
http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

1 of 9 6/18/2006 3:55 AM

Playing with ptrace, Part I
Using ptrace allows you to set up system call interception and modification at the user level.

by Pradeep Padala

Have you ever wondered how system calls can be intercepted? Have you ever tried fooling the kernel by
changing system call arguments? Have you ever wondered how debuggers stop a running process and let you
take control of the process?

If you are thinking of using complex kernel programming to accomplish tasks, think again. Linux provides an
elegant mechanism to achieve all of these things: the ptrace (Process Trace) system call. ptrace provides a
mechanism by which a parent process may observe and control the execution of another process. It can
examine and change its core image and registers and is used primarily to implement breakpoint debugging
and system call tracing.

In this article, we learn how to intercept a system call and change its arguments. In Part II of the article we
will study advanced techniques--setting breakpoints and injecting code into a running program. We will peek
into the child process' registers and data segment and modify the contents. We will also describe a way to
inject code so the process can be stopped and execute arbitrary instructions.

Basics

Operating systems offer services through a standard mechanism called system calls. They provide a standard
API for accessing the underlying hardware and low-level services, such as the filesystems. When a process
wants to invoke a system call, it puts the arguments to system calls in registers and calls soft interrupt 0x80.
This soft interrupt is like a gate to the kernel mode, and the kernel will execute the system call after
examining the arguments.

On the i386 architecture (all the code in this article is i386-specific), the system call number is put in the
register %eax. The arguments to this system call are put into registers %ebx, %ecx, %edx, %esi and %edi, in
that order. For example, the call:

write(2, "Hello", 5)

roughly would translate into

movl $4, %eax
movl $2, %ebx
movl $hello,%ecx
movl $5, %edx
int $0x80

where $hello points to a literal string "Hello".

So where does ptrace come into picture? Before executing the system call, the kernel checks whether the
process is being traced. If it is, the kernel stops the process and gives control to the tracking process so it can
examine and modify the traced process' registers.

Let's clarify this explanation with an example of how the process works:

#include <sys/ptrace.h>
#include <sys/types.h>

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

2 of 9 6/18/2006 3:55 AM

#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h> /* For constants
 ORIG_EAX etc */

int main()
{ pid_t child;
 long orig_eax;

 child = fork();
 if(child == 0) {
 ptrace(PTRACE_TRACEME, 0, NULL, NULL);
 execl("/bin/ls", "ls", NULL);
 }
 else {
 wait(NULL);
 orig_eax = ptrace(PTRACE_PEEKUSER,
 child, 4 * ORIG_EAX,
 NULL);
 printf("The child made a "
 "system call %ld\n", orig_eax);
 ptrace(PTRACE_CONT, child, NULL, NULL);
 }
 return 0;
}

When run, this program prints:

The child made a system call 11

along with the output of ls. System call number 11 is execve, and it's the first system call executed by the
child. For reference, system call numbers can be found in /usr/include/asm/unistd.h.

As you can see in the example, a process forks a child and the child executes the process we want to trace.
Before running exec, the child calls ptrace with the first argument, equal to PTRACE_TRACEME. This tells
the kernel that the process is being traced, and when the child executes the execve system call, it hands over
control to its parent. The parent waits for notification from the kernel with a wait() call. Then the parent can
check the arguments of the system call or do other things, such as looking into the registers.

When the system call occurs, the kernel saves the original contents of the eax register, which contains the
system call number. We can read this value from child's USER segment by calling ptrace with the first
argument PTRACE_PEEKUSER, shown as above.

After we are done examining the system call, the child can continue with a call to ptrace with the first
argument PTRACE_CONT, which lets the system call continue.

ptrace Parameters

ptrace is called with four arguments:

long ptrace(enum __ptrace_request request,
 pid_t pid,
 void *addr,
 void *data);

The first argument determines the behaviour of ptrace and how other arguments are used. The value of
request should be one of PTRACE_TRACEME, PTRACE_PEEKTEXT, PTRACE_PEEKDATA,
PTRACE_PEEKUSER, PTRACE_POKETEXT, PTRACE_POKEDATA, PTRACE_POKEUSER,
PTRACE_GETREGS, PTRACE_GETFPREGS, PTRACE_SETREGS, PTRACE_SETFPREGS,
PTRACE_CONT, PTRACE_SYSCALL, PTRACE_SINGLESTEP, PTRACE_DETACH. The significance

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

3 of 9 6/18/2006 3:55 AM

of each of these requests will be explained in the rest of the article.

Reading System Call Parameters

By calling ptrace with PTRACE_PEEKUSER as the first argument, we can examine the contents of the
USER area where register contents and other information is stored. The kernel stores the contents of registers
in this area for the parent process to examine through ptrace.

Let's show this with an example:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h> /* For SYS_write etc */

int main()
{ pid_t child;
 long orig_eax, eax;
 long params[3];
 int status;
 int insyscall = 0;

 child = fork();
 if(child == 0) {
 ptrace(PTRACE_TRACEME, 0, NULL, NULL);
 execl("/bin/ls", "ls", NULL);
 }
 else {
 while(1) {
 wait(&status);
 if(WIFEXITED(status))
 break;
 orig_eax = ptrace(PTRACE_PEEKUSER,
 child, 4 * ORIG_EAX, NULL);
 if(orig_eax == SYS_write) {
 if(insyscall == 0) {
 /* Syscall entry */
 insyscall = 1;
 params[0] = ptrace(PTRACE_PEEKUSER,
 child, 4 * EBX,
 NULL);
 params[1] = ptrace(PTRACE_PEEKUSER,
 child, 4 * ECX,
 NULL);
 params[2] = ptrace(PTRACE_PEEKUSER,
 child, 4 * EDX,
 NULL);

 printf("Write called with "
 "%ld, %ld, %ld\n",
 params[0], params[1],
 params[2]);
 }
 else { /* Syscall exit */
 eax = ptrace(PTRACE_PEEKUSER,
 child, 4 * EAX, NULL);
 printf("Write returned "
 "with %ld\n", eax);
 insyscall = 0;
 }
 }
 ptrace(PTRACE_SYSCALL,
 child, NULL, NULL);

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

4 of 9 6/18/2006 3:55 AM

 }
 }
 return 0;
}

This program should print an output similar to the following:

ppadala@linux:~/ptrace > ls
a.out dummy.s ptrace.txt
libgpm.html registers.c syscallparams.c
dummy ptrace.html simple.c

ppadala@linux:~/ptrace > ./a.out
Write called with 1, 1075154944, 48
a.out dummy.s ptrace.txt
Write returned with 48
Write called with 1, 1075154944, 59
libgpm.html registers.c syscallparams.c
Write returned with 59
Write called with 1, 1075154944, 30
dummy ptrace.html simple.c
Write returned with 30

Here we are tracing the write system calls, and ls makes three write system calls. The call to ptrace, with a
first argument of PTRACE_SYSCALL, makes the kernel stop the child process whenever a system call entry
or exit is made. It's equivalent to doing a PTRACE_CONT and stopping at the next system call entry/exit.

In the previous example, we used PTRACE_PEEKUSER to look into the arguments of the write system call.
When a system call returns, the return value is placed in %eax, and it can be read as shown in that example.

The status variable in the wait call is used to check whether the child has exited. This is the typical way to
check whether the child has been stopped by ptrace or was able to exit. For more details on macros like
WIFEXITED, see the wait(2) man page.

Reading Register Values

If you want to read register values at the time of a syscall entry or exit, the procedure shown above can be
cumbersome. Calling ptrace with a first argument of PTRACE_GETREGS will place all the registers in a
single call.

The code to fetch register values looks like this:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>

int main()
{ pid_t child;
 long orig_eax, eax;
 long params[3];
 int status;
 int insyscall = 0;
 struct user_regs_struct regs;

 child = fork();
 if(child == 0) {
 ptrace(PTRACE_TRACEME, 0, NULL, NULL);

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

5 of 9 6/18/2006 3:55 AM

 execl("/bin/ls", "ls", NULL);
 }
 else {
 while(1) {
 wait(&status);
 if(WIFEXITED(status))
 break;
 orig_eax = ptrace(PTRACE_PEEKUSER,
 child, 4 * ORIG_EAX,
 NULL);
 if(orig_eax == SYS_write) {
 if(insyscall == 0) {
 /* Syscall entry */
 insyscall = 1;
 ptrace(PTRACE_GETREGS, child,
 NULL, ®s);
 printf("Write called with "
 "%ld, %ld, %ld\n",
 regs.ebx, regs.ecx,
 regs.edx);
 }
 else { /* Syscall exit */
 eax = ptrace(PTRACE_PEEKUSER,
 child, 4 * EAX,
 NULL);
 printf("Write returned "
 "with %ld\n", eax);
 insyscall = 0;
 }
 }
 ptrace(PTRACE_SYSCALL, child,
 NULL, NULL);
 }
 }
 return 0;
}

This code is similar to the previous example except for the call to ptrace with PTRACE_GETREGS. Here we
have made use of the user_regs_struct defined in <linux/user.h> to read the register values.

Doing Funny Things

Now it's time for some fun. In the following example, we will reverse the string passed to the write system
call:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>

const int long_size = sizeof(long);

void reverse(char *str)
{ int i, j;
 char temp;

 for(i = 0, j = strlen(str) - 2;
 i <= j; ++i, --j) {
 temp = str[i];
 str[i] = str[j];
 str[j] = temp;
 }
}

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

6 of 9 6/18/2006 3:55 AM

void getdata(pid_t child, long addr,
 char *str, int len)
{ char *laddr;
 int i, j;
 union u {
 long val;
 char chars[long_size];
 }data;

 i = 0;
 j = len / long_size;
 laddr = str;
 while(i < j) {
 data.val = ptrace(PTRACE_PEEKDATA,
 child, addr + i * 4,
 NULL);
 memcpy(laddr, data.chars, long_size);
 ++i;
 laddr += long_size;
 }

 j = len % long_size;
 if(j != 0) {
 data.val = ptrace(PTRACE_PEEKDATA,
 child, addr + i * 4,
 NULL);
 memcpy(laddr, data.chars, j);
 }
 str[len] = '\0';
}

void putdata(pid_t child, long addr,
 char *str, int len)
{ char *laddr;
 int i, j;
 union u {
 long val;
 char chars[long_size];
 }data;

 i = 0;
 j = len / long_size;
 laddr = str;
 while(i < j) {
 memcpy(data.chars, laddr, long_size);
 ptrace(PTRACE_POKEDATA, child,
 addr + i * 4, data.val);
 ++i;
 laddr += long_size;
 }

 j = len % long_size;
 if(j != 0) {
 memcpy(data.chars, laddr, j);
 ptrace(PTRACE_POKEDATA, child,
 addr + i * 4, data.val);
 }
}

int main()
{
 pid_t child;

 child = fork();
 if(child == 0) {
 ptrace(PTRACE_TRACEME, 0, NULL, NULL);
 execl("/bin/ls", "ls", NULL);
 }

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

7 of 9 6/18/2006 3:55 AM

 else {
 long orig_eax;
 long params[3];
 int status;
 char *str, *laddr;
 int toggle = 0;

 while(1) {
 wait(&status);
 if(WIFEXITED(status))
 break;
 orig_eax = ptrace(PTRACE_PEEKUSER,
 child, 4 * ORIG_EAX,
 NULL);

 if(orig_eax == SYS_write) {
 if(toggle == 0) {
 toggle = 1;

 params[0] = ptrace(PTRACE_PEEKUSER,
 child, 4 * EBX,
 NULL);
 params[1] = ptrace(PTRACE_PEEKUSER,
 child, 4 * ECX,
 NULL);
 params[2] = ptrace(PTRACE_PEEKUSER,
 child, 4 * EDX,
 NULL);

 str = (char *)calloc((params[2]+1)
 * sizeof(char));
 getdata(child, params[1], str,
 params[2]);
 reverse(str);
 putdata(child, params[1], str,
 params[2]);
 }
 else {
 toggle = 0;
 }
 }
 ptrace(PTRACE_SYSCALL, child, NULL, NULL);
 }
 }
 return 0;
}

The output looks like this:

ppadala@linux:~/ptrace > ls
a.out dummy.s ptrace.txt
libgpm.html registers.c syscallparams.c
dummy ptrace.html simple.c
ppadala@linux:~/ptrace > ./a.out
txt.ecartp s.ymmud tuo.a
c.sretsiger lmth.mpgbil c.llacys_egnahc
c.elpmis lmth.ecartp ymmud

This example makes use of all the concepts previously discussed, plus a few more. In it, we use calls to
ptrace with PTRACE_POKEDATA to change the data values. It works exactly the same way as
PTRACE_PEEKDATA, except it both reads and writes the data thatt the child passes in arguments to the
system call whereas PEEKDATA only reads the data.

Single-Stepping

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

8 of 9 6/18/2006 3:55 AM

ptrace provides features to single-step through the child's code. The call to
ptrace(PTRACE_SINGLESTEP,..) tells the kernel to stop the child at each instruction and let the parent take
control. The following example shows a way of reading the instruction being executed when a system call is
executed. I have created a small dummy executable for you to understand what is happening instead of
bothering with the calls made by libc.

Here's the listing for dummy1.s. It's written in assembly language and compiled as gcc -o dummy1
dummy1.s:

.data
hello:
 .string "hello world\n"

.globl main
main:
 movl $4, %eax
 movl $2, %ebx
 movl $hello, %ecx
 movl $12, %edx
 int $0x80
 movl $1, %eax
 xorl %ebx, %ebx
 int $0x80
 ret

The example program that single-steps through the above code is:

#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <linux/user.h>
#include <sys/syscall.h>

int main()
{ pid_t child;
 const int long_size = sizeof(long);

 child = fork();
 if(child == 0) {
 ptrace(PTRACE_TRACEME, 0, NULL, NULL);
 execl("./dummy1", "dummy1", NULL);
 }
 else {
 int status;
 union u {
 long val;
 char chars[long_size];
 }data;
 struct user_regs_struct regs;
 int start = 0;
 long ins;

 while(1) {
 wait(&status);
 if(WIFEXITED(status))
 break;
 ptrace(PTRACE_GETREGS,
 child, NULL, ®s);
 if(start == 1) {
 ins = ptrace(PTRACE_PEEKTEXT,
 child, regs.eip,
 NULL);
 printf("EIP: %lx Instruction "

http://0-delivery.acm.org.innopac.lib.ryerson.ca/10.1145/590000/583915...

9 of 9 6/18/2006 3:55 AM

 "executed: %lx\n",
 regs.eip, ins);
 }

 if(regs.orig_eax == SYS_write) {
 start = 1;
 ptrace(PTRACE_SINGLESTEP, child,
 NULL, NULL);
 }
 else
 ptrace(PTRACE_SYSCALL, child,
 NULL, NULL);
 }
 }
 return 0;
}

This program prints:

hello world
EIP: 8049478 Instruction executed: 80cddb31
EIP: 804947c Instruction executed: c3

You might have to look at Intel's manuals to make sense out of those instruction bytes. Using single stepping
for more complex processes, such as setting breakpoints, requires careful design and more complex code.

In Part II, we will see how breakpoints can be inserted and code can be injected into a running program.

All of the example code from this article and from Part II (which will be printed in next month's issue) is
available as a tar archive on the Linux Journal FTP site [ftp.ssc.com/pub/lj/listings/issue103/6011.tgz].

Pradeep Padala is currently working on his Master's degree at the University of
Florida. His research interests include Grid and distributed systems. He can be
reached via e-mail at p_padala@yahoo.com or through his web site
(www.cise.ufl.edu/~ppadala).

