Chapter 8

8.1. The expressions for the inputs of the flip-flops are

$$D_2 = Y_2 = \overline{w}y_2 + \overline{y}_1\overline{y}_2$$

$$D_1 = Y_1 = w \oplus y_1 \oplus y_2$$

The output equation is

$$z = y_1 y_2$$

8.2.

The expressions for the inputs of the flip-flops are

$$J_2 = \overline{y}_1$$

$$K_2 = w$$

$$J_1 = \overline{w}y_2 + w\overline{y}_2$$

$$K_1 = J_1$$

The output equation is

$$z = y_1 y_2$$

8.3. A possible state table is

Present state	Next state		Output z	
	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	E	C	0	0
C	Е	D	0	0
D	Е	D	0	1
E	F	В	0	0
F	A	В	0	1

8.7. For Figure 8.51

$$Y_{3} = \overline{w}y_{3} + \overline{y}_{1}y_{2} + wy_{1}\overline{y}_{3}$$

$$Y_{2} = wy_{3} + w\overline{y}_{1}\overline{y}_{2} + wy_{1}y_{2} + \overline{w}y_{1}\overline{y}_{2}\overline{y}_{3}$$

$$Y_{1} = \overline{y}_{3}\overline{w} + \overline{y}_{1}\overline{w} + wy_{1}\overline{y}_{2}$$

$$z = y_{1}\overline{y}_{3} + \overline{y}_{2}\overline{y}_{3}$$

For Figure 8.52

$$Y_2 = \overline{w}y_2 + \overline{y}_1y_2 + w\overline{y}_2$$

$$Y_1 = \overline{y}_1\overline{w} + wy_1\overline{y}_2$$

$$z = \overline{y}_2$$

8.8. For Figure 8.55

$$\begin{array}{rcl} Y_4 & = & Dy_3 \\ Y_3 & = & Dy_1 + Dy_2 + Ny_2 + \overline{D}y_3\overline{y}_2y_1 \\ Y_2 & = & N\overline{y}_2 + y_3\overline{y}_1 + \overline{N}\overline{y}_3y_2\overline{y}_1 \\ Y_1 & = & Ny_2 + D\overline{y}_2\overline{y}_1 + \overline{D}\overline{y}_2y_1 \\ z & = & y_4 + y_1y_2 + \overline{y}_1y_3 \end{array}$$

for Figure 8.56

$$Y_3 = D\overline{y}_2 y_1$$

$$Y_2 = y_3 + \overline{N} y_2 \overline{y}_1 + N \overline{y}_2$$

$$Y_1 = \overline{D} \overline{y}_2 y_1 + N y_2 \overline{y}_1 + D \overline{y}_3 \overline{y}_1$$

$$z = y_3 + y_2 y_1$$

8.9.

$$Y_2 = \overline{k}y_1 + \overline{k}y_2$$

$$Y_1 = \overline{k}\overline{y}_1 + \overline{k}y_2$$

$$z = \overline{k}y_1y_2$$

```
8.10.
        LIBRARY ieee;
        USE ieee.std_logic_1164.all;
        ENTITY prob8_10 IS
            PORT (Clock: IN
                                STD_LOGIC;
                   Resetn: IN
                                STD_LOGIC;
                   w1, w2 : IN STD_LOGIC;
                          : OUT STD_LOGIC);
        END prob8_10;
        ARCHITECTURE Behavior OF prob8_10 IS
            TYPE State_type IS (A, B, C, D);
            SIGNAL y : State_type ;
            SIGNAL k : STD_LOGIC ;
         BEGIN
             k \le w1 \text{ XOR } w2;
             PROCESS (Resetn, Clock)
             BEGIN
                IF Resetn = '0' THEN
                   y \le A;
                ELSIF (Clock'EVENT AND Clock = '1') THEN
                   CASE y IS
                      WHEN A = >
                         IF k = '0' THEN y \le B;
                         ELSE y \leq A;
                         END IF;
                      WHEN B =>
                         IF k = '0' THEN y \le C;
                         ELSE y \leq A;
                         END IF;
                      WHEN C = >
                         IF k = '0' THEN y \le D;
                         ELSE y \leq A;
                         END IF;
                      WHEN D = >
                         IF k = '0' THEN y \le D;
                         ELSE y \leq A;
                         END IF;
                   END CASE;
                END IF;
             END PROCESS;
             z \le 1' WHEN y = D AND k = 0' ELSE 0';
         END Behavior;
```

8.15.

The next-state expressions are

$$D_{4} = Y_{4} = \overline{w}y_{3} + wy_{1}$$

$$D_{3} = Y_{3} = \overline{w}(y_{1} + y_{4})$$

$$D_{2} = Y_{2} = \overline{w}y_{2} + wy_{4}$$

$$D_{1} = Y_{1} = w(y_{2} + y_{1})$$

The output is given by $z = y_4$.

8.19.

$$Y_{2} = Dy_{1} + \overline{D}y_{2}\overline{N} + N\overline{y}_{2}\overline{y}_{1}$$

$$Y_{1} = Ny_{2} + \overline{D}y_{1}\overline{N} + D\overline{y}_{2}\overline{y}_{1}$$

$$z = Dy_{1} + Dy_{2} + Ny_{1}$$

8.20.

The next-state expressions are

$$Y_1 = \overline{y}_1$$

$$Y_2 = y_1 \oplus y_2$$

The resulting circuit is

The flip-flop inputs are $J_1=K_1=1$ and $J_2=K_2=y_1$. The resulting circuit is

8.22.

The flip-flop inputs are $T_1=1$ and $T_2=y_1$. The resulting circuit is

8.23.

The next-state expressions are

$$Y_{2} = \overline{y}_{0}y_{2} + \overline{w}y_{2} + wy_{0}y_{1}$$

$$Y_{1} = \overline{y}_{0}y_{1} + \overline{w}y_{1} + wy_{0}\overline{y}_{1}\overline{y}_{2}$$

$$Y_{0} = \overline{w}y_{0} + w\overline{y}_{0}$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.24.

The expressions for the inputs of the flip-flops are

$$J_2 = wy_1y_0$$

$$K_2 = wy_2y_0$$

$$J_1 = w\overline{y}_2y_0$$

$$K_1 = wy_0$$

$$J_0 = w$$

$$K_0 = w$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.25.

The expressions for T inputs of the flip-flops are

$$T_2 = wy_1y_0 + wy_2y_0$$

$$T_1 = w\overline{y}_2y_0$$

$$T_0 = w$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.26.

The next-state expressions (inputs to D flip-flops) are

$$D_{2} = Y_{2} = w\overline{y}_{2}y_{1} + \overline{w}y_{2}y_{1} + wy_{2}\overline{y}_{1} + \overline{w}y_{2}y_{0} + \overline{y}_{2}\overline{y}_{1}\overline{y}_{0}w$$

$$D_{1} = Y_{1} = w\overline{y}_{1} + \overline{y}_{1}\overline{y}_{0} + \overline{w}y_{1}y_{0}$$

$$D_{0} = Y_{0} = \overline{y}_{0}\overline{w} + y_{0}w$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.27.

The expressions for J and K inputs to the three flip-flops are

$$J_{2} = y_{1}w + \overline{y}_{1}\overline{y}_{0}\overline{w}$$

$$K_{2} = J_{2}$$

$$J_{1} = w + \overline{y}_{0}$$

$$K_{1} = J_{1}$$

$$J_{0} = \overline{w}$$

$$K_{0} = J_{0}$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.28.

The expressions for T inputs of the flip-flops are

$$T_{2} = \overline{y}_{1}\overline{y}_{0}\overline{w} + y_{1}w$$

$$T_{1} = w + \overline{y}_{0}$$

$$T_{0} = \overline{w}$$

The outputs are: $z_2 = y_2$, $z_1 = y_1$, and $z_0 = y_0$.

8.29.

Present	Next	Output	
state	w = 0	w = 1	z
A	A	С	0
В	Α	D	1
C	A	D	0
D	A	В	0

The circuit produces z = 1 whenever the input sequence on w comprises a 0 followed by an even number of 1s.