COE608: Computer Organization and Architecture Mid Term Examination

Student Name:	Student #:	
i) Answer all the questions.		Total Marks: 35
ii) Total time allowed is 50 minutes. Any notes or l	ooks are not allowed.	
iii) Estimated time for each question is equivalent t	o the marks assigned to it.	
iv) All the questions are not of equal difficulty. Rea	d the questions carefully.	

1. (a) Write the VHDL entity of a 3-bit wide Full Adder.

1. (b) What information about a VHDL design is represented in the Architecture?

MARKS: 2

MARKS: 4

2. Determine IEEE754 floating point representations, single precision and double precision of $(21.85)_{10}$. Show your complete work.

MARKS: 8 (4+4)

3. The block diagram of a 6-bit multiplier with optimal size ALU (adder) and registers is given below.

Assume that the Multiplicand and Multiplier registers are loaded with 6-bit numbers for multiplication and the product register is cleared initially as shown below. Two 6-bit unsigned binary numbers are to be multiplied using shift or add/shift operations. During this process, show the contents of all these registers that change. Determine the contents of these registers after an add/shift or just shift operation and fill up the following table after each operation.

MARKS: 10

Operation Shift and/or Add					Р	ro	du	ct					N	Mu	ltij	olic	an	d		Μ	lult	tip	lie	r
Initial Values	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	1	0	1	0	1

4. (a) Consider the following C code:

X[13] = m - n

- i) For a load-store type 32-bit MIPS CPU, write an optimal assembly language instruction sequence for the above C code. Assume that variables **m** and **n** are held in registers \$s1 and \$s2 respectively while address of X[10] is in register \$s0. You are free to use any of the temporary registers \$t0-\$t7.
- ii) What is the size of the assembly code developed in part (a)?

MARKS: 6 (4+2)

4. (b) If X is a 32-bit memory address, divided into two 16-bit values X_upper & X_lower as shown below.

31	16 15	0
X_upper	X_lower	

Typically following instruction sequence is used to load the data at Address X into a register (\$s0).

lui	\$t0, X_upper
ori	\$t0, \$t0, X_lower
lw	\$s0, 0(\$t0)

Consider the following alternate code that is more efficient.

lui \$t0, X_upper

lw \$s0, X_lower(\$t0)

Is this code accurate? YES or NO

If YES, justify your answer.

If NO, identify the mistake and suggest any corrections.

MARKS: 5