
 

 
© G.N. Khan           Computer Organization & Architecture-COE608: Computer Arithmetic Page: 1  

Computer Arithmetic 
 

COE608: Computer Organization 
and Architecture 

 

Dr. Gul N. Khan 
http://www.ee.ryerson.ca/~gnkhan 

Electrical and Computer Engineering 
Ryerson University 

 

Overview 
 

• Computer Arithmetic: Overview 
♦ 2’complenet numbers 
♦ Addition, Subtraction and Logical Operations 

• Constructing an Arithmetic Logic Unit 
• Multiplication and Division 
• Floating Point Arithmetic 
 
 
 

Chapter 3 of the text 
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Digital Arithmetic 
 
Arithmetic operations in digital computers are 
performed on binary numbers. 
 

Main Arithmetic Operations 
• Addition, Subtraction, Multiplication, Division 

 
Binary Addition  
Operand-1 Operand-2  Sum Carry 

0 0  0 0 
0 1  1 0 
1 0  1 0 
1 1  0 1 

 

Sign-Magnitude System 
Magnitude and Sign is represented distinctively. 
 

For an eight-bit signed number 
• MSB represents sign of the number. 
• 7-bits represent magnitude ≤ 127. 

 
A7 A6 A5 A4 A3 A2 A1 A0 
0 1 0 1 1 0 1 1 

 
 

       10110             11.101 
   +  00111         + 10.011 
        

Sign          Magnitude = 91 
Bit (+ve) 
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2's Complement System 
 
Sign-Magnitude based arithmetic is hard to 
implement in hardware  
2's complement system is mostly used for 
signed binary numbers 
 

1's Complement  
 

2's Complement 
 
 

 
 

 
 
 
 

 
 

Negation 
Converting a +ve number to its -ve equivalent 
or a -ve number to its +ve equivalent 
 

 2's complement conversion is only 
needed for -ve numbers  

 (22)                       10110 
1'complement        
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2's Complement Representation  
 

Positive Number  
Add a sign bit ‘0’ in front of the MSB  

 

Negative Number   
1. Obtain the binary representation of the 

magnitude of number 
2. Obtain 2's complement of the magnitude 
3. Add a sign bit 1 (for -ve number) in front of the 

MSB of the 2's complement obtained in step 2. 
 

A short cut method 
Begin from LSB and move left bit-by-bit towards 
the MSB. 
i) If the bit is 0, simply copy down the bit. 
ii) Repeat step i) until the first bit of 1 is 

encountered, now copy down this bit. 
iii) For all subsequent bits, simply invert each 

one of them. 
 

Example:  2’s complement of  – 42 
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Decimal Values of 2's 
Complement 

 

Positive Numbers 
• MSB is the sign bit = 0 
• decimal value equals to binary equivalent 
2's complement of  0     = 18 
 

Negative  Numbers 
• sign bit is 1 
• obtain 2’s complement of N-bit magnitude part 
• decimal value is equal to –ve of the 2's 

complement 
Decimal value of 1                ? 
 Sign bit = 1 
 2's complement of   01110  

 
2's complement number 1       = –18 
 

Special Case  
When sign bit = 1 and all other bits equal zero 
decimal value of the 2's complement =  -2N  
e.g. 1       

10010 

00000 

01110 

01110 
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Addition in  
2's Complement System 

 
Addition of two positive numbers 
 
 
 
Addition of +ve and smaller -ve number 
 
 
 
 
Addition of a +ve and larger -ve number 
 
 
 
 

Addition of two negative numbers 
 
 
 

       +9  0 1 0 0 1        
     +4  0 0 1 0 0        
             
 

       +9  0 1 0 0 1        
     -4  1 1 1 0 0        
              
 

       -9  1 0 1 1 1        
     +4  0 0 1 0 0        
              

       -9  1 0 1 1 1        
     -4  1 1 1 0 0        
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Subtraction in 
2's Complement System 

 
Subtraction of 2's complement numbers is 
carried out in the same way as addition 
 

 No need of separate hardware for addition and 
subtraction 

• get 2’s complement (negate) of subtrahend 
• add it to minuend, result of this addition 

represent the difference 
 
For example 

9 – 6 =  9 + (-6) 
= 9 + (2’s complement of 6) 

   =   
 
 
 
 

 

       +9  0 1 0 0 1        
     (-6)  1 1 0 1 0        
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Adder Circuits 
 

Half adder performs addition of 2 bits. 
 
 

Operand-1, X Operand-2, Y  Sum Carry 
0 0  0 0 
0 1  1 0 
1 0  1 0 
1 1  0 1 

 
 

 

 
 

 

VHDL Code for Half Adder 
library ieee ; 
use ieee.std_logic_1164.all ; 
 

entity half_adder is 
 port ( x, y : in std_logic ; 
     s, c : out std_logic ) ; 
end  half_adder ; 
 

architecture dataflow_ha of half_adder is 
begin 
 s <= x xor y  ; 
 c <= x and y ; 
end dataflow_ha;  

 X 
 
Y 
 

Sum = s = x • y + x • y   

Carry = c = x • y 
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1-Bit Full Adder  
 
 
 
 
 
 

Two half adders and one OR gate can also 
implement a Full Adder. 

S = (A ⊕ B) ⊕ CIN 
COUT = A.B + CIN. (A ⊕ B) 

S 
 

hs 
 

Cin 
 
 

Cout 
 

A 
 

B 
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Full Adder 
 

S = (A ⊕ B) ⊕ CIN 
COUT = A.B + CIN.(A ⊕ B) 

 

VHDL Code of Full Adder 
 

library ieee ; 
use ieee.std_logic_1164.all ; 

 

entity full_adder is 
 port ( a, b, cin : in std_logic ; 
     s, cout : out std_logic ) ; 
end  full_adder ; 

 

architecture dataflow_fa of full_adder is 
 

component half_adder is 
  port ( x, y : in std_logic ; 
          s, c : out std_logic ) ; 

end  component ; 
signal hs, hc, tc : std_logic 

 

begin 
 HA1: half_adder  

port map(a, b, hs, hc) ; 
HA2: half_adder  

port map(hs, cin, s, tc) ; 
cout <= tc or hc ; 

end dataflow_fa ; 
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Multi-bit Adder 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Speed limited by carry chain 
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4-bit Adder VHDL Code 
 

library ieee ; 
use ieee.std_logic_1164.all ; 
entity adder_4 is 
     port  ( A, B : in std_logic_vector (3 downto 0) ; 

C0 : in std_logic ; 
   S : out std_logic_vector (3 downto 0) ; 
    C4 : out std_logic ) ; 
end  adder_4 ; 
architecture dataflow_add4 of adder_4 is 

component full_adder is 
  port ( a, b, cin : in std_logic ; 
      s, cout : out std_logic ) ; 

end  component ; 
signal C : std_logic_vector (4 downto 0) ; 

begin 
 C(0) <= C0 
 BIT0: full_adder  

port map(B(0), A(0), C(0), S(0), C(1)) ; 
BIT1: full_adder  

port map(B(1), A(1), C(1), S(1), C(2)) ; 
BIT2: full_adder  

port map(B(2), A(2), C(2), S(2), C(3)) ; 
BIT3: full_adder  

port map(B(3), A(3), C(3), S(3), C(4)) ; 
C4 <= C(4) ; 

end dataflow_add4 ; 
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Ripple Addition 
 
 
Typical Ripple Carry Addition is a Serial 
Process: 
• Addition starts by adding LSBs of the 

augend and addend. 
• Then next position bits of augend and 

addend are added along with the carry (if 
any) from the preceding bit. 

• This process is repeated until the addition 
of MSBs is completed. 

 

 
Carry Propagation 
• Speed of a ripple adder is limited due to 

carry propagation or carry ripple. 
• Sum of MSB depends on the carry 

generated by LSB. 
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Carry Lookahead Adder 
 
 

Faster Adders Limit the Carry Chain 
• 2-level AND-OR logic. 

2n product terms 
• 3 or 4 levels of logic, carry look-ahead 

 

A Carry look-ahead adder avoids carry 
propagation delay by using additional logic 
circuit. 
 

Looks at the lower order bits of operands 
and determine if a higher-order carry is to 
be generated 
 

 
The Sum bit Si = Ai ⊕ Bi ⊕ Ci  

      Ci +1 = gi+ piCi   
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Carry Lookahead Adder 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C1 = g0+ p0C0  
C2 = g1+ p1C1 = g1+ p1g0+ p1p0C0 
C3 = g2+ p2C2 =  g2+ p2g1+ p2p1g0+ p2p1p0C0 
C4 = COUT = g3+ p3g2+ p3p2g1+ p2p1g0+ p2p1p0C0 

 

 
 
 

 
 

Carry 
Lookahead 

Logic 

Ai 
 

Bi 
 

Si 
 

hsi 
 

ci 
 

Ai-1 
 
 
A0 
 

Bi-1 
 
 
B0 
 

C0 
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4-bit Carry Look-ahead Adder 
 
74x283 
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 Addition of  +ve/-ve numbers in 2’s-complement   

 
 

 
 
 
 

“generate” 

“propagate” 

“half sum” 

Carry-in from  
previous stage 
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Subtraction 
 
Negative numbers can be added by first 
converting them to 2’s complement form. 
 
Subtraction is the same as addition of the 
two’s complement numbers. 
• The two’s complement is a bit-by-bit 

complement plus 1. 
• Therefore: X – Y = X + Y' + 1 
 
 
 
 
 
If the result is negative then get 2's 
complement of the result. 
 
Adder circuit can be modified to perform 
both addition and subtraction in a 2’s 
complement system 
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 2's Complement Addition and 
Subtraction 
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 Adder-Subtractor 
 
2's Complement System Addition 
 Straight forward 
 
 
 
 
 
 
 
 
 
 
 

2's Complement System Subtraction 
• Minuend and Subtrahend are in registers A and 

B respectively 
• SUB = 1 enables AND gates 2, 4, 6, 8 
• ADD = 0 disables AND gates 1, 3, 5, 7  
• It connects the complement of subtrahend to 

port B of LS283 
• C0 = 1 produces 2's complement of subtrahend 

during addition 
• Transfer pulse adds minuend and 2's 

complement of subtrahend (i.e. equivalent to 
subtraction 
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ALU Architecture 
 

 
                             
 
 
 
 
 
 
 

1-bit ALU that performs AND, OR and Addition 
 
 
 
 
 
 
 
 
 
 

 

32 

32 

32 

operation 

result 

a 

b 

ALU 

0 

2 

a 

1 Result 

Operation CarryIn 

CarryOut 

b 
+ 
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32-bit ALU 

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn
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0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

a – b = a + b + 1
 

 ALU for MIPS-Processor 
 

Subtraction Option: 
 
 
 
 
 
 
 
 
 
 

 

Support the set-on less-than instruction (slt) 
– slt is an arithmetic instruction.  

slt $t5, $t6, $t7 
 
 
 
 

Need to test for equality (beq $t6, $t7, Label) 
Use subtraction:  (a - b) = 0 implies a = = b 
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Supporting the slt Instruction 
 
 
 
 
 
 

 
Overflow Detection 
Set Overflow output to 1 when a < b 
 
 
 
 
 
 
 
 
 

0 

3 

R e s u l t 

O p e r a t I o n 

a 

1 

C a r r y I n 

C a r r y O u t 

0 

1 

B I n v e r t 

b 2 

L e s s 

0 

3 

R e s u l t 

O p e r a t I o n 

a 

1 

C a r r y I n 

0 

1 

B I n v e r t 

b 2 

L e s s 

S e t 

O v e r f l o w  
d e t e c t I o n O v e r f l o w 
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Detecting Overflow 
 
No Overflow  
♦ By adding a positive (+ve) and a negative (-ve) 

number. 
♦  subtracting numbers of the same signs. 

 

Overflow occurs when value affects the sign. 
♦ By adding two positives yields a negative result. 
♦ Adding two negatives gives a positive. 
♦ Subtract a -ve from a +ve and get a negative. 
♦ Subtract a +ve from a -ve and get a positive. 

 
Consider the operations A + B and A – B 
♦ Can overflow occur if B is 0 ? 
♦ Can overflow occur if A is 0 ? 

 

Effects of Overflow 
• An exception (interrupt) occurs. 
♦ Control jumps to predefined address for exception. 
♦ Interrupted address is saved for resumption. 

 
 

If there is no need to detect overflow 
 - new MIPS-CPU instructions:  addu, addiu, subu 
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32-bit ALU 
 
Overflow and slt Supported 

 
 
 

 
 
 
 
 
 
 
 
 
 

Set
a31

0

ALU0 Result0

CarryIn

a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn
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Test for Equality 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notice the control lines 
 

000 = and 
001 = or 
010 = add 
110 = subtract 
111 = slt 
 

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn
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Multiplication 
 

Binary Multiplier 
Product of two 4-bit numbers is an 8-bit number 
 

 
 
 
 
 
 
 
 
 
 
 

4-bit Multiplication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

multiplicand 
 

multiplier 

1101   (13) 
 

1011   (11) 
 

 
 

 
 

* 

10001111 (143) 
 

A0 
 

B0 
 

A0B0 

A1 
 

B1 
 

A1B0 
 

A0B1 

A2 
 

B2 
 

A2B0 
 

A1B1 
 

A0 B2 

A3 
 

B3 
 

A3B0 
 

A2B1 
 

A1B2 
 

A0 B3 

 
 

 
 

A3B1 
 

A2B2 
 

A1 B3 

 
 

 
 
 

A3B2 
 

A2 B3 
S6 S5 S4 S3 S2 S1 S0 S7 

 
 

A3B3 



 

 
© G.N. Khan           Computer Organization & Architecture-COE608: Computer Arithmetic Page: 29  

4-Bit Multiplier Circuit 
 
Unsigned Combinational Multiplier 
 

4 x 4 Array of Building Blocks (Cells) 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

    Building Block/Cell 
  
 

A3 B0

S
C

A2 B0

S
C

A1 B0

S
C

A0 B0

S
C

A3 B1

S
C

A2 B1

S
C

A1 B1

S
C

A0 B1

S
C

A3 B2

S
C

A2 B2

S
C

A1 B2

S
C

A0 B2

S
C

A3 B3

S
C

A2 B3

S

A1 B3

S

A0 B3

S

B0

B1

B2

B3

P7 P6 P5 P4 P3 P2 P1 P0

A3 A2 A1 A0

F  A  

X  

Y  

A  B  

S  
CI  CO  

Cin  Sum In  

Sum Out  Cout  
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Unsigned Shift-Add Multiplier  
 
(version 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Multiplier = datapath + control 

Shift 
Right 

Product 

Multiplier 

Multiplicand 

64-bit ALU 

Shift Left 

Write 
Control 

32 bits 

64 bits 

64 bits 
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Unsigned Shift-Add Multiplier  
 
(version 1) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shift the Multiplier register right 1 bit 

Done 
Yes: 32 repetitions 

Shift the Multiplicand register left 1 bit 

No: < 32 repetitions 

Test 
Multiplier(0) 

Multiplier(0) = 0 Multiplier(0) = 1 

Add multiplicand to product and  
      place the result in Product 

 

32nd  
repetition? 

Start 
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Unsigned Shift-Add Multiplier  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
1 clock per cycle =>  100 clocks/multiply. 

Ratio of multiply to add 5:1 to 100:1 
 

1/2 bits in multiplicand always 0. 
=> 64-bit adder is wasted. 

 

0 bits are inserted in left of the 
multiplicand as shifted. 

=> least significant bits of product never 
changed once formed 

 
 

 
 

 Product    Multiplier     Multiplicand 
0000 0000   0011   0000 0010 
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Multiplier 
(version 2) 
 

32-bit Multiplicand register 
32-bit ALU 
64-bit Product register 
32-bit Multiplier register 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Product 

Multiplier 

Multiplicand 

32-bit ALU 

Shift 
Right 

Write 

Control 

32 bits 

32 bits 

64 bits 

Shift Right 
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Multiplier Algorithm 
(version 2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shift the Multiplier register right 1 bit 

Done 
Yes: 32 repetitions 

Shift the Product register right 1 bit 

No: < 32 repeat 

 Test 
Multiplier(0) 

Multiplier(0) = 0 Multiplier(0) = 1 

Add multiplicand to the left half of product &  
place the result in the left half of Product register 

32nd  
repetition

 

Start 

Multiplier  Multiplicand Product 
0011    0010   0000 0000 
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Multiplication Process 
 

Product   Multiplier  Multiplicand 
0000 0000      0011     0010 
 
 
 
 
 
 
 
 
 
 

Product register wastes space that exactly 
matches with the size of multiplier 

 
=> combine Multiplier register and 
Product register. 
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Integer Multiplication in MIPS 
 
In MIPS, we multiply registers: 
32-bit value x 32-bit value = 64-bit value 
Syntax of Multiplication (signed): 
 

mult register1, register2 
 
• Multiplies 32-bit values in those registers & 

puts 64-bit product in special registers hi & lo 
(separate from the 32 general purpose registers)  

• Use mfhi move from hi and move from mflo. 
 
Example in C: a = b * c;Let b be $s2; let c be 
$s3; and let a be $s0 and $s1 (since it may be up 
to 64 bits) 
 
mult $s2, $s3  # b*c      
mfhi $s0   # upper half of product into $s0 
mflo $s1  # lower half of 
                # product into $s1



 

 
© G.N. Khan           Computer Organization & Architecture-COE608: Computer Arithmetic Page: 37  

Integer Division 
 

          1001      Quotient  
Divisor 1000|1001010   Dividend 

      -1000          
10       

 101          
1010       
-1000       

10 Remainder   
 (or Modulo result)Dividend 

= Quotient x Divisor + Remainder 
MIPS Division 

   div  register1, register2 
 
Divides 32-bit register-1 by 32-bit register-2 and 
puts remainder of division in hi, quotient in 
loImplements C division (/) and modulo (%) 
 
Example in C: a = c / d; b = c % d;In MIPS: 
a«$s0;b«$s1;c«$s2;d«$s3 div  $s2,$s3 # lo=c/d, 
hi=c%d     

mflo $s0  # get quotient  
mfhi $s1  # get remainder 
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Division 
 

1001
1000 1001010

-1000
10
101 
1010
-1000

10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

 
 

 
Signed division 
* Divide using absolute values 
* Adjust sign of quotient and remainder as 

required 
 

Check for 0 divisor  
Long division approach 
If divisor ≤ dividend bits 
 * 1 bit in quotient, subtract 
  * Otherwise 0 bit in  
     quotient, bring down next  
     dividend bit 
Restoring division 
 * Subtract, and if remainder  
  is < 0, then add divisor back 
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Divisor Hardware 
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Division Algorithm 
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Optimal Division Hardware 
 

 

 
 

 
One cycle per partial-remainder 
subtraction 
Looks a lot like a multiplier! 

Same hardware can be used for both 
multiplication and division. 
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Floating Point Arithmetic 
 

Scientific Notation (in Decimal) 
 
 

 
 
 
 
 
Normalized form: no leadings 0s  
(exactly one digit to left of decimal point) 
Alternatives to representing 1/1,000,000,000 
Normalized: 1.0 x 10-9 

Not normalized: 0.1 x 10-8, 10.0 x 10-10  

 
 

 
 
Computer arithmetic that supports it called floating 
point, because it represents numbers where binary point 
is not fixed, as it is for integers 
 

• Declare such variable in C as float

6.0210 x 1023 

radix (base) decimal point 

mantissa exponent 

1.0two x 2-1 

radix (base) “binary point” 

exponent mantissa 
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Floating Point Arithmetic 
 

• Floating Point numbers approximate values that we 
want to use. 

• IEEE 754 Floating Point Standard is most widely 
accepted attempt to standardize interpretation of 
such numbers 

• Every desktop or server computer sold since ~1997 
follows these conventions 

 
Single Precision Floating Point 
 

Normal Format: +1.xxxxxxxxxxtwo x 2yyyy
two  

 
 
 
 
(-1)S x (1 + Significand) x 2(Exponent-127)  
 
S represents Sign, Exponent represents y’s 
Significand represents x’s 
Represent numbers as small as 2.0 x 10-38 
 to as large as 2.0 x 1038  

0 31 
S Exponent 

30  23 22 
Significand 

1 bit 8 bits 23 bits 
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Double Precision Floating Point 
Representation 

 
Next Multiple of Word Size (64 bits) 
 
 

 
 
 
 
 

Double Precision (vs. Single Precision) 
C variable declared as doubleRepresent 
numbers almost as small as  
2.0 x 10-308  

 

to almost as large as 2.0 x 10308  
 

But primary advantage is greater accuracy  
due to larger significand 

Significand 
32 bits 

0 31 
S Exponent 

30 20 19 
Significand (cont’d) 

1 bit 11 bits 20 bits 
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IEEE 754 Floating Point 
Standard 

 Single Precision, Double Precision similar 
Sign bit: 1 means -ve and 0 means +ve 
Significand: To pack more bits, leading 1 
implicit for normalized numbers 
1 + 23 bits single, 1 + 52 bits double 
Always true: Significand < 1      

(for normalized numbers) 
 

Called Biased Notation, where bias is number to 
be subtracted to get the real number 
 
IEEE 754 uses bias of 127 for single precision. 
 
Subtract 127 from Exponent field to get actual 
value for exponent.  

 (-1)S x (1 + Significand) x 2(Exponent-127) 
 

1023 is bias for double precision 
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Understanding FP Numbers 
 

Ist Method (Fractions): 
In decimal: 0.34010 => 34010/100010   
     => 3410/10010 
In binary: 0.1102 => 1102/10002 = 610/810  
          => 112/1002 = 310/410 

Advantage: Less purely numerical, more thought 
oriented; this method usually helps people understand 
the meaning of the significand better. 

2nd Method (Place Values): 
Convert from scientific notation 
In decimal: 1.6732 = (1 x 100) + (6 x 10-1) +  

(7 x 10-2) + (3 x 10-3) + (2 x 10-4) 
In binary:  1.1001 = (1 x 20) + (1 x 2-1) +  

(0 x 2-2) + (0 x 2-3) + (1 x 2-4) 
Interpretation of value in each position extends 
beyond the decimal/binary point 
Advantage: Good for quickly calculating the 
significand value; use this method for translating FP 
numbers 
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Example 
 

Converting Binary FP to Decimal 
 
 
 

Sign: 0 => positive 
 

Exponent:  
0110 1000two = 104ten 
 

Bias adjustment: 104 - 127 = -23 
 

Significand: 
1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +... 
 

=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22 
 

= 1.0ten + 0.666115ten 
 
Represents: 1.666115ten x 2-23 ~ 1.986 x 10-7  
                     (about 2/10,000,000)

0 0110 1000 101 0101 0100 0011 0100 0010 
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Converting Decimal to FP 
 

Simple Case: If denominator is exponent 
of 2 (2, 4, 8, 16, etc.), then it’s easy. 
 
Show MIPS representation of -0.75  

= -3/4 
-11two/100two = -0.11two 

 
Normalized to  -1.1two x 2-1(-1)S x  

(1 + Significand) x 2(Exponent-127) 

 
(-1)1 x (1 + .100 0000 ... 0000) x 2(126-127) 

 
 

1 0111 1110 
 

100 0000 0000 0000 0000 0000 
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Converting Decimal to FP 
 
Not So Simple Case:  
If denominator is not an exponent of 2. 
 

Then we can not represent number precisely, 
but that’s why we have so many bits in 
significand: for precision 
 

Once we have significand, normalizing a 
number to get the exponent is easy. 
So how do we get the significand of a never-
ending number? 
• All rational numbers have a repeating 

pattern when written out in decimal. 
• This also applies in binary. 

To finish conversion: 
• Write out binary number with repeating 

pattern. 
• Cut it off after correct number of bits 

(Different for single vs. double precision) 
• Derive Sign, Exponent and Significand fields. 
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Example 
 

What is the decimal equivalent of the 
floating point number given below:  

 
 
 
 
 
 

1 1000 0001 
 

111 0000 0000 0000 0000 0000 

S Exponent Significand 
(-1)S x (1 + Significand)x2(Exponent-127) 

(-1)1 x (1 + .111)x2(129-127) 

  -1   x (1.111)x2(2) 

-111.1 
-7.5 


