## Ryerson University Department of Electrical and Computer Engineering COE 608-Computer Organization and Architecture

| Mid | term | Test |
|-----|------|------|
|-----|------|------|

**APRIL 27, 2016** 

| Name:                                                               | Student Number: | Sec:                    |
|---------------------------------------------------------------------|-----------------|-------------------------|
| Time limit: 2 hours 30 min                                          |                 | Examiners: N. Mekhie    |
| Notes: <ul><li>a) Closed book.</li><li>b) No calculators.</li></ul> |                 |                         |
| c) Answer all questions in the space                                | provided.       | Total Marks=80, each=20 |

Q1-1 Translate the following into C. Assume i is in register \$s2, \$s0 has base address of A[] array, \$s1 has base address of B[] array and register \$s9 has 1000.

```
addi $s2, $0, $0
LOOP: sll $s3, $s2, 2
                        40 LATI]
       add $s4, $s0, $s3
       add $s5, $s1, $s3
                           HBII ]
       lw $s6, 0($s4)
                           ALIJ
       lw $s7, 0(s5)
       add $s8, $s7, $s6
                              ALIJABEIJ
ALIJABEIJ
C+1
       sw $s8, 0($s4)
      addi $s2, $s2, 1
       beq $s2, $s9, EXIT
                                 1f 1 == 1000
       j LOOP
EXIT:
```

| Name: |  |  |
|-------|--|--|
|       |  |  |

Q1-2 Find the effective CPI for the above code if arithmetic and logic operations take 1 cycle, data transfer instructions take 3 cycles, and conditional branches take 2 cycles, unconditional branches takes 1 cycle.

Q1-3 Calculate the performance of the above code if the MIPS processor runs at 1 GHz

Q1-4 Find performance of above code if MIPS uses on chip cache for data transfers that improves it by 3 times but it slows down processor speed to 800 MHz.

Section:

Q2-1 Design a Register File that consists of 16 Registers, each has 16 bits. Register File must have two READ ports, and one WRITE port. Draw a detailed schematic diagram.



Q2-2 Explain how a READ operations from Register 7, and Register 9 can be performed at the same time

| Name: |      |
|-------|------|
|       | <br> |

Section:

Q2-3 Explain how a WRITE operation of 007E HEX to Register 2 is performed

Q3-1Convert the following decimal to IEEE754 FP format: -.5625



Q3-2 Draw a block diagram (hardware) to implement a multiplier system for 16 bits numbers

| I MUITIPLICED     | h   |
|-------------------|-----|
| ACONO DI MULTIP   | ide |
| Alu TI6           |     |
| 16 16 16 Cantrol  |     |
| Product As Rurite |     |
|                   |     |

| Name: | Section: |
|-------|----------|
|-------|----------|

Q3-3 Calculate how long it takes for a single multiplication operation in the above syste assuming clock speed is = 1 GHz

16 o peruther, luch consists of! 
1- check LSb of Multiplier

2- AOD (no Add to Product

3- Shift Right both Product, Multipliers

4- check If 16 ofers Tion done

= 64 Cycles XI nor = 64 nor

Q4-1 For the Multicycle Data Path below, find the effective CPI running the code of Q1

Arrhandic takes 4 cycles F3D, ALU, write

lus Twkes 5 cycles F,D, ALU, Man, write

Sw Tulces 4 cycles F,D, ALU, Men

cond brach takes 3 cycles F,D, ALU

un and brach takes 7D, Pcwrite 3 cycles

Arrhadic lw Sw brach, i

CPI = 5 X H + 2 X 5 + 1 x H + 2 X 3 - 4 cycles

Q4-2 Find the value of asserted control signals in each cycle when executing the following instruction:

sw \$s8, 0(\$s4)

F' I GRD = 0, PCW=1, Mem R=1, IR WIITE= L

ALUSTCA=D ALUSTC B=1 ALUCATI = ADD

D'. Imm Sign EXT

E' (alculate Mem ADDRESS ALUSTCA= 1, ALUSTCB= 2

ALUCATI = ADD

WITE: Mem W = 1, FOID = 1

| * *      |  |  |  |
|----------|--|--|--|
| Name:    |  |  |  |
| Ivallic. |  |  |  |
|          |  |  |  |

| Section: |  |
|----------|--|
|          |  |

Q4-3 Identify all types of Hazards in the code of Q1 if it runs in a pipeline data path

(1,2 RAW! SII, add in S3 (1,311 in S3) RAW) 4 16 lw, ald in S6 (5,6 lw, ald in S7 (718 ald, Sw in 58) Centrol: - beg

Q4-4 If the pipeline uses forwarding, identify hazard stalls in Q1 that could not be eliminated by forwarding, then suggest a solution to get rid of stalls

lw 57, 0 (\$5)

add \$8,57,56

(cycle stall

schedule Addi in between

lw 57, 0 (\$5)

addiss2,852,1

add \$8,57,56

Section:

