
Toronto Metropolitan University

Department of Electrical, Computer and Biomedical Engineering

COE 328 – Digital Systems

Lab 4 - VHDL for Combinational Circuits and Storage Elements (2 weeks)

1 Objectives:

To design/implement combinational circuits and circuits with basic storage elements using VHDL.

2 Pre-Lab Preparation

1. Start-up Quartus II - an integrated suite of CAD tools.

2. To save files for this lab, create subdirectories mux, decode, encod, and johns in your work direc-

tory.

3. Enter the name of the first project, mux, by clicking on File/Project on the pull-down menu, and

then Name on the subsequent pull-down menu. Type the Project Name, and click OK.

4. Open Text Editor and type the VHDL file from Fig. 6.28 of the textbook. Save the file as mux.vhd.

5. Start the compiler. Fix any errors and re-compile. Once the file compiles without errors, go to the
next step.

6. Repeat steps 3-5 for the remaining examples. Use files from the following figures accordingly (see
the textbook):

- decod (Fig. 6.30)

- encod (Fig. 6.41)

- johns (Fig. 1 below)

7. The VHDL code in Fig. 1 demonstrates one of the ways of implementing the Johnson counter. The

outputs Q0, Q1, Q2 of the Johson counter are connected to the inputs of a customized combinational

circuit. The function of this combinational circuit is defined by the student ID number D = {d1, d2,

d3, d4, d5, d6, d7, d8, d9} as follows. When the input Q of the customized circuit goes through all

possible combinations (i.e., 000, 100, 110, 111, 011, 001), its output W sequentially goes through

the last 6 digits of the student ID number (i.e., d4, d5, d6, d7, d8, d9). Qreg is an internal signal which

can be fed back to the D's or fed out to Q.

3 Laboratory Work

1. Create the subdirectory lab4 in your work directory, and copy the all the subdirectories created as

part of the pre-lab to this subdirectory.

2. Compile your designs, create symbols for respective projects (mux, decode, encod, and johns) and

save them.

3. Create new subdirectories inside lab4 folder of your working directory with names muxModified

and decodModified.

4. Start-up Quartus II - an integrated suite of CAD tools.

5. Enter the name of the project, muxModified, by clicking on File/Project on the pull-down menu

and then Name on the subsequent pull-down menu. Type the Project Name and click OK.

- 2 -

6. Create a block schematic file muxModified.bdf for the project defined in (5) and implement a 4-

to-1 multiplexer using two 2-to-1 multiplexers (mux symbols) as shown in Fig. 6.3 of the text

book.

7. Repeat the steps (5) and (6) for the project decodModified and implement a 3-to-8 decoder using

two 2-to-4 decoders (decode symbols) as outlined in Fig. 6.17 of the text book.

8. Assign all Input/Output signals to any dedicated Input/Output pins of the Cyclone-II FPGA on the

prototype board (see Pin Assignment Table in Lab3). Re-compile your design.

NOTE:

- All the output LEDs are active HIGH. (i.e., a logic ‘1’ will turn the LED's on).

- All the 7-segment displays are active LOW (i.e., a logic ‘0’ will turn the respective segment

on).

- The resetn signal must be assigned to the pushbutton[0] switch on the prototype board

(PIN_G26).

- The clk signal must be assigned to the to the pushbutton[3] switch on the prototype board

(PIN_W26).

9. Implement/program all your designs into the Cyclone II FPGA.

10. Every digit of last 6 digits of the Student ID (signal W) should be displayed on the 7-segment

display, while the current state of the Johnson counter (signal Q) is displayed on green LED’s.

11. Design your circuits as outlined and demonstrate results to the instructor by displaying both the

state and student ID signals.

NOTE: Re-use the 7-segment module from Lab 3 to display student ID digits.

- 3 -

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY johns IS

 PORT (Clrn, Clk : IN STD_LOGIC;

 W : OUT STD_LOGIC_VECTOR (3 DOWNTO 0);

 Q : OUT STD_LOGIC_VECTOR (0 TO 2));

END johns;

ARCHITECTURE Behaivor OF johns IS

 signal Qreg : STD_LOGIC_VECTOR (0 TO 2);

BEGIN

PROCESS (Clrn, Clk)

 BEGIN

 IF Clrn = '0' THEN

 Qreg <= "000";

 ELSIF (Clk'EVENT AND Clk = '1') THEN

 … -- complete the code

 Qreg(1) <= Qreg(0);

 … -- complete the code

 END IF;

 CASE Qreg IS -- d(i), i=4,…,9

 WHEN "000" => W <= "0100"; -- d4

 WHEN "100" => W <= "0011"; -- d5

 … -- complete the code

 WHEN "001" => W <= "1001"; -- d9

 WHEN OTHERS => W <= "----";

 END CASE;

END PROCESS; -- student ID

 Q <= Qreg; -- d1,d2,d3,d4,d5,d6,d7,d8,d9

END Behaivor; -- 5 0 0 4 3 5 4 2 9

Figure 1: Student ID number is 500435429

Q Q

D Q

Clk

D Q

Q
0
 Q

1

Clrn

Q

D Q

Q
2

Qreg
0
 Qreg

1
 Qreg

2

W
3
 W

2
 W

0
 W

1

Customized circuit

Johnson

counter

