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Introduction 
 

Laundry Example 
 
Consider Ann, Brian, Cathy, Dave each have 
one load of clothes to wash, dry, and fold 
 
 
 
 
Washer takes 30 minutes 
 
 
Dryer takes 30 minutes 
 
 
“Folder” takes 30 minutes 
 
“Stasher” takes 30 minutes 
to put clothes into drawers 

A B C D
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Sequential Laundry 
 
 

 
 
Sequential laundry takes 8 hours for 4 loads 
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Pipelined Laundry 
 
Start work ASAP 

 
 

 
 
 
• Multiple tasks operating simultaneously using 

different resources. 
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Pipelined Laundry 
 

 

• Pipelining doesn’t reduce latency of a single task. 
It improves throughput of the entire workload 

• Potential speedup = Number of (pipe) stages 
• Pipeline rate limited by the slowest pipeline stage 
• Unbalanced lengths of pipe stages reduce the 

speedup 
• Time to “fill” pipeline and time to “drain” it 

reduces the speedup. 
• Stall due to dependencies?? 
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Pipelining in the CPU 
 
Improve performance by increasing instruction 
throughput. 
 
Five Natural Stages in an Instruction Execution 

 
Load Word Instruction Stages 
 

• Ifetch: Instruction Fetch 
 Fetch instruction from Instruction Memory 

 

• Reg/Dec: Registers Fetch and Instruction 
Decode 

 

• Exec: Calculate the memory address 
 

• Mem: Read data from the Data Memory 
 

• Wr: Write data back to the register file 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem Wr
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CPU Pipelining 
 

Ideal speedup is number of stages in the pipeline.   
 

What makes pipelining easy? 
• When all instructions are of the same length. 
• Few instruction formats. 
• Memory operands appear only in loads and stores. 

 

What makes pipelining hard? 
• Structural Hazards:   
• Control Hazards:  
• Data Hazards:  An instruction depends on a 

previous instruction. 

Instruction�
fetch Reg ALU Data�

access Reg

8 ns
Instruction�

fetch Reg ALU Data�
access Reg

8 ns
Instruction�

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program�
execution�
order�
(in instructions)

Instruction�
fetch Reg ALU Data�

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns Instruction�
fetch Reg ALU Data�

access Reg

2 ns
Instruction�

fetch Reg ALU Data�
access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

�

Program�
execution�
order�
(in instructions)
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Single Cycle, Multiple Cycle 
vs. Pipeline 

 
 

 

Suppose we execute 100 instructions 
• Single Cycle Machine 

45 ns/cycle x 1 CPI x 100 inst = 4500 ns 
• Multicycle Machine 

  10 ns/cycle x 4.6 CPI (mix of inst) x 100 inst = 4600 ns 
• Ideal Pipelined Machine 

10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns 

Cycle 1

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem
Load Store

Clk

Single Cycle Implementation:
Load Store Waste

Ifetch
R-type

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec MemStore

Ifetch Reg Exec WrR-type

Cycle 1 Cycle 2
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Pipeline Hazards 
 
• Structural Hazards: attempt to use the same 

resource two different ways at the same time 
 
 

• Data Hazards: attempt to use an item before it 
is ready 
  
Instruction depends on the results of a prior 
instruction still in the pipeline 

• Control Hazards: attempt to make a decision 
before condition is evaluated 

Branch instructions 
 
The hazards can always be resolved by waiting. 

Pipeline control must detect the hazards and 
take actions (or delay action) to resolve 
hazards. 
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Hazards 
 

Structural Hazard: Single Memory 

  
Control Hazard 

Mem
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Control Hazard Solutions 
 

Stall 
It is possible to move the decision upward 
to 2nd stage by adding hardware that 
checks the registers as being read. 

 

 

 
 
 
 
 
 

• Predict: guess one branch direction then 
backup if wrong.  
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Load
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Control Hazard Solutions 
 

Redefine branch behavior (takes place after 
next instruction) “delayed branch”  

 
 

 
 
 
 
 

• Impact:  
No clock cycle is wasted if one can find an 
instruction to put in “slot”        
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Data Hazard 
 

Data Hazard in r1 
Dependencies backwards in time are hazards 

“Forward” result from one stage to another. 
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Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11
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L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
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xor r10,r1,r11
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L

UIm Reg Dm Reg

A
L
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A
L
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Im

A
L
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A
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Pipelining R-type and Load 
 

 

 
Structural hazard: 
• Two instructions try to write to the register file 

at the same time. 
 

Load uses Register File’s Write Port in 5th stage. 

 

R-type uses Register File’s Write Port in 4th stage. 

 
Solution ??? 

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

We have a problem!

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type
1 2 3 4
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Pipelining R-type and Load 
 

Insert “Bubble” into the Pipeline 
 

 

 
 

Insert a “bubble” into the pipeline to 
prevent 2 writes at the same cycle. 
 

 
 

• The control logic can be complex. 
• Lose instruction fetch and issue opportunity. 
 

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type
Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

Ifetch Reg/Dec Exec Wr
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Pipelining R-type and Load  
 

Delay R-type’s register-write by one cycle: 
• Now R-type instructions also use Reg File’s 

write port at Stage 5. 
• Mem stage is a NOOP stage: nothing is 

being done. 
 
 

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5
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 Stages in the Datapath 
 
What do we need to add for splitting a datapath 
into stages?  
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Pipelined Datapath and Control 
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Pipeline Control 
 

 

Main Control generates the control signals during 
Instruction Decode 
• Exec (ExtOp, ALUSrc, ...) control signals are used 1 cycle later. 
• Mem (MemWr Branch) control signals are used 2 cycles later. 
• Wr (MemtoReg MemWr) control signals are used 3 cycles later. 

 

Pass control signals along just like the data 

Execution/Address Calculation 
stage control lines

Memory access stage 
control lines

stage control 
lines

Instruction
Reg 
Dst

ALU 
Op1

ALU 
Op0

ALU 
Src Branch

Mem 
Read

Mem 
Write

Reg 
write

Mem to 
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
 R

egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemW
r

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemW
r Branch

MemW
r

Wr
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Datapath with Control 
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Dependencies 
 
Problem: When starting next instruction before 
the first is completed. 
 
Dependencies that “go backward in time” 
cause data hazards 
 
 

 
 
 

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program�
execution�
order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of �
register $2:

DM Reg

Reg

Reg

Reg

DM
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Software Solution 
 
Have compiler guarantee no hazards 
Where do we insert the “noops” ? 
 

 sub  $2, $1, $3 
 and  $12, $2, $5 
 or  $13, $6, $2 
 add  $14, $2, $2 
 sw  $15, 100($2) 
Problem:  this really slows down the application! 
 

Use temporary results and don’t wait for them to be 
written into register file 
Forwarding to handle read/write to same register 
 ALU forwarding 

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program�
execution order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM
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Forwarding 

 
 

Can't always forward 

 
An instruction tries to read a register following a load 
instruction that writes to the same register.  
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Reg
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Stalling 
 
A hazard detection unit to “stall” load instruction 
Stall the pipeline by keeping an instruction in the 
same stage 
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Branch Hazards 
 
When decide to branch, instructions are in pipeline 
We predict “branch not taken” 
 

Need to add hardware for flushing instructions if 
we are wrong. 
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Improving Performance 
 

Try and avoid stalls.  e.g. reorder instructions. 
 

   lw $t0, 0($t1) 
lw $t2, 4($t1) 
sw $t2, 0($t1) 
sw $t0, 4($t1) 

 

Add a “branch delay slot” 
• Always execute next instruction after a branch. 
• Rely on compiler to “fill” the slot with something 

useful rather than NOOPS 
 

Dynamic Scheduling 
The hardware performs the “scheduling”  

• Hardware tries to find instructions to execute 
• Out of order execution is possible 
• Speculative execution and dynamic branch 

prediction 
 

Modern processors are very complicated 
• Alpha 21264:  9 stage pipeline, 6 instruction issue 
• PowerPC and Pentium:  Keeps branch history table. 

Compiler technology important 
 

Superscalar Architecture 
    Start more than one instruction in the same cycle 
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Nondelayed vs. Delayed Branch 
 
 
 
 
 
 
 

Exit: 
 

Fill Slot 
 
 
 
 
 
 

 
Exit: 

add $1 ,$2,$3 

sub $4, $5,$6 

beq $1, $4, Exit 

or  $8, $9 ,$10 

xor $10, $1,$11 

add $1 ,$2,$3 

sub $4, $5,$6 

beq $1, $4, Exit 

or   $8, $9 ,$10 

xor $10, $1,$11 
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Superscalar Architecture 
 

An Example: Independent integer and FP issue to 
separate pipelines  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Single Issue Total Time =  
Int Exec Time + FP Exec Time 

 
Max Speedup:       Total  Time            
                           MAX(Int Exec Time, FP Exec Time) 

Operand / 
Result 
Busses 

Int Reg Inst  Issue
and Bypass

FP Reg 

Int. Unit 

I-Cache 

Load / 
Store 
Unit

FP Add FP Mul

D-Cache



 
© G.N. Khan           Computer Organization & Architecture-COE608: Pipelining Page: 29  

Superscalar Laundry: 
Parallel per stage 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
More resources, HW to match mix of 
parallel tasks? 
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Superscalar Laundry: Mismatch Mix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Task mix underutilizes extra resources 
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General Superscalar Organization 
   

 
  
Super-Pipelined 
 
• Many pipeline stages need less than half 

a clock cycle. 
• Double internal clock speed gets two 

tasks per external clock cycle 
• Superscalar allows parallel fetch and 

execute 
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Superscalar Execution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Simultaneously fetch multiple instructions 
• Logic to determine true dependencies involving 

register values. 
• Mechanisms to communicate these values. 
• Mechanisms to initiate multiple instructions in 

parallel. 
• Resources for parallel execution of multiple 

instructions. 
• Mechanisms for committing process state in 

correct order. 
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The PowerPC 601 Architecture 
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Intel Itanium Microprocessor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


