
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

The Effect of Multi-Bit Correlation on the Design of
Field-Programmable Gate Array Routing Resources

Phoebe Ping Chen and Andy Ye, Member, IEEE

Abstract—As the logic capacity of field-programmable gate
arrays (FPGAs) increases, they are being increasingly used to
implement large arithmetic-intensive applications. Large arith-
metic intensive applications often contain a large proportion of
datapath circuits. Since datapath circuits are designed to process
multiple-bit-wide data, FPGAs implementing these circuits often
have to transport a large amount of multiple-bit-wide signals from
one computing element (such as a logic block, a DSP block, or
a multi-bit addressable memory cell) to another. In this work,
we investigate the area efficiency of FPGA routing resources
for transporting multiple-bit-wide signals. It is shown that, for
datapath circuits, the switch patterns used by the conventional
routing architecture, which uniformly distribute routing switches
across the routing tracks, are inefficient for connecting the com-
puting elements to their tracks. The more efficient multi-bit aware
patterns, which contain a densely populated single-bit region and
a sparsely populated multi-bit region, can be effectively used to
reduce the routing area of FPGAs for implementing arithmetic
intensive applications by 6%–10%. It is also shown that the fur-
ther sharing of configuration memory among the switches within
the multi-bit aware patterns does not significantly increase their
area efficiency since datapath circuits typically contain a mixture
of multi-bit and single-bit signals—while configuration memory
sharing can substantially increase the area efficiency of routing
resources for transporting multi-bit signals, it also significantly
reduces their ability for transporting single-bit signals. More im-
portantly, configuration memory sharing can significantly reduce
the effectiveness of the enhanced multi-bit aware patterns—pat-
terns that incorporate both multi-bit aware and single-bit oriented
switches within a single region in order to increase its ability for
transporting both single-bit and multi-bit signals.

Index Terms—Area efficiency, datapath-oriented FPGA, field-
programmable gate arrays (FPGAs), routing resources.

I. INTRODUCTION

A S the logic capacity of field-programmable gate arrays
(FPGAs) increases, they are being increasingly used to

implement large arithmetic-intensive applications. Large arith-
metic-intensive applications often contain a large proportion of
datapath circuits. Since datapath circuits are designed to process
multiple-bit-wide signals, FPGAs implementing these circuits
are routinely used to transport these signals from one computing
element (such as a logic block, a DSP block, or a multi-bit ad-
dressable memory cell) to another.

Manuscript received December 02, 2008; revised May 08, 2009.
The authors are with the Department of Electrical and Computer Engineering,

Ryerson University, Toronto, ON M5B 2K3, Canada (e-mail: pepe_chen@hot-
mail.com; aye@ee.ryerson.ca).

Digital Object Identifier 10.1109/TVLSI.2009.2029232

To transport a multiple-bit-wide signal, one can either treat
the signal as a set of independent bits and route each bit individ-
ually through a set of conventional routing resources, or view
the entire signal as a single coherent unit and transport the unit
collectively through a set of specialized routing resources. In
this work, we investigate the detailed design of these specialized
routing resources on the area efficiency of FPGAs and compare
them to the conventional routing resources, which are designed
to transport independent bits of signals.

Several FPGAs have been proposed to use multi-bit routing
resources to connect their computing elements [1]–[9]. Except
for the work in [8] and [9], however, none has investigated their
detailed design. Both [8] and [9] are based on the observation
that multi-bit routing resources can be configured one datum at
a time while the conventional routing resources must be con-
figured one bit at a time. Consequently, both have focused on
utilizing the multi-bit nature of signals to share configuration
memory. These studies observe that this increase in configura-
tion granularity can lead to a significant reduction in the amount
of memory that is required to configure the routing resources
and an increase in FPGA area efficiency.

The correlated behaviors of multi-bit signals, however, can
affect the area efficiency of FPGAs in other ways. In partic-
ular, multi-bit routing resources can be grouped into multiple-
bit-wide groups. Connecting two groups of resources together
requires one to connect each bit in one group to a corresponding
bit in the other. This one-to-one mapping of resources can result
in a much sparser distribution of routing switches than the distri-
bution employed in the conventional routing resources—which
must use denser switch patterns to connect independent bits of
signals. In this work, the sparse distribution is used to construct
two multi-bit aware routing architectures—the sparse and the
enhanced sparse architectures. The area efficiency of these ar-
chitectures is then compared to the area efficiency of the con-
ventional and the configuration memory sharing architectures.

The remainder of this paper is organized as follows. Section II
motives the research and describes the routing architectures
used in this investigation, Section III presents the detailed
architectural parameters and examines their effects on the im-
plementation area of the various FPGA components, Section IV
presents experimental results, and Section V gives concluding
remarks.

II. MULTI-BIT ROUTING ARCHITECTURES

Consider implementing a datapath circuit on FPGAs by map-
ping each bit slice of the circuit into a set of logic clusters. These
clusters can then be grouped into a set of multi-bit computing
elements that are connected by multi-bit signals. For example,

1063-8210/$26.00 © 2009 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Four-bit 7:2 compressor: (a) 7:2 compressor and its bit slices; (b) map-
ping each bit slice into two clusters; (c) mapping clusters into multi-bit com-
puting elements.

Fig. 2. Connection patterns for single-bit and multi-bit elements: (a) indepen-
dent signals and (b) correlated signals.

as shown in Fig. 1, each slice of a four-bit-wide 7:2 compressor
[10] can be mapped into ten three-input lookup tables (LUTs),
which in turn can be grouped into two logic clusters. The eight
clusters from all bit slices can be organized into two multi-bit
computing elements with each element containing four clusters,
six four-bit-wide inputs and four four-bit-wide outputs.

The multi-bit processing nature of the multi-bit computing
elements is significantly different from the single-bit design of
the traditional logic blocks. While the input and output pins of

a conventional logic block carry independent bits of informa-
tion, the input and output pins of a multi-bit computing element
are logically organized to represent multiple-bit-wide data. In
this organization, pins that represent a datum are often get used
at the same time. Similarly, routing resources are often used to
transport multiple-bit-wide signals from a common source to
a common destination. These correlated behaviors can signifi-
cantly affect the efficiency of FPGA routing resources.

In particular, if all signals are independent, there are

different ways of using programmable switches to connect a
group of wires to another group of wires. For example,
Fig. 2(a) shows four vertical wires (which represent four output
pins of a computing element) and four horizontal wires (which
represent four FPGA routing tracks). These wires are connected
by 12 programmable switches, which form one of the over
65 000 connection patterns. Taking into account of correlation,
however, the situation changes. For example, if the vertical
wires always simultaneously carry valid signals and these sig-
nals always share a common destination, connecting a vertical
wire to a horizontal wire automatically implies three similar
connections (one for each of the remaining vertical-horizontal
pairs). Consequently, as shown in Fig. 2(b), each vertical wire
only requires one connection for every four horizontal wires
and the total number of connection patterns is reduced to 24.
The reduction of eight connections per pattern can result in
significant routing area savings, and the reduction in the number
of patterns enables a more targeted search of the design space.
The exact number of connection point reduction, however, is
closely related to the detailed placement of these points, the in-
teraction between the patterns (there could be tens of thousands
of connection points arranged using several patterns in a single
architecture) and the routing demand of the applications.

The conventional routing architecture as defined in [11] ex-
ploits only a smaller number of design alternatives from this vast
design space. The design space reduction is achieved through
the use of disjoint [12]–[15] and near-disjoint [16]–[19] patterns
in the switch blocks and by distributing logic block input/output
connections uniformly across the routing tracks. In particular, as
shown in Fig. 3(a), the disjoint topology is used to connect the
horizontal tracks to the vertical tracks, where each horizontal
track is connected to a distinct vertical track. The logic block
input and output pins, on the other hand, are uniformly dis-
tributed based on the algorithm shown in Fig. 3(b). As shown,

is equal to the number of routing tracks per channel (where a
channel is defined as the group of horizontal/vertical tracks lo-
cated between two rows/columns of logic blocks). is equal
to the percentage of tracks per channel that can be connected to
a logic block input/output pin. is equal to the number of logic
block input/output pins, and the switch pattern matrix contains
the index of a routing track that the th connection of the th
logic block input/output pin connects to.

Note that the algorithm connects each logic block
input/output pin to the same number of tracks and given

tracks, it can generate distinct patterns. As an example,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN AND YE: THE EFFECT OF MULTI-BIT CORRELATION ON THE DESIGN OF FIELD-PROGRAMMABLE GATE ARRAY ROUTING RESOURCES 3

Fig. 3. Conventional FPGA routing architecture: (a) connection and switch
blocks; (b) switch distribution algorithm for connection blocks; and (c) patterns
for connecting four logic block inputs/outputs to eight routing tracks.

Fig. 3(c) shows the eight patterns that the algorithm can gen-
erate to connect eight tracks to four logic block input/output
pins. These eight patterns represent a very small fraction
of the total switch patterns that can be used to
connect the pins to the tracks.

This work expands the design space of the conventional
connection blocks by exploiting the correlated behaviors of
multi-bit signals while still preserving the tile-based design
of conventional FPGAs. In particular, the disjoint pattern is
applied to two groups of multi-bit routing resources as shown
in Fig. 4(a), where a bit in one group is connected to a cor-
responding bit in the other. For routing channels designed to
transport multiple multi-bit signals, the algorithm shown in
Fig. 3(b) is used to distribute the disjoint patterns (instead of
individual bits of switches) uniformly across a channel. For
example, the distribution algorithm can connect 24 routing
tracks (which are grouped into six four-bit-wide groups) to
eight logic block input/output pins (which are grouped into two
four-bit-wide groups) using the switch distributions shown in
Fig. 4(b). The disjoint patterns are then used to complement
the uniformly distributed switches, as shown in Fig. 4(c), to
increase the area efficiency of routing resources for transporting
multi-bit signals.

In this paper, the routing architecture shown in Fig. 4(c)
is called the sparse routing architecture. Comparing to the

Fig. 4. Disjoint switch patterns and sparse routing architecture: (a) disjoint
input and output connections; (b) connecting six four-bit buses to two four-bit
buses; and (c) sparse routing architecture.

connection block designs that can be generated by the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 5. Enhanced sparse architecture: combining disjoint patterns: (a) 24 dis-
joint patterns for 4� 4 connections and (b) combining two disjoint patterns at
logic block inputs.

conventional routing architecture, the sparse architecture can
generate distinct
connection blocks. For example, when is equal to 24 and

is equal to four, the sparse architecture can generate 170
distinct connection blocks while the conventional architecture
can only generate 24. (Note that while the work in [8] and [9]
employs similar disjoint patterns, these patterns were used in
conjunction with configuration memory sharing. The indepen-
dent effects of these patterns on FPGA area efficiency have not
been examined previously.)

The functionalities of the sparse routing architecture can be
further enhanced by incorporating additional programmable
connections into the disjoint pattern. For example, the basic

disjoint pattern shown in Fig. 4 is just one of the

disjoint patterns that can be used to connect an -bit-wide
signal to another. Specifically, Fig. 5(a) shows the set of 24
disjoint patterns that can be used to connect two four-bit-wide
signals. As shown each pattern provides a different amount of
shift. These patterns can be used to enhance the basic disjoint
pattern. For example, as shown in Fig. 5(b) two disjoint patterns
are combined into a new pattern. In combination, the pattern
provides two types of shifting capabilities—shift-by-0 and
shift-to-the-right-by-two. The resulting patterns allow multi-bit
routing tracks to rearrange as well as transport multi-bit signals.

Fig. 6. Four-bit-wide 4:1 multiplexer and its control signals (S1 and S2).

Fig. 7. Enhanced sparse routing architecture: combining disjoint and control
patterns at logic block inputs.

Note that high fan-out signals, such as the control signals of
the 4:1 multiplexer shown in Fig. 6, are routinely used to coor-
dinate the operations of multiple bit slices in a datapath circuit.
These signals also consist of a significant amount of connec-
tions in datapath circuits. The basic disjoint pattern can be fur-
ther enhanced to support these control signals with the addition
of routing switches that distribute a signal from one multi-bit
routing track to all bit slices in a multi-bit logic block. As shown
in Fig. 7, with the addition of control patterns, a multi-bit routing
track can be used to distribute high fan-out signals as well as
route multiple-bit-wide signals.

The routing architectures that contain additional disjoint or
control patterns are called the enhanced sparse architectures.
In the remainder of this paper, we evaluate the area efficiency
of both sparse and enhanced sparse architectures and compare
them to the conventional and configuration memory sharing
architectures [8]. Note that, like the sparse architecture, the
configuration memory sharing architecture, as shown in Fig. 8,
also uses disjoint patterns to connect multi-bit routing tracks.
Instead of relying on the sparseness of the disjoint patterns to
reduce FPGA routing area, however, the architecture is de-
signed to reduce configuration memory. Consequently, instead
of using independently controlled switches within each dis-
joint pattern, each set of multi-bit routing tracks are driven by
switches that are collectively controlled by a single set of con-
figuration memory. Consequently, the configuration memory
sharing architecture is less efficient at routing single-bit signals
such as the high fan-out control signals.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN AND YE: THE EFFECT OF MULTI-BIT CORRELATION ON THE DESIGN OF FIELD-PROGRAMMABLE GATE ARRAY ROUTING RESOURCES 5

Fig. 8. Regions of configuration memory sharing in the configuration memory
sharing routing architecture.

III. ARCHITECTURAL MODELS AND PARAMETERS

The architectural model from [11] is used to evaluate the area
efficiency of the sparse and enhanced sparse architectures. Area
is measured in terms of the minimum-width transistor area and
is based on the formula shown at the bottom of the page.

All architectures investigated in this work use the same layout
as Fig. 9. As in Fig. 4(a), each multi-bit logic block consists of
four logic clusters. Each cluster contains four fully connected
basic logic elements (each basic logic element contains one
LUT and one register), ten inputs, and four outputs. The inputs/
outputs of each cluster are directly connected to the inputs/out-
puts of the multi-bit logic blocks. To capture multi-bit regularity,
the logic clusters in each multi-bit logic block are used to im-
plement identical portions of adjacent bit-slices from datapath
circuits using datapath-oriented synthesis [20] and packing [21]
tools. Note that the cluster size of four with ten inputs and four
outputs was found to be the most area efficient for conventional
FPGAs in [22]. Multi-bit logic blocks containing four logic clus-
ters were shown to be the most area efficient for FPGAs with
configuration memory sharing routing resources [8].

In the conventional routing architecture, both the input
and output connection blocks can be parameterized by two
parameters— , the number of routing tracks per channel
and , the percentage of these tracks that a logic
block input/output pin connects to. An input connection
block from the sparse routing architecture is parameterized
by , and . and

are the number of single-bit tracks per channel and
the percentage of these tracks that a logic block input pin can
connect to. is the number of multi-bit tracks per channel
(where the tracks are grouped into four-bit-wide groups) and

Fig. 9. Overall architecture of an FPGA.

is the percentage of these groups that a logic block
input pin can connect to. Similarly the output connection block
is parameterized by two additional parameters:
and .

The enhanced sparse architecture differs from the sparse
architecture in its input connection block design. In this work,
the difference is characterized by the parameter , which
is equal to the percentage of multi-bit tracks that are connected
through the enhanced disjoint patterns. For example, Fig. 10(a)
shows the input connections for a group of four input pins. As
shown, 16 of the 24 tracks are connected through disjoint pat-
terns that are enhanced by the control pattern .
Note that the control pattern is distributed uniformly across all
bit positions, where the first, second, third, and fourth disjoint
patterns are enhanced on the first, second, third, and fourth
tracks, respectively. Three of the 24 disjoint patterns shown in
Fig. 5(a) are also used to enhance the basic disjoint pattern. As
shown in Fig. 10(b), these patterns correspond to shift-to-left
by one, two, and three bits, respectively, and are uniformly
distributed across all enhanced patterns.

As shown in Fig. 8, the sparse and enhanced sparse archi-
tectures differ from the configuration memory sharing architec-
ture in their output connection block and switch block designs.
(Note that, to accommodate connections from both multi-bit and
single-bit tracks, configuration memory is not shared within the
input connection blocks [8].) As shown in Fig. 11, in a configu-
ration memory sharing output connection block, switches from
a disjoint pattern share a single set of configuration memory.

Configuration memory is similarly shared in the switch
blocks. In particular, the sparse and enhanced sparse archi-
tectures share the same switch block design as shown in
Fig. 12(a) (Note that for clarity two-bit-wide groups instead
of four-bit-wide groups are shown in the figure.) Each switch
block consists of two types of routing switches—the full
switches and the half switches. A full switch connects four

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 10. Enhanced disjoint patterns �� � �����: (a) disjoint patterns en-
hanced by control patterns and (b) disjoint patterns enhanced by shift patterns.

Fig. 11. Configuration memory sharing in output connection blocks.

track segments (two vertical and two horizontal) that terminate
at the switch block. A half switch (required for connecting track
segments that span multiple logic blocks), on the other hand,
connects a vertical non-terminating segment to a horizontal
non-terminating segment. The sparse/enhanced sparse archi-
tecture differs from the conventional architecture [as shown
in Fig. 12(c)] in the placement of the full and half switches.
As in the conventional architecture, in the sparse/enhanced
sparse architecture each routing switch is independently con-
trolled by its own configuration memory. In a configuration
memory sharing switch block [as shown in Fig. 12(b)], on the
other hand, configuration memory is always shared among the
routing switches within each group of multi-bit routing tracks.

Figs. 13 and 14 show the total routing area, including
the switch block area, the input connection block area, and

Fig. 12. Configuration memory sharing in switch blocks (segment ��	
�� �

, only one buffer per track is shown). (a) Sparse/enhanced sparse switch block;
(b) configuration memory sharing switch block; and (c) conventional switch
block.

the output connection block area, as a function of
and . In both figures, the conventional architec-
ture contains 40 single-bit tracks while the sparse, enhanced
sparse, and configuration memory sharing architectures con-
tain 40 multi-bit tracks grouped into four-bit-wide groups. In
Fig. 13, (for the conventional routing architecture) and

(for the sparse, enhanced sparse, and configuration
memory sharing routing architectures) are set to 0.3. In Fig. 14,

and are set to 0.8. As shown, for the same
number of tracks, the sparse routing architecture consumes sig-
nificantly less area than the conventional architecture, and the
configuration memory sharing architecture consumes the least
amount of area. These figures also show that the control and
shift enhancements only slightly increase the implementation
area of the enhanced sparse routing architecture over the sparse
routing architecture.

IV. EXPERIMENTAL RESULTS

To investigate the relationship between routing flexibility
and routing switch density, we employ 15 datapath circuits
from the Pico-Java processor [23]. As in [8] and [9], the circuits
are first mapped onto multi-bit logic blocks using a set of
datpath-oriented synthesis and packing tools [20], [21]. The
logic blocks are then placed using the conventional simulated
annealing placement [11], [24]. The placed circuits are then
implemented on both the conventional and the multi-bit aware

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN AND YE: THE EFFECT OF MULTI-BIT CORRELATION ON THE DESIGN OF FIELD-PROGRAMMABLE GATE ARRAY ROUTING RESOURCES 7

Fig. 13. Routing area comparison �� �� � ����.

Fig. 14. Routing area comparison �� �� � ����.

routing architectures using the conventional [25], [26] or the
multi-bit aware [9], [24] routing tools. Through these imple-
mentations, we attempt to address the following three questions:
1) What is the effect of configuration memory sharing on the
overall area efficiency of FPGAs? 2) What is the most efficient
method of increasing the area efficiency of the sparse routing
architecture—increasing the flexibility of the input connection
blocks through control and shift enhancements or reducing the
implementation area of the output and switch blocks through
configuration memory sharing? and 3) How does the area
efficiency of the multi-bit aware routing architectures compare
to the area efficiency of the conventional routing architecture?

Note that among the two routing tools only the multi-bit
aware router is designed to utilize configuration memory
sharing. To accomplish this, the router first differentiates
multi-bit signals from single-bit signals. It then routes the
multi-bit signals based on a modified negotiated-congestion
algorithm [9]. Unlike the conventional negotiated-congestion
algorithm [26], however, the multi-bit router rips up and
reroutes one multi-bit signal (instead of one bit) at a time. By
ripping up an entire signal, the router ensures that configuration
memory sharing switches can always be identically configured
when the signal is rerouted through configuration memory
sharing resources [9].

If the signal is rerouted through non-configuration memory
sharing resources, however, the ripping up of multiple bits can

TABLE I
PARAMETER SETTINGS FOR THE SPARSE AND THE CONFIGURATION MEMORY

SHARING ROUTING ARCHITECTURES

reduce routing efficiency—one bit might simply move to the
tracks that are vacated (or made less costly) by the other bits
[27]. Consequently, in this work, we employ the multi-bit aware
routing tool only in the investigations that involve configuration
memory sharing.

In each investigation, however, we do employ the same router
across all architectures in order to eliminate routing tool varia-
tions. In particular, we observe the multi-bit aware routing tool
is significantly different from the conventional routing tool due
to its unique routing schedules (caused by the differentiation of
multi-bit and single-bit signals), its special penalties for routing
multi-bit/single-bit signals on single-bit/multi-bit tracks and its
capability of deciding if multi-bit signals should be routed on
multi-bit or single-bit tracks based on the routing results of test
bits [9].

A. Effect of Configuration Memory Sharing on Area Efficiency

To investigate the effect of configuration memory sharing on
the area efficiency of FPGAs, we measure the amount of routing
area that is required to implement the benchmark circuits for
both the configuration memory sharing and the sparse routing
architectures. The parameter settings used in this investigation
are shown in Table I. As shown, the values (and

) are kept constant for single-bit tracks in both ar-
chitectures. These values were found to be the most efficient
for the configuration memory sharing architecture in [8]. We
assume that they are equally efficient for the sparse routing ar-
chitecture. Similarly, the routing track segment length was set to
two and the minimum area implementation of the multiplexer is
used.

We varied values (and) for the
multi-bit tracks for both the configuration memory sharing and
the sparse routing architectures. For each set of and

values, we varied the number of multi-bit tracks
from 4 to 64 tracks. For a given number of multi-bit tracks, we
search for the minimum number of single-bit tracks that are re-
quired to implement each circuit.

Figs. 15 and 16 show the average number of routing track
segments that are required to implement a circuit for the con-
figuration memory sharing and the sparse routing architectures,
respectively. There are two curves in each figure-one shows the
average number of single-bit track segments that are required to
implement a circuit while the other shows the average number
of multi-bit track segments. As shown, for the configuration
memory sharing architecture, the utilization of the multi-bit

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 15. Number of single-bit and multi-bit routing tracks in the configuration
memory sharing routing architecture.

Fig. 16. Number of single-bit and multi-bit routing tracks in the sparse routing
architecture.

tracks increases with the increasing values of and
. In particular, when is set to 0.4 and
is set to 0.25, 2663 multi-bit track segments are

required to implement a circuit. When is increased
to 1.0 and is increased to 0.8, only 1985 multi-bit
track segments are required. Note that this reduction is largely
due to the more efficient use of the multi-bit tracks by the
multi-bit signals since the number of single-bit track seg-
ments stays largely the same over all values of and

.
Fig. 16 shows that when configuration memory sharing

is removed from the multi-bit tracks, there is a substantial
reduction in the number of multi-bit track segments for small
values of and . This reduction is due to
the increase in multi-bit track flexibility and their per-track im-
plementation area. As the values of and
increase, the utilization of the multi-bit tracks increases as
well. This increase, however, is due to the more efficient use
of multi-bit tracks by multi-bit signals as well as single-bit
signals. Consequently, the total number of single-bit track
segments decreases with increasing values of and

.
Fig. 17 shows the effect of multi-bit track utilization on

routing area. In the figure, area is the minimum average routing
area across 15 benchmarks. The curve above is for the sparse

Fig. 17. Routing area for sparse and configuration memory sharing routing ar-
chitectures.

Fig. 18. Multi-Bit Track Reduction Due to Routing Algorithm Optimization.

routing architecture while the curve below is for the configura-
tion memory sharing routing architecture. As shown, the best
sparse architecture consumes 5% more routing area than the
best configuration memory sharing architecture.

In Fig. 17, the same multi-bit aware routing algorithm [9] is
used for both the configuration memory sharing and the sparse
routing architectures. The algorithm, however, is specialized for
configuration memory sharing. Since it is very expensive to
route a single bit of signal on a set of configuration memory
sharing routing resources, this algorithm encourages multi-bit
signals to use multi-bit tracks as much as possible. It heavily
penalizes the act of breaking a multi-bit signal into individual
bits and routing some of the bits on single-bit tracks and the re-
maining bits on multi-bit tracks [9], [24]. Without configuration
memory sharing, however, the penalty still forces the single-bit
and multi-bit signals to stay on their respective routing resources
even when one type of resource is much more congested than the
other.

We modified the routing algorithm for the sparse architec-
ture by removing the penalty. With the penalty removed, more
multi-bit signals can be routed on single-bit tracks. This results
in a slight increase in the number of single-bit track segments
and a significant reduction in the number of multi-bit track seg-
ments as shown in Fig. 18. Consequently, the routing area of the
sparse architecture is further reduced as shown in Fig. 19.

To determine the best proportion of multi-bit routing tracks
for the configuration memory sharing and the sparse routing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN AND YE: THE EFFECT OF MULTI-BIT CORRELATION ON THE DESIGN OF FIELD-PROGRAMMABLE GATE ARRAY ROUTING RESOURCES 9

Fig. 19. Reduction in routing area for the sparse routing architecture due to
routing algorithm optimization.

Fig. 20. Routing area versus % of multi-bit tracks.

architectures, we repeat the above experiment by fixing the
percentage of multi-bit routing tracks. The result is shown in
Fig. 20. As shown the best number of multi-bit tracks as a
percentage of the total number of tracks is between 50% and
60% for the configuration memory sharing architecture and
40% to 50% for the sparse architecture. The best sparse archi-
tecture consumes 1.2% more routing area than the configuration
memory sharing routing architecture. Fig. 21 shows the average
number of track segments as a function of the percentage of
multi-bit tracks. As shown the most area efficient sparse routing
architecture uses 16% less track segments than the most area
efficient configuration memory sharing routing architecture.

B. Shift and Control Enhancements Versus Configuration
Memory Sharing

In this section, we evaluate the effect of the shift and con-
trol enhancements on the area efficiency of FPGAs. The pa-
rameter settings used in this investigation are shown in Table II.
In particular, the same parameter values from Section IV-A are
used for the single-bit tracks. For multi-bit tracks, the
and values are set to 0.6 and 0.4 for the configura-
tion memory sharing architecture and 0.7 and 0.5 for the en-
hanced sparse architecture. These values are shown to be the
most area efficient in Section IV-A. For each set of
and values, we vary the value from 0 to 1.0.
For each value of , we vary the number of multi-bit tracks

Fig. 21. Track segments versus % of multi-bit tracks.

TABLE II
PARAMETER SETTINGS FOR THE ENHANCED SPARSE AND THE CONFIGURATION

MEMORY SHARING ROUTING ARCHITECTURES

from 4 to 64 to find the minimum number of single-bit tracks
that is required to route a circuit.

For the control-enhanced sparse architecture, Fig. 22 shows
the effect of on the average number of routing track seg-
ments that is required support a circuit. As shown, as the value of

is increased from 0 to 0.6, more and more single-bit sig-
nals are routed on the multi-bit tracks. Consequently the number
of multi-bit tracks increases and the number of single-bit tracks
decreases. As is increased beyond 0.6, the number of
multi-bit and single-bit tracks stabilizes as most of the signals
that can be efficiently routed through the multi-bit tracks have
already been moved onto these tracks.

Fig. 23 shows the effect of control enhancements on area.
As shown, the control-enhanced sparse architecture is more
efficient than the configuration memory sharing architecture
over all percentage values of multi-bit tracks. In particular,
the best control-enhanced sparse architecture (at 60%–70%
multi-bit tracks) is 1.8% smaller than the best configuration
memory sharing architecture (at 50%–60% multi-bit tracks).
Fig. 24 shows the best control-enhanced sparse architecture
requires 18% less routing tracks than the best configuration
memory sharing architecture.

Table III summarizes the best implementation area for each
benchmark circuit for the configuration memory sharing, the
sparse, and the control-enhanced sparse architectures. These cir-
cuits are divided into four groups according to the percentage

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 22. Number of single-bit and multi-bit routing tracks in the control-en-
hanced sparse architecture.

Fig. 23. Routing area versus % of multi-bit tracks.

Fig. 24. Track segments versus % of multi-bit tracks.

of multi-bit signals that they contain. As shown, for circuits
with less than 60% multi-bit signals, the enhanced sparse archi-
tectures are more area efficient than the configuration memory
sharing architecture. For circuits with more than 60% multi-bit
signals, the configuration memory sharing architecture is more
area efficient.

Fig. 23 also shows the effect of shift enhancements on area.
As shown, the shift-enhanced sparse architecture is less area ef-
ficient than the configuration memory sharing architecture. This
is primarily due to the small amount of single-fanout shift sig-
nals that present in the benchmarks—unlike the multi-fanout

TABLE III
ROUTING AREA VERSUS % OF MULTI-BIT SIGNALS PER CIRCUIT

signals targeted by the control switch patterns, the single-fanout
signals targeted by the shift switch patterns can often be elimi-
nated by mapping their source clusters onto the same bit posi-
tions as their sink clusters by the CAD tools [20], [24].

C. Multi-Bit Aware Versus Conventional Routing Architectures

Having compared the area efficiency of the multi-bit aware
routing architectures, this section compares two of the most area
efficient architectures—the sparse and the control-enhanced
sparse architectures—to the area efficiency of the conventional
routing architecture. Table IV shows the parameter settings
used in this investigation. In particular, the conventional routing
tool [25], [26] is used since none of the architectures employs
configuration memory sharing and our results show the conven-
tional routing tool outperforms the multi-bit aware tool [9] for
these architectures. For the conventional routing architecture,
the value is set to 0.25. It is shown to be the most area
efficient in previous studies [28]. The value is varied from
0.3 to 0.8 to measure the minimum routing area that is required
to implement the benchmarks. Fig. 25 shows that 0.4 is the most
area efficient value for the conventional architecture.

For the sparse and enhanced sparse architectures, we vary
, and as in Sections IV-A

and IV-B. We found that for the conventional routing tool, the
most area efficient parameter values are and

for the sparse architecture and
, and for the control-en-

hanced sparse architecture.
Fig. 26 shows the routing area as a function of the percentage

of multi-bit tracks for the three architectures. As shown the con-
trol-enhanced sparse architecture is the most area efficient. At
70%–80% multi-bit tracks, it consumes 10% less area than the
conventional routing architecture. The figure also shows that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN AND YE: THE EFFECT OF MULTI-BIT CORRELATION ON THE DESIGN OF FIELD-PROGRAMMABLE GATE ARRAY ROUTING RESOURCES 11

Fig. 25. Most area efficient � values for the conventional routing architec-
ture.

TABLE IV
PARAMETER SETTINGS FOR THE CONVENTIONAL, SPARSE, AND

CONTROL-ENHANCED SPARSE ARCHITECTURES

Fig. 26. Routing area versus % of multi-bit tracks.

the sparse architecture also consumes less area than the con-
ventional architecture. At 50%–60% multi-bit tracks, the sparse
architecture is 5.8% smaller than the conventional architecture.

Finally, Fig. 27 shows the number of track segments per cir-
cuit as a function of the percentage of multi-bit tracks. As shown
both the sparse and the enhanced sparse architectures consume
more track segments than the conventional architecture—with
the best sparse architecture employing 8% more track segments
and the best control-enhanced sparse architecture employing
4% more track segments.

Fig. 27. Track segments versus % of multi-bit tracks.

TABLE V
ROUTING DELAYS OF 15 BENCHMARKS ROUTED ON THE FOUR BEST

ARCHITECTURES

Table V shows the routing delays of the 15 benchmarks
routed on the most area efficient conventional, configuration
memory sharing, sparse and enhanced sparse architectures. The
geometric means of the routing delays across the 15 bench-
marks for the four architectures are listed at the bottom of the
table. The geometric means of the routing delays show that the
most area efficient sparse and enhanced sparse architectures
have slightly better performance than the most area efficient
conventional and configuration memory sharing architectures.

V. CONCLUSION

In this work we investigated the area efficiency of two
multi-bit aware routing architectures—the sparse and the en-
hanced sparse architectures—and compared them against the
configuration memory sharing and the conventional routing
architectures for implementing arithmetic intensive applica-
tions. We found that, under the multi-bit aware router, both the
sparse and the enhanced sparse architectures are as efficient as
the configuration memory sharing architecture. In particular,
our benchmarks show that the best sparse architecture only
consumes 1.2% more area than the configuration memory
sharing architecture while the best enhanced sparse architecture

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

consumes 1.8% less. The data show that the sharing of configu-
ration memory does not increase the area efficiency of multi-bit
aware routing architectures for the arithmetic intensive circuits
investigated in this work. Instead, the multi-bit aware switch
patterns are directly responsible for area reductions.

More importantly, the area efficiency of the sparse and the
enhanced sparse architectures can be further improved by sub-
stituting the multi-bit aware router with the bit-oriented conven-
tional router. We found that, using the conventional router, the
sparse architecture is 5.8% more area efficient than the conven-
tional routing architecture while the control-enhanced sparse ar-
chitecture is 10% more area efficient. Our results suggest that
as modern FPGAs are being increasingly used to implement
large multi-bit processing circuits, FPGA architects should look
beyond the conventional routing architecture in order to create
more area efficient FPGAs.

Finally, here are the two suggested directions of future re-
search. First, since the power efficiency of FPGAs can correlate
directly to the active area that they consume, the effect of the
new datapath-oriented switch patterns on the power efficiency
of FPGAs should be investigated in the future. Second, future
research should also include further investigations into how the
configuration memory sharing routing architecture can be en-
hanced to better accommodate control signals. The enhanced
architecture should then be compared against the current con-
trol-enhanced sparse architecture for area and power efficiency.

REFERENCES

[1] D. Cherepacha and D. Lewis, “DP-FPGA: An FPGA architecture op-
timized for datapaths,” J. VLSI Des., vol. 4, no. 4, pp. 329–343, Apr.
1996.

[2] C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD—Reconfigurable
pipelined datapath,” in Proc. Int. Workshop Field-Programmable Logic
Applications, 1996, pp. 126–135.

[3] J. Hauser and J. Wawrzynek, “Garp: A MIPS processor with a reconfig-
urable coprocessor,” in Proc. IEEE Symp. Field-Programmable Custom
Computing Machines, 1997, pp. 12–21.

[4] A. Marshall et al., “A reconfigurable arithmetic array for multimedia
applications,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable
Gate Arrays, 1999, pp. 135–143.

[5] A. Alsolaim et al., “Architecture and application of a dynamically
reconfigurable hardware array for future mobile communication sys-
tems,” in Proc. IEEE Symp. Field-Programmable Custom Computing
Machines, 2000, pp. 205–214.

[6] S. Goldstein et al., “PipeRench: A reconfigurable architecture and com-
piler,” IEEE Comput., vol. 33, no. 4, pp. 70–77, Apr. 2000.

[7] K. Leijten-Nowak and J. van Meerbergen, “An FPGA architecture
with enhanced datapath functionality,” in Proc. ACM/SIGDA Int.
Symp. Field Programmable Gate Arrays, 2003, pp. 195–204.

[8] A. Ye and J. Rose, “Using bus-based connections to improve field-
programmable gate array density for implementing datapath circuits,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 5, pp.
462–473, May 2006.

[9] A. Ye and J. Rose, “Measuring and utilising the correlation between
signal connectivity and signal positioning for FPGAs containing
multi-bit building blocks,” Proc. Inst. Electr. Eng.—Comput. Digit.
Tech., vol. 153, no. 3, pp. 146–156, May 2006.

[10] I. Koren, Computer Arithmetic Algorithms. Natick, MA: A. K. Peters
Ltd., 2002.

[11] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA: Kluwer Academic, Feb. 1999.

[12] H. Hseih et al., “Third-generation architecture boosts speed and density
of field-programmable gate arrays,” in Proc. IEEE Custom Integrated
Circuits Conf., 1990, pp. 31.2.1–31.2.7.

[13] G. Lemieux and S. Brown, “A detailed router for allocating wire seg-
ments in field-programmable gate arrays,” in Proc. ACM/SIGDA Phys-
ical Design Workshop, 1993, pp. 215–226.

[14] The Programmable Logic Data Book, Xilinx, Inc., San Jose, CA, 1994.

[15] G. Lemieux, S. Brown, and D. Vranesic, “On two-step routing for
FPGAs,” in Proc. Int. Symp. Physical Design, 1997, pp. 60–66.

[16] Y. Chang, D. Wong, and C. Wong, “Universal switch modules for
FPGA design,” ACM Trans. Des. Autom. Electron. Syst., vol. 1, no. 1,
pp. 80–101, Jan. 1996.

[17] S. Wilton, “Architectures and algorithms for field-programmable gate
arrays with embedded memory,” Ph.D. dissertation, Univ. of Toronto,
Toronto, ON, Canada, 1997.

[18] M. Masud and S. Wilton, “A new switch block for segmented FPGAs,”
in Proc. IEEE Int. Conf. Field Programmable Logic Applications,
1999, pp. 274–281.

[19] G. Lemieux and D. Lewis, “Analytical framework for switch block de-
sign,” in Proc. IEEE Int. Conf. Field Programmable Logic Applica-
tions, 2002, pp. 122–131.

[20] A. Ye, J. Rose, and D. Lewis, “Synthesizing datapath circuits for
FPGAs with emphasis on area minimization,” in Proc. Int. Conf.
Field-Programmable Technology, 2002, pp. 219–226.

[21] A. Ye and J. Rose, “Using multi-bit logic blocks and automated packing
to improve field-programmable gate array density for implementing
datapath circuits,” in Proc. Int. Conf. Field-Programmable Technology,
2004, pp. 129–136.

[22] V. Betz and J. Rose, “How much logic should go in an FPGA logic
block?,” IEEE Des. Test Comput., vol. 15, no. 1, pp. 10–15, Jan. 1998.

[23] Pico-Java Processor Design Documentation, Sun Microsystems, Santa
Clara, CA, 1999.

[24] A. Ye, “Field-programmable gate array architectures and algorithms
optimized for implementing datapath circuits,” Ph.D. dissertation,
Univ. of Toronto, Toronto, ON, Canada, Nov. 2004.

[25] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in Proc. Int. Conf. Field Programmable Logic
Applications, 1997, pp. 213–222.

[26] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, “Placement and
routing tools for the triptych FPGA,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 3, no. 4, pp. 473–482, Dec. 1995.

[27] P. Chen, “The effect of multi-bit correlation on the design of routing
resources in field programmable gate arrays,” M.A.Sc. thesis, Ryerson
Univ., Torontao, ON, Canada, Oct. 2008.

[28] V. Betz and J. Rose, “FPGA routing architecture: Segmentation and
buffering to optimize speed and density,” in Proc. ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays, 1999, pp. 59–68.

Phoebe Ping Chen received the B.A.Sc. degree in
electronic engineering from the Beijing University
of Aeronautics and Astronautics, Beijing, China,
in 1996 and the M.A.Sc degree in computer en-
gineering from Ryerson University, Toronto, ON,
Canada, in 2009.

From 1997 to 2001, she was an Assistant Engi-
neer in the Guangxi TV station in Nanning, Guangxi,
China. In 2001, she joined the Shenzhen branch of
the ASK Engineering, Ltd., Guangdong, China, as a
Hardware Engineer. From 2002 to 2004, she worked

as a Software Engineer in the Guangxi Highland Digital Corp., Ltd., Guangxi,
China. After immigrating to Canada in 2004, she joined the SAE Power in
Toronto, ON, Canada, as a technician and entered Ryerson University in 2006.
Her current research interests include field-programmable gate array (FPGA)
architectures and FPGA applications in video processing.

Andy Ye (S’97–M’06) received the B.A.Sc.,
M.A.Sc., and Ph.D. degrees in computer engineering
from the University of Toronto, Toronto, ON,
Canada, in 1996, 1999, and 2004, respectively. He
graduated first in class in the engineering science
program in 1996.

From 1999 to 2000, he participated in the devel-
opment of the Ultragizmo board for the University of
Toronto Undergraduate Microprocessor Laboratory.
Currently, he is an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering at Ry-

erson University, Toronto, ON, Canada. His research interests include field-
programmable gate array (FPGA) architectures, computer-aided design (CAD)
tools for FPGAs, logic synthesis, and hardware implementation of computer
graphics algorithms.

