEM/WB : X X X

execu tion order(]

(in instructions)
sub 52, $1, $3 I @.I-’
512, 55,55 @_H:[H

CC4

10
-20
X

or $13, $6, IE—

add $14, $2,

sw $15, 100

i
g

1

CC5

10/-20
X
-20

=

i

=

g

[vH

CCo6

-20
X
X

2

Erea

Ccc7 CC8 CC9

-20 -20 -20
X X X
X X X
e
LI'I
e

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 22

Forwarding

ID/EX
EX/MEM
MEM/WB
IF/ID
c M
S — u
g X
2 —>
3 Registers /
PC Instruction N = ALU Data | |
memory memory M
u
M X
| u
X
1>
) U/
IF/ID.RegisterRs Rs
IF/ID.RegisterRt Rt
- ()
IF/ID.RegisterRt Rt X
M EX/MEM .RegisterRd
IF/ID.RegisterRd Rd u
X
L L | _J | L
MEM/WB.RegisterRd —|
Can't alw ays forward
Time (in clock cycles) >
Program(] CC1 CC2 CC3 CC4 CC5 CCé6 CC7 CC38 CC9
execution(’]
order(!

(in instructions)]] .
Iw $2,20($1) | IM ~|:|-E Reg:]:D— -[DM [—
and $4, $2, $5 IM —}E_] AB- —I: DM [:’
or $8, $2, $6 IM B N 9- —[DM {Reg
add $9, $4, IM & H A&— —[DM— — Reg
sit $1, $6, $7 M H HHReg[| % ~|ﬂT_|:|>Reg

An instruction tries to read a register following a load
instruction that writes to the same register.

b

|_|

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 23

Stalling

A hazard detection unit to “stall” load instruction
Stall the pipeline by keeping an instruction in the

same stage

Program(] Time (in clock cycles)
execution(] CC1 CC2 CC3 CC4 CC5 CC6 CC7 CcCs CC9 CC 10
order(]
(in instructions)
Iw $2, 20($1) IM Reg
and $4, 52, $5 IM Reg :| [Reg
or $8, $2, $6 IM DM | Reg
add $9, $4, $2 DM Reg
slt $1, $6, $7 IM :|£'Reg DM Reg
/ Hazard \ ID/EX.MemRead
detection
unit ID/EX
£ Control M wB MEM/WB
- L L_
EX M WB—
£ M
= M
£ kS —{u
g]| x
3 Registers N
Instruction E T_ ALU——s] Data I
PC memory || [] —~ memory
M
> u
X
.——»u
IF/ID.RegisterRs
IF/ID.RegisterRt ~
IF/ID.RegisterRt Rt M EX/MEM RegisterRd
IF/ID.RegisterRd Rd u
X
L ID/EX.RegisterRt - R | L{memmw~—l_ MEMWB RegisterR d_—l
Rt | unit .

/.

© G.N. Khan

Computer Organization & Architecture-COE608: Pipelining

Page: 24

Branch Hazards

When decide to branch, nstructions are in pipeline
We predict “branch not taken™

Need to add hardware for flushing instructions if
we are wrong.

Program(] Time (in clock cycles)

execution cc 1 cc2 CC3 CC4 ccC
order(]

(in instructions)

4
(@]
(@]
o
(@]
(@]
~
(@]
(@]
®
(@]
(@]
©

48 or $13, $6, $2

B
F @[

52 add $14, $2, $2 '@ }:B* |r @
| 721w $4,50(87) ! -’ IWI @

IF.Flush
]
k unit /
™M ID/EX
u —
X 7\ WB
Control u M WB|
U 0 x || | I_M.EM/WB
IF/ID 4

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 25

Improving Performance

Try and avoid stalls. e.g. reorder instructions.

lw $t0, 0(Stl)
1w $t2, 4(S$tl)
sw $t2, 0(S$tl)
sw $t0, 4(S$tl)

Add a “branch delay slot”

e Always execute next instruction after a branch.

e Rely on compiler to “fill” the slot with something
useful rather than NOOPS

Dynamic Scheduling
The hardware performs the “scheduling”

e Hardware tries to find instructions to execute
e Out of order execution 1s possible

e Speculative execution and dynamic branch
prediction

Modern processors are very complicated
e Alpha 21264: 9 stage pipeline, 6 mnstruction issue
e PowerPC and Pentium: Keeps branch history table.
Compiler technology important

Superscalar Architecture
Start more than one instruction in the same cycle

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 26

Nondelayed vs. Delayed Branch
or $8, $9 ,$10
add $1 ,$2,$3
sub $4, $5,$6
beg $1, $4, Exit
xor $10, $1,$11

Exit:

Fill Slot
add $1 ,$2,83

sub $4, $5,$6
beg $1, $4, Exit
or $8, $9 ,$10

xor $10, $1,$11
Exit:

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 27

Superscalar Architecture

An Example: Independent integer and FP 1ssue to
separate pipelines

I-Cache

Int Reg Inst Issue FP Reg
and Bypass

Operand /
Result
Busses

. Load /
Int. Unit Store FP Add FP Mul

Unit

D-Cache

Single Issue Total Time =
Int Exec Time + FP Exec Time

Max Speedup: Total Time
MAX(Int Exec Time, FP Exec Time)

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 28

Superscalar Laundry:
Parallel per stage

9 10 11 12

Time

(light clothing)
(dark clothing)

(very dirty clothing)

(light clothing)
(dark clothing)

(very dirty clothing)

x~ 0 0 —

S~ DO QS0

33 A
g5l &

More resources, HW to match mix of
parallel tasks?

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 29

Superscalar Laundry: Mismatch Mix

6PM 7 8 9 10 11 12

| |

| |
30'30 30 30 30 30 30

Time

aT (light clothing)

¢

0 . & (light clothing)

d (dark clothing)

r R

'\ @57 & (light clothing)

Task mix underutilizes extra resources

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 30

General Superscalar Organization

Integer Register File Floating Point Register File
A N
Pipelined | T2 | 22| B 5 £
functional VA | e ks ks
i A | 2 | B N N
units (L] et

Memory

Super-Pipelined

e Many pipeline stages need less than half
a clock cycle.

e Double internal clock speed gets two
tasks per external clock cycle

e Superscalar allows parallel fetch and
execute

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 31

Superscalar Execution

instruction instruction
instruction fetch dispatch issue
_ and branch Ir- T instruction instruction
static prediction I execution reorder and
program ! commit
/I#

window of
execution

e Simultaneously fetch multiple instructions

e Logic to determine true dependencies involving
register values.

e Mechanisms to communicate these values.

e Mechanisms to initiate multiple instructions in
parallel.

e Resources for parallel execution of multiple
instructions.

e Mechanisms for committing process state in
correct order.

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 32

The PowerPC 601 Architecture

[INSTRUCTION FETCH)

|
RTC INSTRUCTION UNIT

INSTRUICTION

QUELE

B WORD S
INSTRUGTION —L1—— | msTRucTion
|/S5UE LOGIC

L1 L)

IJ BFL FPL
B
ZTH
GPA e FRR
XER FILE Bz FILE FPSCR

[
| 1 WiORD | 2 woRDS
| DATA
ADDRESS ¥
1
R
v S.E KBy EE
T T FHYSICAL ADDRESS : ACH
[uTLe | [TLe | A RCTEEY Il gy -
i TIOM AMD DA-
ARFAY
1‘ ADDRESS 1
DATS
MEMORY UNIT T 4 WORDS
HEAD WRITE QUELE DATS
QUEUE SNOOP T A WORDES
SNDOP
ADDRESS
X ADDRESS
[
¥ ~ DATA
T2 WORDS Jr

SYSTEM INTERFACE

B4-BIT DAT A BUS (2 WORDE)

¥ 32-BIT ADDRESE BUS (1 WORD)

© G.N. Khan

Computer Organization & Architecture-COE608: Pipelining

Page: 33

Intel Itanium Microprocessor

______________________________________ |
ECC | »| LI instruction cache and g g I
| fetch/prefetch engine ITLB |
Branch | : - 1A-32 |
nc Instruction Eight decode | |
prediction queue 4 bundles 2 :
s control |
Nine issue B|B|B MM I | F|F |
ports ¥ ¥ ¥ ¥V ¥ ¥ ¥ ¥ ¥]
Register stack engine/re-mapping :
T S o e i e, I y — 5
L2 | [Branch and 128 integer registers|| 128 floating-point : l L3
cache | || % » | [predicate registers 9 g registers | cache
U |
l|:= o A L A n A |
oS |
e a Y r Y y |
ey |
i|= % | | Branch Integer = !
il units and Dual-port | < Floating -
e |k MM units Lidata |Z point |
: Eg : ! cache units |
: 2 and | :
| 7 < DTLB | :
1 > SIMD | | !
ECC |} —FMAC : |
a8 | T saat il
ECC ;
“ecc ~ Bus controller ECC (}%ﬁ) ECC
|
________________ ik S HR L E _In:ma_lur?an;ala t?th;taﬁurn_mic_m;oce_.ssur {courtesy Intel Corp.)

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 34

