

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 1

Computer Arithmetic

COE608: Computer Organization
and Architecture

Dr. Gul N. Khan
http://www.ee.ryerson.ca/~gnkhan

Electrical and Computer Engineering
Ryerson University

Overview

• Computer Arithmetic: Overview
♦ 2’complenet numbers
♦ Addition, Subtraction and Logical Operations

• Constructing an Arithmetic Logic Unit
• Multiplication and Division
• Floating Point Arithmetic

Chapter 3 of the text

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 2

Digital Arithmetic

Arithmetic operations in digital computers are
performed on binary numbers.

Main Arithmetic Operations
• Addition, Subtraction, Multiplication, Division

Binary Addition
Operand-1 Operand-2 Sum Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Sign-Magnitude System
Magnitude and Sign is represented distinctively.

For an eight-bit signed number
• MSB represents sign of the number.
• 7-bits represent magnitude ≤ 127.

A7 A6 A5 A4 A3 A2 A1 A0
0 1 0 1 1 0 1 1

 10110 11.101
 + 00111 + 10.011

Sign Magnitude = 91
Bit (+ve)

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 3

2's Complement System

Sign-Magnitude based arithmetic is hard to
implement in hardware
2's complement system is mostly used for
signed binary numbers

1's Complement

2's Complement

Negation
Converting a +ve number to its -ve equivalent
or a -ve number to its +ve equivalent

 2's complement conversion is only
needed for -ve numbers

 (22) 10110
1'complement

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 4

2's Complement Representation

Positive Number
Add a sign bit ‘0’ in front of the MSB

Negative Number
1. Obtain the binary representation of the

magnitude of number
2. Obtain 2's complement of the magnitude
3. Add a sign bit 1 (for -ve number) in front of the

MSB of the 2's complement obtained in step 2.

A short cut method
Begin from LSB and move left bit-by-bit towards
the MSB.
i) If the bit is 0, simply copy down the bit.
ii) Repeat step i) until the first bit of 1 is

encountered, now copy down this bit.
iii) For all subsequent bits, simply invert each

one of them.

Example: 2’s complement of – 42

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 5

Decimal Values of 2's
Complement

Positive Numbers
• MSB is the sign bit = 0
• decimal value equals to binary equivalent
2's complement of 0 = 18

Negative Numbers
• sign bit is 1
• obtain 2’s complement of N-bit magnitude part
• decimal value is equal to –ve of the 2's

complement
Decimal value of 1 ?
 Sign bit = 1
 2's complement of 01110

2's complement number 1 = –18

Special Case
When sign bit = 1 and all other bits equal zero
decimal value of the 2's complement = -2N
e.g. 1

10010

00000

01110

01110

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 6

Addition in
2's Complement System

Addition of two positive numbers

Addition of +ve and smaller -ve number

Addition of a +ve and larger -ve number

Addition of two negative numbers

 +9 0 1 0 0 1
 +4 0 0 1 0 0

 +9 0 1 0 0 1
 -4 1 1 1 0 0

 -9 1 0 1 1 1
 +4 0 0 1 0 0

 -9 1 0 1 1 1
 -4 1 1 1 0 0

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 7

Subtraction in
2's Complement System

Subtraction of 2's complement numbers is
carried out in the same way as addition

 No need of separate hardware for addition and
subtraction

• get 2’s complement (negate) of subtrahend
• add it to minuend, result of this addition

represent the difference

For example

9 – 6 = 9 + (-6)
= 9 + (2’s complement of 6)

 =

 +9 0 1 0 0 1
 (-6) 1 1 0 1 0

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 8

Adder Circuits

Half adder performs addition of 2 bits.

Operand-1, X Operand-2, Y Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

VHDL Code for Half Adder
library ieee ;
use ieee.std_logic_1164.all ;

entity half_adder is
 port (x, y : in std_logic ;
 s, c : out std_logic) ;
end half_adder ;

architecture dataflow_ha of half_adder is
begin
 s <= x xor y ;
 c <= x and y ;
end dataflow_ha;

 X

Y

Sum = s = x • y + x • y

Carry = c = x • y

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 9

1-Bit Full Adder

Two half adders and one OR gate can also
implement a Full Adder.

S = (A ⊕ B) ⊕ CIN
COUT = A.B + CIN. (A ⊕ B)

S

hs

Cin

Cout

A

B

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 10

Full Adder

S = (A ⊕ B) ⊕ CIN
COUT = A.B + CIN.(A ⊕ B)

VHDL Code of Full Adder

library ieee ;
use ieee.std_logic_1164.all ;

entity full_adder is
 port (a, b, cin : in std_logic ;
 s, cout : out std_logic) ;
end full_adder ;

architecture dataflow_fa of full_adder is

component half_adder is
 port (x, y : in std_logic ;
 s, c : out std_logic) ;

end component ;
signal hs, hc, tc : std_logic

begin
 HA1: half_adder

port map(a, b, hs, hc) ;
HA2: half_adder

port map(hs, cin, s, tc) ;
cout <= tc or hc ;

end dataflow_fa ;

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 11

Multi-bit Adder

Speed limited by carry chain

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 12

4-bit Adder VHDL Code

library ieee ;
use ieee.std_logic_1164.all ;
entity adder_4 is
 port (A, B : in std_logic_vector (3 downto 0) ;

C0 : in std_logic ;
 S : out std_logic_vector (3 downto 0) ;
 C4 : out std_logic) ;
end adder_4 ;
architecture dataflow_add4 of adder_4 is

component full_adder is
 port (a, b, cin : in std_logic ;
 s, cout : out std_logic) ;

end component ;
signal C : std_logic_vector (4 downto 0) ;

begin
 C(0) <= C0
 BIT0: full_adder

port map(B(0), A(0), C(0), S(0), C(1)) ;
BIT1: full_adder

port map(B(1), A(1), C(1), S(1), C(2)) ;
BIT2: full_adder

port map(B(2), A(2), C(2), S(2), C(3)) ;
BIT3: full_adder

port map(B(3), A(3), C(3), S(3), C(4)) ;
C4 <= C(4) ;

end dataflow_add4 ;

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 13

Ripple Addition

Typical Ripple Carry Addition is a Serial
Process:
• Addition starts by adding LSBs of the

augend and addend.
• Then next position bits of augend and

addend are added along with the carry (if
any) from the preceding bit.

• This process is repeated until the addition
of MSBs is completed.

Carry Propagation
• Speed of a ripple adder is limited due to

carry propagation or carry ripple.
• Sum of MSB depends on the carry

generated by LSB.

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 14

Carry Lookahead Adder

Faster Adders Limit the Carry Chain
• 2-level AND-OR logic.

2n product terms
• 3 or 4 levels of logic, carry look-ahead

A Carry look-ahead adder avoids carry
propagation delay by using additional logic
circuit.

Looks at the lower order bits of operands
and determine if a higher-order carry is to
be generated

The Sum bit Si = Ai ⊕ Bi ⊕ Ci

 Ci +1 = gi+ piCi

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 15

Carry Lookahead Adder

C1 = g0+ p0C0
C2 = g1+ p1C1 = g1+ p1g0+ p1p0C0
C3 = g2+ p2C2 = g2+ p2g1+ p2p1g0+ p2p1p0C0
C4 = COUT = g3+ p3g2+ p3p2g1+ p2p1g0+ p2p1p0C0

Carry
Lookahead

Logic

Ai

Bi

Si

hsi

ci

Ai-1

A0

Bi-1

B0

C0

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 16

4-bit Carry Look-ahead Adder

74x283

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 17

 Addition of +ve/-ve numbers in 2’s-complement

“generate”

“propagate”

“half sum”

Carry-in from
previous stage

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 18

Subtraction

Negative numbers can be added by first
converting them to 2’s complement form.

Subtraction is the same as addition of the
two’s complement numbers.
• The two’s complement is a bit-by-bit

complement plus 1.
• Therefore: X – Y = X + Y' + 1

If the result is negative then get 2's
complement of the result.

Adder circuit can be modified to perform
both addition and subtraction in a 2’s
complement system

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 19

 2's Complement Addition and
Subtraction

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 20

 Adder-Subtractor

2's Complement System Addition
 Straight forward

2's Complement System Subtraction
• Minuend and Subtrahend are in registers A and

B respectively
• SUB = 1 enables AND gates 2, 4, 6, 8
• ADD = 0 disables AND gates 1, 3, 5, 7
• It connects the complement of subtrahend to

port B of LS283
• C0 = 1 produces 2's complement of subtrahend

during addition
• Transfer pulse adds minuend and 2's

complement of subtrahend (i.e. equivalent to
subtraction

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 21

ALU Architecture

1-bit ALU that performs AND, OR and Addition

32

32

32

operation

result

a

b

ALU

0

2

a

1 Result

Operation CarryIn

CarryOut

b
+

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 22

32-bit ALU

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 23

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

a – b = a + b + 1

 ALU for MIPS-Processor

Subtraction Option:

Support the set-on less-than instruction (slt)
– slt is an arithmetic instruction.

slt $t5, $t6, $t7

Need to test for equality (beq $t6, $t7, Label)
Use subtraction: (a - b) = 0 implies a = = b

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 24

Supporting the slt Instruction

Overflow Detection
Set Overflow output to 1 when a < b

0

3

R e s u l t

O p e r a t I o n

a

1

C a r r y I n

C a r r y O u t

0

1

B I n v e r t

b 2

L e s s

0

3

R e s u l t

O p e r a t I o n

a

1

C a r r y I n

0

1

B I n v e r t

b 2

L e s s

S e t

O v e r f l o w
d e t e c t I o n O v e r f l o w

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 25

Detecting Overflow

No Overflow
♦ By adding a positive (+ve) and a negative (-ve)

number.
♦ subtracting numbers of the same signs.

Overflow occurs when value affects the sign.
♦ By adding two positives yields a negative result.
♦ Adding two negatives gives a positive.
♦ Subtract a -ve from a +ve and get a negative.
♦ Subtract a +ve from a -ve and get a positive.

Consider the operations A + B and A – B
♦ Can overflow occur if B is 0 ?
♦ Can overflow occur if A is 0 ?

Effects of Overflow
• An exception (interrupt) occurs.
♦ Control jumps to predefined address for exception.
♦ Interrupted address is saved for resumption.

If there is no need to detect overflow
 - new MIPS-CPU instructions: addu, addiu, subu

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 26

32-bit ALU

Overflow and slt Supported

Set
a31

0

ALU0 Result0

CarryIn

a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 27

Test for Equality

Notice the control lines

000 = and
001 = or
010 = add
110 = subtract
111 = slt

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 28

Multiplication

Binary Multiplier
Product of two 4-bit numbers is an 8-bit number

4-bit Multiplication

multiplicand

multiplier

1101 (13)

1011 (11)

*

10001111 (143)

A0

B0

A0B0

A1

B1

A1B0

A0B1

A2

B2

A2B0

A1B1

A0 B2

A3

B3

A3B0

A2B1

A1B2

A0 B3

A3B1

A2B2

A1 B3

A3B2

A2 B3
S6 S5 S4 S3 S2 S1 S0 S7

A3B3

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 29

4-Bit Multiplier Circuit

Unsigned Combinational Multiplier

4 x 4 Array of Building Blocks (Cells)

 Building Block/Cell

A3 B0

S
C

A2 B0

S
C

A1 B0

S
C

A0 B0

S
C

A3 B1

S
C

A2 B1

S
C

A1 B1

S
C

A0 B1

S
C

A3 B2

S
C

A2 B2

S
C

A1 B2

S
C

A0 B2

S
C

A3 B3

S
C

A2 B3

S

A1 B3

S

A0 B3

S

B0

B1

B2

B3

P7 P6 P5 P4 P3 P2 P1 P0

A3 A2 A1 A0

F A

X

Y

A B

S
CI CO

Cin Sum In

Sum Out Cout

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 30

Unsigned Shift-Add Multiplier

(version 1)

Multiplier = datapath + control

Shift
Right

Product

Multiplier

Multiplicand

64-bit ALU

Shift Left

Write
Control

32 bits

64 bits

64 bits

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 31

Unsigned Shift-Add Multiplier

(version 1)

Shift the Multiplier register right 1 bit

Done
Yes: 32 repetitions

Shift the Multiplicand register left 1 bit

No: < 32 repetitions

Test
Multiplier(0)

Multiplier(0) = 0 Multiplier(0) = 1

Add multiplicand to product and
 place the result in Product

32nd
repetition?

Start

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 32

Unsigned Shift-Add Multiplier

1 clock per cycle => 100 clocks/multiply.

Ratio of multiply to add 5:1 to 100:1

1/2 bits in multiplicand always 0.
=> 64-bit adder is wasted.

0 bits are inserted in left of the
multiplicand as shifted.

=> least significant bits of product never
changed once formed

 Product Multiplier Multiplicand
0000 0000 0011 0000 0010

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 33

Multiplier
(version 2)

32-bit Multiplicand register
32-bit ALU
64-bit Product register
32-bit Multiplier register

Product

Multiplier

Multiplicand

32-bit ALU

Shift
Right

Write

Control

32 bits

32 bits

64 bits

Shift Right

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 34

Multiplier Algorithm
(version 2)

Shift the Multiplier register right 1 bit

Done
Yes: 32 repetitions

Shift the Product register right 1 bit

No: < 32 repeat

 Test
Multiplier(0)

Multiplier(0) = 0 Multiplier(0) = 1

Add multiplicand to the left half of product &
place the result in the left half of Product register

32nd
repetition

Start

Multiplier Multiplicand Product
0011 0010 0000 0000

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 35

Multiplication Process

Product Multiplier Multiplicand
0000 0000 0011 0010

Product register wastes space that exactly
matches with the size of multiplier

=> combine Multiplier register and
Product register.

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 36

Integer Multiplication in MIPS

In MIPS, we multiply registers:
32-bit value x 32-bit value = 64-bit value
Syntax of Multiplication (signed):

mult register1, register2

• Multiplies 32-bit values in those registers &

puts 64-bit product in special registers hi & lo
(separate from the 32 general purpose registers)

• Use mfhi move from hi and move from mflo.

Example in C: a = b * c;Let b be $s2; let c be
$s3; and let a be $s0 and $s1 (since it may be up
to 64 bits)

mult $s2, $s3 # b*c
mfhi $s0 # upper half of product into $s0
mflo $s1 # lower half of
 # product into $s1

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 37

Integer Division

 1001 Quotient
Divisor 1000|1001010 Dividend

 -1000
10

 101
1010
-1000

10 Remainder
 (or Modulo result)Dividend

= Quotient x Divisor + Remainder
MIPS Division

 div register1, register2

Divides 32-bit register-1 by 32-bit register-2 and
puts remainder of division in hi, quotient in
loImplements C division (/) and modulo (%)

Example in C: a = c / d; b = c % d;In MIPS:
a«$s0;b«$s1;c«$s2;d«$s3 div $s2,$s3 # lo=c/d,
hi=c%d

mflo $s0 # get quotient
mfhi $s1 # get remainder

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 38

Division

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

Signed division
* Divide using absolute values
* Adjust sign of quotient and remainder as

required

Check for 0 divisor
Long division approach
If divisor ≤ dividend bits
 * 1 bit in quotient, subtract
 * Otherwise 0 bit in
 quotient, bring down next
 dividend bit
Restoring division
 * Subtract, and if remainder
 is < 0, then add divisor back

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 39

Divisor Hardware

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 40

Division Algorithm

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 41

Optimal Division Hardware

One cycle per partial-remainder
subtraction
Looks a lot like a multiplier!

Same hardware can be used for both
multiplication and division.

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 42

Floating Point Arithmetic

Scientific Notation (in Decimal)

Normalized form: no leadings 0s
(exactly one digit to left of decimal point)
Alternatives to representing 1/1,000,000,000
Normalized: 1.0 x 10-9

Not normalized: 0.1 x 10-8, 10.0 x 10-10

Computer arithmetic that supports it called floating
point, because it represents numbers where binary point
is not fixed, as it is for integers

• Declare such variable in C as float

6.0210 x 1023

radix (base) decimal point

mantissa exponent

1.0two x 2-1

radix (base) “binary point”

exponent mantissa

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 43

Floating Point Arithmetic

• Floating Point numbers approximate values that we
want to use.

• IEEE 754 Floating Point Standard is most widely
accepted attempt to standardize interpretation of
such numbers

• Every desktop or server computer sold since ~1997
follows these conventions

Single Precision Floating Point

Normal Format: +1.xxxxxxxxxxtwo x 2yyyy
two

(-1)S x (1 + Significand) x 2(Exponent-127)

S represents Sign, Exponent represents y’s
Significand represents x’s
Represent numbers as small as 2.0 x 10-38
 to as large as 2.0 x 1038

0 31
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 44

Double Precision Floating Point
Representation

Next Multiple of Word Size (64 bits)

Double Precision (vs. Single Precision)
C variable declared as doubleRepresent
numbers almost as small as
2.0 x 10-308

to almost as large as 2.0 x 10308

But primary advantage is greater accuracy
due to larger significand

Significand
32 bits

0 31
S Exponent

30 20 19
Significand (cont’d)

1 bit 11 bits 20 bits

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 45

IEEE 754 Floating Point
Standard

 Single Precision, Double Precision similar
Sign bit: 1 means -ve and 0 means +ve
Significand: To pack more bits, leading 1
implicit for normalized numbers
1 + 23 bits single, 1 + 52 bits double
Always true: Significand < 1

(for normalized numbers)

Called Biased Notation, where bias is number to
be subtracted to get the real number

IEEE 754 uses bias of 127 for single precision.

Subtract 127 from Exponent field to get actual
value for exponent.

 (-1)S x (1 + Significand) x 2(Exponent-127)

1023 is bias for double precision

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 46

Understanding FP Numbers

Ist Method (Fractions):
In decimal: 0.34010 => 34010/100010
 => 3410/10010
In binary: 0.1102 => 1102/10002 = 610/810
 => 112/1002 = 310/410

Advantage: Less purely numerical, more thought
oriented; this method usually helps people understand
the meaning of the significand better.

2nd Method (Place Values):
Convert from scientific notation
In decimal: 1.6732 = (1 x 100) + (6 x 10-1) +

(7 x 10-2) + (3 x 10-3) + (2 x 10-4)
In binary: 1.1001 = (1 x 20) + (1 x 2-1) +

(0 x 2-2) + (0 x 2-3) + (1 x 2-4)
Interpretation of value in each position extends
beyond the decimal/binary point
Advantage: Good for quickly calculating the
significand value; use this method for translating FP
numbers

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 47

Example

Converting Binary FP to Decimal

Sign: 0 => positive

Exponent:
0110 1000two = 104ten

Bias adjustment: 104 - 127 = -23

Significand:
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...

=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22

= 1.0ten + 0.666115ten

Represents: 1.666115ten x 2-23 ~ 1.986 x 10-7
 (about 2/10,000,000)

0 0110 1000 101 0101 0100 0011 0100 0010

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 48

Converting Decimal to FP

Simple Case: If denominator is exponent
of 2 (2, 4, 8, 16, etc.), then it’s easy.

Show MIPS representation of -0.75

= -3/4
-11two/100two = -0.11two

Normalized to -1.1two x 2-1(-1)S x

(1 + Significand) x 2(Exponent-127)

(-1)1 x (1 + .100 0000 ... 0000) x 2(126-127)

1 0111 1110

100 0000 0000 0000 0000 0000

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 49

Converting Decimal to FP

Not So Simple Case:
If denominator is not an exponent of 2.

Then we can not represent number precisely,
but that’s why we have so many bits in
significand: for precision

Once we have significand, normalizing a
number to get the exponent is easy.
So how do we get the significand of a never-
ending number?
• All rational numbers have a repeating

pattern when written out in decimal.
• This also applies in binary.

To finish conversion:
• Write out binary number with repeating

pattern.
• Cut it off after correct number of bits

(Different for single vs. double precision)
• Derive Sign, Exponent and Significand fields.

© G.N. Khan Computer Organization & Architecture-COE608: Computer Arithmetic Page: 50

Example

What is the decimal equivalent of the
floating point number given below:

1 1000 0001

111 0000 0000 0000 0000 0000

S Exponent Significand
(-1)S x (1 + Significand)x2(Exponent-127)

(-1)1 x (1 + .111)x2(129-127)

 -1 x (1.111)x2(2)

-111.1
-7.5

