

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 1

Enhancing Performance
by Pipelining

COE608: Computer Organization
and Architecture

Dr. Gul N. Khan
http://www.ee.ryerson.ca/~gnkhan

Electrical and Computer Engineering

Ryerson University

Overview
• Introduction to Pipelining

♦ Laundry Example
• Pipelining and CPU Performance

♦ Pipelining Hazards
♦ Hazard Solutions

• Pipelined Datapath and Control
♦ Stalling, Forwarding and Flushing

Chapter 4 (Sections 4.5, 4.6, 4.7, 4.8 and part of 4.10/4.11) of Text

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 2

Introduction

Laundry Example

Consider Ann, Brian, Cathy, Dave each have
one load of clothes to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 30 minutes

“Folder” takes 30 minutes

“Stasher” takes 30 minutes
to put clothes into drawers

A B C D

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 3

Sequential Laundry

Sequential laundry takes 8 hours for 4 loads

30T
a
s
k

O
r
d
e
r

B

C
D

A
Time

30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 4

Pipelined Laundry

Start work ASAP

• Multiple tasks operating simultaneously using

different resources.

T
a
s
k

O
r
d
e
r

12 2 AM6 PM 7 8 9 10 11 1

Time

B
C

D

A
3030 30 3030 30 30

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 5

Pipelined Laundry

• Pipelining doesn’t reduce latency of a single task.
It improves throughput of the entire workload

• Potential speedup = Number of (pipe) stages
• Pipeline rate limited by the slowest pipeline stage
• Unbalanced lengths of pipe stages reduce the

speedup
• Time to “fill” pipeline and time to “drain” it

reduces the speedup.
• Stall due to dependencies??

6 PM 7 8 9
Tim e

B
C

D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 6

Pipelining in the CPU

Improve performance by increasing instruction
throughput.

Five Natural Stages in an Instruction Execution

Load Word Instruction Stages

• Ifetch: Instruction Fetch
 Fetch instruction from Instruction Memory

• Reg/Dec: Registers Fetch and Instruction
Decode

• Exec: Calculate the memory address

• Mem: Read data from the Data Memory

• Wr: Write data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem Wr

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 7

CPU Pipelining

Ideal speedup is number of stages in the pipeline.

What makes pipelining easy?
• When all instructions are of the same length.
• Few instruction formats.
• Memory operands appear only in loads and stores.

What makes pipelining hard?
• Structural Hazards:
• Control Hazards:
• Data Hazards: An instruction depends on a

previous instruction.

Instruction�
fetch Reg ALU Data�

access Reg

8 ns
Instruction�

fetch Reg ALU Data�
access Reg

8 ns
Instruction�

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program�
execution�
order�
(in instructions)

Instruction�
fetch Reg ALU Data�

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns Instruction�
fetch Reg ALU Data�

access Reg

2 ns
Instruction�

fetch Reg ALU Data�
access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

�

Program�
execution�
order�
(in instructions)

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 8

Single Cycle, Multiple Cycle
vs. Pipeline

Suppose we execute 100 instructions
• Single Cycle Machine

45 ns/cycle x 1 CPI x 100 inst = 4500 ns
• Multicycle Machine

 10 ns/cycle x 4.6 CPI (mix of inst) x 100 inst = 4600 ns
• Ideal Pipelined Machine

10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Cycle 1

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Ifetch Reg Exec Mem
Load Store

Clk

Single Cycle Implementation:
Load Store Waste

Ifetch
R-type

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec MemStore

Ifetch Reg Exec WrR-type

Cycle 1 Cycle 2

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 9

Pipeline Hazards

• Structural Hazards: attempt to use the same

resource two different ways at the same time

• Data Hazards: attempt to use an item before it
is ready

Instruction depends on the results of a prior
instruction still in the pipeline

• Control Hazards: attempt to make a decision
before condition is evaluated

Branch instructions

The hazards can always be resolved by waiting.

Pipeline control must detect the hazards and
take actions (or delay action) to resolve
hazards.

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 10

Hazards

Structural Hazard: Single Memory

Control Hazard

Mem

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg
A

L
UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem RegMem

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 11

Control Hazard Solutions

Stall
It is possible to move the decision upward
to 2nd stage by adding hardware that
checks the registers as being read.

• Predict: guess one branch direction then
backup if wrong.

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 12

Control Hazard Solutions

Redefine branch behavior (takes place after
next instruction) “delayed branch”

• Impact:
No clock cycle is wasted if one can find an
instruction to put in “slot”

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Misc

A
L

UMem Reg Mem Reg
A

L
UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Load Mem

A
L

UReg Mem Reg

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 13

Data Hazard

Data Hazard in r1
Dependencies backwards in time are hazards

“Forward” result from one stage to another.

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 14

Pipelining R-type and Load

Structural hazard:
• Two instructions try to write to the register file

at the same time.

Load uses Register File’s Write Port in 5th stage.

R-type uses Register File’s Write Port in 4th stage.

Solution ???

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

We have a problem!

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type
1 2 3 4

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 15

Pipelining R-type and Load

Insert “Bubble” into the Pipeline

Insert a “bubble” into the pipeline to
prevent 2 writes at the same cycle.

• The control logic can be complex.
• Lose instruction fetch and issue opportunity.

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type
Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

Ifetch Reg/Dec Exec Wr

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 16

Pipelining R-type and Load

Delay R-type’s register-write by one cycle:
• Now R-type instructions also use Reg File’s

write port at Stage 5.
• Mem stage is a NOOP stage: nothing is

being done.

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 17

 Stages in the Datapath

What do we need to add for splitting a datapath
into stages?

Instruction�
memory

Address

4

32

0

Add Add�
result

Shift�
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M�
u�
x

0

1

Add

PC

0Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
data

1

ALU�
result

M�
u�
x

ALU
Zero

ID/EX

Data�
memory

Address

Instruction�
memory

Address

4

32

0

Add Add�
result

Shift�
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M�
u�
x

0

1

Add

PC

0

Address

Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
data

Data�
memory

1

ALU�
result

M�
u�
x

ALU
Zero

ID/EX

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 18

Pipelined Datapath and Control

PC

Instruction�
memory

Address

In
st

ru
ct

io
n

Instruction�
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction�
[15– 0]

0

0
Registers

Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

M�
u�
x

1
Write�
data

Read�
data M�

u�
x

1

ALU�
control

RegWrite

MemRead

Instruction�
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data�
memory

PCSrc

Zero

Add Add�
result

Shift�
left 2

ALU�
result

ALU
Zero

Add

0

1

M�
u�
x

0

1

M�
u�
x

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 19

Pipeline Control

Main Control generates the control signals during
Instruction Decode
• Exec (ExtOp, ALUSrc, ...) control signals are used 1 cycle later.
• Mem (MemWr Branch) control signals are used 2 cycles later.
• Wr (MemtoReg MemWr) control signals are used 3 cycles later.

Pass control signals along just like the data

Execution/Address Calculation
stage control lines

Memory access stage
control lines

stage control
lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
 R

egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemW
r

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemW
r Branch

MemW
r

Wr

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 20

Datapath with Control

PC

Instruction�
memory

In
st

ru
ct

io
n

Add

Instruction�
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction�
[15– 0]

0

0

M�
u�
x

0

1

Add Add�
result

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

M�
u�
x

1

ALU�
result

Zero

Write�
data

Read�
data

M�
u�
x

1

ALU�
control

Shift�
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction�
[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M�
u�
x

0

1

M
em

W
rit

e

Address
Data�

memory

Address

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 21

Dependencies

Problem: When starting next instruction before
the first is completed.

Dependencies that “go backward in time”
cause data hazards

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program�
execution�
order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of �
register $2:

DM Reg

Reg

Reg

Reg

DM

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 22

Software Solution

Have compiler guarantee no hazards
Where do we insert the “noops” ?

 sub $2, $1, $3
 and $12, $2, $5
 or $13, $6, $2
 add $14, $2, $2
 sw $15, 100($2)
Problem: this really slows down the application!

Use temporary results and don’t wait for them to be
written into register file
Forwarding to handle read/write to same register
 ALU forwarding

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program�
execution order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 23

Forwarding

Can't always forward

An instruction tries to read a register following a load
instruction that writes to the same register.

PC Instruction�
memory

Registers

M�
u�
x

M�
u�
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data�
memory

M�
u�
x

Forwarding�
unit

IF/ID

In
st

ru
ct

io
n

M�
u�
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 24

Stalling

A hazard detection unit to “stall” load instruction
Stall the pipeline by keeping an instruction in the
same stage

PC Instruction�
memory

Registers

M�
u�
x

M�
u�
x

M�
u�
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data�
memory

M�
u�
x

Hazard�
detection�

unit

Forwarding�
unit

0

M�
u�
x

IF/ID

In
st

ru
ct

io
n

ID/EX.MemRead

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

IM

Reg

Reg

IM DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

IM Reg DM RegIM

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9 CC 10

DM Reg

RegReg

Reg

bubble

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 25

Branch Hazards

When decide to branch, instructions are in pipeline
We predict “branch not taken”

Need to add hardware for flushing instructions if
we are wrong.

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program�
execution�
order�
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

PC Instruction�
memory

4

Registers

M�
u�
x

M�
u�
x

M�
u�
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data�
memory

M�
u�
x

Hazard�
detection�

unit

Forwarding�
unit

IF.Flush

IF/ID

Sign�
extend

Control

M�
u�
x

=

Shift�
left 2

M�
u�
x

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 26

Improving Performance

Try and avoid stalls. e.g. reorder instructions.

 lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

Add a “branch delay slot”
• Always execute next instruction after a branch.
• Rely on compiler to “fill” the slot with something

useful rather than NOOPS

Dynamic Scheduling
The hardware performs the “scheduling”

• Hardware tries to find instructions to execute
• Out of order execution is possible
• Speculative execution and dynamic branch

prediction

Modern processors are very complicated
• Alpha 21264: 9 stage pipeline, 6 instruction issue
• PowerPC and Pentium: Keeps branch history table.

Compiler technology important

Superscalar Architecture
 Start more than one instruction in the same cycle

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 27

Nondelayed vs. Delayed Branch

Exit:

Fill Slot

Exit:

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

add $1 ,$2,$3

sub $4, $5,$6

beq $1, $4, Exit

or $8, $9 ,$10

xor $10, $1,$11

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 28

Superscalar Architecture

An Example: Independent integer and FP issue to
separate pipelines

Single Issue Total Time =
Int Exec Time + FP Exec Time

Max Speedup: Total Time
 MAX(Int Exec Time, FP Exec Time)

Operand /
Result
Busses

Int Reg Inst Issue
and Bypass

FP Reg

Int. Unit

I-Cache

Load /
Store
Unit

FP Add FP Mul

D-Cache

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 29

Superscalar Laundry:
Parallel per stage

More resources, HW to match mix of
parallel tasks?

T
a
s
k

O
r
d
e
r

B
C
D

A

E

F

 (light clothing)
 (dark clothing)
 (very dirty clothing)

 (light clothing)
 (dark clothing)
 (very dirty clothing)

126 PM 7 8 9 10 11

Time 3030 30 30 30

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 30

Superscalar Laundry: Mismatch Mix

Task mix underutilizes extra resources

T
a
s
k

O
r
d
e
r

 (light clothing)

 (light clothing)
 (dark clothing)

 (light clothing)

A

B

D

C

126 PM 7 8 9 10 11

Time 3030 30 30 30 30 30

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 31

General Superscalar Organization

Super-Pipelined

• Many pipeline stages need less than half

a clock cycle.
• Double internal clock speed gets two

tasks per external clock cycle
• Superscalar allows parallel fetch and

execute

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 32

Superscalar Execution

• Simultaneously fetch multiple instructions
• Logic to determine true dependencies involving

register values.
• Mechanisms to communicate these values.
• Mechanisms to initiate multiple instructions in

parallel.
• Resources for parallel execution of multiple

instructions.
• Mechanisms for committing process state in

correct order.

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 33

The PowerPC 601 Architecture

© G.N. Khan Computer Organization & Architecture-COE608: Pipelining Page: 34

Intel Itanium Microprocessor

