MIPS-Lite Processor Datapath Design

COE608: Computer Organization and Architecture

Dr. Gul N. Khan

http://www.ee.ryerson.ca/~gnkhan

Electrical and Computer Engineering

Ryerson University

Overview

- Design a processor: step-by-step
- Requirements of the Instruction Set
- MIPS-Lite Instructions
- Components and Clocking
- Assembling an adequate Datapath
- Controlling the Datapath

Chapter 4 (4.1, 4.2 & 4.3) of the textbook

Design a Processor

Processor design (data path, alu and control) It determines

- Clock cycle time
- Clock cycles per instruction

Single cycle processor:

Advantage:

Disadvantage:

Analyze Instruction Set => Data path Requirements

Meaning of each instruction is given by register transfers

Single Cycle Processor Data path

- 1. Analyze the Instruction Set Interconnection to support RT
- 2. Select set of data path components and establish clocking methodology
- 3. Assemble data path meeting the requirements
- 4. Analyze the implementation of each instruction.
- 5. Assemble the control logic.

MIPS Instruction Formats

All MIPS instructions are 32 bits long. There are three instruction formats:

31	26	21	16	11	6	C
	ор	rs	rt	rd	shamt	funct
31	6 bits 26	5 bits 21	5 bits 16	5 bits	5 bits	6 bits
	ор	rs	rt	immediate		
31	6 bits 26	5 bits	5 bits		16 bits	C
	ор	target address				
	6 bits	26 bits				

op

funct

rs, rt, rd

shamt

address/immediate

target address

MIPS-Lite Instructions

A Subset of MIPS Instructions ADD and SUB

OR immediate

LOAD and STORE Word

BRANCH

Logical Register Transfers RTL gives the meaning of the instructions

All start by fetching the instruction

op | rs | rt | rd | shamt | funct = MEM[PC] op | rs | rt | Imm16 = MEM[PC]

inst

Register Transfers

 $ADDU PC \le PC + 4$

 $SUBU PC \le PC + 4$

ORi $R[rt] \leq R[rs] \parallel zero_ext(Imm16);$

LOAD $R[rt] \leftarrow MEM[R[rs] + sign_ext(Imm16)];$

STORE MEM[R[rs]+sign_ext(Imm16)] <= R[rt];

BEQ if (R[rs] == R[rt]) then
PC <= PC + 4 + {sign_ext(Imm16), 2'b 00}
else PC <= PC + 4</pre>

Requirements of Instruction Set

Memory

Registers (32 x 32)

PC

Extender

Add and Subtract register or extended immediate

Components of the Datapath

Basic Building Blocks

Combinational Logic Elements

Storage Element: Register

Register

Similar to the D Flip-Flops

Write Enable:

Register File

Details of Register Reading

Register File

Writing into a Register

Clock input (C or CLK)

During read operation, register file behaves as a combinational logic block:

Register File

- Register File consists of 32 registers
- Two 32-bit output busses
- One 32-bit input bus

- Register Read
- RA (number) selects a register to put (data) on the busA
- RB (number) selects the register to put on busB (data)
- Register Write
- RW (number) selects the register to be written via busW (data) when Write Enable is 1.

Ideal Memory

One input bus
One output bus

Memory word is selected by

- Address
- Write Enable = 1

Clock input (CLK)

- CLK only required during write operation
- For read operation, memory behaves as a combinational logic.

Clocking Methodology

An edge triggered methodology Typical execution:

- Read contents of some state elements.
- Send values through some combinational logic.
- Write results to one or more state elements

Clocking Methodology

Edge triggered clocking methodology

All storage elements are clocked by the same clock edge.

Cycle Time = CLK-to-Q + Max-Delay-Path + Setup + Clock Skew

(CLK-to-Q + Min-Delay Path - Clock Skew)

Instruction Fetch Unit

Fetch the Instruction: mem[PC]
Update the program counter:
Sequential Code
Branch and Jump

Add and Subtract

 $R[rd] \leq R[rs]$ op R[rt]

For example: addU rd, rs, rt

- Ra, Rb and Rw come from rs, rt and rd fields
- ALUctr and RegWr

Register-Register Timing

Two actions in parallel.

- 1. The control unit decode the Opcode and Func field and set the control signals ALUctr and RegWr.
- 2. While this is happening the register file is also read.

Logical Operations with Immediate

 $R[rt] \le R[rs]$ **OR** ZeroExt(imm16)

Example: ori rt, rs, imm16

Two MUX are needed

Load Operations

 $R[rt] \le Mem[R[rs] + SignExt(imm16)]$

Example: lw rt, rs, imm16

Store Operations

Mem[R[rs] + SignExt(imm16)] <= R[rt]

Example: sw rt, rs, imm16

The Branch Instruction

beq rs, rt, imm16

mem[PC] Fetch the instruction from memory

Equal \leq (R[rs] = = R[rt]) Calculate branch condition

if (COND eq 0) Calculate the next instruction's address then

Datapath for Branch Operations

beq rs, rt, imm16

Datapath generates the (equal) condition

A Single Cycle Datapath

Putting it All Together

Abstract View of Critical Path

Register file and ideal memory:

During read operation:

Critical Path (Load Operation) =

PC's Clk-to-Q + Instruction Access Time +

Register File Access Time + ALU 32-bit Add +

Data Memory Access Time + Setup Time for Register

File Write + Clock Skew

An Abstract View of the Implementation

Logical vs. Physical Structure

A Real MIPS Datapath

