
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 1, JANUARY 2010 95

Using the Minimum Set of Input Combinations to
Minimize the Area of Local Routing Networks

in Logic Clusters Containing Logically
Equivalent I/Os in FPGAs

Andy Gean Ye, Member, IEEE

Abstract—Mapping digital circuits onto field-programmable
gate arrays (FPGAs) usually consists of two steps. First, circuits
are mapped into look-up tables (LUTs). Then, LUTs are mapped
onto physical resources. The configuration of LUTs is usually de-
termined during the first step and remains unchanged throughout
the second. In this paper, we demonstrate that by reconfiguring
LUTs during the second step, one can increase the flexibility of
FPGA routing resources. This increase in flexibility can then be
used to reduce the implementation area of FPGAs. In particular,
it is shown that, for a logic cluster with inputs and -input
LUTs, a set of � � � �� � � multiplexers
can be used to connect logic cluster inputs to LUT inputs while
maintaining logic equivalency among the logic cluster I/Os. The
multiplexers (called a local routing network) are shown to be the
minimum required to maintain logic equivalency. Comparing to
the previous design, which employs a fully connected local routing
network, the proposed design can reduce logic cluster area by
3%–25% and can reduce a significant amount of fanouts for logic
cluster inputs.

Index Terms—Area efficiency, field-programmable gate arrays
(FPGAs), local routing networks, logic clusters.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) typi-
cally connect look-up tables (LUTs) through a two-level

routing hierarchy. First, local routing networks are used to con-
nect LUTs into logic clusters. Then, global routing networks
are used to connect logic clusters into FPGAs. Since routing
networks usually consume a vast majority of FPGA area [1], it
is important to increase their flexibility while minimizing their
area.

One way of increasing the flexibility of routing networks is
to use logic clusters with logically equivalent inputs and out-
puts. In particular, logically equivalent inputs allow signals to
enter a logic cluster through any of the input pins, and logically
equivalent outputs allow signals to exit a logic cluster through
any of the output pins. This flexibility in I/O selection can in-
crease the area efficiency of global routing networks and lead to

Manuscript received June 01, 2008; revised September 30, 2008. First pub-
lished June 30, 2009; current version published December 23, 2009.

The author is with the Department of Electrical and Computer Engineering,
Ryerson University, Toronto, ON M5B 2K3, Canada (e-mail: aye@ee.ryerson.
ca).

Digital Object Identifier 10.1109/TVLSI.2008.2008188

an increase in FPGA area efficiency [2]. Many FPGA architec-
tural studies (for example,[1], [3]–[5]) are based on logic clus-
ters with logically equivalent I/Os. Other logic cluster designs
are compared against the logically equivalent ones [6]–[9]. So,
it is important to understand the minimum area required to im-
plement a logic cluster with logically equivalent I/Os.

In this study, we investigate the minimum area required to im-
plement logic clusters with logically equivalent I/Os. We create
the minimum area design by exploiting a link between LUT re-
configuration and routing flexibility. The design is implemented
in multiplexers and is proven to consume minimum area among
all multiplexer-based designs with logically equivalent I/Os. To
the best of the author’s knowledge, this is the first work that in-
vestigates the minimum area design for logic clusters containing
logically equivalent I/Os.

The rest of this paper is organized as follows. Section II moti-
vates the research, Section III discusses the LUT structure used
in this study, Section IV examines the effect of LUT reconfig-
uration on routing flexibility, Section V presents the design of
the minimum area local routing network, Section VI investigates
the area implications of the minimum area design, Section VII
examines the limitations of the current work and suggests future
research directions, and finally, Section VIII concludes.

II. BACKGROUND AND MOTIVATION

Logically equivalent I/Os allow a signal to enter/exit a logic
cluster in several ways. This added connectivity increase the
flexibility of the routers and can lead to better utilization of the
routing resources. As an example, consider the circuit shown in
Fig. 1(a). In the figure, there are four logic clusters. Each con-
tains a set of nonequivalent I/Os—each input signal must enter
the cluster through a dedicated cluster input and each output
signal must exit the cluster through a dedicated cluster output.
As shown, to connect the clusters, a maximum channel width
of three tracks per channel is required. In Fig. 1(b), on the other
hand, all clusters have logically equivalent I/Os—an input signal
can enter a cluster through any of the three cluster inputs and an
output signal can exit the cluster through any of the two cluster
outputs. The input signals of logic clusters A and D can now
be assigned to new logic cluster inputs and the output signal of
D can be assigned to a new logic cluster output. As shown in
Fig. 1(b), the new assignment creates a functionally equivalent

1063-8210/$26.00 © 2009 IEEE

96 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 1, JANUARY 2010

Fig. 1. Logically equivalent logic cluster I/Os. (a) Logically nonequivalent I/O
pins. (b) Logically equivalent I/O pins.

Fig. 2. Fully connected local routing network.

circuit that requires much less routing tracks to implement, re-
sulting in a one track per channel routing solution.

Previous work achieves logic equivalency through fully con-
nected local routing networks [1]–[5]. As shown in Fig. 2, the
network connects an LUT input to each of the logic cluster in-
puts through an multiplexer, where is the number of logic
cluster inputs that the cluster contains. The full connectivity al-
lows each LUT input to be connected to any of the logic cluster
inputs without affecting the connectivity of any other LUT in-
puts—resulting in a set of logically equivalent logic cluster in-
puts. It also decouples the signal assignment of the logic cluster
inputs from the logic assignment of the LUTs. Each LUT can be
used to implement any Boolean function assigned to the cluster
without affecting the assignment of the logic cluster inputs—re-
sulting in a set of logically equivalent logic cluster outputs.

The fully connected network, however, is not the most area
efficient method of achieving logic equivalency, and its area in-
efficiency can be illustrated through an extreme example, where
the multiplexers can be completely eliminated through LUT re-
configuration. Consider a logic cluster containing 1 four-input
LUT, four logic cluster inputs, and one logic cluster output, as
shown in Fig. 3. In Fig. 3(a), a fully connected local routing
network is used to connect the logic cluster inputs to each LUT
input. A signal assigned to LUT input , e.g., can enter the
cluster through any of the logic cluster inputs , , , or ,

Fig. 3. Fully connected local routing network versus LUT reconfiguration. (a)
Logical equivalency through local routing network. (b) Logical equivalency
through LUT reconfiguration.

and be connected to through the 4:1 multiplexer attached to
.
LUT reconfiguration, however, can achieve the same effect,

without the 4:1 multiplexers. For example, as shown in Fig. 3(b),
each LUT input can be directly connected to a cluster input.
Here, for a four-input Boolean function such as the one shown
in Fig. 4(a), a signal assigned to can be routed through cluster
input . The same function, however, can be implemented by
exchanging the signal assignment of and , and by recon-
figuring the LUT to implement the Boolean function shown in
Fig. 4(b). The signal originally assigned to now must enter
the cluster through logic cluster input . Similarly, the same
signal can be made to enter the cluster through logic cluster in-
puts and , respectively, by using the LUT configurations
shown in Fig. 4(c) and Fig. 4(d).

This paper addresses the following three questions: 1) for a
logic cluster with -input LUTs, feedback signals (one
per registered LUT output), and logic cluster inputs, what is
the most area efficient method of implementing a local routing
network with logically equivalent logic cluster inputs and logic
cluster outputs? 2) In this minimum area implementation, how
should the feedbacks and the logic cluster inputs be connected to
the LUT inputs? 3) In this minimum area implementation, how
should the LUTs be reconfigured to maintain logic equivalency
among the logic cluster inputs and outputs?

Note that Fig. 5 shows a logic cluster with 2 four-input LUTs,
two feedbacks, six logic cluster inputs, and a fully connected
local routing network. The cluster will be used as an illustrative
example throughout the paper.

III. STRUCTURES AND PROPERTIES OF LUTS

A -input LUT is designed to emulate the operation of a
entry truth table. Its structure is shown in Fig. 6. As shown, the
LUT is constructed out of a multiplexer and bits of con-
figuration memory. The memory is connected to the data inputs
of the multiplexer and stores the truth table entries. The LUT
inputs are connected to the select inputs of the multiplexer. It
is assumed that the multiplexer is implemented using pass tran-
sistor logic. An example of such an implementation is shown
for a four-input LUT in Fig. 7.

In this study, we use three properties of an LUT to deter-
mine the minimum area required to implement a logic cluster
containing logically equivalent I/Os. These properties are de-
scribed in turn. First, as shown in Fig. 4, any two inputs of an

YE: USING THE MINIMUM SET OF INPUT COMBINATIONS IN LOGIC CLUSTERS 97

Fig. 4. LUT configurations for the LUT structure shown in Fig. 3(b). (a) LUT configuration for connection to cluster input 1. (b) LUT configuration for connection
to cluster input 2. (c) LUT configuration for connection to cluster input 3. (d) LUT configuration for connection to cluster input 4.

Fig. 5. Logic cluster with 2 four-input LUTs, two feedbacks, six inputs, and a
fully connected local routing network.

Fig. 6. �-Input LUT.

LUT can be made commutative through LUT reconfiguration.
The property is formally stated below where the Boolean func-
tion is implemented in the -input LUT be-
fore the reconfiguration and is implemented
in the LUT after the reconfiguration. Note that the two variables
of concern, and , are highlighted in bold and a formal proof
is presented in the Appendix for completeness.

Property 1—Commutative Property: Let .
Let be a Boolean function with inputs. Let

Fig. 7. Structure of a four-input LUT.

be independent Boolean variables. For there
exists a function , such that

The -input LUT shown in Fig. 6 can also implment any
Boolean function with less than inputs. Implementing such
a function also requires all unused LUT inputs to be connected.
Three types of signals can be connected to these inputs. They
are the inputs from the Boolean function that is currently being
implemented, constant 1’s or 0’s, and an entirely new set of sig-
nals, respectively.

Fig. 8 shows an example for each of the three methods. Here,
a three-input Boolean function shown in Fig. 8(a) is imple-
mented on a four-input LUT, where is the unused LUT input.
If is always connected to the same signal as , then the
LUT can be configured as shown in Fig. 8(b). The configura-
tion minimizes the amount of configuration information—only
8 out of 16 configuration memory bits are required. Connecting

98 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 1, JANUARY 2010

Fig. 8. Implementing a three-input Boolean function in a four-input LUT.
(a) Three-input Boolean function. (b) Duplicated input implementation.
(c) Constant input (“0”) implementation. (d) New input implementation.

to a constant value also minimizes the amount of configura-
tion information. For example, if is connected to a constant
value of “0,” the LUT can be configured as shown in Fig. 8(c).
Again, only 8 out of 16 configuration memory bits are required.
Connecting constant Boolean values to LUT inputs, however,
requires additional circuitry to connect LUT inputs to logical
1’s or 0’s.

Alternatively, one can connect any arbitrary signals to the un-
used inputs and suppress these arbitrary inputs through LUT re-
configuration. Suppressing arbitrary inputs requires the dupli-
cation of the configuration information [10]. In Fig. 8, e.g., if

is connected to a nonconstant signal other than the signals
connected to , , and , the LUT can be reconfigured as
shown in Fig. 8(d). Here, all 16 bits of the configuration memory
are utilized by duplicating the three-input truth table. Note that
the new input method is more flexible than the previous two
methods since the same LUT configuration can also be used in
the duplicated input and the constant input cases. Furthermore,
the method places no restiction on which type of signals must
be connected to the unused inputs.

For a general -input LUT, Property 2 formally defines
the equivalency between the constant input method and the
duplicated input method. Property 3 formally defines the
equivalency between the new input method and the constant
input method. Both properties assume the LUT implements the
Boolean function before the reconfiguration
and the Boolean function after the reconfig-
uration. Again variables of concern, and , are highlighted
in bold and formal proofs of the properties are presented in the
Appendix for completeness.

Property 2—Duplicate-Constant Input Equivalence: Let
. Let be a Boolean function with

inputs. Let be Boolean variables. If ,
then there exists a function such that

Property 3—Constant-New Input Equivalence: Let
. Let be a Boolean function with inputs.

Fig. 9. BLEs and logic cluster. (a) BLE. (b) Logic cluster.

Let be independent Boolean variables. For
there exists a function such that

IV. MINIMUM SET OF LOGIC CLUSTER INPUT AND

FEEDBACK COMBINATIONS FOR MAINTAINING

LOGICALLY EQUIVALENT I/OS

This section demonstrates LUT reconfiguration that can be
used to increase the flexibility of local routing networks while
maintaining logic equivalency among logic cluster I/Os. In par-
ticular, the logic cluster structure shown in Fig. 9 is used in this
paper. This cluster is a generalized version of the logic cluster
shown in Fig. 5. It contains LUTs and registers. As shown
in Fig. 9(a), each LUT is paired with a register to form a basic
logic element (BLE). Within the BLE, the output of the LUT
feeds the input of the register. The output of the register and the
output of the LUT are connected to the BLE output through a
2:1 multiplexer. As shown in Fig. 9(b), BLEs are grouped
into a logic cluster. Each logic cluster contains inputs. Within
each cluster, the local routing network is used to connect the in-
puts of the LUTs to the inputs of the logic cluster as well as the
outputs (feedbacks) of the BLEs.

Given a -input function, , define as
the maximum set of functions that one can generate by ex-
hausitviely connecting to all combinations of logic cluster
inputs and feedbacks. By definition, contains
functions. The following theorem shows the equivalency be-
tween logically equivalent I/Os and .

Theorem 1: The I/Os of a logic cluster are logically equiva-
lent if and only if the cluster can implement a -input function,

, at any logic cluster output and, for each im-
plementation of , the local routing network is able to generate
all functions in for .

YE: USING THE MINIMUM SET OF INPUT COMBINATIONS IN LOGIC CLUSTERS 99

Fig. 10. Logic cluster and � . (a) Logic cluster. (b) � for functions imple-
mented at � and � .

Proof: If the logic cluster has a set of logically equivalent
inputs, each input of can enter the logic cluster through any of
the logic cluster inputs. If the logic cluster has a set of logically
equivalent outputs, one can implement at any logic cluster
output. A feedback signal must also be able to reach from
any of the logic cluster outputs. Consequently, the local routing
network must be able to generate all functions in for at
each logic cluster output.

Conversely, if the local routing network is not flexible
enough to generate all functions in at a particular logic
cluster output, one must avoid signal assignments that can lead
to the unimplementable functions. If these un-impelmentable
functions involve logic cluster inputs, then these inputs are no
longer logically equivalent to the remaining inputs. Similarly, if
the unimplementable functions involve logic cluster feedbacks,
then the corresponding logic cluster outputs are no longer
logically equivalent to the remaining outputs.

As an example, Fig. 10(a) shows a logic cluster with 2 two-
input LUTs, two logic cluster inputs, and two feedbacks. To
ensure that the logic cluster contains a set of logically equivalent
I/Os, the local routing network must be able to generate all 16
functions shown in Fig. 10(b) for each logic cluster output.

Logic equivalency among the logic cluster inputs and out-
puts can be achieved through the use of a fully connected local
routing network that connects each LUT input to all logic cluster
inputs and feedbacks. It can be shown that, without LUT re-
configuration, this fully connected network is the minimum re-
quired to achieve logic equivalency. In particular, if an LUT
input is only connected to a subset of logic cluster inputs and
feedbacks, a signal assigned to the LUT input can only enter
the cluster through the connected inputs/feedbacks—these con-
nected inputs/feedbacks are no longer logically equivalent to
the unconnected ones. The fully connected local routing net-
work can be designed as multiplexers. Each
LUT input is connected to the output of one of the multiplexers.
The multiplexer inputs are connected to the inputs of the logic
cluster and its feedbacks. Using this structure, one can gen-
erate distinct combinations of inputs/feedbacks for
each LUT.

More formally, let . In general, there are dif-
ferent ways of substituting variables into a -input Boolean

Fig. 11. Connections for �� � � � � � � �.

function. If these variables are the outputs of other Boolean
functions, the substitution process can generate at a maximum

new functions—one function for each of the combina-
tions of variables. The following lemmas show that one can re-
duce the number of input combinations required to generate the

functions from to . Theorem 2 shows that these
input combinations are the minimum set required to generate
the functions.

Lemma 1: Let be a -input LUT implementing a Boolean
function . Let be the output sig-
nals from LUTs. Let be the set of all functions that can
be created by exhaustively connecting each input of to all
signals in the set . Using the commutative prop-
erty and the duplicate-constant input equivalence property, one
can reduce the input combinations required to generat to

input combinations.
Proof: Create an exhaustive list of all the subsets of

for the subset sizes of . For each
subset in , sort the Boolean variables in the subset according
to their orders in . Create a set of -bit wide
bit vectors such that each bit vector in is the concatenation
of the variables in a sorted subset in and 0’s, where
is the size of the subset.

Let be a set of bit vectors representing all possible com-
binations of variables in . For any bit vector
in , containing one or more , where , let be
a copy of . Substitute all but one in by 0’s. The dupli-
cate-constant input equivalence property says that there exists
a function such that . Repeat the substitution
process until a bit vector containing no repeated variables is
obtained. Let be the function such that .

Create by sorting the variables in according to their
orders in and moving all constant 0’s in to
the end of the bit vector. The commutative property says that
there exists a function such that .

is in . Consequently, contains all the input combina-
tions that are required to generate all functions in . By defi-
nition, contains distinct bit vectors.

100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 1, JANUARY 2010

Fig. 12. LUT reconfiguration and LUT input rearrangement. (a) �� � � � � � � � configuration. (b) ��� � � � � � � configuration. (c) �� � � � � � �� configuration.
(d) �� � � � � � � � configuration.

Fig. 13. Connections for �� � � � � � ��.

Lemma 1 shows that if LUT inputs are allowed to connect to
constant Boolean values (0’s in this case), for each -bit wide
input bit vector , one can substitute all the duplicate inputs in

by 0’s. The LUT configuration can then be transformed using
the duplicate-constant input equivalence property—resulting in
a circuit that implements the same function as the the original
circuit. Furthermore, based on the commutative property, the
bits in can be rearranged in any order. For each rearrangement,
a new LUT configuration can be defined to create a new circuit
that implements the same function as the original circuit.

As an example, consider the logic cluster shown in Fig. 5.
Assuming LUT 1 is connected to bit vector as
shown in Fig. 11, and is configured to the configuration shown
in Fig. 12(a). The same function can be implemented by trans-
forming the configuration to Fig. 12(b) and substitute the first

with “0.” The inputs can then be rearranged into bit vector
and the LUT be reconfigured to the configura-

tion shown in Fig. 12(c). Again the new circuit, as shown in
Fig. 13, implements exactly the same function as the original
circuit. Note that is a bit vector in set , as de-
fined in Lemma 1. Since Fig. 5 contains a fully connected local
routing network, the same observation can be made for LUT 2.

Although Lemma 1 reduces the number of input combina-
tions required to generate , it introduces 0’s to LUT inputs.
Connecting LUTs to 0’s requires additional hardware. Lemma 2
shows that the constant-new input equivalence property allows
one to create a new set of input combinations by removing 0’s
from and further reduce the number of input combinations
from to .

Lemma 2: Let be a -input LUT implementing a Boolean
function . Let be the output sig-
nals from LUTs. Let be the set of all functions that can
be created by exhaustively connecting each input of to all
signals in . Using the constant-new input equiv-
alence property, one can reduce the distinct combi-
nations required to generate all functions in to .

Proof: Create an exhaustive list of all the subsets of
, for the subset size of . For each subset in

, sort the variables in the subset according to their orders in
. Create a set of -bit wide bit vectors such

that each bit vector in corresponds to a sorted subset in .
Use the same definition of as Lemma 2. For any bit vector
in that contains one or more 0’s, one can find a vector

in such that the variables contained in is a superset of the
variables contained in . By the constant-new input equivalence
property, there exists a function such that .
Therefore, contains all the input combinations that are re-
quired to generate all the functions in . By definition, con-
tains distinct bit vectors.

Fig. 12(d) shows the LUT configuration after the constant “0”
is substituted by in our example. The new local routing net-
work connection is shown in Fig. 14. Note that
is a bit vector in , as defined in Lemma 2.

Theorem 2: is the minimum set of input combinations that
generates the set for all -input Boolean functions.

Proof: Let be a -input Boolean function
with the following properties: for each input of , , where

, there exists at least one sequence of constant 0’s
and 1’s— —such that

YE: USING THE MINIMUM SET OF INPUT COMBINATIONS IN LOGIC CLUSTERS 101

Fig. 14. Connections for �� � � � � � � �.

Let be a bit vector in as defined in Lemma 2. Let be
another bit vector in such that . For each in ,
there exists a signal , where , in such that does
not belong to . Since, by definition, the output of varies
as is varied, for any -input Boolean function ,

. Therefore, cannot be removed from without reducing
the set of functions that can be generated for . By Lemmas 1
and 2, any set of input combinations can be reduced to or a
subset of without reducing the number of functions that the
set can generate. Consequently, is the minimum set of input
combinations that can generate all functions in for .

Since can be used to generate for any -input Boolean
functions, is the minimum set of input combinations that can
generate for all -input Boolean functions.

V. CIRCUIT DESIGN FOR GENERATING THE MINIMUM SET OF

LOGIC CLUSTER INPUT AND FEEDBACK COMBINATIONS

Having discussed the minimum set of input combinations
that is required to generate all functions in , we examine the
effect of the minimum set on the design of the multiplexer-based
local routing networks. First, Lemma 3 examines two unique
properties of .

Lemma 3: Let be a -input LUT implementing a Boolean
function . Let be the output sig-
nals from LUTs. Let be a -bit wide bit vector containing
a subset of signals from . If is in and
is the th element of , then must be smaller than or equal to

and greater than or equal to .
Proof: Let be the th (the last) element in .

Since elements in are sorted according to their orders in
, must be greater than or equal to . If
, then . However,

by definition, must be smaller than or equal to . Therefore,
must be smaller than or equal to .
Similarly, let be the first element in . Since elements in

are sorted according to their orders in . must be
smaller than or equal to . If , then

. However, by definition, must be greater than or equal to 1.
Therefore, must be greater than or equal to .

Fig. 15. Sparse local routing network.

Lemma 3 shows that a local routing network can be used to
connect the th input of a -input LUT to all signals in the set

through an multiplexer.
Through LUT reconfiguration and function transformations, the
LUT can be used to generate all functions in , as defined in
Lemma 1. Note that to generate all functions in without re-
configuration, each input of the -input LUT must be connected
to all signals in through an multiplexer.

For example, for the logic cluster shown in Fig. 3, there are
four logic cluster inputs, , , , and , and no feedbacks.
Lemma 3 shows that LUT input should be connected to all
signals in the set (for , , and), should
be connected to all signals in the set (for , ,
and), should be connected to all signals in the set
(for , , and), and should be connected to
all signals in the set (for , , and). With
reconfiguration, the local routing network is able to generate all
functions in set .

Similarly, for the two LUT logic cluster shown in Fig. 5, there
are two feedbacks and , and six logic cluster in-
puts , , , , , and . Lemma 3
shows that for each LUT, LUT input should be connected
to all signals in the set (for , ,
and), should be connected to all signals in the set

(for , , and), should be
connected to all signals in the set (for ,

, and), and should be connected to all signals
in the set (for , , and).
Again, with reconfiguration, this sparser local routing network
(as shown in Fig. 15) can generate all functions in .

In Fig. 15, the multiplexer size is reduced from 8:1 to 5:1.
The fanout of and is reduced from 8 to 2. The fanout
of and is reduced from 8 to 4; the fanout of and
is reduced from 8 to 6; and the fanout of and remains
unchanged at 8. Note that, as shown in Fig. 16, the fanouts of
all logic cluster inputs and feedbacks can be reduced to 5 by
rearranging the order of the logic cluster inputs/feedbacks to

when the inputs and feedbacks are
connected to LUT 2.

102 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 1, JANUARY 2010

Fig. 16. Sparse local routing network with balanced fanouts.

Fig. 17. LUT configurations for implementations 1 and 2. (a) A three-input
Boolean function. (b) LUT configuration for Imp. 1 (�� � ��, �� � ��,
�� � ��, �� � ��). (c) LUT configuration for Imp. 2 (�� � ��, �� � ��,
�� � ��, �� � ��).

Both logic cluster designs retain logic equivalency among
logic cluster inputs and outputs. As an example, consider imple-
menting the three-input Boolean function shown in Fig. 17(a) in
the logic cluster shown in Fig. 15. There are 336 unique ways
that the three inputs can enter the logic cluster. Figs. 18 and 19
show two of the possibilities. In Fig. 18, , , and are as-
signed to cluster inputs , , and , respectively. is also
duplicated to provide the fourth LUT input. The corresponding
LUT configuration is shown in Fig. 17(b).

Alternatively, a router can assign , , and to , ,
and , respectively. Due to the sparse local routing network,
none of the three inputs can be expanded into the fourth LUT
input. Instead, an arbitrary cluster input, , is used as the fourth
input. Note that in a directional single-drive architecture [11],
each track is driven by its own buffer (as shown in Fig. 20).
Consequently, can be connected to any of the routing tracks
since the LUT is configured to provide the same output for both

and as shown in Fig. 17(c).
Theorem 3: At a minimum, one requires

multiplexers to generate all bit vectors in and all functions in
.

Fig. 18. Implementation 1.

Fig. 19. Implementation 2.

Proof: Let the multiplexer design be
design . Assume there exists a design, , with at least one

multiplexer, where , and can generate all
the bit vectors in .

Let the set be the set that contains all the inputs to one
of the multiplexers in . For each of the
multiplexers in , let be the set that contains all the inputs
to . Remove all signals in from the inputs of . Since

, there will be at least inputs
remaining for . Let the new design be .

For the multiplexers in , let be a matrix (with
rows and columns). If multiplexer is connected to logic

cluster input/feedback then let . Otherwise, let
. Since there are less than variables

in , creating the design corresponds to removing 1 to
columns from . The resulting matrix has to

columns. Since is created by removing less than
columns from and from Lemma 3, for each row in ,
columns to are equal to 1, for all valid
values of .

YE: USING THE MINIMUM SET OF INPUT COMBINATIONS IN LOGIC CLUSTERS 103

Fig. 20. Logic cluster to routing track connections.

Consequently, in , one can generate a bit vector by
assigning the input corresponding to the first column of
to the first multiplexer, the input corresponding to the second
column of to the second multiplexer, etc., and the input
corresponding to the th column of to the th multiplexer.

belongs to . Since does not contain any inputs of ,
cannot be generated by design . This contadicts the assump-
tion that can generate all the bit vectors in . Therefore,
cannot be smaller than for generating all bit vectors
in .

Similarly, since does not contain any inputs of and con-
tains distinct logic cluster inputs/feedbacks, cannot gen-
erate any bit vector that contains all inputs/feedbacks in . Con-
sequently, cannot generate all functions in . Therefore,
cannot be smaller than for generating all functions in

.

VI. AREA AND FANOUT RESULTS

As shown in Section V, LUT reconfiguration can be effec-
tively used to reduce the size of the multiplexers that are re-
quired to preserve logic equivalency. In particular, as shown
in Fig. 9, to implement a traditional local routing network, a
logic cluster with BLEs and inputs would require

multiplexers. With LUT reconfiguration, on the other
hand, only multiplexers are required.
While this reduction in multiplexer size can result in significant
area savings, the exact amount of area reduction varies with the
detailed implementations of the multiplexers.

For example, Fig. 21(a) shows a pass transistor-based mul-
tiplexer design, which is optimized for minimum configuration
memory. In this design, reducing the number of multiplexer in-
puts from to reduces the total number of pass transis-
tors from to . This input reduction also reduces
the total number of configuration memory bits required to con-
trol the multiplexer from to .

On the other hand, for a minimum-level implementation such
as the one shown in Fig. 21(b), the same reduction in multiplexer
inputs reduces the number of configuration memory bits and the
number of pass transistors both from to .

In this study, the area evaluation and circuit design method-
ology of [2] is used to more accurately evaluate the effect of
multiplexer input reduction on logic cluster area. This method-
ology has been widely used in many previous FPGA architec-
tural studies [1]–[3], [5], [9], [11]–[20]. The implementation

Fig. 21. Multiplexer implementations �� � ��. (a) Minimum configuration
memory. (b) Minimum-level multiplexer. (c) Two-level multiplexer.

area of a logic cluster is estimated based on active area. In par-
ticular, the active area consumed by a logic cluster is defined
as

(1)
The detailed design of LUTs used in this evaluation is shown

in Fig. 7. The design assumes that the configuration memory
bits are implemented using static RAM (SRAM) cells and are
directly connected to the data inputs of the multiplexer. It
is assumed that each SRAM cell consumes the equivalent area
of six minimum width transistors. The multiplexer employed
by the LUT is a multilevel design that minimizes the number of
select signals. These select signals in turn are connected to the

LUT inputs through a set of buffers. It is assumed that all pass
transistors used in the design are of minimum width.

The BLEs are designed as Fig. 9. As the LUT design, it is
assumed that minimum width pass transistors are used to im-
plement the 2:1 multiplexer. An SRAM bit is used to control
the configuration of the multiplexer. It is also assumed that the
register is of D-type, which consumes the equivalent area of 19
minimum width transistors.

Based on these paramneters, Table I shows the equivalent
minimum width transistor area that is required to implement
a local routing network for logic clusters containing BLEs,
where varies from 1 to 20 (the same percentage reduction
data from column 4, 7, and 10 are presented again graphically
in Fig. 22). It is assumed that each BLE contains a four-input
LUT and the number of inputs that each logic cluster contains
is equal to [1]

(2)

104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 1, JANUARY 2010

TABLE I
LOCAL ROUTING NETWORK AREA REDUCTION �� � ��

Fig. 22. Local routing network area reduction �� � ��.

In the table, Column 2 shows the equivalent minimum width
transistor area that is required to implement a traditional local
routing network based on the minimum configuration memory
multiplexer shown in Fig. 21(a), where all pass transistors are of
minimum width and each SRAM cell consumes the equivalent
area of six minimum width transistors. Column 3 shows the area
required to implement the new local routing network employing
the same multiplexer design. Finally, column 4 shows the area
reduction of the new implementation as compared to the tradi-
tional implementation.

Columns 5–7 summarize the same information for local
routing networks employing the minimum-level multiplexer
design shown in Fig. 21(b), while column 8, 9, and 10 sum-
marize the same information for the two-level multiplexer
design shown in Fig. 21(c). Again, it is assumed that each pass
transistor is of minimum width and each SRAM cell consumes
the equivalent area of six minimum width transistors.

The table shows that while the area required to implement the
local routing networks varies significantly from multiplexer de-
sign to multiplexer design, the overall area reduction as a func-
tion of behaves similarly across all three multiplexer designs.
In particular, all three designs achieve significant area savings
at small values of . As increases, the proportion of area
savings that can be achieved through LUT reconfiguration de-
creases. In particular, for the new local routing network
implementation is around 48%–64% smaller than the traditional

Fig. 23. Local routing network area reduction �� � ��.

Fig. 24. Local routing network area reduction �� � ��.

Fig. 25. Local routing network area reduction �� � ��.

implementation. For , the area reduction is reduced to
3.7%–4.8%. Similar trend is observed for other values of as
shown in Figs. 23–25 for the LUT size of 5–7, respectively.

Figs. 26–29 show the percentage of logic cluster area reduc-
tion as a function of for the LUT size of 4–7, respectively.
As shown, the area reduction per logic cluster follows the same
trend as the area reduction for local routing networks.

The reductions range from 12% to 25% for small values of
to 2.9%–5.2% for large values of . In particular, the min-

imum-level and the two-level implementations see a larger per-
centage reduction since the local routing networks employing
these multiplexer designs consume more active area than the
local routing networks that employ the minimum configuration

YE: USING THE MINIMUM SET OF INPUT COMBINATIONS IN LOGIC CLUSTERS 105

Fig. 26. Logic cluster area reduction �� � ��.

Fig. 27. Logic cluster area reduction �� � ��.

Fig. 28. Logic cluster area reduction �� � ��.

memory design. Consequently, an equal percentage of area re-
duction in local routing networks would result in a relatively
larger percentage reduction in logic cluster area.

Note that a local routing network is constructed out of
multiplexers. In the traditional design each multiplexer requires

inputs. Consequently the entire local routing network
requires input signals. Since these signals
are connected to logic cluster inputs and feedbacks, each
logic cluster input/feedback signal has a fanout of . In
the new design, each multiplexer requires only
inputs. Consequently, the local routing network requires only

inputs. This reduction in the number

Fig. 29. Logic cluster area reduction �� � ��.

Fig. 30. Average fanout reduction per input/feedback.

of inputs translates to a reduction in fanouts for a subset of logic
cluster input/feedback signals.

In particular, the fanouts of input/feedback signals
are reduced in the new design. Two of these signals have a fanout
of in the new design, two others have a fanout , while
the remaining pairs have fanouts of ,
respectively. Note that the remaining input/feedback signals in
the new design maintain a fanout of . Overall, the new
design has a total fanout reduction of over all
input/feedback signals. Fig. 30 shows the average fanout reduc-
tion per input/feedback.

Finally, Table II shows the fanout adjusted area for the cluster
size of 6 and LUT sizes of 4–7. Note that the logic cluster area
shown in the table includes the area occupied by buffers that are
used to drive the inputs of logic clusters. As in [9] these buffers
are sized according to the number of fanouts that they drive. As
shown for these typical cluster configurations, the new sparse
local routing networks can reduce the total logic cluster area
by 6.2%–12.4% while fully retain the routability of the original
fully connected local routing networks.

VII. LIMITATIONS AND FUTURE WORK

This paper assumes that all inputs to an LUT can be made
logically equivalent through LUT reconfiguration. While the as-
sumption is true for the BLEs used in the academic VPR tool [2],
it is not true for many real-world FPGAs. For example, each
LUT in the Altera Stratix II series of FPGAs [7], can be con-
figured into a variety of LUT sizes. They can also be used in

106 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 1, JANUARY 2010

TABLE II
FANOUT ADJUSTED LOGIC CLUSTER AREA FOR CLUSTERS CONTAINING 6

FOUR LUTS, FIVE LUTS, SIX LUTS, OR SEVEN LUTS

a variety of arithmetic modes. These additional functionalities
reduce the logic equivalency among LUT inputs. Applying the
results presented in this paper to the design of these more com-
plex logic cells is left as future work.

The work in [6] describes a sparsely populated local routing
network used in the Actel FPGAs. In particular, in the Actel
architecture, each logic cluster contains eight four-input LUTs
and each LUT input is connected to eight of the 32 logic cluster
inputs (and to no feedbacks) through an 8:1 multiplexer. This ar-
chitecture sacrifices logically equivalent logic cluster I/Os and
local feedbacks for a larger logic cluster size and correspond-
ingly wider routing channels. The exact mechanisms and ben-
efits of such a trade-off, however, is not fully understood. The
tradeoff can be justified by the sparseness of the local routing
networks in [6]. In particular, according to (2), in a logic cluster
containing a fully connected local routing network, the size of
the cluster is governed by the size of the multiplexers attached
to the LUT inputs , and the size of the LUTs

(3)

Consequently, 8:1 multiplexers can only be used to construct
a logic cluster containing two four-input LUTs. Since previous
work [1], [3] has demonstrated that logic clusters with two LUTs
are not area efficient, [6] did not consider reducing the routing
channel width and experimentally evaluate the area efficiency
of logic clusters containing 2 four-input LUTs.

The results from this study, however, changes the relationship
among , , and to

(4)

Consequently, 8:1 multiplexers can be used to construct logic
clusters containing 3 four-input LUTs and three LUT clusters
have been shown to be area efficient in [1]. In particular, the 3
four-input LUT clusters would consume no more local routing
network area per LUT than the 8 four-input LUT cluster design
while retaining full logic equivalency among logic cluster I/Os
and allowing local feedbacks. With narrower routing channels
surrounding each three LUT cluster, the three LUT design can
be competitive and should be experimentally evaluated as an
extension to [6].

Alternatively, since the logic clusters proposed in [6] do not
contain feedbacks, the 8:1 multiplexers can be used to con-
struct logic clusters containing 4 four-input LUTs with eleven
logic cluster inputs. Again, this design would require a narrower
channel width in order to support the smaller four LUT clusters.
Since the four LUT design retains logic equivalency among the

logic cluster I/Os and has less logic cluster inputs per LUT than
the design proposed in [6], it can be potentially more area ef-
ficient. This design should also be experimentally evaluated as
an extension to [6] in future work, along with an examination
on the effect of the sparse local routing network design on the
power efficiency of FPGAs.

VIII. CONCLUSION

This paper has examined the relationship between logic
equivalency of logic cluster I/Os and LUT reconfiguration
for FPGA local routing networks. It is shown that through
LUT reconfiguration, one can reduce the size of multiplexers
used in FPGA local routing networks from to

, where is the number of logic cluster
inputs, is the number of logic cluster feedbacks, and is the
number of LUT inputs. It is shown that the
size is the minimum multiplexer size required to achieve fully
equivalent logic cluster I/Os through LUT reconfiguration. The
paper has also examined the detailed area reduction figures for
logic clusters with LUT size of 4–7. It is shown that with LUT
reconfiguration the local routing network area can be reduced
by 48%–72% when is equal to 1 and 3.7%–6.5% when
is equal to 20. This reduction in local routing network area
translates to a 2.9%–25% area reduction in logic cluster area.
Finally, it is also shown that LUT reconfiguration also reduces
a significant amount of fanouts for logic cluster inputs and
feedbacks.

APPENDIX

PROOFS OF LUT PROPERTIES

Property 1—Commutative Property: Let .
Let be a Boolean function with inputs. Let

be independent Boolean variables. For there
exists a function , such that

Proof: Define in terms of based on the following four
equations:

(5)

(6)

(7)

(8)

Let
and

.
Equation (5) gives

YE: USING THE MINIMUM SET OF INPUT COMBINATIONS IN LOGIC CLUSTERS 107

.
Similarly, (6) gives , (7) gives

and (8) gives
.

Therefore, .
Property 2—Duplicate-Constant Input Equivalence: Let

. Let be a Boolean function with
inputs. Let be Boolean variables. If ,

then there exists a function such that

Proof: Define in terms of based on the following two
equations:

(9)

(10)

Let
and

.
Equation (9) gives

.
Similarly, (10) gives . Therefore,
.
Property 3—Constant-New Input Equivalence: Let

. Let be a Boolean function with inputs.
Let be independent Boolean variables. For
there exists a function such that

Proof: Define in terms of based on the following two
equations:

(11)

(12)

Let and
.

Equation (11) gives

.
Similarly, (12) gives . Therefore,
.

REFERENCES

[1] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-
submicron FPGA performance and density,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 12, no. 3, pp. 288–298, Mar. 2004.

[2] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. New York: Kluwer, Feb. 1999.

[3] V. Betz and J. Rose, “How much logic should go in an FPGA logic
block?,” IEEE Des. Test Comput. Mag., vol. 15, no. 1, pp. 10–15, Jan.
–Mar. 1998.

[4] V. Betz and J. Rose, “Effect of the prefabricated routing track distribu-
tion on FPGA area-efficiency,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 6, no. 3, pp. 445–456, Sep. 1998.

[5] A. Marquardt, V. Betz, and J. Rose, “Speed and area trade-offs in
cluster-based FPGA architectures,” IEEE Trans. Very Large Scale In-
tegr. (VLSI) Syst., vol. 8, no. 1, pp. 84–93, Feb. 2000.

[6] W. Feng and S. Kaptanoglu, “Designing efficient input interconnect
blocks for LUT clusters using counting and entropy,” ACM Trans. Re-
configurable Technol. Syst., vol. 1, no. 2, pp. 6:1–6:28, Jun. 2008.

[7] D. Lewis, “The stratix II logic and routing architecture,” in Proc. ACM/
SIGDA Int. Symp. Field Program. Gate Arrays, 2005, pp. 14–20.

[8] D. Lewis, “The stratix routing and logic architecture,” in Proc. ACM/
SIGDA Int. Symp. Field Program. Gate Arrays, 2003, pp. 15–20.

[9] G. Lemieux and D. Lewis, “Using sparse crossbars within LUT clus-
ters,” in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays,
2001, pp. 59–68.

[10] C. E. Shannon, “The synthesis of two-terminal switching circuits,” Bell
Syst. Tech. J., vol. 28, no. 1, pp. 59–98, Jan. 1949.

[11] G. Lemieux, “Directional and single-driver wires in FPGA intercon-
nect,” in Proc. IEEE Int. Conf. Field-Program. Technol., 2004, pp.
41–48.

[12] V. Betz and J. Rose, “FPGA routing architecture: Segmentation and
buffering to optimize speed and density,” in Proc. ACM/SIGDA Int.
Symp. Field Program. Gate Arrays, 1999, pp. 59–68.

[13] A. Roopchansingh and J. Rose, “Nearest neighbour interconnect ar-
chitecture in deep submicron FPGAs,” in Proc. IEEE Custom Integr.
Circuits Conf., 2002, pp. 59–62.

[14] A. Ye and J. Rose, “Using bus-based connections to improve field-
programmable gate array density for implementing datapath circuits,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14, no. 5, pp.
462–473, May 2006.

[15] K. Poon, A. Yan, and S. Wilton, “A flexible power model for FPGAs,”
in Proc. Int. Conf. on Field-Program. Logic Appl., 2002, pp. 48–58.

[16] M. Masud and S. Wilton, “A new switch block for segmented FPGAs,”
in Proc. Int. Workshop Field Program. Logic Appl., 1999, pp. 274–281.

[17] A. Singh, G. Parthasarathy, and M. Marek-Sadowska, “Efficient circuit
clustering for area and power reduction in FPGAs,” ACM Trans. Des.
Autom. Electron. Syst., vol. 7, no. 4, pp. 643–663, Oct. 2002.

[18] A. Singh, A. Mukherjee, and M. Marek-Sadowska, “Interconnect
pipelining in a throughput-intensive FPGA architecture,” in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2001, pp.
153–160.

[19] E. Bozorgzadeh, S. Ogrenci-Memik, and M. Sarrafzadeh, “RPack:
Routability-driven packing for cluster-based FPGAs,” in Proc. Conf.
Asian South Pacific Des. Autom., 2001, pp. 629–634.

[20] F. Li, “Architecture evaluation for power-efficient FPGAs,” in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2003, pp.
175–184.

Andy Gean Ye (S’97–M’06) received the B.A.Sc.,
M.A.Sc., and Ph.D. degrees in computer engineering
from the University of Toronto, Toronto, ON,
Canada, in 1996, 1999, and 2004, respectively. He
graduated first in class in the Engineering Science
Program in 1996.

From 1999 to 2000, he participated in the devel-
opment of the Ultragizmo board for the University of
Toronto Undergraduate Microprocessor Laboratory.
He is currently an Assistant Professor in the De-
partment of Electrical and Computer Engineering,

Ryerson University, Toronto. His current research interests include field-pro-
grammable gate array (FPGA) architectures, computer-aided design (CAD)
tools for FPGAs, logic synthesis, and hardware implementation of computer
graphics algorithms.

